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ABSTRACT The digitization of the healthcare industry has led to a growing number of applications
that use machine learning and image processing techniques to improve the diagnostic process. These
applications utilize a variety of medical data, including laboratory results, clinical findings, MRI scans,
tomographic images, and radiological images. In addition, free-text healthcare documentation, such as
well-structured discharge summaries, contains valuable information. Natural Language Processing encom-
passes the development of automated systems for generating health reports. This process involves using
domain-specific knowledge and prior knowledge to extract relevant information from medical records. This
article investigates the use of natural language processing techniques for chest X-ray classification. A total of
14 distinct impressions derived from chest radiography findings from the MIMIC-CXR dataset were used in
a multi-label classification procedure. Six distinct language models derived from the BERT language model,
along with three distinct classification algorithms, were employed to evaluate the effectiveness of the models
and the dataset for multi-label categorization. The experimental results showed a successful prediction rate
of 80.47% for 14 distinct impressions within the dataset.

INDEX TERMS BERT, chest radiology report, MIMIC-CXR, multi-label classification, natural language
processing.

I. INTRODUCTION
Human health is a comprehensive state of well-being that
encompasses both the physical and psychological dimensions
of the individual. In this context, health services play a special
role by facilitating the diagnosis, treatment, and prevention of
both chronic and acute diseases and disabilities. An adequate
healthcare system has the inherent capacity to increase the
overall social welfare in a nation. Achieving this goal requires
multifaceted collaboration between experienced healthcare
professionals and additional staff to ensure comprehensive
healthcare delivery.

It is worth emphasizing that inadequate health services
can lead to permanent damage and even death in individuals
and that health expenditures may increase due to inappro-
priate use of medical equipment and unnecessary personnel.

The associate editor coordinating the review of this manuscript and
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Typically, individuals seek the expertise of healthcare pro-
fessionals to find solutions to their health concerns. Inter-
pretation of radiological images by radiologists is one of the
basic medical practices used primarily to make a diagnosis
and manage the treatment process. The radiology report,
written in the native language, not only evaluates poten-
tial abnormalities and describes existing abnormalities, but
also determines the extent or stage of chronic disease, com-
pares current radiological imaging with historical data, and
provides potential diagnoses and recommendations to guide
therapeutic interventions.

The automated generation of patient reports and the extrac-
tion of information from health data for diagnostic purposes
are crucial innovations that alleviate the workload and time
constraints faced by healthcare specialists. In this context,
Artificial Intelligence (AI) algorithms have emerged as indis-
pensable tools, enabling the provision of rapid, accurate, and
efficient healthcare services. The integration of traditional
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health information systems with machine learning, semantic
web technologies, the Internet of Things, and big data is gain-
ing increasing traction. To address contemporary challenges,
a vast array of scientific research and systematic studies
encompassing machine learning, deep learning, and image
processing methodologies are carried out.

These initiatives have made notable contributions to
the advancement of disease diagnosis through radiological
imaging and medical reporting. However, radiology image
processing research faces challenges, particularly due to the
limitations of two-dimensional images and section over-
lap [1], [2]. Additionally, clinicians value the radiologist’s
insights embedded in free-text radiology reports, which are
integral to the diagnostic process.

The complexity of image features raises the question of
whether textual radiological reports can improve diagnostic
performance. Natural language processing (NLP), a machine
learning approach to processing free text in information tech-
nologies, is used to help professionals discover, diagnose, and
treat diseases by integrating them with other technologies.
Large datasets are essential for developing and testing NLP
and deep-learning AI models.

The MIMIC-CXR dataset, used in this study, is preferred
because of its high volume, variety, and value. The dataset
includes chest radiography images and textual patient his-
tories, and has been anonymized according to the Health
Insurance Portability and Accountability Act (HIPAA) and
the Personal Health Information (PHI) guidelines [3].

This article presents an AI model trained using textual data
extracted from the MIMIC-CXR dataset to predict 14 differ-
ent chest radiological outcomes to help healthcare specialists
in making medicinal decisions. Six different BERT-based
languagemodels were used in this study, including BERT [4],
BioBERT [5], ClinicalBERT [6], [7], CXR-BERT general-
ized and specialized editions [8], and S-PubMedBert [9].
In addition, the weights of words from BERT-based lan-
guage models were tested using three classification tech-
niques: BERT classification, CNN-BERT classification, and
BILSTM-BERT classification [10].

