
Received 30 April 2024, accepted 6 May 2024, date of publication 13 May 2024, date of current version 20 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3399930

Resource Allocation Considering Impact
of Network on Performance in a
Disaggregated Data Center
AKISHIGE IKOMA 1, YUICHI OHSITA 2, (Member, IEEE),
AND MASAYUKI MURATA 1, (Member, IEEE)
1Graduate School of Information Science and Technology, Osaka University, Suita 565-0871, Japan
2Cybermedia Center, Osaka University, Toyonaka 560-0043, Japan

Corresponding author: Akishige Ikoma (a-ikoma@ist.osaka-u.ac.jp)

This work was supported in part by the National Institute of Information and Communications Technology (NICT) under Grant
JPJ012368C00101.

ABSTRACT A disaggregated data center (DDC) can efficiently use resources such as CPU and memory.
In a DDC, because each resource is independent and connected by a network, communication between
resources is required for task execution. Communication delays can be an overhead for task execution,
causing performance degradation. Because communication delays depend on the correspondence between
resources on the network and the paths over which they communicate, an efficient resource allocationmethod
is required to determine this relationship. Herein, we propose a resource allocation method called RA-CNP
to execute many tasks simultaneously while satisfying performance requirements. This method models the
impact of the network on the performance of tasks for the provided service. Furthermore, this method
defines a resource allocation problem to avoid the allocation of resources that will be requested in the future.
We evaluated the effectiveness of our method by simulating various DDC networks, assuming a DDC at the
edge. The results demonstrated that RA-CNP could execute more tasks than conventional methods could,
without violating performance requirements, based only on current network information in both networks
configured by circuit and packet switches. RA-CNP could allocate resources in less than 10 s, even in a
relatively large network configured with 64 switches; this capability demonstrates its practicality.

INDEX TERMS Disaggregated data center, optical network, resource allocation, resource disaggregation.

I. INTRODUCTION
In recent years, numerous services provided via cloud
computing have emerged. However, cloud-based services are
associated with problems such as latency and dense network
traffic. Edge computing addresses these problems [1]. This
technology deploys small data centers near the users. Because
these data centers are located near the user and can process
data locally, they are effective for time-sensitive services such
as automated driving and face recognition [2]. The number of
edge devices is expected to increase further in the future, and
a data center on the edge must execute more service tasks [2].
Nevertheless, a data center on the edge has fewer resources

The associate editor coordinating the review of this manuscript and

approving it for publication was Maged Abdullah Esmail .

than those with larger cloud data centers. Therefore, optimal
resource utilization for each task is key [3].
Flexible resource allocation via infrastructure virtualiza-

tion and optimization of resource utilization have been
considered potential ways to achieve this goal [4]. However,
in traditional architectures where resources such as CPU and
memory are aggregated on a server, per-resource flexible
management is limited [5]. For example, if four tasks
requiring 2 cores and 4 GB of memory are allocated to a
server with a 16-core CPU and 16 GB of memory, 8 CPU
cores are unavailable for other tasks owing to the absence
of available memory resources. One approach to solving
such inefficient resource usage is resource disaggregation [6].
Resource disaggregation refers to the use of an architecture
constructed from resources such as CPUs and memory that

67600

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0004-1496-4377
https://orcid.org/0000-0001-9784-627X
https://orcid.org/0000-0002-4168-2875
https://orcid.org/0000-0001-9025-0529

A. Ikoma et al.: Resource Allocation Considering Impact of Network on Performance in a DDC

are connected by a network. The resources in this architecture
can be easily upgraded and flexibly used by allocating only
the required number of resources to each task. This can
be done because each resource is independent, in contrast
to the case of a traditional data center where resources
are aggregated into servers [7]. Owing to these advantages,
resource disaggregation has been considered in various areas,
such as serverless computing, big data processing, and
database processing [8], [9], [10]. Therefore, we focused
on a data center applying resource disaggregation (hereafter
referred to as a disaggregated data center (DDC)), as shown
in Fig. 1 and aim to configure a DDC that can execute many
service tasks simultaneously.

FIGURE 1. Traditional data center and disaggregated data center.

When a task for a service is executed in a DDC, after
the required resources to execute the task are selected,
the task must be executed via communication between the
selected resources. Because resources are connected by
a network, the task execution time increases with the
duration of the communication delay between resources.
In particular, communication delay between the CPU and
memory has a significant effect on task execution time [7].
A DDC may not be able to provide the service in the
required time because of this problem. Therefore, a DDC
consisting of an optical network that has been configured
with optical circuit switches and optical packet switches
and that enables communication with low latency and
high bandwidth has been proposed [11], [12]. In this
DDC, resource disaggregation has been demonstrated to
be more effective than traditional architectures in terms of
resource utilization and energy consumption. Furthermore,
in [13], resource disaggregation via optical interconnects
was evaluated using actual equipment. Resource disag-
gregation is a feasible approach for improving resource
utilization.

However, achieving efficient resource utilization in a
DDC only by improving network performance is difficult.
Communication delay between resources also depends on
routing between resources [14]. The resource allocation
method, which determines the CPUs and memories that
execute tasks and the network resources that constitute
the communication path, is also important for a DDC.
In particular, network resource allocation has a significant
impact on the performance of tasks [15]. If the path between
the CPU and memory to execute a task has many hops,
it takes more time for the CPU to retrieve data from
memory. Furthermore, if a network resource with high traffic
is allocated as a path between resources, congestion may
occur. In these cases, the time required to complete a task

increases, and the performance requirements of tasks may
no longer be satisfied. As a result, the execution of many
tasks becomes more difficult. Because this problem can
occur in any network configuration, an efficient resource
allocation method considering the impact of the network on
the performance of tasks is required for a DDC.

However, only considering the impact of the network
on the performance of tasks is not sufficient to execute
many tasks. For example, we assume a case where low
latency network resources are allocated regardless of the
performance requirements of tasks to minimize performance
degradation. Because available network resources are not
infinite, available paths for tasks with strict time constraints
may be exhausted even if there are available resources for
task execution. If tasks with long time constraints avoided
using network resources with low latency, this situation
could have been prevented. Preserving the resources required
by future tasks considering the impact of the network on
the performance of tasks and performance requirements is
important.

We emphasize that resource allocation methods for a
traditional data center are insufficient for resource allocation
in a DDC. In a DDC, communication delays can occur
just as a computational resource, such as a CPU or
GPU, reads data from memory, resulting in increased task
execution time. By contrast, because resources are connected
on the motherboard in traditional data centers, network
communication is absent between resources involved in task
execution. Because of this difference, a resource allocation
method for a DDC is required. Resource allocation methods
have been proposed for a DDC [14], [15], [16], [17], but
these methods do not consider the impact of the network
on the performance of each task and future tasks. Instead,
they allocate network resources to minimize performance
degradation. Because it is important to preserve the resources
required for future tasks, these methods are not sufficient to
execute many tasks in a DDC.

We have previously proposed a resource allocation method
that considers the impact of the network on performance
(hereafter called RA-CNP) [18]. In that study, we modeled
the impact of the allocated resources on the time required to
complete a task based on the communication delay between
execution resources. In addition, when multiple candidate
resources existed, we avoided allocating high-performance
and low-latency network resources that may be requested in
the future to execute more tasks. We defined the resource
allocation cost in terms of resource importance; moreover,
we formulated a resource allocation problem to satisfy
the performance requirements of a task and to select the
candidate with the smallest cost. By not using resources with
high costs, a DDC preserves those that can be used in future
task requests, thereby executing more tasks.

This paper is an extension of a previous study [18],
in which only packet switch networks were assumed, even
though several DDCs composed of optical circuit switches
have been proposed. Therefore, we extended the model

VOLUME 12, 2024 67601

A. Ikoma et al.: Resource Allocation Considering Impact of Network on Performance in a DDC

representing the network impact on performance to a general
form to support both networks configured by circuit and
packet switches. Then, we evaluated the effectiveness of
RA-CNP by comparing it with other methods in networks
configured by circuit and packet switches. By contrast, the
previous study has only evaluated small networks and has
not shown effectiveness in a DDC of the scale that we
have envisioned. Therefore, we evaluated the effectiveness of
RA-CNP in a larger network. Moreover, the effectiveness
of RA-CNP has only been demonstrated in a solution
derived via ant colony optimization, and the optimal solution
to the defined resource allocation problem has not been
verified. In this study, we also evaluated the optimal solution
for RA-CNP. Finally, we investigated whether RA-CNP
can allocate resources within a practical computation
time.

The main contributions of this study are as follows:
• We modeled the impact of computational and network
resources on task performance in a general form.

• We proposed a resource allocation method to execute
many tasks simultaneously, RA-CNP, based on our
model and the resource allocation problem.

• We demonstrated that RA-CNP can enable the comple-
tion of many tasks within their acceptable time and can
allocate resources in a practical computation time.

The remainder of this paper is organized as follows:
Section II discusses related work. Section III provides an
overview of the resource allocation method. Section IV
discusses the simulations used to evaluate the effectiveness
of RA-CNP and the computational time. Finally, Section V
concludes this paper.

II. RELATED WORK
A DDC is constructed using resources such as a CPU,
a GPU, and memory connected by a network. Resource
disaggregation improves resource utilization and scaling
flexibility [19]. After the necessary execution resources are
determined, a task executed in a DDC is processed via
communication between the selected resources.

A DDC architecture must consider the following aspects:
(1) processing tasks in a DDC, (2) connection of resources,
and (3) allocation of resources. In the remainder of this
section, we discuss existing reports on DDC architectures.

