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ABSTRACT In the last few decades, there has been a significant increase in the importance of assessing
social and ecological implications within industrial product supply chains. This tendency has given rise to
the notion of supplier sustainability, which entails meeting the economic, environmental, and social demands
of all suppliers. The supplier selections are typically based on experts’ opinion, which are then reflected in
supplier ratings. When examining sustainability indicators, experts may not be fully aware of all aspects of
suppliers’ economic, social, and environmental qualities. In the Decision Making (DM) approaches such
as Pythagorean Fuzzy (PF) and g-Rung Orthopair Fuzzy (q-ROF) sets, experts are unable to use different
powers for membership and non-membership grades simultaneously. In real-life DM problems, experts may
require different power levels for membership and non-membership grades. In this paper, we propose a
new extension of the COPRAS method under p, g-Quasirung orthopair fuzzy (p, g—QOF) sets, which allow
decision-makers to use different power levels for membership and non-membership grades by incorporating
parameters p and g. In the proposed approach, it is assumed that in addition to compiling the expert scores for
suppliers, the issue analyst evaluates each expert’s degree of expertise for each criterion. The best choice is
then determined by combining the data using the COPRAS method. The Inter-Criteria Correlation (CRITIC)
method is employed to determine the unknown criteria weights. To demonstrate the effectiveness of our
proposed approach, we apply it to a Multi-Criteria Group Decision-Making (MCGDM) problem that is
focused on green supplier selection. Finally, we conduct a comparative study with existing approaches to
demonstrate the practicality and applicability of the proposed DM method.

INDEX TERMS p, g—quasirung orthopair fuzzy sets, COPRAS method, MCGDM, green supplier selection.

I. INTRODUCTION

Green Supply Chain Management (GSCM) entails integrat-
ing environmental concerns across various business func-
tions. This evolving approach embeds environmental factors
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throughout the supply chain, encompassing areas such as
product design, material sourcing, manufacturing, distribu-
tion, and waste management [1], [2], [3]. Supplier selection
stands out as a pivotal decision for businesses. While Multi-
Criteria Decision-Making (MCDM) methods traditionally
emphasize financial aspects, there is a growing recognition
of the need to incorporate sustainability considerations into
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all phases of the supply chain, given mounting concerns
about global warming and other environmental impacts. This
underscores the significance of supplier selection processes.
The Green Supplier Selection (GSS) problem is a com-
plex issue that is sometimes made more challenging by the
mismatch between organizational objectives and environ-
mentally sound criteria. Usually, choices are made using the
professional opinions of different suppliers. Throughout the
GSS process, critical data may not always be provided indis-
putably, which leads to ambiguity and uncertainty in specific
data points. Experts use linguistic variables to express the
imprecision inherent in their judgements. The fuzzy model
allows linguistic expressions to be transformed into Intuition-
istic Fuzzy (IF) [4], Pythagorean Fuzzy (PF) [5], g—Rung
Orthopair Fuzzy (¢—ROF) [6], or p, g—Quasirung Orthopair
Fuzzy (p, g—QOF) numbers [7]. Furthermore, while eval-
uating sustainability measures, it is critical to recognize
that these experts may not be equally proficient in each of
the fields (economic, social, and environmental). This study
presents a novel way for GSS using the COPRAS method [8]
under the p, g—QOF environment. The COPRAS approach,
recognized for its low complexity, efficiency, and resilience,
is a ranking system whose computations do not need com-
plex mathematical procedures, making it more accessible and
applicable. The proposed approach considers the influence of
optimizing favorable indicators and minimizing unfavorable
indicators on evaluation results. It evaluates the competing
circumstances of the criteria, evaluating them suitably in
order to compare ideas and set priorities. The proposed tech-
nique requires the presence of an analyst beside the experts,
who not only collects scores but also analyses their expertise.
The analyst then combines the data to determine the best
decision.

A. LITERATURE REVIEW

Over the past two decades, researchers have made signif-
icant strides in expanding and refining the Multi-Criteria
Group Decision-Making (MCGDM) process to address vari-
ous decision-making and selection challenges. The primary
aim of these efforts is to enhance decision-making pro-
cesses, leading to more informed outcomes. One notably
practical MCGDM method is the method of COPRAS, intro-
duced by Zavadskas and Kaklauskas [8] in 1996. COPRAS
focuses on establishing proportional and direct relationships
between the importance and utility of prospective candi-
dates, particularly in scenarios involving competing criteria.
It evaluates candidates’ performance across multiple crite-
ria while considering assigned weights to each criterion.
By examining both positive and negative ideal solutions,
COPRAS enables informed judgments. Its key advantage lies
in its relative simplicity and ability to generate clear and
distinct preference orders [9], [10]. In recent years, COPRAS
has found effective applications in various domains, such
as selecting Low-E windows for enhancing public build-
ings [11], supervisor selection [12] and material selection
of sustainable composites [13]. Agarwal and Tayal [14]
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proposed an enhanced model of the fuzzy COPRAS
technique, which serves as an improved multicriteria
decision-making method for identifying and prioritizing
relevant indicators, thereby aiding institutions in enhanc-
ing accreditation data. Li et al. [15] developed a MCDM
method utilizing Interval-Valued Fuzzy Numbers (IVENs),
extended DEMATEL and entropy methods with IVENs for
uncertain indicator weights, and employed the extended
COPRAS approach with IVFNs to assess the rock burst haz-
ard level in mining engineering. Erdebilli et al. [16] integrated
the AHP and COPRAS supplier selection techniques with
Interval-Valued PF (IVPF) logic, providing a comprehensive
review and analysis of the effectiveness of these assessments
in supplier selection.

The current COPRAS techniques impose limitations on the
degree of non-membership () and membership ¥ in the IF
environment; in the PF environment, the sum of the squares
of ® and W is restricted to be less than or equal to 1; and in the
g-ROF environment, the sum of the ¢™ powers of ® and W is
restricted to be less than or equal to 1. Furthermore, decision-
makers must use the same values of q for both ® and W when
applying the COPRAS approach in the g-ROF context. These
limitations can significantly impact decision outcomes. The
objective of this study is to overcome these restrictions and
explore decision-making scenarios without such constraints.