The article is structured as follows: the second section
presents a literature review, followed by the third section,
which describes the methodology used in this study. In the
fourth section, the experiments and their results are given.
Finally, conclusions and a discussion on future work is
presented.

II. LITERATURE REVIEW
NLP is a field of computer science that emerged to understand
and analyze the complex structure of human language [11].
The computational linguistics domain is so named because it
focuses on analyzing and processing human language, includ-
ing both written and spoken forms. It is aimed at developing
language processing systems that exhibit human-like behav-
ior while performing various tasks and applications [12].
NLP is an intermediary between human users and computer
systems through natural languages. In summary, NLP is an

academic discipline that investigates the use of computers to
understand, process, and evaluate natural language texts and
speech expressions [13].
The exponential growth of digital information in texts,

including newspapers, websites, emails, social media posts,
blogs, and more, is resulting in the production of massive
amounts of data reaching millions of terabytes. Effec-
tively managing and extracting insights from this vast
data store requires efficient and robust natural language
processing (NLP) techniques. NLP covers a wide range
of methodologies, including text summarization, sentiment
analysis, information extraction, named entity identification,
association extraction, social media monitoring, text mining,
language translation programs, and question-answering sys-
tems. Collectively, these methods facilitate comprehensive
language analysis by enabling raw language to be converted
into a structured, processable format. Given the inherent
complexity of computer science and artificial intelligence,
NLP relies on a complex understanding of words and their
relationships to extract meaning. Using NLP approaches can
significantly reduce the storage space and directory size for
texts and documents while increasing the user’s expectation
of being able to find what they are looking for semantically.
Additionally, NLP plays an important role in improving doc-
umentation and information retrieval processes [14].

One of the resources containing rich text and informa-
tion is electronic health records (EHRs). As it is known,
professionals document all details concerning the individ-
ual’s condition in their native language. Thus, patient health
reports are essential health information. Facilitating access to
health information, especially EHRs, is expected to accelerate
diagnosis and treatment, minimize labor and time costs, and
improve healthcare [15].

Precise diagnosis is essential for effective treatment, par-
ticularly in diseases requiring rapid intervention. Radiology
provides valuable insights for diagnosis, staging, treatment
planning, and outcome prediction. However, unstructured
radiology reports challenge large-scale studies requiring effi-
cient information extraction. NLP offers a promising solution
for transforming unstructured reports into a structured format,
enabling automated information extraction and analysis. This
technology demonstrates potential across various healthcare
applications, including diagnostic surveillance, cohorting,
quality assessment, and computer vision labeling [16].

The use of chest radiology is prevalent on a global scale as
the primarymodality for assessing the chest region inmedical
imaging. Chest radiographs are used in medical research to
diagnose both acute and chronic cardiopulmonary disorders,
as well as verify the accurate placement of various devices
including pacemakers, central lines, chest tubes, and stomach
tubes. Additionally, they are utilized to detect both acute and
chronic cardiopulmonary problems [17].

The MIMIC-CXR dataset, a publicly available collec-
tion of chest X-ray images and reports, has been available
since 2019 and has been cited in over 300 publications.
In one of the studies conducted using the dataset, NLP was
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shown to increase the accuracy of pneumothorax diag-
nosis [18]. Deep learning has also been used to study
multi-label chest X-ray abnormality taxonomies hierarchi-
cally [19]. Sidorov et al. [20] developed a method to summa-
rize important information in the results section of radiology
reports, improving radiologists’ communication with refer-
ring physicians. An abstractive summary system for chest
radiography report impressions has also been developed and
tested, resulting in a significant reduction in radiologists’
workload [21].

The CheXpert dataset [22] functions as a standardized
measure for the automated interpretation of chest X-rays.
Its primary objective is to assess the likelihood of 14 obser-
vations derived from radiographs with multiple images.
To facilitate the process of labeling, rules-based taggers have
been developed in conjunction with the dataset, enabling
labelers to accurately identify positive, negative, and ambigu-
ous classifications. CheXpert’s annotation process incorpo-
rates multiple approaches. DNorm and MetaMap are used
to replace automatic word inference, thereby enhancing the
precision of the annotations. TheMention Extraction segment
examines the statements made by radiologists, while the uni-
versal dependency parsing of the report guides categorizing
mentions. Sentence segmentation is accomplished through
the utilization of the Bllip parser, which is trained on David
McClosky’s biological model, with the Universal Depen-
dency Graph being computed by Stanford CoreNLP [23].
Uncertainty labeling in CheXpert is carried out through three
distinct methods. Visual estimation is used on a scale of 0 to 1,
with a value of 1 being assigned to indicate uncertainty.
Additionally, a model is utilized to assist with labeling. These
methods have been applied to annotate both the ChestX-ray14
and MIMIC-CXR datasets.