A. PROCESSING SYSTEM
In a DDC, resources are distributed. A system is required to
manage these resources and execute tasks.

LegoOS has been proposed as an operating system for
resource disaggregation [20]. This system divides operating
system functions according to each disaggregated resource
and manages them in a decentralized manner. Furthermore,
the operating system demonstrates compatibility with Linux
and the feasibility of application deployment. This system can
be used to run existing applications and feasibly implement a
DDC.

B. RESOURCE CONNECTION
In a DDC, performance degradation due to communication
delays between resources is significant, and nanosecond
resource communication is required [7]. Therefore, DDCs
require high-bandwidth and low-latency switches to reduce
performance degradation.

Optical switching has been proposed to enable high-
bandwidth and low-latency communication [11], [12], [21],
[22]. Mishra et al. proposed a network architecture for
a DDC using optical circuit switches [11]. Owing to the
configuration of the optical circuit switches, the resources
could communicate at low latency. The researchers demon-
strated that the blocking rate for resource requests was
lower than that of traditional data centers. Yan et al. also
proposed a disaggregated architecture configured by an
optical circuit switch for machine learning and demonstrated
that optical interconnection can improve the utilization of
disaggregated resources [22]. Optical circuit switches must
establish a direct connection between input and output
ports for communication between resources. Because of this
characteristic, the path between resources is dedicated to that
resource pair. DDC configured by optical packet switches as
well as optical circuit switches has been studied [12], [21].
Terzenidis et al. proposed a network for a DDC configured by
optical packet switches [21]. Switching delays were reduced
to nanoseconds, demonstrating the feasibility of resource
disaggregation using packet switches. Guo et al. proposed
a DDC architecture based on hybrid switches, including
an optical circuit switch with many ports and an optical
packet switch with few ports, and they achieved efficient
resource utilization [12]. Because packet switches can route
data to the appropriate port based on the destination address
of the packets, the connection between input and output
ports is not fixed. Therefore, the path between resources
is not dedicated, and a network resource can be used for
communication between multiple resources. However, the
latency between resources is greater than that in optical circuit
switch networks.

Resources connected via optical networks can commu-
nicate with low latency, thereby reducing performance
degradation. However, if resource allocation is inefficient,
the number of tasks that can be executed is limited, even
on an optical network. Fig. 2 shows examples of inefficient
and efficient resource allocation. This example assumes that
tasks with short time constraints are requested after resources
are allocated for tasks with long time constraints. In the
case of inefficient resource allocation, resource pairs that
can communicate in fewer hops are allocated for tasks with
long time constraints. Because of this, the next requested
task is forced to use resource pairs that require many hops
to communicate. As a result, all the requested tasks cannot
be executed. In the case of efficient resource allocation,
avoid allocating resource pairs that can communicate in
fewer hops because tasks with long time constraints do
not necessarily require minimizing performance degradation

67602 VOLUME 12, 2024

A. Ikoma et al.: Resource Allocation Considering Impact of Network on Performance in a DDC

due to communication between resources. As a result, tasks
with short time constraints can also be executed because
resource pairs that can communicate at the lowest hop exist.
Thus, when available resources are severely limited due to
inefficient resource allocation, future tasks may be forced
to utilize resource pairs that cannot satisfy performance
requirements. We emphasize that this can occur regardless
of network architecture. This is because available resources
and network resources are finite, regardless of network
architecture. Individual execution resources can only handle
a limited number of tasks. Then, available network resources
are not also infinite due to bandwidth constraints or dedicated
network resources (in the case of a network with optical
circuit switches). Therefore, when many tasks are executed,
available resources are reduced, and flexible selection of
execution resources becomes difficult in any network. This
can create a situation where inefficient allocation of a task
inhibits the allocation of other tasks, as shown in Fig. 2.
An efficient resource allocation method considering the
impact of the network on performance and future tasks
is required to execute many tasks simultaneously for a
DDC.

FIGURE 2. Example of inefficient resource allocation and efficient
resource allocation.

C. RESOURCE ALLOCATION
To execute a service task, the resources that will be
used to run the task and the paths that will be used to
communicate between those resources must be determined.
Although resource allocation methods have been proposed
for traditional data centers, they are not suitable for DDCs.
Because resources are connected on the motherboard in
traditional data centers, network communication is lacking
between resources involved in task execution. On the other
hand, in a DDC, network communication between resources
occurs when tasks are executed. Because task execution time
is affected by the communication delay between resources,

a resource allocation method for a DDC considering this
aspect is required [16].

Several resource allocation methods have been proposed
for a DDC [14], [15], [16], [17]. The characteristics of
each method, in terms of objective and approach, are
shown in Table 1. We analyze whether existing studies are
sufficient to execute many tasks while satisfying perfor-
mance requirements based on Table 1. Papaioannou et al.
proposed a resource allocation to minimize the performance
degradation of requested tasks by minimizing a metric
based on the bandwidth and latency of paths [15]. The
authors demonstrated that this method can improve resource
utilization without affecting task performance in a DDC
configured by an optical circuit switch and an electrical
packet switch. Zervas et al. proposed a resource allocation
method to minimize round-trip latency between execution
resources in requested tasks by minimizing a metric based on
bandwidth and link distance [14]. The authors demonstrated
that this method can improve resource utilization in a DDC
configured with optical circuit switches. These methods [14],
[15] consider only the task requested at that time and
preferentially allocate resources that can communicate with
low latency regardless of the performance requirements of
the task. Resources required for tasks with strict performance
requirements, where low-latency communication is essential,
may soon be depleted. As a result, many tasks cannot be exe-
cuted. Amaral et al. proposed a resource allocation method
to minimize the execution time of requested tasks while
avoiding performance degradation of running tasks [16]. This
method prevents performance interference between running
tasks and the requested task, considering the execution
time calculated based on network load. In this method,
resources are allocated to minimize the execution time of
the requested task at that time. Therefore, it does not also
consider future tasks. Furthermore, this method calculates
execution time directly from network load by using statistical
data. Therefore, this method cannot consider the impact of
communication delays between resources on performance.
It is not possible to optimize routing between resources
while considering task performance. Guo et al. proposed a
resource allocation method to maximize requests that satisfy
the failure probability requirement of allocated resources in a
given set of resource allocation requests [17]. This method
enables higher resource utilization while guaranteeing the
reliability of tasks. However, this method assumes that all
resource allocation requests are given in advance. When new
tasks are requested in a situation where multiple tasks are
executed, there may be no available resources for those tasks.
Furthermore, this method does not consider performance
degradation due to communication between resources. It is
difficult to execute many tasks while satisfying performance
requirements.

To execute many tasks simultaneously, consideration for
future tasks is essential. If resources are allocated without
considering whether future tasks can be executed with the
required performance, available resources to satisfy the

VOLUME 12, 2024 67603

A. Ikoma et al.: Resource Allocation Considering Impact of Network on Performance in a DDC

TABLE 1. Objective and approach of each resource allocation method for a DDC.

requirements of new tasks may be exhausted soon. In reality,
allocating resources to ensure the best performance of
running tasks or requested tasks is not always necessary,
as in the efficient allocation in Fig. 2. Any resources are
sufficient if the performance requirements of the task are
satisfied. By avoiding unnecessarily allocating resources
and network resources required for future tasks, more tasks
can be executed. Note that we must consider whether the
performance requirements of tasks are satisfied. Existing
methods did not sufficiently consider it. Instead, they simply
allocate resources to maximize the performance of tasks.
In this study, we propose a resource allocation method for a
DDC to execute many tasks simultaneously while satisfying
performance requirements. This method allocates resources
to minimize the use of resources required for future requested
tasks. Furthermore, it models the impact of the network on
performance based on the communication delay between
execution resources. Thus, this method can allocate resources
and network resources, considering both task performance
and future tasks. The major difference from existing methods
is the consideration of future resource allocation based on
the impact of the network on performance rather than simply
minimizing performance degradation to execute many tasks
simultaneously.

III. RESOURCE ALLOCATION CONSIDERING THE IMPACT
OF THE NETWORK ON PERFORMANCE
In this section, we model the impact of the network
on performance. Thereafter, we formulate the resource
allocation problem and present an example of a method for
addressing it.

A. OVERVIEW OF A DISAGGREGATED DATA CENTER
We show the assumed DDC in this section.

1) THE COMPONENTS OF A DISAGGREGATED DATA CENTER
We assume a DDC in which the memory and computational
resources (CPUs and GPUs) are connected by a network,
as shown in Fig. 3. This DDC includes resource pools,
in which several resources of the same type are collected.
Each resource pool is connected via packet or circuit
switches. The components of a DDC are as follows:

FIGURE 3. Overview of a disaggregated data center.

a: MEMORY RESOURCES
A memory resource is a device that stores the data required
by computational resources. In this study, we divide memory
into blocks and treat each block as a memory resource. Data
in memory are managed via paging.

b: COMPUTATIONAL RESOURCES (CPUs AND GPUs)
A computational resource has a small cache. When the data
required to execute a process do not exist in the cache and
a page fault occurs, the computational resource obtains the
data from the memory resource. Data are transmitted at the
granularity of a page. In a DDC, the data read time from
disaggregated memory resources is longer than the data read
time from the cache. Therefore, the impact of the latter on
performance is negligible. In this study, cache levels and the
latency between a cache and computational resources are not
considered. Each CPU core, or GPU, is treated as a single
computational resource.

c: NETWORK
The network consists of resource pools and switches that
connect them. Links connect pools to switches and one switch
to another.