B. p, q— QUASIRUNG ORTHOPAIR FUZZY SETS

DM is an important process to select the best-suited alter-
native from among those available. Several researchers have
presented a variety of theories to make the best deci-
sions. In the past, judgements were made based on sharply
numbered data sets, but this practice produced insufficient
outcomes that were less applicable to actual operating sce-
narios. However, as time passes and the complications of
the system expand, it becomes more challenging for the
decision-makers to handle the uncertainties in the data, and
hence the traditional techniques are unable to determine the
optimal choice. Later on, Zadeh [17] proposed the Fuzzy
Set (FS) theory, which is used to describe the fuzzy and
uncertain information of objective things with applications
in various fields. For example, Lu et al. [18] used fuzzy
change-point algorithm for shift detection in control charts.
Poulik et al. [19] introduced and examined the properties
of the Randic index for fuzzy graphs and fuzzy subgraphs.
Das et al. [20] introduced the concepts of picture fuzzy
¢—tolerance competition graphs, which introduce additional
uncertainties to the fuzzy ¢ —tolerance competition graphs.
Poulik and Ghorai [21] proposed the concept of the bipolar
fuzzy incidence graph along with its matrix representation.
A theoretical foundation for handling uncertain information
is provided by FS theory, which also makes it possible to
convert MD information from linguistic to quantitative form.
Also, the FS theory addresses the flaws of the traditional
decision-information process and introduces a new technique
to represent imprecise and uncertain data. FS only has a
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degree membership @ with & € [0, 1]) that describes how
much an element belongs to a given fixed set. To address
the shortcoming of FS, Atanassov [4] introduced the Intu-
itionistic FS (IFS), which has both membership ® and
non-membership degree W such that 0 < ®+W < 1. The IFS
has been extensively researched in recent decades, with sev-
eral accomplishments documented. For example, Hwang and
Yang [22] gave some similarity measures between IFSs based
on lower, upper and middle FSs. Yang et al. [23] constructed a
belief-plausibility TOPSIS for IFSs. Mahanta and Panda [24]
introduced the distance function for IFSs which is a quantita-
tive tool to measure the difference between two intuitionistic
fuzzy numbers. Ding et al. [25] provided a comprehen-
sive review of research advancements in three-way decision
methods within the generalized IF environment. However,
in real-world DM problems, decision-makers may face sit-
uations in which the sum of ® and W by decision-makers
is bigger than one (i.e. ® + ¥ > 1) while their square
sum is less or equal to one. For example, if decision mak-
ers provide their assessment about the object (alternative)
such that ® = 0.6 and ¥ = 0.7, then it is clear that
0.6 + 0.7 = 1.30 > 1. To address the limitations of
IFSs, Yager [5] proposed PF Sets (PFSs) under the condition
®2 + W2 < | which are the expansion of IFSs. Sev-
eral authors have introduced various methods in the context
of PFSs. Zhang [26] proposed a hierarchical QUALIFLEX
approach based on PFSs. Rahim et al. [27] presented an
extension of Bonferroni mean. Yager [6] introduced g—ROF
Sets (3—ROFSs) which is the general class of IFSs and PFSs.
Wei et al. [28] presented a series of aggregation operators
based on the Heronian mean under a ¢—ROF environment.
Yang et al. [29] and Zhang et al. [30] gave a three-way deci-
sion on ¢g—ROFSs. Zulgarnain et al. [31] devised geometric
aggregation operators to effectively combine q-rung orthopair
fuzzy information. Seikh and Mandal [32] presented q-rung
orthopair fuzzy Frank aggregation operators to deal with
MADM problems. Zhang et al. [33] proposed a MAGDM
method under incomplete g—ROF information systems.
From the above discussion, it is evident that in IFSs,
decision-makers are required to provide assessments for alter-
natives under the condition that the degrees of membership
(®) and non-membership (V) should be with0 < &4+W < 1.
Similarly, in PFSs, decision-makers must ensure that the
sum of the squares of the & and W is less than or equal
to 1(i.e. 0 < ®> + W2 < 1). In the context of g—ROFSs,
decision-makers are constrained to set their assessments in
a manner such that the sum of the ¢ powers of the ® and
the degree of W should be with 0 < ®¢ + W? < 1. This
means that decision-makers are obligated to establish uniform
degrees for both membership and non-membership. To over-
come these constraints, Seikh and Mandal [7] introduced
P, q—QOF Sets (p, g—QOFSs) which extend the concept of
q—ROFSs. In p, g—QOFSs, decision-makers are empowered
to set distinct powers for membership and non-membership
degrees by introducing the parameters p and g. Through
the incorporation of these parameters, p, g—QOFSs offer a

VOLUME 12, 2024

more adaptable framework for managing the membership and
non-membership degrees of an element. There are several
applications of p,gq—QOFSs in the literature, such as in [34],
[35], and [36].

C. GREEN SUPPLIER SELECTION

Green Supplier Selection (GSS) is the process of evaluating
and selecting suppliers based on their environmental per-
formance and sustainability practices [37]. This can include
considerations such as the supplier’s energy and resource
efficiency, waste reduction efforts, and compliance with envi-
ronmental regulations. The goal of green supplier selection is
to minimize the environmental impact of a company’s supply
chain and to support the adoption of sustainable practices
throughout the industry. In the green supplier selection pro-
cess, a company may consider a variety of factors, such as the
supplier’s greenhouse gas emissions, water usage, and waste
generation. The company may also evaluate the supplier’s
environmental policies and initiatives, as well as its track
record of environmental compliance. By choosing suppliers
that are environmentally responsible, a company can reduce
its environmental footprint and support the transition to a
more sustainable economy. There are several key factors that
companies may consider when evaluating and selecting green
suppliers. These can include:

e Metrics for Environmental Performance

i. Includes the production of garbage, the consumption of
energy and water, and greenhouse gas emissions.

ii. Businesses look for vendors who will gradually improve
their environmental performance.