Building on the established ability of Convolutional Neu-
ral Networks (CNNs) to capture semantic meaning and
classify phrases in clinical text, a CNN-based method
for sentence-level medical document classification is pro-
posed [24]. This approach aims to identify emergent seman-
tics from medical literature, focusing on 26 categories within
Brain and Cancer research. The study utilizes Word2vec
embeddings trained on domain-specific data to represent
4,000 sentences. The CNN architecture uses 256 convolu-
tional filters with a consistent size of 5 across all layers.
To mitigate overfitting, dropout functions are implemented
after the second max pooling layer (0.5 dropout rate)
and the fully-connected layer (128 units). A final deep
26-dimensional layer serves to represent the categorization
categories. SoftMax activation is used to calculate the output.
The CNN-based approach is compared to Sentence Embed-
dings, Mean Word Embeddings, and Word Embeddings with
Bag-of-Words (BOW). The results demonstrate that the CNN
strategy outperforms other methods for classification tasks,
achieving a minimum 15% accuracy margin.

The deep learning architecture, with Bidirectional Long-
Short-Term Memory (LSTM) layers, highlights the potential
of Deep Learning (DL) and Word Embeddings in identifying

sixteen types of morbidity in healthcare data [25]. This
approach enables the utilization of advanced vector data
forms like Word Embeddings. The study comprehensively
compared DL against TF-IDF with pre-trainedWord Embed-
dings, Support Vector Machine (SVM), and Multi-Layer
Perceptron (MLP) models (GloVe and Word2Vec). The
results show that DL surpasses all other methods, regard-
less of the word embedding used. Moreover, the research
also concludes that TF-IDF with SVM outperforms Word
Embeddings, attributed to the latter’s potential for capturing
domain-specific idiosyncrasies.

A text-and-subject feature fusion model improved Chinese
medical health query categorization [26]. First, word embed-
ding generates text word vectors. Then, the LSTM model
extracts text features. The optimal number of topics is sub-
sampled to optimize classification performance. This work
uses one-dimensional convolution to extract and reduce the
dimensionality of topic features. Both text and topic features
are integrated for text classification. The model’s perfor-
mance was evaluated using two datasets from different online
medical Q&A platforms, demonstrating improved recall,
accuracy, and F1 value for Chinese medical health query
categorization.

Safaya et al. [10] propose a model with two parts: a BERT
encoder using 12 self-attention layers to contextualize input
text, and a CNN classifier. BERT embeds the content with
64-token inputs. The proposed method then uses the output
of the last four BERT layers as channels for each convolu-
tion kernel, leveraging their contextual information for better
feature extraction. ReLU activation and global max pooling
handle the result, which is flattened and fed into a dense layer
with Sigmoid activation for binary classification. This model,
trained for 10 epochs, outperforms SVM, CNN-Text, and
BERT on the development set, achieving the highest macro-
averaged F1-Score.

III. CLASSIFICATION METHODOLOGY
The present study investigates the utilization of NLP tech-
niques for chest X-ray classification. Classification is a
fundamental machine learning task that involves using a
pre-categorized training dataset to categorize new instances.
Classification algorithms acquire knowledge of the distribu-
tion pattern from the provided training set and subsequently
endeavor to accurately classify instances for which the class
is unknown while receiving test data.

Classification was conducted on the MIMIC-CXR dataset
published by Medical Information Mart for Intensive Care
(MIMIC) [27]. The MIMIC-CXR dataset was compiled uti-
lizing chest X-ray images sourced from patients admitted to
the emergency department of Beth Israel Deaconess Medi-
cal Center between 2011 and 2016. This dataset comprises
227,835 image studies, encompassing 377,110 radiology
images obtained from 65,379 distinct patients. Each study is
accompanied by semi-structured free-text radiology reports,
adhering to pertinent health insurance and data protection reg-
ulations. Access to this dataset necessitates user registration,
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authentication, and agreement with a stipulated data usage
policy. A sample from the dataset is presented in Fig 1.

FIGURE 1. A sample study from MIMIC-CXR. (a), the radiology report
provides the interpretation of the image. Personal patient information
has been removed and replaced with three underscores (___). Two chest
X-rays are shown for this study: (b) side view (right image) and (c) front
view (left image).