A resource pool holds multiple resources of the same type.
A computational resource pool holds multiple computational
resources, and a memory resource pool holds multiple

67604 VOLUME 12, 2024

A. Ikoma et al.: Resource Allocation Considering Impact of Network on Performance in a DDC

memory resources. Each resource in the pool connects to a
switch via a common link between the pool and the switch.

Optical circuit switches, or optical packet switches, are
used in the DDC. In a network configured with optical circuit
switches, once a path for optical signals is established to
execute a task, the path is occupied by the task. Therefore,
each optical circuit switch can immediately relay data to
the next port without blocking, according to prior routing.
In a network configured with optical packet switches, each
switch has a buffer. If the next port is available, the switch
immediately relays the packet to it before the entire packet
is received. If the next port is busy, the switch stores the
packet in its buffer to prevent communication that exceeds
the bandwidth. The switch then waits for the next port to
become available.We allow the construction of an aggregated
virtual link from multiple links between the same nodes.
Aggregating the links can reduce the delay, even if some links
in the aggregated link are busy. The switch can still relay the
packet without storing it in the buffer, as long as it has at least
one link available.

2) EXECUTE TASK IN A DISAGGREGATED DATA CENTER
We assume that users request the execution of tasks at any
time for services provided by a DDC. When a DDC receives
a task execution request, it allocates the computational and
memory resources required to execute the task from among
the available resources in the resource pool shown in Fig. 3.
Thereafter, it determines the communication path between
the allocated resources. We treat this process as resource
allocation.

Multiple types of processing with different resource
requirements may be required to complete a task. In this
study, we divide tasks into processes according to the need to
use resources flexibly. A task utilizes a set of processes that
are allocated by selecting the necessary resources for each
process.

B. MODELING A DDC AND A RESOURCE ALLOCATION
REQUEST
The notations used for modeling a DDC and resource
allocation request are listed in Table 2.

1) MODELING A DDC NETWORK
A DDC network is represented as a graph Gs(N s,Es),
where N s and Es denote sets of nodes and undirected
links, respectively. Three types of nodes exist: computational
resource pools, memory resource pools, and switches.N c and
Nm are the sets of computational and memory resource pools,
respectively. Cs

n and M s
n represent the number of available

computational and memory resources in the computational
and memory resource pools corresponding to node n ∈ N s,
respectively. For each resource in the computational resource
pool c ∈ N c, we define Kc > 0 as the number of
floating-point operations per second, Fc > 0 as the clock
frequency, and Vc > 0 as the page size. For each resource
in the memory resource pool m ∈ M s, we define T Rm ≥ 0 as

TABLE 2. Notation of the DDC and resource request model.

the delay in reading data in one memory access. Then, let Rs

be the number of resource pools. We also define TNn ≥ 0 as
the processing delay until a packet is relayed to the next port
in node n ∈ N s. If node n does not have switching capability,
TNn is infinite. In addition, we define the I/O processing delay
T In ≥ 0 that occurs during communication at each node
n ∈ N s.
For each link e ∈ Es, we define N o

e > 0 as the number
of links existing between adjacent nodes, T Pe ≥ 0 as the
propagation delay, and λse,n ≥ 0 as the arrival rate of packets
from node n ∈ N s. We define Ri,j as the set of configurable
paths between nodes i, j ∈ N s on the DDC. r ∈ Ri,j denotes
the set of links on path r . The bandwidth of all links is B > 0.

2) MODELING A RESOURCE ALLOCATION REQUEST
Resources required for a task are requested before running the
task. We model a resource request using two graphs, where
one indicates the relationships between the required resources
(resource graph) and the other indicates the relationships
between the processes required to execute the task (process
graph). An example request is shown in Fig. 4.
A resource graph is given a graph structure Gv(N v,Ev),

where N v and Ev denote the sets of nodes and undirected
links, respectively. Each node corresponds to the requested

VOLUME 12, 2024 67605

A. Ikoma et al.: Resource Allocation Considering Impact of Network on Performance in a DDC

computational or memory resource. Cv and M v denote the
sets of requested computational and memory resources,
respectively. Links are added between computational and
memory resources that execute the same process.

FIGURE 4. Example of resource and process graphs.

Process graphs are provided for each task. We define a set
of tasks as S. For task t ∈ S, a process graph is defined
as a directed graph structure Gpt (N

p
t ,Ept), where N

p
t and Ept

denote the sets of nodes and directed links, respectively. Each
node p ∈ N p

t represents the process required to execute the
requested task. Node p ∈ N p

t has a set of resource graph nodes
cvp and mvp corresponding to the computational and memory
resources required to run the process corresponding to node
p.

For each node p ∈ N p
t , we define the number of page faults

(σ fp ≥ 0), the number of pages transmitted per page fault
(σ np ≥ 0), and the clock counts required to execute a process
(σ cp ≥ 0). For a process corresponding to node p ∈ N p, λrp >

0 denotes the arrival rate of packets from the memory, and
λwp > 0 denotes the arrival rate of packets to the memory.
Arrival rates were obtained in advance by monitoring the task
in the test environment. Note that if multiple resources run
a process, the amount of communication and the number of
clock counts for a resource pair will be reduced. However,
in this study, we set the same value as the worst-case value.
Each link e ∈ Ept is a directed link that indicates the process
order. Each path from the first to the final process provides
the sequence of processes required to complete a particular
task. We define the set of paths in the process graph for task
t ∈ S as Pt .
In addition, for each task t ∈ S, acceptable time T at is

defined as a performance requirement. All tasks should be
completed within an acceptable time.

C. RELATIONSHIP BETWEEN RESOURCE ALLOCATION
AND TASK EXECUTION TIME
In a DDC, resource allocation defines the performance of
a task. Here, we model the relationship between resource
allocation and task execution time.

1) MAPPING THE RESOURCES
δNi,j denotes the mapping between the requested resources and
those in the DDC. δNi,j = 1 when resource graph node i ∈ N v

is mapped to the DDC network node j ∈ N s and δNi,j = 0
otherwise.

2) MAPPING THE NETWORK RESOURCES
δEx,y denotes the mapping between the resource graph links
and paths in the DDC. δEx,y = 1 when the resource graph links
x ∈ Ev are mapped to path y ∈ Rk,t between nodes k, t ∈ N s

in the DDC and δEx,y = 0 otherwise.

3) MODELING THE EXECUTION TIME OF A TASK
The execution time of task t ∈ S is the sum of the times
required to complete all processes in task t . In addition, the
execution time for each process is the sum of the processing
time of the computational resources and the processing
time required to read the data from the memory resource.
In this study, we compare the worst-case execution time
with the acceptable time to allocate resources that satisfy the
requirements of the request. The worst-case execution time
T et for task t ∈ S is obtained as follows:

T et = max
y∈Pt

∑
p∈y

max
c′∈cvp,m′∈mvp

(
T cc′,p + Tmc′,m′,p

)
. (1)

where T cc′,p denotes the processing time of process p ∈ N p
t in

the computational resource mapped to c′ ∈ N v, and Tmc′,m′,p
denotes the processing time to read the data for process
p from the memory resource mapped to m′

∈ N v in the
computational resource mapped to c′ ∈ N v.

a: PROCESSING TIME IN A COMPUTATIONAL RESOURCE
The processing time T cc′,p for a process p ∈ N p in a
computational resource mapped to c′ ∈ N v is calculated by
dividing the clock count σ cp required to complete process p
by the clock frequency Fj of a resource in the computational
resource pool j ∈ N c as follows:

T cc′,p =

∑
j∈N s

(
δNc′,j

σ cp

Fj

)
. (2)

T cc′,p denotes the processing time of the computational
resource mapped to c′ ∈ N v because δc′,j = 1 only if c′ is
mapped onto j ∈ N s.

b: PROCESSING TIME REQUIRED TO READ THE DATA FROM
THE MEMORY RESOURCE
A computational resource accesses a memory resource via
I/O interfaces such as PCIe and must perform address
processing on the access data. Then, read processing is
performed in the memory resource, and the data are
transferred to the computational resource. Therefore, the
processing time required to read the data from the memory
resource is the sum of the I/O processing time T Ic of the
resource in computational resource pool c ∈ N c, processing
time T Rm of the resource in memory resource pool m ∈

Nm, and communication delay T dc′,m′,p required to transmit
the data from a memory resource mapped to m′

∈ N v to
a computational resource mapped to c′ ∈ N v in process
p ∈ N p.

Tmc′,m′,p = T dc′,m′,p +

∑
j∈N s

(δNc′,j · T
I
j + δNm′,j · T

R
j). (3)

67606 VOLUME 12, 2024

A. Ikoma et al.: Resource Allocation Considering Impact of Network on Performance in a DDC

where csj and msj denote the computational resource and
memory resource on node j ∈ N s, respectively. The
communication delay T dc′,m′,p is the sum of the time required
to obtain the head of the page and the transmission delay.
In process p ∈ N p, the communication delay T dc′,m′,p required
to transmit the data from a memory resource mapped to
m′

∈ N v to a computational resource mapped to c′ ∈ N v

is obtained as follows:

T dc′,m′,p =

{(∑
j∈N s δNc′,j · Vj

B

)
σ np + T ler

c′,m′ ,p

}
· σ fp

where erc′,m′ denotes the link between nodes c′,m′
∈ N v.∑

j∈N s δNc′,j · Vj denotes the page size of the computational
resource mapped to c′ ∈ N v because δc′,j = 1 only if c′ is
mapped to a computational resource in node j ∈ N s. T ler

c′,m′ ,p

denotes the latency in the path mapped to erc′,m′ in process
p ∈ N p. In a resource graph link e′ ∈ Ev and process p ∈ N p,
T le′,p is obtained as follows:

T le′,p =

∑
i,j∈N s

∑
y∈Ri,j

δEe′,y

∑
e∈y

(
T pe + T Snsse ,e,p)

)
where nsse denotes the source node of link e ∈ Es when
reading data from memory. T pe denotes the propagation delay
in link e, and T snsse ,e,p denotes the switching and buffering
delay in transferring the data of process p from node nsse to
link e.