¢ Environmental Mechanisms

Assessment of supplier policies, including the use of
renewable energy, recycling initiatives, and sustainable
sourcing.

e Implementation of Sustainability Policies

Taking into account the supplier’s compliance with perti-
nent environmental regulations and guidelines.

e Reliability and Performance Background

Evaluation of a supplier’s reputation and performance his-
tory about sustainability and environmental performance.

Due to rising consumption levels and the negative effects
of industrial advancements, green consideration has become
one of the most critical challenges for environmental con-
servation. Supplier selection may be considered a crucial
factor of green supply chain management for mitigating the
negative consequences of industrial operations. A green sup-
plier selection is the operational management system and
optimization process used to decrease the environmental
effect of a green product throughout its life cycle. Supply
chains choose suppliers based on a variety of analytical,
numerical, psychological, and objective parameters [38].
Green Supply Chain Management (GSCM) is the practice
of integrating environmental sustainability into the design,
management, and improvement of a company’s supply chain.
This can involve a variety of practices, such as reducing
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the environmental impact of transportation, optimizing the
use of resources and energy, and promoting the use of envi-
ronmentally friendly products and materials. One common
application of GSCM is in the manufacturing industry, where
companies may implement sustainable practices, such as
reducing waste, conserving energy, and water, and using
environmentally friendly materials. Other industries, such
as retail and logistics, may also adopt GSCM practices to
reduce their environmental impact and support the adop-
tion of sustainable practices throughout their supply chain.
By implementing GSCM practices, companies can improve
their environmental performance, reduce costs, and enhance
their reputation and competitiveness. It is increasingly being
recognized as an important part of a company’s overall sus-
tainability strategy. Min and Kim [39] were the first to define
GSCM as the biologically responsive management of supply
chain processes throughout the whole chain. According to
Mohanty and Prakash [40], GSCM is a method that may be
used to improve sustainability and economic efficiency for
the entire socio-economic growth. Akcan and Tas [41] noted
that GSS differs from traditional supplier selection in that it
places equal emphasis on environmental issues such as car-
bon dioxide and carbon monoxide emissions, resource waste,
and social responsibility in addition to profitability, customer
satisfaction and quality. In other words, GSS is capable of
balancing ecological and financial advantages. Therefore,
choosing an appropriate green supplier for enterprises may
be seen as a crucial strategy and the importance of scientific
and logical decision criteria and processes is critical. Several
factors need to be considered when evaluating green suppli-
ers, including qualitative and quantitative data. Also, during
the GSS process, enterprises frequently vote at meetings to
evaluate prospective suppliers.

D. MOTIVATIONS

Currently, available COPRAS method extensions are subject
to certain limitations. For example, in a Pythagorean fuzzy
environment, it is limited by the requirement 24w <1,
Similarly, in a g—ROF environment, the constraint is ®¢ +
W9 < 1 (¢ > 1). The necessity for the identical value of ¢
for both membership degrees in g—ROF numbers presents
a barrier, as there are cases where separate powers are
required for membership and non-membership degrees. The
current COPRAS technique cannot handle decision-makers
with varying levels of authority membership.

To solve these restrictions while optimizing the benefits of
P, q—QOFSs, this work offers an adaptation of the COPRAS
approach for the p, g—QOF environment. This improved
COPRAS technique empowers decision-makers by allow-
ing them to employ distinct parameters, p and g, to control
the effect of membership degrees independently during the
decision-making process. The main objectives of the pro-
posed framework are summarized as follows:

1. In the first phase, we extend the fuzzy COPRAS approach
based on cubic PFSs which provide a relaxed and fixable
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environment for decision-makers to avail themselves of
their desirable alternatives (suppliers).

2. An assessment approach for the GSS is proposed, which
can assist enterprises in efficiently selecting the appropri-
ate supplier.

3. Even though the strategy has been proposed for decades,
there is a lack of relevant studies in the available litera-
ture. As a result, our study, which develops a p, g—QOF
COPRAS (p, g—QOF-COPRAS) method, can cover a
research need.

4. Several criteria have different weights in the supplier
selection process. It is challenging to give the crite-
rion weights exactly because the decision-makers may
be bound by their expertise and experience. To calculate
weight values, an objective weight determination tech-
nique based on the CRITIC approach is described in this
article.

5. The MCGDM problem is provided to demonstrate the
proposed approach. Also, the results of the proposed
approach are compared with some existing approaches
which validate the stability of the approach with respect
to state-of-art.

E. THE SCREENING PROCESS FOR IDENTIFYING GREEN
SUPPLIERS

Multiple factors have been used in the GSS process. It is
challenging for an enterprise to let a single decision-maker
choose the appropriate sustainable supplier in a complex
environment. Because the decision information provided by
the decision-maker is limited. The quantity of information
he/she has will influence how much he/she knows about these
suppliers. Furthermore, his understanding of the relevant
issue and his background in the field also had a role in the
selection he/she made. When he/she examines these suppliers
based on several criteria, these factors might cause him to
make errors. Therefore, enterprises are more likely to assem-
ble a team of professionals to manage these multi-criteria
MD problems. Up until today, there have previously been
MCDM approaches to pick the appropriate green supplier
from the set of alternatives (suppliers) such as AHP, ANP
and TOPSIS method. For example, Kilic and Yalcin [42]
developed a strategy to address GSS concerns by combining
the IF-TOPSIS approach with a modified two-phase fuzzy
goal management model. Pischulov et al. [43] proposed the
VAHP approach to assist associated managers in selecting
suppliers. Wei et al. [44] dealt with GSS challenges using
BWM and VIKOR approaches in an interval type-2 fuzzy
context. Xu et al. [45] established the AHP-Sort-2 method
using IT2FSs to promote the evolution of long-term sup-
plier selection. Fei et al. [46] developed an MCDM strategy
for improving GSS accuracy by integrating ELECTRE and
DST methodologies. Kaya and Yet [47] used the DEMA-
TEL approach, which was formerly known as the MCDM
approach, to Bayesian Networks to provide a methodology
for GSS. Liao et al. [48] applied SPAN and ANP approach to
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a hesitant fuzzy linguistic context to design a new framework
for selecting the appropriate low-carbon supplier.