Within the semi-structured reports contained in the
MIMIC-CXR dataset, there exist eleven designated fields
denoted by the following labels: ‘IMPRESSION’, ‘FIND-
INGS’, ‘LAST_PARAGRAPH’, ‘COMPARISON’, ‘INDI-
CATION’, ‘EXAMINATION’, ‘TECHNIQUE’, ‘HISTORY’,
‘NOTIFICATION’, ‘RECOMMENDATIONS’, and ‘WET
READ’.

During chest radiograph evaluation, radiologists prioritize
interpretations that address the specific clinical questions
posed by the referring clinician. Radiologists meticulously
examine image findings and articulate their detailed inter-
pretations in the ‘FINDINGS’ section, drawing upon their
domain expertise. Subsequently, they encapsulate their over-
all assessment in the ‘IMPRESSION’ section. Although some
chest radiology reports may omit impressions, others may
briefly address a single finding. Regardless, the radiologist’s
impression plays a crucial role in guiding the clinician’s
diagnosis and treatment plan. Chest radiography investigates
a spectrum of 14 findings, including 13 specific abnormalities
and a ‘‘no finding’’ class. To address challenges like time
constraints and incomplete reporting, direct identification
of findings could be proposed to improve diagnostic and
therapeutic efficiency. As illustrated in Fig 2, multi-label
classification aims to replace the reliance on radiologists’
procedural knowledge for impression generation.

In this study, MIMIC-CXR dataset consisting 155,716
radiological reports, with a particular focus on the ‘FIND-
INGS’ section was utilized. 14 distinct impressions, com-
prising 13 positive categories and 1 negative category,
derived from chest radiography findings in the MIMC-CXR
dataset, were used in a multi-label classification procedure
to reveal all the discoveries presented in the reports. Table 1
presents the file counts of findings that are in the radiology
reports.

FIGURE 2. Radiologist’s generation of impressions from reports and
automatic multi-label findings classification.

In NLP studies, prior to submitting the dataset to classi-
fication algorithms, it is recommended to perform different
pre-processing operations on the text. It is known that
changes in sentence structure after tagging and lemmatiza-
tion can harm the performance of language models [28].
A more detailed structural and semantic analysis of the
MIMIC-CXR dataset is presented in [29]. In this study,
free text in the ‘FINDINGS’ section of radiology reports
were converted to lowercase in order to improve tokenization
efficiency.

TABLE 1. File counts of findings in radiology reports.
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TABLE 2. Bert classification hyperparameters used in experiments.

TABLE 3. BERT classification best result on CXR-BERT-GENERAL.

Three different classification algorithms, BERT, CNN-
BERT, and BILSTM-BERT, were used to evaluate the
effectiveness of six language models derived from the BERT
language model, trained on the MIMIC-CXR dataset. The
algorithms used for multi-label classification were evaluated

using ‘‘precision,’’ ‘‘recall,’’ and ‘‘F-1 score’’. The classifi-
cation process consists of training, verification and testing
phases. While 80% of the dataset is allocated to the training
phase, the remaining 20% is divided equally between valida-
tion and testing.
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TABLE 4. CNN-BERT classification hyperparameters used in experiments.

TABLE 5. CNN-BERT classification best results on CXR-BERT-GENRERAL.

The next section details the conducted experiments.

IV. CLASSIFICATION EXPERIMENTS
The experiments address the multi-label classification task
by using three model architectures: BERT, CNN-BERT, and
BILSTM-BERT. The subsequent subsections provide a com-
prehensive explanation of the procedures involved in utilizing
these models.

A. BERT CLASSIFICATION
The classification task was performed on the MIMIC-CXR
dataset by taking advantage of the architecture of the BERT
model, which is one of the transformers-based models. The
analysis of the classification task was implemented on six
different language models using the BERT architecture:

BERT, ClinicalBERT, BioBERT, CXR-BERT, CXR-BERT-
SPECIAL, and S-PubMedBert. To improve the performance
of the classification algorithm, the max_length and batch
size settings in the training phase of the BERT architecture
were tested. Due toVRAM limitations, special parameters for
training on the graphics card were tested on the Google Colab
platform. NVIDIA MSI 3060 12 GB and A100 40 GB GPUs
were used to test LMs with various parameters. The parame-
ters applied for each language model are given in Table 2.