The switching and buffering delays depend on the type of
switch. For a packet switch, buffering is required to avoid
packet collisions if the link is busy. Therefore, we model it
as the sum of the switching process delay and the buffering
delay. For a circuit switch, we consider only the switching
delay because buffering does not occur. The switching and
buffering delay T sn,e,p is obtained as follows:

T sn,e,p

=

{
TNn if n is circuit switch
TNn +T Rn (λ

e
e,n,p,N

o
e ,TNn) if n is packet switch

where λee,n,p denotes an estimate of the packet rate to link
e after resource allocation in node n. λee,n,p is the sum of
the current packet rate λse,n on link e ∈ Es occurring from
node n ∈ N s and the packet rate λrp from the memory
to a computational resource in process p ∈ N p, that is,
λee,n,p = λse,n+λrp.
T Rn (λ

e
e,n,p,N

o
e ,TNn) is a function that returns the buffering

time in node n ∈ N s based on three arguments: an estimate
of the packet rate λee,n,p to link e at node n, the number of
links forwarding packets N o

e , and the switching delay TNn
at the node. This function is based on the M/D/C queuing
model. In theM/D/C queuingmodel, arrivals occur according
to a Poisson process, and the system has C servers that can
process an arrival at a fixed timeD. In other words, we assume
buffering as a situation where packets arriving according to
the Poisson process are waiting to be processed until one of

the C links that can process them in a fixed time D is ready
to forward them. However, obtaining an accurate response
time using the M/D/C queuing model is difficult. We use the
approximation from [23]. T Rn (λ, J ,D) is obtained as follows:

T Rn (λ, J ,D) =

{
1 + f Q(λ, J ,D)gQ(λ, J ,D)

}
hQ(λ, J ,D)

2
,

where

f Q(λ, J ,D) =

(
1 −

λD
J

)
(J − 1)

(√
4 + 5J − 2

)
16λD

,

gQ(λ, J ,D) = 1 − exp
{
−

J − 1
(J + 1)f Q(λ, J ,D)

}
,

hQ(λ, J ,D)=
D · (λD)J

J · J !
(
1 −

λD
J

)2
×

J−1∑
i=0

(λD)J

i!
+

(λD)J(
1 −

λD
J

)
J !

−1

.

D. RESOURCE ALLOCATION PROBLEM
At the edge, task execution requests are made continuously,
and resources are allocated.

To execute many tasks in such an environment, the
resources required for future task requests must remain
available at the appropriate time. Therefore, we avoid
allocating important resources that may be required by future
requests. In this study, to avoid the allocation of important
resources, we define the resource allocation cost based on
the importance of the resources to future resource requests
and minimize the costs of the allocated resources under the
constraint that the performance requirements are satisfied.

In the remainder of this section, we first define the
allocation costs. Thereafter, we define the resource allocation
problem based on the defined costs and the execution time
model of the task defined in Section III-C3.

1) RESOURCE ALLOCATION COSTS
Here, we define resource allocation costs for computational
resources, memory resources, and network resources.

Computational resources that can execute tasks with
the minimum acceptable processing times are important.
In addition, computational resources in resource pools that
accommodate numerous resources are important because
they can execute tasks that demand substantial computational
resources. Therefore, we define the cost as the product of the
available computational resources and FLOPS. The alloca-
tion costW c

c of computational resources in the computational
resource pool c ∈ N c is obtained as follows:

W c
c = Cs

c · Kc. (4)

A memory unit with several available memory blocks can
execute tasks that require extensive memory resources. The
allocation cost Wm

m of a memory resource in the memory

VOLUME 12, 2024 67607

A. Ikoma et al.: Resource Allocation Considering Impact of Network on Performance in a DDC

resource pool m ∈ Nm is obtained as follows:

Wm
m = M s

m. (5)

Network resources that are likely to be used as paths
between important resources are important. In addition,
finding the shortest path is important to satisfy performance
requirements because it minimizes communication delays
between resources. Therefore, we increase the cost of
network resources which are possibly the shortest paths
between critical resource pairs.

We define the possibility to be a network resource on the
shortest path as the ratio of the number of shortest paths
between resources to the number of shortest paths through
that network resource. The larger this value, the higher the
probability that it is the shortest path. When a resource in
computational resource c ∈ N c and a resource in memory
resource m ∈ Nm are paired, the possibility of being a
network resource on the shortest path between resources in
resource pool c and m uc,m(e) is

uc,m(e) =
N r
c,m(e)

N r
c,m

.

where N r
c,m denotes the number of shortest paths between

resources in resource pools c and m, and N r
c,m(e) denotes the

number of shortest paths between resources in resource pools
c and m passing through network resource e.
If the resources are close to each other and are of high

cost, they are an important resource pair. Therefore, when a
resource in computational resource c ∈ N c and a resource in
memory resource m ∈ Nm are paired, the importance of the
resource pair vc,m is

vc,m =
W c
c ·Wm

m

Hc,m
.

whereHc,m denotes the smallest hop count between resources
in resource pool c and m.
The allocation costW e

e of link e is obtained as follows:

W e
e =

∑

c∈N c,m∈Nm

uc,m(e) · vc,m e /∈ Ealc

ϵ e ∈ Ealc
, (6)

where Ealc denotes the set of network resources that are
already allocated. ϵ is a small cost defined for the links used
by previously started tasks. By using ϵ instead of 0, we avoid
allocating large paths.

2) DEFINING THE RESOURCE ALLOCATION PROBLEM
We define a resource allocation problem to avoid allocating
resources required by tasks in the future. In this problem,
the network information of the DDC and resource allocation
request is given; this outputs the mapping δN , δE between
the requested resource and allocated resource defined in
Sections III-C1 and III-C2.

a: RESOURCE MAPPING CONSTRAINTS
A request graph node ismapped as a node, and a request graph
link is mapped as a path in the DDC network as follows:

∀i ∈ N v,
∑

j∈N s
δNi,j = 1. (7)

∀x ∈ Ev, ∀k, s ∈ N s,∑
y∈Rk,s

δEx,y = δNnvsx ,k · δNnvdx ,s. (8)

where nvsx and nvdx denote the source and destination nodes of
link x ∈ Ev from memory to computational resources.

Resources other than those available in the resource pool
cannot be allocated, which can be represented as follows:

∀c ∈ N c,Cs
c −

∑
c′∈Cv

δNc′,c ≥ 0. (9)

∀m ∈ Nm,M s
m −

∑
m′∈Mv

δNm′,m ≥ 0. (10)

b: TIME CONSTRAINTS
All tasks in provided services must be executed within an
acceptable time; therefore,

∀t ∈ S,T et ≤ T at (11)

c: OBJECTIVE
In this method, resources are allocated to minimize the costs,
that is,

minimize
∑

c∈N c

∑
c′∈Cv

δNc′,c(W
c
c)

+

∑
m∈Nm

∑
m′∈Mv

δNm′,m(W
m
m)

+

∑
i,j∈N s

∑
y∈Ri,j

1∑
x∈Ev δEx,y>0

∑
e∈y

W e
e

 , (12)

where 1∑
x∈Ev δEx,y>0 is 1 when

∑
x∈Ev δEx,y > 0 and

0 otherwise.
Solving this problem enables a DDC to avoid allocating

resources required by future tasks while satisfying the
performance requirements of the tasks: this is a binary combi-
natorial optimization problem. A resource allocation problem
based on a binary combinatorial optimization problem has
been proven to be NP-hard and metaheuristic methods have
been used to solve such problems [24]. In this study, we solve
this problem using ant colony optimization (ACO). ACO can
respond flexibly to changes in the environment [25]. ACO
is suitable in DDCs where flexible resource utilization is
available and a network is likely to change. However, any
method that can find a solution can be used.

E. RESOURCE ALLOCATION BASED ON ANT COLONY
OPTIMIZATION
We solve the resource allocation problem defined in
Section III-D2 based on ACO; however, any method that can
find a solution can be used.
ACO is a population-based metaheuristic method in which

multiple agents probabilistically search for a solution. First,

67608 VOLUME 12, 2024

A. Ikoma et al.: Resource Allocation Considering Impact of Network on Performance in a DDC

pheromone values are assigned to candidate resources. The
higher the pheromone value of a resource, the more likely
it is to be selected by the agent. After multiple agents
probabilistically search for a solution based on pheromones,
the optimal solution is selected from among the searched
solutions. Finally, the pheromone value of the resource in the
optimal solution is increased. These processes are repeated
multiple times.