F. CRITIC METHOD

Various methods have been employed in the literature to
assess criteria weights such as Entropy and FANMA [49],
[50]. Every method has advantages and disadvantages for
example, for some DM scenarios, the Entropy technique
offers a simple and neutral way to establish criterion weights.
Its application in more complicated decision situations may
be limited by its sensitivity to data quality and failure to
identify relationships between criteria. By considering both
positive and negative feedback, FANMA provides a useful
expansion to the ANP paradigm [51], offering a more realistic
examination of complicated MD scenarios. However, while
using the approach in practice, it should be carefully consid-
ered for its increased complexity, subjectivity in preference
modelling, and data needs.

On the other hand, for DM issues, the CRITIC
approach [52]is crucial in calculating the weights of the cri-
teria. CRITIC more precisely determines the most important
criteria by considering inter-criteria correlations. It improves
the accuracy of the criterion weighting by explicitly taking
these connections into account. Additionally, CRITIC shows
resilience in coping with data fluctuation and uncertainty
in criterion values. CRITIC uses data-driven analysis and
correlations to provide a more objective method to criteria
weighting, decreasing subjectivity. Its attractiveness as a
practical DM tool is further enhanced by its simplicity and
ease of application. Numerous researchers have used this
technique in a variety of settings. Numerous researchers
have used this technique in a variety of settings. For exam-
ple, Pamucar et al. [53]modified CRITIC method using
fuzzy rough numbers. The study uses CRITIC to determine
criteria weights because it is resilient in the context of
data volatility and criterion value uncertainty. CRITIC uses
data-driven analysis and correlations to provide a more unbi-
ased approach to criteria weighting, decreasing subjectivity.

G. PAPER OUTLINE

The reminder for this article is as follows. Section II includes
an overview of related literature. In Section II, basic con-
cepts and definition of p, g—QOFSs are provided. Section III
presents a new extension of COPRAS method by integrat-
ing the traditional COPRAS method and p, g—QOFSs, and
provides simple computing algorithms. Section IV includes
an example of green supplier selection to demonstrate the
benefits of the proposed method. In the end, we provide a
detailed conclusion of the presented study. The layout of the
article is presented in Figure 1.

Il. PRELIMINARIES

In this section, we review some definitions and operational
principles of p, g—QOFSs that are related to our proposed
methods.
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Section 1 Introduction

Section 2 Basic definitions

Section 3 proposed COPRAS method

Proposed work

Section 4 Applications

Section 5 Conclusion and future work

FIGURE 1. Paper layout.

Definition 1: [7] For a non-empty fixed set G, the
P, q—QOF set is defined as:

={g, Pa(g), Ya()Ig € G} ey

where &4 : G — [0, 1] describes the MD and W4 : G —
[0, 1] describes the NMD of the component g € G respec-
tively, satisfying the condition o 4(8) + \I/q(g) <l(g<por
p < q) for every element ¢ € S. For the sake of simplicity
(Da(g), Wa(g)) is referred to as a p, g— QOFN, which can
be represented as o« = (D, Wy), satisfying the condition
oL+ Wi < 1.

Definition 2: [T] Leta = (Po, Vo), a1 = (Po;, Vo)
and ap = (CDO,,, \Ilal) be any three p, g—QOFN and p > 0,
then

PRy
i a1®ay = ( ( ) ( %, \I/al\lfaz),
oy )

ii. a1 @ar = qDalq)(sz

iii. ,ua_ ”1

iv. ol = (obg, 1—(1- \yz)") :

For the comparison of various p, g—QOFNs in tackling a
decision making scenario, the score function, along with the
accuracy function, is pivotal and formulated in p, g—QOF
information systems [7] as follows.

Definition 3: [7] Let @« = (®4, Yy) be a p, g—QOFN.
The score function of « is defined as follows:

1+ (Pa)” = (Va)?

sc(a) = > (2

,_‘
|
£
,:
=

T®
~—"

where 0 < sc(x) < 1.
Definition 4: [7] Let @ be a p, g—
function of « is defined as follows:

QOFN. The accuracy

ac(a) = ®b + wl 3)

where 0 < sc(a) < 1.

Aggregation operators are essential tools for simpli-
fying and summarizing data, facilitating analysis, and
aiding decision-making processes. Seikh and Mandal
[7] also gave a series of aggregation operators for
P, ¢g—QOFNs.
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Definition 5: [7] Let o = (P W) (G=1.2,....0)
be any collection of p,g—QOFNs. The structure of
p, g—QOF weighted arithmetic (p, g—QOFWA) operator is
defined as:

p’Q_QOFWA(C{lvOtZ"--van)

(") e

where w; is a weight vector such that 0 < w; < 1 and
210 =1

Definition 6: [7] Leta; = (<I>aj, \I'aj) G=1,2,...,n)be
any collection of p, g—QOFNs. The structure of p, g—QOF
weighted geometric (p, g—QOFWG) operator is defined
as:

p.q— QOFWG (a1, an, ..., o)

H;lzl (q)aj)wjv
B ({/1 I (1 - (%j)q)wj) Q)

where w; is a weight vector such that 0 < w; < 1 and

D=1 =1

lll. THE PROPOSED COPRAS METHOD

The existing fuzzy COPRAS systems are based on mem-
bership degrees, however they lack flexibility to specific
circumstances and needs since the effects of membership
cannot be properly operated. In response, we propose a
unique addition to the COPRAS technique that allows
for dynamic management of membership degrees for each
element (alternative) based on the decision context. This
modification adds the parameters p and g, allowing for
more subtle adjustments to the effect of membership based
on the decision-making situation. The following sections
provide a detailed overview of the proposed method’s
phases.