B. CNN-BERT CLASSIFICATION
The CNN-BERT classification method was developed
by Safaya et al. [10]. The dataset was processed using
BERT, a pre-trained language model with a 72-token
max_length. Various language models were tested, including
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TABLE 6. Examined BERT-BILSTM classification hyperparameters.

TABLE 7. BERT-BILSTM classification best results on CXR-BERT-GENERAL.

BERT, ClinicalBERT, BioBERT, CXR-BERT, CXR-BERT-
SPECIAL, and S-PubMedBert. The model was trained for
eight epochs using a learning rate of 2e−5, AdamW opti-
mizer with 0.9 weight decay, BCE loss function, and batch
size 128. The model with the highest weighted F1-score on

the development set was retained. Table 4 summarizes the
language models with attempted parameters.

According to Table 4, the CXR-BERT-GENERAL model
achieved the best multi-label classification results. However,
it does not exhibit a significant benefit compared to the
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TABLE 8. Comparison of text and image classification for MIMIC-CXR dataset.

other options. The evaluation of the CNN-Bert Classifica-
tion on CXR-BERT-GENERAL language model is presented
in Table 5.

C. BERT-BILSTM CLASSIFICATION
The experimental study presented in this subsection demon-
strates the classification procedure, which is widely acknowl-
edged as one of the functions performed by the Bidirectional
Long Short-Term Memory (BILSTM) framework. For the
multi-label classsification, the language models, BERT, Clin-
icalBERT, BioBERT, CXR-BERT, CXR-BERT-SPECIAL,
and PubMedBert, were used to perform tokenization of
the words present in the sentences contained within the
dataset. The vectorization process was applied to the tok-
enized words, and subsequently, the interrelationships among
these vectors were analyzed based on the numerical values
assigned by the tokenizer. The tokenize operation has been
configured with a maximum length of 512. Furthermore,
a batch size of 128 and 8 epochs was utilized during the
training stage, with a learning rate of 0.001. The dimension-
ality of the embedding utilized in BILSTM is established
as 300. The LSTM model from Safaya et al. [10] was used.
Table 6 summarizes the utilized parameters and language
models.

Following the completion of the study and the inter-
pretation of the data, it was determined that the BERT-
base-uncased language model generated the most productive
results according to Table 6. However, it does not
exhibit a significant benefit compared to the other
options. The evaluation of the BERT-BILSTM classifica-
tion on Bert-base-uncased language model is presented
in Table 7.

FIGURE 3. Confusion matrix of CXR-BERT-GENERAL.

V. RESULTS
This study aimed to evaluate the performance of three clas-
sification models: BERT, CNN-BERT, and BILSTM-BERT
on a set of 14 findings from the MIMIC-CXR dataset.
Each model was applied to six distinct language models:
BERT, ClinicalBERT, BioBERT, CXR-BERT, CXR-BERT-
SPECIAL, and S-PubMedBert. Among them, the BERT
classification technique achieved a slightly better weighted
F-1 score of 0.8047 with the CXR-BERT-GENERAL lan-
guage model. The confusion matrix for the model is shown
in Fig 3. However, it was discovered within the confines of
the research that the categorization models did not exhibit
superiority over one another as seen in Fig 4.

A comparative analysis was performed to evaluate the
text and image classification of MIMIC-CXR. The results,
including the recall and precision metrics for each pathology,
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FIGURE 4. F1-Score distributions of classifications methods.

are shown in Table 8. Hence, a clear difference between image
classification [30] and text classification is not evident when
their respective results are compared assessed. The classifi-
cation of ‘Enlarged Cardiomediastinum’ and ‘Pneumonia’ is
more clearly delineated within the domain of image classifi-
cation. Conversely, for diagnoses related to ‘Pneumothorax,’
‘Pleural Effusion,’ ‘Lung Opacity,’ and ‘Consolidation,’ text
classification achieved significantly higher precision than
image classification.

Testing with two different batch sizes and maximum
lengths revealed variability in BERT classification train-
ing times across configurations. The average duration for
a (256,64) configuration was 2.30 hours, while models
with (128,32) varied by a standard deviation of 7 hours. The
overall training procedure spanned six language models and
required an estimated 22 hours. Compared to this, the average
CNN-BERT training session with six language models lasted
1 hour and 15 minutes, totaling 7 hours and 10 minutes.
LSTM-BERT was the fastest, with single training sessions
requiring only 15 minutes, and a six-model run completing
in 1.30 hours.