A resource allocation method based on ACO (VNE-AC)
has already been proposed [24]. However, VNE-AC targets
traditional architectures and does not target DDC. In tradi-
tional architectures, there is no need to consider performance
degradation due to communication delays between resources,
unlike DDC. Therefore, VNE-AC does not consider the
impact of the network on the performance of tasks. From
this difference, we arrange and use VNE-AC in terms of
network resource allocation to solve our resource allocation
problem. Note that VNE-AC allocates network resources by
solving the shortest path problem. Because the impact of the
network on performance is nonlinear, it is difficult to make
optimal allocations based only on the shortest path. We use
ACO for network resource allocation as well as to consider
the impact of the network on performance. The processing
steps for each agent include the (1) resource search,
(2) network resource search, (3) execution time calculation,
and (4) pheromone update phases. These steps are repeated
t itr times. To reduce unnecessary searching, if the allocation
cost is greater than the current best solution during the search,
the resource allocation of the agent is rejected at that time.
The notation used in the following equations is listed in
Table 3.

TABLE 3. Notation of resource allocation based on ant colony
optimization.

1) RESOURCE SEARCH PHASE
In this phase, an agent probabilistically allocates the
resources corresponding to the nodes in the resource graph
from the available resources. Because we aim to find a
low-cost solution, we set a high allocation probability for
a low-cost resource. We define the allocation probabilities
pcc and p

m
m for computational resources in the resource pool

c ∈ Cs and memory resources in the resource pool m ∈ M s

as follows:

pcc =

(τc)α
(

1
(W c

c)β

)
∑

x∈Ccd

[
(τx)α 1

(W c
x)β

] ,
pmm =

(τm)α
(

1
(Wm

m)β

)
∑

x∈Mcd

[
(τx)α 1

(Wm
x)β

]
where α > 0 and β > 0 denote the weight of the pheromone
and the cost, respectively. Ccd and M cd denote the sets of
candidate computational andmemory resources, respectively.
τx , τc, and τm denote the pheromone of the resource x, c,m,
respectively.

2) NETWORK RESOURCE SEARCH PHASE
In this phase, the agent searches for paths between the
resources selected in the resource search phase. To search
for these paths, the agent generates subagents. Each subagent
probabilistically allocates paths corresponding to links in the
resource graph from the links in the DDC. The search is
performed starting with the source resource. First, the link
from the source resource is selected. The next link from the
destination node of the first link is then selected. This process
continues until a link to the destination resource is identified.
At each step of this process, a link e ∈ Es is selected based
on the probabilities pe,n in node n ∈ N s. Note that if a route
between resources cannot be determined in the H th search,
the search is terminated because the communication delay
increases as the route length increases.

pe,n =

(τe)α 1
(W e

e)β∑
x∈Ecdn

[
(τx)α 1

(W e
x)β

]
Here, α > 0 and β > 0 denote the relative importance of the
pheromone and the cost, respectively. Ecdn denotes the set of
candidate links adjacent to node n, and τx and τe denote the
pheromones of the links x, e, respectively.

3) EXECUTION TIME CALCULATION PHASE
After finding the resources, the agent determines the pre-
dicted execution time for tasks whose performance is affected
by latency due to network resource allocation. This value
is derived from the equation presented in Section III-C3.
If the predicted execution time is less than or equal to
the acceptable time, this may be a solution. When one
task is allocated, communication occurs between the newly
allocated resources, which may increase communication
delays between other resources. This calculation is performed
for the requested task and all other executing tasks whose
performance is affected by resource allocation because all
tasks allocated to the DDC must be able to complete
processing within an acceptable time.

4) PHEROMONE UPDATE PHASE
After obtaining the resources, the agent updates the
pheromone based on the pheromone decrease rate,

VOLUME 12, 2024 67609

A. Ikoma et al.: Resource Allocation Considering Impact of Network on Performance in a DDC

ρ (0 < ρ < 1). The pheromones of the resources and links
of the best solution for each iteration are enhanced based on
the pheromone increase rate φ and resource allocation cost.
The pheromone-enhanced value h is obtained as follows:

h =
φ∑

c∈Cb W
c
c +

∑
m∈Mb Wm

m +
∑

e∈Eb W
e
e

where Cb, Mb, and Eb denote the sets of computational
resources, memory resources, and links, respectively, in the
resource allocation with the smallest cost.

Using these values, we update the pheromones for each
resource in the computational and memory resource pools
c ∈ N c, m ∈ Nm, and each network resource e as follows:

τc = ρτc + h, τm = ρτm + h, τe = ρτe + h

IV. EVALUATION
We evaluated RA-CNP by simulating the DDC networks.
First, we discuss the effectiveness of the resource allocation
problem defined in Section III-D2 by evaluating the optimal
solution in a small network. Thereafter, we discuss the
evaluation of RA-CNP in the networks of the scale that
we envisioned. Finally, to demonstrate the practicality of
RA-CNP, we investigate whether the resource allocation
problem can be solved within a feasible computational time.

A. ENVIRONMENT
Here, we describe the evaluation networks, resource requests,
and comparative methods used to evaluate RA-CNP.

1) NETWORK
We assume a data center that is located near the users. In such
data centers, on-site services such as industrial automation,
environmental monitoring, and object recognition are pro-
vided [1], [26]. One of the early instances of an edge data
center was one composed of approximately 10 servers to
enable deployment even in a limited space. However, because
of the increasing demand for edge services, the concept of
edge data centers with multiple racks has been proposed [27].
We believe that data centers with more resources, including
hundreds of servers, will be required at the edge in the
future. In this study, we considered DDCs with 20–552
computational resources. This scope is similar to the number
of servers in the data center we assumed.

Fig. 5 shows the network structures used in the perfor-
mance evaluation. These networks are composed of resource
pools containing multiple resources and switches. Each CPU
pool had 16 computational resources, and each memory
pool had 24 memory resources. We assumed a 2D torus
interconnect because this topology is widely used and can
be configured at various scales. We connected each resource
pool to a switch. When connecting the resource pools,
we avoided adjacent switches connected to the same resource
type, such that many types of resources could be connected
with a short path. A more suitable network topology may
exist; this will be a topic for future studies.

Optical packet switches and optical circuit switches have
been proposed for resource disaggregation networks [14],
[21]. In this study, we evaluated two cases: one configured
with optical packet switches (packet switch network) and the
other configured with optical circuit switches (circuit switch
network).

We set the parameters of the DDC network as listed
in Table 4. CPU_A represents an Intel® Xeon® W-3335
processor, CPU_B represents an Intel® Xeon® Silver
4314 processor, and GPU represents an NVIDIA GeForce
RTX 3090. We used these values to calculate the execution
time of the task and the resource allocation cost. We referred
to the I/O latency and memory latency measured in [14].
In addition, we referred to the optical circuit switch proposed
in [14] and the optical packet switch proposed in [21]. The
bandwidth of each link was set to 10 Gbps based on these
studies. Each link length was assumed to be 5 m , and the
propagation delay was set to 0.025 µs. The page size was set
to a default size of 4 KB.

TABLE 4. Parameter settings for the DDC network.

2) RESOURCE REQUEST
Resources are requested when a task execution request
arrives at the DDC. In this study, we assumed that tasks
for two services are executed. One is image classifi-
cation for face recognition using ResNet [28] (service
1) and the other is real-time object identification for
automated driving using YOLO [29] (service 2). YOLO
and ResNet are commonly used machine learning models
for real-time object identification and image classification,
respectively. In addition, these are typical of services
running at the edge [2], making them prime candidates for
being offered as services by a data center located at the
edge [26].
All tasks include three processes: Process 1 selects the

resource to execute the task, Process 2 loads the required
data, and Process 3 executes the main process in the task.
Considering the roles of the processes, we allocate the
same memory resources to Processes 1 and 2 and the same
computational resources to Processes 2 and 3. In addition,
Processes 1 and 2 use small amounts of data and do not cause
page faults. The parameters for each process, such as clock
count and number of page faults, were set on the basis of

67610 VOLUME 12, 2024

A. Ikoma et al.: Resource Allocation Considering Impact of Network on Performance in a DDC

FIGURE 5. Networks used in evaluation.

values obtained by running the task using an Intel(R) Xeon(R)
CPU E5-2687W. The parameters for each task are shown in
Table 5. We generate four types of resource requests for each
task, with different acceptable times and required resources.

• Request 1: Resource request for service 1 with a long
acceptable time

• Request 2: Resource request for service 2 with amedium
acceptable time

• Request 3: Resource request for service 2 with a short
acceptable time

• Request 4: Request for service 2 that requires a GPU
with a very short acceptable time

All resource requests have the same structure, shown in Fig. 4.
We demonstrate the effectiveness of RA-CNP in various
cases by changing the required resources and acceptable
time. Table 6 shows the pattern of the number of resources
required for evaluation. Acceptable time values are shown in
Table 7.

TABLE 5. Parameter settings for a task for each service.

3) COMPARED METHODS
We comparedRA-CNPwith two resource allocationmethods.
The results of these methods were obtained using ACO, the
parameters of which are shown in Table 8. The two compared
methods are described below.

a: RESOURCE ALLOCATION USING THE SHORTEST PATH
(SP)
This method allocates resources based on the shortest path
between them. To achieve this allocation, the link cost is
defined asW e

e = 1.
This method is extremely simple, and we used it to evaluate

whether simple routing is sufficient for DDC resource
allocation.

b: RESOURCE ALLOCATION BY CONSIDERING NETWORK
PERFORMANCE (NP)
This method allocates paths based on low traffic volumes
and short path lengths between computational and memory
resources. It allocates resources by focusing on performance
and corresponds to the resource allocation policy proposed by
Zervas et al. [14] and Amaral et al. [16]. The NP solution is
obtained by identifying the solution with the minimum cost
by setting the cost of link e ∈ Es with node n ∈ N s as the
source as follows:

W e
e,n =

λse,n
N core
e

λmax
+

Di,j
Dmax

whereλmax denotes themaximum traffic volume,Di,j denotes
the SP length from node i ∈ N v to node j ∈ N v, and Dmax

denotes the maximum path length between any two resources
in a DDC.