Suppose we have a set of 4 alternatives {S1, S2, ..., Sy, }
with » criteria {C1, C3, ..., Cy} and £ experts {x1,x2, ...,
xg). Let (¢1,¢2,....04) and (¢1,¢2,...,¢¢) be the
weighting vector of criteria and experts respectively which
meet ¢, ¢ € (0,10, and 37 ¢ = SF o =
1. To discover the appropriate green supplier, the pre-
sented COPRAS process has been divided into the following

phases.
Phases 1.Collect the assessment of each decision-maker
and build the assessing matrix D® = (4% =

Y/ mxn
(®ay. Wo) such that (dg,)” + (¥o,)? < 1.

In real-life decision-making scenarios, decision-makers
may require different levels of powers for membership
grades. Therefore, the extended COPRAS method addresses
this issue by enabling decision-makers to utilize different
power levels for membership grades through the inclusion of
parameters p and g. In the proposed framework, the parame-
ters p and g are positive integers, satisfying the conditions of
p > q,p = q,orp < q. The flexibility of this model lies in the
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adjustability of these parameters, allowing for customization
based on the specific requirements of the decision-making
problems at hand.

d’il dk’;z d’in
dy dy - dyy
k) — ( 4k —
b= (“'/)mxn =1 ©
k Lk
By Ay -+ b
di dir - din
D= (dll)mxn = 4.21 dn - dz'/n 0
dmi dmo -+ g\

1= (- (24))”

di - o ®)
Tl (ve)

where dg is the assessment values of alternative §; with

respect to the criterion C; and decision-maker Sk.

Phases 2. Using the CRITIC approach, determine the
weighted structured matrix.

Calculating the criterion weight is seen as a key phase
in dealing with MCGDM complications. Different crite-
ria may be counterweights, which might produce different
results. Decision-makers find it challenging and impartial
weight values from the actual information. Because the pro-
cess of obtaining weight values is complex, therefore, the
expertise and preconceptions of experts may impact the
whole decision process. As a result, the Criteria Importance
Through Inter-Criteria Correlation (CRITIC) [54] technique
is a superb option for avoiding these concerns as an objective
method. In this process, it is possible to determine the weights
of various criteria based on how much data they include,
resulting in objective criteria weights and avoiding subjective
assessment. Following that, we shall go into the strategy’s
mathematical methods.

Step 1.The coefficient of correlation matrix +~ = (Jj) .. .,
G,m = 1,2,...,n) is constructedbased on the aver-
age p,q— QOF decision matrix D = (d'ij)mxn

Zle (a)kdg.) by determining the correlation coefficient
between
criteria.

m [sc(dij) — sc(d;)]
" el o)

() (=

—scd)

©))
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where sc(dj) = - > sc(dy) and sc (dy)

" Zz 15¢ (din)'

Step 2. Calculate the standard deviation of each criterionas

follows:
(/Z [s¢ (@) S(d./)]z) (10

where sc (d)) = - 277 sc () -
Step 3. Calculate the weight of each criterionas follows:
n ~
g = m; 30k (1= Jiy) (11
=
Zj/’il (Smj Z;n:l (1- Jin))
where g; € [0, ]and 37, ¢; = 1.
Phase 3. Calculate the normalized decision matrix. The
normalized weighted matrix is calculated as:

W = qjd;; (12)

Phase 4. For the benefit sum Rj' all the values of the criteria.
Let {C|, Ca, ..., Cy} be the set of criteria the higher values
of which is appropriate. For each alternative Rl+ calculate the
following index.

+ _ N ot
RE=2 Wi (13)

Phase 5. Sum the values R; of cost criteria. Let
{C1*, Cr*, ..., Cp} be the set of criteria the lower values
of which are appropriate. Then, for each alternative R,
calculate the following index.

_ n .
R, = Zj=1 W; (14)
Phase 6. Compute the smallest value of R; as follows:
Roin; = min (R;) (15)

Phase 7. Calculate the ratings of each alternative based on
benefit and cost criteria as follows:

R >R
0= se (R) + 4 ’””’)m’cjm - ae
se (R7) X0 TRy

Phase 8. Calculate optimality criterion Q4 as follows:

Qax = max (Q;) a7

Phase 9. The degree of efficacy for each alternative ®R;
calculated by comparing the other alternative with the best
alternative. The values of the degree of utility ranged from 0%
to 100% between the worst and best alternatives. The efficacy
degree ) for each alternative j™ is determined as follows:

Qi
max
The systemic flowchart of the proposed CPF-COPRAS
method is summarized in Figure 2.

Thus, an algorithm for the pseudocode representation
of the proposed COPRAS method can be summarized as
follows:

N =

x 100% (18)
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Algorithm 1 Pseudocode Representation of the Proposed
COPRAS Method
Input: m— number of alternatives, »— number of criteria,
and £— number of experts.
Output:Green supplier selection.
Begin
Step 1:Construct the decision-matrix and weight value of
each expert in the form of p, g— QOFNs.
Step 2:Forj=1ton
Compute standard deviation of each criterion 9; using
Eq. (10).
Endfor
Step 3: Forj=1ton
Calculate the weight of each criterion using Eq. (11).
Endfor
Step4:Forj=1tonandi=1tom
Calculate the normalized decision matrix using Eq. (12).
Endfor
Step 5: For benefit sum cost sum using the indexes listed in
Egs. (13) and (14)
Step 6: Fori =1tom
Compute the smallest value of R;, using Eq. (15)
Endfor
Step 7: fori=1tom
Calculate the rating of each alternative based on
benefit and cost criteria using Eq. (16)
Endfor
Step 8: Calculate optimality criterion Q. using Eq. (17).
Step 9.Fori=1tom
Calculate the efficacy degree N using Eq. (18).
Endfor
End

Multi-criteria decision-

making
R o
Define alternatives —(:Qogslggiisiou l Calculate the L Cf:}lc;f;e:;?u
‘ and criteria P4 : 7 weights of experts e &
matrix values

! | Calculate the score values of each S —— :
POk b 4’\ Calculate criteria weights

Calculate the ‘ Calculate the ‘

Sum the rating Calculate the
‘ values for cost and relative assessment - efficiency degree of riority values
benefit criteria values ‘ suppliers ! r

Select the best supplier

FIGURE 2. Subsequent phases of the p, g—QOF-COPRAS method.