VI. CONCLUSION AND FUTURE WORK
This study aimed to evaluate the performance of three
classification models; BERT, CNN-BERT, and LSTM-
BERT, for multi-label categorizing 14 medical findings from
the MIMIC-CXR dataset. While all models demonstrated
promising results, the BERTmodel achieved a slightly higher
weighted F-1 score of 0.8047 when paired with the CXR-
BERT-GENERAL language model. However, it’s important
to note that no statistically significant differences were
observed in overall performance between the classification
models. This suggests that other factors, such as the specific
dataset or task, may play a more significant role in determin-
ing the optimal classification approach.

Moreover, no clear advantage of any certain language
model over another was seen. The BERT classification task
included trials on individual language models with varying
batch sizes and maximum durations, leading to disparate
results. Differences in the duration of the training process
were noted across different experimental setups. On average,
the training time for a setup size (256, 64) was determined
to be 2.30 hours. Nevertheless, it was noted that the training
periods for configurations (128, 32) varied and may last as
long as 7 hours. The training consisted of six distinct language
models and required around 22 hours.

Additionally, the average time of each training session for
the CNN-BERT classification was 75 minutes. The period
under consideration consisted of six distinct iterations and
lasted for seven hours and ten minutes. The LSTM-BERT
classification model required a training time of around
15 minutes for each.

This study compared text and image classification meth-
ods on the MIMIC-CXR dataset, focusing on recall and
accuracy for individual pathologies. While disentangling
their distinct outputs proved challenging, some findings
emerged. ‘Enlarged Cardiomediastinum’ and ‘Pneumonia’
exhibited clearer delineation with image classification,
while ‘Pneumothorax’, ‘Pleural Effusion’, ‘Lung Opacity’,
and ‘Consolidation’ showed greater discernibility with text
classification.

While this research utilized all available records, poten-
tial bias could be mitigated by future studies focusing on a
single report per patient. In addition, considering the tem-
poral aspect of medical data, future work could analyze
sequence of records, historical findings, and discovery dates
to assess their influence on outcomes. This could involve
expanding the study’s range by incorporating text analy-
sis of radiological reports and even including the images
themselves.
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Furthermore, automatic report generation based on radi-
ological images holds promise for enhanced automation in
healthcare. Integrating such generated reports into existing
classification models could significantly streamline the med-
ical imaging workflow, enabling healthcare professionals to
focus on higher-level tasks and ultimately benefit patient care.

It is conceivable that the predictive precision of the
MIMIC-CXR dataset could be enhanced by using modern
tools beyond BERT; however, several essential factors need to
be considered. Generative AI techniques, such as Conditional
Generative Adversarial Networks (CGANs) and Variational
Autoencoders (VAEs), have shown promise in tasks like
image generation and data augmentation, potentially improv-
ing model performance on datasets like MIMIC-CXR. Syn-
thetic data generation is particularly beneficial for datasets
with limited labeled data, such as MIMIC-CXR. Synthetic
data can support the model’s ability to generalize and reduce
overfitting. By data augmentation, generative models allow
the model to learn from a broader range of examples and
enhance its resilience to variations in real data.

Two generative AI studies in chest radiology were ana-
lyzed.While the first study solely produced synthetic images,
the second generated both synthetic images and corre-
sponding reports. In [31], a Turing test was employed to
assess radiologists’ ability to discern the authenticity of the
generated images. Conversely, [32] focused on evaluating
the accuracy of the produced dataset. Both studies identi-
fied common limitations associated with synthetic data: its
time-consuming and complex generation, potential short-
comings in capturing the full complexity and diversity of
real-world images, and potential impact on the model’s gen-
eralizability to real-world data.

Implementing generative models effectively requires sig-
nificant expertise and meticulous tuning of hyperparameters.
Additionally, training these models can be computationally
expensive, especially for large datasets like MIMIC-CXR.
Furthermore, the efficacy of generative models is heavily
dependent on the specific task and dataset. While they have
shown promise in certain domains, there is no guarantee of
substantial improvements in all cases. Beyond the choice of
algorithm, the model architecture can significantly impact
accuracy. Exploring different architectures, such as convo-
lutional neural networks (CNNs) specifically designed for
medical image analysis, could be beneficial. Additionally, the
quality and preprocessing of the data used for training are
crucial for achieving high accuracy. Techniques like noise
reduction, normalization, and data augmentation can signifi-
cantly boost the model’s performance. Moreover, optimizing
the training process through methods like hyperparame-
ter tuning, learning rate adjustment, and regularization can
potentially lead to improvements in accuracy.
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