B. OPTIMAL SOLUTION OF RA-CNP IN A SMALL
NETWORK
We determined the optimal solution of RA-CNP by finding
the solution among all solutions (hereafter called BFS)
with the solutions of other allocation methods to demonstrate
the effectiveness of RA-CNP. In a DDC, the ability to
execute many tasks simultaneously using limited resources is
desired. Therefore, we investigated howmany resources were
ultimately allocated by generating resource requests up to the
limit of allocation.

VOLUME 12, 2024 67611

A. Ikoma et al.: Resource Allocation Considering Impact of Network on Performance in a DDC

TABLE 6. Number of resources required for each request.

TABLE 7. Acceptable time for each request.

TABLE 8. Parameter settings for ACO.

In addition, we investigated whether the solution of
RA-CNP could be derived using ACO. We compared the
solutions obtained using ACO and BFS.

1) DDC NETWORK
We used a small DDC network, as shown in Fig. 5a, because
of the significant computational time required to obtain the
solutions of BFS. Furthermore, if the number of resources
in the resource pool is large, a significant amount of time is
required to obtain the solutions of BFS. In this evaluation,
we reduced the number of resources in the resource pool.
Each CPU pool had six computational resources, and each
memory pool had six memory resources. Note that for the
packet switch network, the number of links between a given
pair of nodes was set to one; for the circuit switch network,
the number of links between a given pair of nodes was set to
three to allocate more tasks.

2) RESOURCE REQUEST
In this evaluation, the acceptable time for each request
corresponded to Pattern 1 in Table 7. The number of
computational and memory resources required for each
request per process was set as listed in Pattern A of Table 6.
We generated resource requests up to the number of tasks
that could be executed in the DDC. The generated sequences
of resource requests were the two patterns listed in Table 9,
to be evaluated in various environments. The order in which
the requests arrived in each case was uniformly random.

TABLE 9. Breakdown of generated requests in each pattern.

3) METRICS
We measured the worst-case resource utilization and total
allocation cost.

a: WORST-CASE RESOURCE UTILIZATION
We investigated whether RA-CNP could allocate resources to
a limit. Therefore, we measured resource utilization after the
allocation of resource requests in Table 9.

Memory resource utilization uc and computational
resource utilization um are defined as follows: um =

malc

mall and

uc =
calc

call . c
all andmall denote the computational and memory

resources in a DDC, respectively, and calc andmalc denote the
allocated computational and memory resources, respectively.
We assumed that a request is blocked if the resources
required to satisfy the performance requirements cannot be
allocated; that is, if some of the requests are dropped, resource
utilization becomes small. In this evaluation, the number of
requested computational resources is the same as the number
of computational resources in the network. Therefore, if all
requests are accepted, the computational resource utilization
becomes 100% and no more requests can be accepted.

b: TOTAL ALLOCATION COST
To compare the solutions obtained using ACO and BFS,
we measured the total allocation cost. If the total cost of the
solution obtained using ACO was the same as that obtained
using BFS, we concluded that ACO derived the optimal
solution for RA-CNP.

The total allocation cost is the sum of the costs of
the resources allocated to all generated requests. The
total allocation cost W all is defined as follows: W all

=∑
r∈Rreq W

alc
r . Rreq is the set of generated requests, and W alc

r
is the resource allocation cost for request r .

4) RESULT
Fig. 6 shows the worst-case resource utilization according to
10 measurements in two cases: the packet and circuit switch
networks. In this evaluation, when all generated requests were
allocated, the resource utilization of computational resources
was 100% and it was impossible to allocate more resources.
Fig. 7 shows a comparison between the allocation costs of the
solutions obtained using ACO and BFS.

As shown in Fig. 6, RA-CNP had 100% worst-case
computational resource utilization without blocking resource
requests in the packet switch network and the circuit switch
network. By contrast, SP and NP did not have 100% worst-
case computational resource utilization because they caused
blocking in some cases. This is because the resources and

67612 VOLUME 12, 2024

A. Ikoma et al.: Resource Allocation Considering Impact of Network on Performance in a DDC

FIGURE 6. Worst-case resource utilization and blocked requests in each pattern.

FIGURE 7. Total allocated cost per request sequence in BFS and RA-CNP.

TABLE 10. Combination of generated requests, required resources, and performance requirements for each case.

paths required to execute the task have been exhausted as a
result of not considering future requests. RA-CNP derived the
optimal solution in a situation in which other methods caused
blocking, regardless of the switch type.

In addition, Fig. 7 shows that allocation costs similar to
those in the solution obtained using BFS can be achieved
using ACO. Hence, ACO can identify one of the best
solutions to the resource allocation problem. In the following
evaluation, we compared RA-CNP derived using ACO with
that of other methods.

C. EFFECTIVENESS OF RA-CNP
We demonstrated that RA-CNP could execute many
tasks from the current network information, regardless
of the switch type composing the network. Therefore,
we compared RA-CNP with the two resource allocation
methods in two cases: the circuit and packet switch
networks.

1) DDC NETWORK
We used two DDC networks of different scales: 6 × 6 and
8 × 8 2D torus networks, as shown in Fig. 5b and Fig. 5c,
respectively. Each CPU pool had 16 computational resources,
and each memory pool had 24 memory resources.

In this study, we used multicore optical fibers. For this
evaluation, the nodes were connected via multicore optical
fibers with four optical fiber cores, i.e., the number of links
between a pair of nodes was four.

2) RESOURCE REQUEST
We continuously generated the requests listed in Table 5
for 300 min. The lifetime of each task was 90 min. In this
evaluation, we set the probability that requests 1, 2, 3, and
4 were generated to 0.3, 0.3, 0.3, and 0.1, respectively.
We evaluated RA-CNP in four cases to demonstrate its
effectiveness in various situations. Each case is shown
below.

• Case 1: Neutral case for comparison.
• Case 2: Case in which many resources are required per
resource request.

• Case 3: Case in which the performance requirements of
requests are strict.

• Case 4: Case in which requests arrive frequently.

The combination of generated requests, required resources,
and performance requirements for each case is shown in
Table 10. Because the 8 × 8 2D torus network holds
more resources, we allocated more resources to compare the
methods.

VOLUME 12, 2024 67613

A. Ikoma et al.: Resource Allocation Considering Impact of Network on Performance in a DDC

3) METRICS
We defined blocked requests as a metric to evaluate whether
RA-CNP could allocate many tasks, which refers to the
number of requests that could not find resources to satisfy
their performance requirements. A larger number of blocked
requests implies that resource allocation is insufficient to
accommodate many requests.

4) RESULT
We measured the blocked requests for the five request
sequences for each case in two networks: the packet switch
network and the circuit switch network. Fig. 8 illustrates the
blocked requests for each allocation method.
RA-CNP had fewer blocked requests than the other

methods, regardless of network and case. By contrast,
blocking occurred in SP and NP, even in environments where
blocking did not occur in RA-CNP (case 4 of Fig. 8a).
This difference is attributed to the availability of resources
when requests require several resources. SP does not consider
future requests and cannot accommodate requests with strict
performance requirements. As shown in case 4 in Fig. 8a
and Fig. 8c, Request 4, which had the strictest perfor-
mance requirement, was blocked. NP preferentially allocated
paths between resources with low communication delays,
regardless of the performance requirements of the request.
Consequently, resource pairs that can satisfy performance
requirements were depleted. In particular, NP caused more
blocking in the packet switch network for cases 1, 2, and
4 than did the other methods. These blocks are attributed to
packet switch processing delays being large and the likely
depletion of resource pairs with small communication delays.
RA-CNP can allocate more tasks than other methods in
various environments by allocating resources in consideration
of future requests. At the assumed DDC scale, RA-CNP was
effective.

A comparison of Fig. 8a and Fig. 8b in RA-CNP shows
that the packet switch network was superior in cases 2 and
4 and that the circuit switch network was superior in case 3.
In cases 2 and 4, because many resources were requested,
many resource pairs existed for communication. Therefore,
in the circuit switch network, where network resources are
occupied, the paths between resources are depleted. In case
three, the processing delay of the packet switch was too
large to satisfy the performance requirements of the tasks.
By contrast, a comparison of Fig. 8c and Fig. 8d shows
that the circuit switch network could allocate more tasks in
all cases because more resources were held than requested.
In such cases, the circuit switch network, which can reduce
communication delays between resources, has more resource
pairs that can satisfy the performance requirements.

D. COMPUTATIONAL TIME OF RA-CNP
For practical resource allocation, RA-CNP must allocate
resources within a practical computational time at various
DDC scales. We have presented an example solution based
on ACO in Section III-E. We evaluated the computation time
when solving using ACO. We investigated the relationship

between the computation time and the factors involved
in the computational complexity of each step, as shown
in Section III-E, as the computational time depends on
computational complexity.