IV. APPLICATION

Supply chain strategy forms the foundation of green supply
chain management, a pivotal element in promoting environ-
mentally friendly practices. The efficiency of the entire sup-
ply network directly hinges on supplier capabilities. Hence,
finding swift and efficient solutions for selecting appropriate

69789



IEEE Access

M. Rahim et al.: Improved COPRAS Method With Unknown Weights

FIGURE 3. The flowchart of the proposed model.

suppliers is crucial for companies. Scholars emphasize the
importance of considering both product quality and service
standards when choosing suppliers, regardless of whether
they are conventional or green. The quality of items provided
by suppliers significantly influences enterprise processing,
manufacturing, market efficiency, and product quality. The
supplier’s effectiveness in issue resolution and product deliv-
ery is reflected in the service level, a crucial benchmark for
ensuring successful raw material supply. In selecting green
suppliers, businesses must also consider factors like environ-
mental protection approach and green energy quality. The
identification of green suppliers is a well-known MAGDM
issue [44], [55]. Building on a fundamental investigation and
survey regarding green supplier selection, management has
chosen four criteria to review and pick appropriate green
suppliers:

1. Cj is the team’s skill.

2. (C, is the green degree of design and production.

3. Cs is the expenditure of waste disposal.

4. Cy is the service level.

We engaged five experts (Environmental Scientist (xp),
Supply Chain Manager (x7), Sustainability Consultant (x3),
Procurement Specialist (x4), and Corporate Social Respon-
sibility Manager (xs)) to individually assess the five green
suppliers (S1, S2, S3, S4, and Ss5) based on these criteria,
constructing five p, g— QOF decision matrices presented in

TABLE 1. p, —QOF decision matrix provided by expert x;.

S, C, C, C, C,
S, (0504 (03,04) (0.1,06) (0.7,02)
S, (02,05 (04,02 (0.3,06) (0.3,0.5)
Ss  (0.604) (0207 (0.1,04) (0.1,0.3)
s, (0.1,03) (02,08 (04,06) (0.50.6)
S. (0504 (050.2) (0.603) (0.3,0.8)
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TABLE 2. p, g—QOF decision matrix provided by expert x,.

S; ¢y C, C; Cy

S, (03,05 (0508) (04,03) (0.3,0.6)
S, (0.4,06) (0.1,02) (0.604) (0.7,0.4)
Sy (0507) (0.604) (03,07 (0.4,0.1)
s, (03,05 (0801 (04,03) (0.20.5)
Ss (0.603) (03,06) (04,02) (0.50.4)

TABLE 3. p, g—QOF decision matrix provided by expert x5.

Si (1 C, Cs Cy

s, (0207) (0603) (04,05) (0.5,0.2)
S, (0.1,08) (04,01 (0.3,06) (0.4,0.2)
S;  (0201) (03,04) (0.2,08) (0.50.6)
S, (0504) (050.7) (0.4,05) (0.3,0.4)
S. (03,07 (0.2,0.6) (0.2,04) (0.3,0.1)

TABLE 4. p, g—QOF decision matrix provided by expert x,.

S; ¢y C, Cs Cy

S; (04,05 (04,02 (04,02) (0.3,04)
s, (03,05 (0602 (0.601) (0.4,0.5)
s; (07,03) (03,05 (03,04) (0.6,0.3)
s, (0302 (0.1,08) (0.7,04) (0.5,0.3)
S.  (0.1,04) (04,05 (03,05 (0.4,0.1)

TABLE 5. p, g—QOF decision matrix provided by expert x5.

S; G G (5 Cs

S; (04,06) (0504) (03,0.7) (0.4,0.5)
S, (0.1,02) (0.1,0.5) (0.2,0.3) (0.6,0.5)
S;  (0604) (0.2,0.7) (04,0.6) (0.2,0.6)
S, (0.206) (0.605) (0.604) (0.3,0.5)
S;  (0504) (01,02) (03,04) (04,0.3)

Tables 1-5. For the following steps we fixed the parameters p
and q at 2. The step-by-step path way of the proposed model
is presented in Figure 3.

Step 1. Using Equations (4) and (5) to calculate aggregated
weighted normalized decision matrix. Initially, we assume the
weight criterion (factor) as w = (0.15, 0.35, 0.20, 0.30). The
weighted normalized decision matrices are summarized in
Tables 6 and 7. Note that the weight vector for each criterion
can be changed according to the situation.

Phase 2. From Table 6, calculate the average cubic PF
decision matrix by using Equation (8) as follows:

Phase 3. Compute the individual criteria weights g; using
Equations (9) to (11). The results are summarized in Table 9.
From Table 9, we can see that Z;'il gi=1.

TABLE 6. p, g—QOF weighted averaging normalized matrix.

S; Cy Cy C3 Cy

S; (0.376,0557) (0.242,0.350)  (0.265,0.643)  (0.325,0.478)
S, (0.073,0.145)  (0.093,0457)  (0.186,0.275)  (0.564,0.463)
S;  (0.368,0.341)  (0.190,0.638)  (0.357,0.546)  (0.185,0.562)
s, (0128,0548)  (0.567,0.470)  (0.574,0.382)  (0.239,0.458)

Ss  (0.435,0.377)  (0.078,0.158)  (0.284,0.383)  (0.390,0.290)
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Phase 4. Using Equations (8) and (12) to calculate the
weighted normalized assessment matrix V. The results are
summarized in Table 10.