1) COMPUTATIONAL COMPLEXITY OF RESOURCE
ALLOCATION BASED ON ACO
The resource allocation process is divided into four steps. The
computational complexity for each step is shown below. Note
that each symbol is based on Tables 2 and 3.

a: RESOURCE SEARCH PHASE
This phase continues until resources are found for all nodes
in the resource graph. For each requested resource, one
agent selects resources from each resource pool. Therefore,
the computational complexity per agent in this phase is the
product O(Rs(|Cv

| + |M v
|)) of the number of requested

resources |Cv
| + |M v

| and number of resource pools Rs.

b: NETWORK RESOURCE SEARCH PHASE
In this study, because the resource graph connected all
memory and computational resources in the same process,
the number of allocated paths wasO(|Cv

||M v
|). As described

in Section III-E, the network resource search is repeated
a maximum of H times for each network resource in the
resource graph. However,H is a constant parameter for ACO.
Therefore, the computational complexity per agent in this
phase is O(|Cv

||M v
|).

c: EXECUTION TIME CALCULATION PHASE
This calculation is performed for the requested task and tasks
whose performance is affected by resource allocation. Let
Adeg be the number of tasks affected by resource allocation.
The computational complexity per agent in this phase was
O(Adeg).

d: PHEROMONE UPDATE PHASE
Pheromones are updated on all resource pools and network
resources in theDDC. Therefore, the computational complex-
ity is the sum O(Rs + |Es|) of the number of resource pools
Rs and network resources |Es|.

TABLE 11. Computational complexity in each phase.

We summarize the computational complexity of each step
in Table 11. This series of phases is iterated t itr times.
However, t itr is a parameter for ACO. This value is constant
and does not affect the computational time. Rs and Es depend
on the network scale, whereas Cv and M v depend on the
number of requested resources. Adeg increases as more tasks
are allocated. We investigated whether computational time

67614 VOLUME 12, 2024

A. Ikoma et al.: Resource Allocation Considering Impact of Network on Performance in a DDC

FIGURE 8. Blocked requests.

VOLUME 12, 2024 67615

A. Ikoma et al.: Resource Allocation Considering Impact of Network on Performance in a DDC

can be practical for the number of required resources, the
number of accommodated requests, and the DDC network
scale.

2) IMPACT OF THE NUMBER OF REQUIRED RESOURCES ON
ALLOCATION TIME
a: ENVIRONMENT
We used the DDC network shown in Fig. 5b. The number
of resources for requests 1, 2, and 3 shown in Table 6 was
changed to five patterns, as shown in Table 12. In each
measurement, 100 requests were randomly generated within
300 min.

TABLE 12. Required resources for requests 1, 2, and 3.

b: RESULT
Fig. 9 shows the relationship between the required resources
and allocation time in the packet switch and circuit switch
networks. The 95% confidence interval is included in
Fig. 9.

In both networks, the allocation time increased almost
linearly with the product of the required number of com-
putational and memory resources. This result matches the
computational complexity of the network resource search
phase O(|Cv

||M v
|). RA-CNP required less than 10 s, even

when 10 CPUs and 10 memory blocks were requested, which
is considered acceptable for resource allocation before task
execution.

In addition, the rate of increase in the allocation time
differed between the circuit and packet switch networks.
Each agent stops searching for resources if the currently
selected resource allocation cost becomes greater than the
current best solution. This means that if a low-cost solution
can be found, the search time can be significantly reduced.
In packet networks, the number of candidate network
resources is greater than the number of circuits because link
sharing and aggregation are also possible. Consequently, the
increase in computational time is high in the packet switch
network.

FIGURE 9. Required resources and allocation time.

3) IMPACT OF THE NUMBER OF ACCOMMODATED
REQUESTS ON ALLOCATION TIME
a: ENVIRONMENT
We used the DDC network, as shown in Fig. 5b. In this
evaluation, the number of resources required for each request
was set according to Pattern 2 in Table 6. We changed the
number of generated requests to investigate the effect of the
number of accommodated requests. Table 13 lists the number
of generated requests. Resource requests were generated
randomly.

TABLE 13. Parameter setting for each type of generated requests.

b: RESULT
Fig. 10 shows the relationship between the number of
accommodated requests and allocation time. The 95%
confidence interval is included in Fig. 10.

Fig. 10 shows that there was no significant difference in
the allocation time in each case. First, because links are not
shared in the circuit switch network, they are not affected
by an increase in the number of requests. In addition, the
number of requests sharing the same link is limited to prevent
incurring a large latency between resources in the packet
switch network. The number of accommodated requests only
has a limited impact on computational time.

FIGURE 10. Number of requests and allocation time.

4) IMPACT OF DDC NETWORK SCALE ON ALLOCATION TIME
a: ENVIRONMENT
We used 5 × 5, 6 × 6, 7 × 7, and 8 × 8 2D torus
networks. The parameters for each structure are listed in
Table 14. In this evaluation, the number of resources required
for each request was set according to Pattern B in Table 6.
In each measurement, 100 requests were generated within
300 min.

b: RESULT
Fig. 11 shows the impact of the scale of the DDC network on
the allocation time. The 95% confidence interval is included
in Fig. 11.

67616 VOLUME 12, 2024

A. Ikoma et al.: Resource Allocation Considering Impact of Network on Performance in a DDC

TABLE 14. Parameter settings for each 2D torus network.

FIGURE 11. DDC network scale and allocation time.

Fig. 11 shows that the allocation time quadratically
increased with the number of resource pools and links
Rs + |Es|. This result does not match the computational
complexity of the resource search and pheromone update
phases in Table 11. Because the scales of the 5 ×

5 and 6 × 6 2D torus networks are small, the number of
candidate resources is small. Therefore, RA-CNP can find
the solution quickly, thereby reducing the computational
time. Conversely, as the scale of the network increases, the
reduction in computational timemay be slight. Consequently,
a large difference occurs in the computational time. However,
even in the case of an 8 × 8 2D torus, the computational time
is less than 6 s.

E. DISCUSSION ON LIMITATIONS AND FUTURE RESEARCH
DIRECTIONS
We demonstrated RA-CNP can execute more tasks simultane-
ously than other resource allocationmethods in both networks
configured by circuit and packet switches. However, this
study has some limitations.

First, RA-CNP assumes that service execution resources
are allocated before task execution and that the service
continues to use the allocated resources. RA-CNP provides
enough computational time in such a situation. However,
in a situation where execution resources for services are
managed dynamically in real-time, as in the case of microser-
vices, RA-CNP is not practical because it is excessively
time-consuming. In such a situation, preparing candidate
execution resources in advance is effective for real-time
resource management. Execution resources can be allocated
in real-time because the search for execution resources is
no longer required at the time of a resource allocation
request. To achieve this approach, a method for selecting
candidate execution resources based on the prediction of
future requested services is required. Proposals for such a
method are future work.

Next, RA-CNP assumes that the execution information of
each task, such as the resources required for task execution
and the packet rate that occurs between resources, is known
in advance. However, in cases such as task offloading from
users, it is difficult to know which tasks will be offloaded in
advance. In such a case,RA-CNP cannot achieve the objective
because it cannot calculate the impact of the network on
performance. Estimating execution information is required.
The amount of transferred data and frequency of communi-
cation depend on the size of processed data and memory size.
The clock count depends on the executable program and the
performance of the device. Estimating execution information
based on these factors is also a future work.

In future studies, we plan to introduce an optimal network
architecture for a DDC. Currently, there have been several
studies of network architecture in a DDC [11], [12], [21],
[22]. However, there has been no comparative evaluation of
whether the network is optimal through resource allocation.
RA-CNP is a resource allocation method available for any
network. Therefore, RA-CNP can allow us to evaluate
the suitability of various DDC networks to execute many
tasks. We plan to propose a network configuration method
considering running tasks and network topology and evaluate
the network by RA-CNP.

V. CONCLUSION
DDCs improve resource utilization and scaling flexibility.
However, network resources significantly influence task
performance, and an efficient resource allocation method
is required. We modeled the impact of allocated resources
on task performance and defined the resource allocation
cost, considering future resource requests. We then defined
the resource allocation problem and resource allocation
based on this model and costs RA-CNP. In RA-CNP,
by avoiding unnecessary allocation of important resources,
we can preserve these resources to fulfill future requests and
execute more tasks simultaneously.

We conducted simulations to evaluate the effectiveness of
RA-CNP. The results demonstrated that RA-CNP could allo-
cate more tasks than other methods in various environments.
This method enables the execution of many tasks in a DDC
and the evaluation of architectures. Finally, we measured the
allocation time ofRA-CNP and demonstrated that this method
can allocate resources within a practical time.

We discussed the limitations of this study and suggested
the need for real-time resource management methods and
execution information estimation methods. In future studies,
we plan to introduce a DDC network architecture considering
network topology and running tasks by using RA-CNP.

REFERENCES

[1] K. Bilal, O. Khalid, A. Erbad, and S. U. Khan, ‘‘Potentials, trends, and
prospects in edge technologies: Fog, cloudlet, mobile edge, and micro data
centers,’’ Comput. Netw., vol. 130, pp. 94–120, Jan. 2018.

[2] J. Pan and J. McElhannon, ‘‘Future edge cloud and edge computing for
Internet of Things applications,’’ IEEE Internet Things J., vol. 5, no. 1,
pp. 439–449, Feb. 2018.

VOLUME 12, 2024 67617

A. Ikoma et al.: Resource Allocation Considering Impact of Network on Performance in a DDC

[3] A. Y. Ding, E. Peltonen, T. Meuser, A. Aral, C. Becker, S. Dustdar,
T. Hiessl, D. Kranzlmüller, M. Liyanage, S. Maghsudi, N. Mohan, J. Ott,
J. S. Rellermeyer, S. Schulte, H. Schulzrinne, G. Solmaz, S. Tarkoma,
B. Varghese, and L.Wolf, ‘‘Roadmap for edgeAI: A dagstuhl perspective,’’
ACM SIGCOMM Comput. Commun. Rev., vol. 52, no. 1, pp. 28–33,
Mar. 2022.

[4] L. A. Haibeh, M. C. E. Yagoub, and A. Jarray, ‘‘A survey on mobile edge
computing infrastructure: Design, resource management, and optimization
approaches,’’ IEEE Access, vol. 10, pp. 27591–27610, 2022.

[5] M. Ewais and P. Chow, ‘‘Disaggregated memory in the datacenter:
A survey,’’ IEEE Access, vol. 11, pp. 20688–20712, 2023.

[6] S. Han, N. Egi, A. Panda, S. Ratnasamy, G. Shi, and S. Shenker, ‘‘Network
support for resource disaggregation in next-generation datacenters,’’ in
Proc. 12th ACM Workshop Hot Topics Netw., Nov. 2013, pp. 1–7.

[7] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agarwal,
S. Ratnasamy, and S. Shenker, ‘‘Network requirements for resource
disaggregation,’’ in Proc. 12th USENIX Symp. Oper. Syst. Design
Implement. (OSDI). Savannah, GA, USA: USENIX Association, 2016,
pp. 249–264.

[8] X. Lu and A. Kashyap, ‘‘Towards offloadable and migratable
microservices on disaggregated architectures: Vision, challenges,
and research roadmap,’’ in Proc. 2nd Workshop Resource Disaggregation
Serverless (WORDS). ACM, Apr. 2021, pp. 1–7. [Online]. Available:
https://wuklab.github.io/words/words21-lu.pdf

[9] G. Vargas-Solar, M. S. Hassan, and A. Akoglu, ‘‘JITA4DS: Disaggregated
execution of data science pipelines between the edge and the data centre,’’
J. Web Eng., vol. 21, no. 1, pp. 1–26, Nov. 2021.

[10] Q. Zhang, Y. Cai, S. G. Angel, V. Liu, A. Chen, and B. T. Loo, ‘‘Rethinking
data management systems for disaggregated data centers,’’ in Proc. Conf.
Innov. Data Syst. Res. (CIDR), Jan. 2020, pp. 1–8.

[11] V. Mishra, J. L. Benjamin, and G. Zervas, ‘‘MONet: Heterogeneous
memory over optical network for large-scale data centre resource
disaggregation,’’ J. Opt. Commun. Netw., vol. 13, no. 5, pp. 126–139, 2021,
doi: 10.1364/JOCN.419145.

[12] X. Guo, X. Xue, F. Yan, B. Pan, G. Exarchakos, and N. Calabretta,
‘‘DACON: A reconfigurable application-centric optical network for
disaggregated data center infrastructures [invited],’’ J. Opt. Commun.
Netw., vol. 14, no. 1, pp. A69–A80, Jan. 2022.

[13] A. Saljoghei, V. Mishra, M. Bielski, I. Syrigos, K. Katrinis, D. Syrivelis,
A. Reale, D. N. Pnevmatikatos, D. Theodoropoulos,M. Enrico, N. Parsons,
and G. Zervas, ‘‘DRedDbox: Demonstrating disaggregated memory in
an optical data centre,’’ in Proc. Opt. Fiber Commun. Conf., Jan. 2018,
Paper no. W1C.1.

[14] G. Zervas, H. Yuan, A. Saljoghei, Q. Chen, and V. Mishra, ‘‘Opti-
cally disaggregated data centers with minimal remote memory latency:
Technologies, architectures, and resource allocation [Invited],’’ J. Opt.
Commun. Netw., vol. 10, no. 2, pp. A270–A285, Feb. 2018.

[15] A. D. Papaioannou, R. Nejabati, and D. Simeonidou, ‘‘The benefits of a
disaggregated data centre: A resource allocation approach,’’ in Proc. IEEE
Global Commun. Conf. (GLOBECOM), Dec. 2016, pp. 1–7.

[16] M. Amaral, J. Polo, D. Carrera, N. Gonzalez, C.-C. Yang, A. Morari,
B. D’Amora, A. Youssef, and M. Steinder, ‘‘DRMaestro: Orchestrating
disaggregated resources on virtualized data-centers,’’ J. Cloud Comput.,
vol. 10, no. 1, pp. 1–20, Mar. 2021.

[17] C. Guo, X. Wang, G. Shen, S. Bose, J. Xu, and M. Zukerman, ‘‘Exploring
the benefits of resource disaggregation for service reliability in data
centers,’’ IEEE Trans. Cloud Comput., vol. 11, no. 2, pp. 1651–1666,
Feb. 2023, doi: 10.1109/TCC.2022.3151923.

[18] A. Ikoma, Y. Ohsita, and M. Murata, ‘‘Disaggregated micro data center:
Resource allocation considering impact of network on performance,’’ in
Proc. IEEE 20th Consum. Commun. Netw. Conf. (CCNC), Jan. 2023,
pp. 360–365.

[19] Q. Cheng, M. Bahadori, M. Glick, S. Rumley, and K. Bergman, ‘‘Recent
advances in optical technologies for data centers: A review,’’Optica, vol. 5,
no. 11, pp. 1354–1370, Nov. 2018.

[20] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang, ‘‘LegoOS: A disseminated,
distributed OS for hardware resource disaggregation,’’ in Proc. 13th
USENIX Symp. Operating Syst. Design Implement. (OSDI). Carlsbad, CA,
USA: USENIX Association, Oct. 2018, pp. 69–87. [Online]. Available:
https://www.usenix.org/conference/osdi18/presentation/shan

[21] N. Terzenidis, M. Moralis-Pegios, G. Mourgias-Alexandris, T. Alexoudi,
K. Vyrsokinos, and N. Pleros, ‘‘High-port and low-latency optical switches
for disaggregated data centers: The Hipoλaos switch architecture,’’ J. Opt.
Commun. Netw., vol. 10, no. 7, pp. 102–116, Jul. 2018.

[22] S. Yan, Z. Zhu, M. S. Glick, Z. Wu, and K. Bergman, ‘‘Accelerating
distributed machine learning in disaggregated architectures with flexible
optically interconnected computing resources,’’ in Proc. Opt. Fiber
Commun. Conf. Exhib. (OFC), Mar. 2022, pp. 1–3.

[23] T. Kimura, ‘‘Approximations for multi-server queues: System interpola-
tions,’’ Queueing Syst., vol. 17, nos. 3–4, pp. 347–382, Sep. 1994.

[24] I. Fajjari, N. Aitsaadi, G. Pujolle, and H. Zimmermann, ‘‘VNE-AC: Virtual
network embedding algorithm based on ant colonymetaheuristic,’’ inProc.
IEEE Int. Conf. Commun. (ICC), Jun. 2011, pp. 1–6.

[25] M. Dorigo and T. Stützle, Ant Colony Optimization: Overview and
Recent Advances. Boston, MA, USA: Springer, 2010, pp. 227–263, doi:
10.1007/978-1-4419-1665-5_8.

[26] V. Bahl. Emergence of Micro Datacenter (Cloudlets/Edges) for
Mobile Computing. Accessed: Mar. 13, 2024. [Online]. Available:
https://www.microsoft.com/en-us/research/wp-content/uploads
/2016/11/Micro-Data-Centers-mDCs-for-Mobile-Computing-1.pdf

[27] Vapor Edge Module (VEM-20) Specifications. Accessed: Mar. 13, 2024.
[Online]. Available: https://www.vapor.io/technology/datasheet/#VEM20

[28] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[29] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only look once:
Unified, real-time object detection,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 779–788.

AKISHIGE IKOMA received the M.E. degree in
information science and technology from Osaka
University, Japan, in 2022, where he is currently
pursuing the Ph.D. degree with the Graduate
School of Information Science and Technology.

His research interest includes network architec-
ture for a disaggregated data center.

YUICHI OHSITA (Member, IEEE) received the
M.E. and Ph.D. degrees in information science
and technology from Osaka University, Japan, in
2005 and 2008, respectively.

From April 2006 to March 2012, he was an
Assistant Professor with the Graduate School
of Economics, Osaka University. In April 2012,
he was with the Graduate School of Information
Science and Technology, Osaka University, where
he has been an Associate Professor with the

Institute for Open and Transdisciplinary Research Initiatives, since January
2019. In August 2023, he was an Associate Professor with the Cybermedia
Center, Osaka University. His research interests include traffic engineering,
traffic prediction, and network security.

Dr. Ohsita is a member of IEICE and the Association for Computing
Machinery (ACM).

MASAYUKI MURATA (Member, IEEE) received
the M.E. and D.E. degrees in information and
computer science fromOsaka University, Japan, in
1984 and 1988, respectively.

In April 1984, he joined with Tokyo Research
Laboratory, IBM Japan, as a Researcher. From
September 1987 to January 1989, he was an
Assistant Professor with the Computation Center,
Osaka University. In February 1989, he joined
with the Department of Information and Computer

Sciences, Faculty of Engineering Science, Osaka University, where he
became a Professor with the Graduate School of Engineering Science,
in April 1999. He has been with the Graduate School of Information Science
and Technology, since April 2004. His research interests include information
network architecture, performance modeling, and evaluation.

Prof. Murata is a member of ACM and IEICE.

67618 VOLUME 12, 2024

http://dx.doi.org/10.1364/JOCN.419145
http://dx.doi.org/10.1109/TCC.2022.3151923
http://dx.doi.org/10.1007/978-1-4419-1665-5_8