Phase 5. Sum up the benefit criteria by using
Equation (13), R = (0.3776,0.7011), R = (0.5291,
0.7953), R = (0.2904, 0.3064), R} = (0.3910,0.7144).

Phase 6. Sum up the cost criteria by using Eq. (14),
R, = (0.2365,0.7595), R, = (0.2365,0.8913), Ry =
(0.1013, 0.8948), R, = (0.2567, 0.8821).

Phase 7. Calculate the COPRAS index using Equation (15)
to evaluate the relative relevance of each supplier based on
benefit and cost criteria. We have Q; = 0.6117, @, =
0.6345, Q3 = 0.6293, Q4 = 0.6548, and Q5 = 0.6892.

The obtained rank of available green suppliers using the
P, ¢—QOF-COPRAS method is S5>S4>52>S53>51.

The decision-makers can consider the membership func-
tion as a satisfaction degree and the non-membership
function as a dissatisfaction degree. The evaluations can
make in the form of satisfaction and dissatisfaction by the
decision-makers as p, g—QOFSs. The appropriate green sup-
plier is Ss.

A. SENSITIVITY ANALYSIS
To assess the impact of changes in the parameters p and g
on the decision outcomes, a sensitivity analysis is conducted.
This analysis aids in comprehending the extent to which
modifications to these parameters affect the final decisions
made. We first set value g to 2 and then gradually changed
parameter p between 2 and 6. Table 11 provides a compre-
hensive summary of the investigations’ outcomes.
Analyzing Table 11 demonstrates variations in the rela-
tive relevance of each supplier considering benefit and cost
criteria when we raise the parameter p while maintaining ¢

TABLE 7. p, —QOF weighted geometric normalized matrix.

Si (51 Cy C3 Cy
S1 (0.335,0.501) (0.203,0.310) (0.214,0.601) (0.291,0.430)
S, (0.052,0.101) (0.069,0.419) (0.139,0.229) (0.524,0.429)

S;  (0.320,0.308)
S, (0.096,0.494)
Ss  (0.401,0.331)

(0.149,0.600)
(0.517,0.427)
(0.049,0.119)

(0.316,0.508)
(0.522,0.321)
(0.242,0.346)

(0.115,0.518)
(0.201,0.410)
(0.356,0.251)

0.7

| =

o

e 0.68
= 0.66
g 0.64
g 0.62
2 06
£ 058

0.56 Q4 Q, Q5 Qy Qs

FIGURE 4. The comparative importance or significance of each supplier.
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TABLE 8. Averaging weighted p, g—QOF decision matrix.

S; Cy G C3 Cy
S1 (0.705,0.221) (0.837,0.310) (0.883,0.237) (0.912,0.217)

S, (0.832,0.059) (0.503,0.175)  (0.814,0.117)  (0.920,0.192)
S;  (0.852,0.125)  (0.801,0.190)  (0.671,0.194)  (0.704,0.104)
s, (0.874,0.216) (0.604,0.176)  (0.876,0.159)  (0.803,0.202)

S5 (0.932,0.129)  (0.546,0.675)  (0.836,0.157)  (0.829,0.104)

TABLE 9. Individual criteria weights.

S; (51 G G Cy
S1  g,=01462 g,=02509 g;=0.3051 g, =0.2978
S, g,=02343 g,=01757 g5=02145 g, =0.3755
S3 4,=02511 g,=01942 g5=03128 g, =02419
Sy 4,=02645 g,=01889 g;=03217 g, =0.2249
Ss  g,=01976 g, =02705 g =02922 g, =0.2397
TABLE 10. Weighted normalized assessment matrix.
Si Cy (%) (%) Cy
Sy (0.923,0.012) (0.914,0.017) (0.916,0.002)  (0.921,0.001)
S,  (0.905,0.003) (0.889,0.010)  (0.965,0.004)  (0.920,0.004)
S3  (0.938,0.004) (0.951,0.014) (0.865,0.012)  (0.810,0.007)
Sy (0.951,0.005) (0.876,0.010)  (0.961,0.009)  (0.890,0.013)
Ss  (0.943,0.001)  (0.942,0.012)  (0.902,0.001)  (0.882,0.003)

TABLE 11. Relative relevance of alternatives for p =2, 3, 4, 5, 6(q = 2).

p relative relevance of suppliers

9 9 93 Q4 9s
2 0.611 | 0.634 | 0.629 | 0.654 | 0.689
3 0.624 | 0.636 | 0.631 | 0.655 | 0.692
4 0.627 | 0.638 | 0.632 | 0.657 | 0.694
5 0.632 | 0.641 | 0.633 | 0.659 | 0.695
6 0.635 | 0.642 | 0.634 | 0.660 | 0.696

constant at 2. Figure 5 shows the results of this sensitivity
study graphically.

relative relevance
=
(=%
| =]

P 6

FIGURE 5. Relative relevance of suppliers forp =2, 3, 4,5, 6.

With g set at 2, and p values ranging from 2 to 5, the
suppliers are ranked as follows: S5>S4>52>S3>S1. Butif p
is set to 6, then S5>S4>53>5,>S] is the new ranking order.
This discovery suggests that adjustments in the parameter p
may cause the ranking order of suppliers to alter. Similarly,
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TABLE 12. Relative relevance of alternatives forq =2, 3, 4,5, 6(p = 2).

q Relative relevance of suppliers

9 9 93 94 9s
2 0.611 | 0.634 | 0.629 | 0.654 | 0.689
3 0.615 | 0.635 | 0.630 | 0.656 | 0.690
4 0.617 | 0.637 | 0.631 | 0.658 | 0.691
5 0.619 | 0.638 | 0.633 | 0.659 | 0.693
6 0.620 | 0.639 | 0.633 | 0.661 | 0.697

when we set p to 2 and systematically adjust the parameter ¢
within the range of 1 to 5, the outcomes are consolidated and
presented in Table 12.

The relative relevance of the alternative’s changes across
different combinations of parameters p and ¢, according to
an analysis of Tables 11 and 12. It is important to note,
nevertheless, that the best option stays the same regardless
of the precise combinations of p and q.

B. COMPARATIVE STUDY

We compare the results of the suggested strategy against a
number of other strategies [56], [57], [58], [59], [60], [61],
and [62] in order to verify its findings. Table 13 provides a
concise summary of the results obtained from this compara-
tive investigation. The results show that, for the most part, the
supplier rating order is stable across the various techniques.

TABLE 13. Existing approaches and ranking order of suppliers.

Approaches S1 S, S3 Sy Ss
Kumar and Mishra [56] 0.1287 0.1456  0.1401 0.2395 0.2974
Thakur et al. [57] 0.1034 0.1514 0.1302 0.2041 0..2469
Dorfeshan and Mousavi ~ 0.4511  0.5132  0.4853  0.5344 0.5560
158]

Krishankumar and Ecer  0.3701 0.4552 0.4394  0.4958 0.5032
[59]

Rani et al. [60] 0.4193 0.4461 0.4352 0.4877  0.5409
Bolturk [61] 0.6475 0.6765 0.6881 0.7194 0.7463
Naeem et al. [62] 0.3117  0.3743 0.3901  0.4381 0.4861

The COPRAS techniques described in Table 13 do not
provide a parameter for modifying the membership degree
based on specific situations. In contrast, the suggested

0.8 - s,
- S
0.7 S5
- S,
0.6 - S
0.5
504
203
0.2
0.1
0 > & Q e >
@m\é LIPS &-"@\ 57 «b\“# o
T T e ¥ <«
& i"’w@ ¥

FIGURE 6. Comparison of suppliers.
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COPRAS includes two parameters, p and ¢, with p regu-
lating the effect of the membership degree and g governing
the non-membership degree throughout the decision-making
process. This addition makes the suggested technique more
flexible and realistic than previous approaches, allowing
for finer and context-dependent adjustments to membership
degrees during decision-making. Figure 6 depicts the supplier
ranking order determined by existing techniques.

Another strength of the proposed COPRAS method lies
in its ability to compute both maximizing and minimizing
criteria. This flexibility allows for a more balanced assess-
ment, considering both positive and negative aspects of
supplier performance. Moreover, our approach can handle
both qualitative and quantitative criteria, further improving
its versatility and applicability in real-world decision-making
scenarios. The characteristics of the proposed and existing
approaches are shown in Table 14.

TABLE 14. Features comparison.

Approaches MD | NMD | p q
IFS-COPRAS yes | yes no | no
PFS-COPRAS yes | yes no | no

q —ROF-COPRAS | yes | yes no | yes
p,q —COPRAS yes | yes yes | yes

C. ADVANTAGES

. The proposed method is made to handle p, g— QOFinfor-
mation, enabling a more thorough portrayal of uncertainty
and ambiguity in scenarios involving decision-making.
This approach may collect a wider range of evaluation
data by incorporating cubic information, resulting in more
precise and reliable supplier ratings.

2. The process successfully combines a variety of factors and
qualities important for choosing green suppliers. To pro-
vide a comprehensive evaluation of suppliers based on
many aspects, it considers both qualitative and quantita-
tive variables, such as environmental effect, service level,
waste disposal, and team capabilities.

3. The CRITIC method is used in the procedure to include
inter-criteria correlations. By ensuring that the most
important factors are weighted, this improves the objec-
tivity of the MD process while lowering subjectivity.

4. One of the suggested method’s features is its capacity to
analyze both maximizing and minimizing criteria. This
feature enables a balanced assessment, in which both pos-
itive and negative elements of supplier performance are
considered, resulting in more well-rounded conclusions.
The suggested technique seeks to provide more reasonable
and trustworthy findings by considering a bigger variety
of data and utilizing robust mathematical concepts. This
promotes decision-making that is more closely aligned
with real-world events and increases the trustworthiness
of the results.

—

e
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6. Its capacity to manage a wide range of criteria and
uncertainty makes it an invaluable tool in such complex
decision-making circumstances.

D. LIMITATIONS

1. The efficacy of the proposed approach, like that of many
other decision-making approaches, is strongly dependent
on the availability and quality of data. Obtaining accurate
and complete data on supplier performance and environ-
mental factors may offer issues in real-world applications.
Inadequate or untrustworthy data might have an influence
on the method’s reliability and validity.

2. The proposed approach may include computing demands
that might be time-consuming for large-scale applica-
tions, depending on the size and complexity of the
decision issue. It may need a lot of computing power to
ensure efficient processing of cubic sets and inter-criteria
correlations.

3. The procedure of allocating criteria weights still requires
considerable subjectivity despite the use of the CRITIC
technique to address inter-criteria correlations. The ulti-
mate outcomes might differ depending on the decision-
maker’s preferences, which can compromise the method’s
overall impartiality.

V. CONCLUSION AND FUTURE WORK

In this study, we provide a new extension of the COPRAS
method that smoothly integrates the conventional COPRAS
approach with the idea of p, g-QOFSs. Because of its para-
metric character, this innovative technology provides greater
flexibility and realism. The addition of two factors, p and q,
is critical in managing the effect of membership and non-
membership degrees, resulting in a complex and adaptive
decision-making model. The proposed technique is shown in
the context of green supplier selection. Furthermore, we pro-
vide a thorough description of how these characteristics affect
decision results. Finally, the study discusses both the benefits
and drawbacks of the suggested technique.

In terms of future directions for research, it would
be beneficial to investigate at different approaches to
decision-making and expand the study by including more
participants—especially a broader spectrum of professionals.
Moreover, future investigation may focus on how outside
variables, including the state of the economy or political
unrest, affect supplier selection alternatives. It is important
to take into account the enduring consequences of supplier
selection choices, encompassing their impacts on the overall
efficacy and durability of the supply chain. The study pro-
vides insightful information that may be used by researchers
and practitioners alike, highlighting the significance of rely-
ing supplier selection decisions on careful investigation and
analysis.
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