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ABSTRACT In the dynamic landscape of healthcare, Digital Twin (DT) technology has emerged as a
transformative force, holding the promise of revolutionizing patient care and industry practices. This article
surveys the literature over the period 2020 to 2023 on a comprehensive exploration of DT in healthcare,
elucidating its roles, benefits, and implications for smart personalized healthcare. The study addresses
fundamental questions concerning the transformative potential of DT, investigating its varied roles and
benefits in healthcare, its revolutionary impact on the industry, and the essential requirements for crafting
a DT system tailored to the demands of smart personalized healthcare. The research further unveils the
key layers necessary for implementing a DT smart healthcare system, examining potential applications that
extend from diagnostics to treatment strategies. Methodologically, the paper navigates through different
model discussions, providing a structured approach to understanding the implementation of DT in healthcare.
Despite the transformative potential, the research delves into the limitations and challenges faced by DT
technology, offering a balanced perspective on its current state. In conclusion, the paper synthesizes key
findings, outlines methodologies, discusses challenges, and sets the stage for future research, presenting a
holistic overview of the potential, pitfalls, and pathways for integrating DT in the healthcare industry.

INDEX TERMS Digital twin, personalized healthcare, literature review.

I. INTRODUCTION
Digital Twin (DT), a concept rooted in the realm of advanced
technology, serves as a virtual counterpart mirroring physical
entities, processes, or systems in real-time [1], [2], [3]. In the
context of healthcare, this technology has garnered increasing
significance, offering transformative potential in reshaping
patient care and industry practices [4], [5]. At its core,
a DT creates a dynamic, digital replica that captures and
represents the intricacies of its physical counterpart as shown
in Figure 1. This article surveys the literature over the period
2020-2023 and provides a comprehensive exploration of the
multifaceted landscape of DT technology in the healthcare
sector, elucidating its fundamental definition, highlighting
the critical role it plays, and delineating the challenges and
opportunities in the DT domain.

The associate editor coordinating the review of this manuscript and

approving it for publication was M. Anwar Hossain .

FIGURE 1. Schematic Representation of a DT.

The importance of DTs in healthcare lies in their ability
to facilitate more personalized, intelligent, and proactive
approaches to patient well-being [6], [7]. This transformative
potential extends to various facets of healthcare, from

69652

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-7641-0511
https://orcid.org/0009-0002-5013-3808
https://orcid.org/0009-0002-0745-1448
https://orcid.org/0000-0001-7493-6221
https://orcid.org/0000-0002-7673-8410


A. Balasubramanyam et al.: Revolutionizing Healthcare: A Review

FIGURE 2. Word-cloud representation of Keywords adopted for searching
through the literature.

diagnostics and treatment strategies to operational efficiency
and resource allocation [8]. As healthcare systems worldwide
grapplewith the complexities of providing tailored and timely
care, the integration of emerges as a promising solution to
meet these evolving demands.

The scope of our research endeavours to dissect the
intricacies of DT technology within the healthcare domain.
This exploration involves a meticulous examination of its
roles, benefits, and potential applications. As we embark on
this investigative journey, the research aims to understand the
conceptual underpinnings of as well as to discern its practical
implications in enhancing healthcare outcomes.

Our research methodology involves a systematic and
comprehensive approach to gathering, analysing, and inter-
preting data pertinent to the roles and applications of DTs
in healthcare. We employ a combination of literature review,
case studies, and empirical analyses to provide a nuanced
understanding of the subject matter. To enhance the trans-
parency of our research process, we incorporate a keyword
search, highlighting specific search terms that guided our
exploration of relevant material as shown in Figure 2.
Furthermore, we meticulously classify the researched articles
into distinct categories such as case studies, review articles,
implementations, and modeling methods. This structured
framework not only provides a nuanced understanding of
the subject matter but also ensures a comprehensive and
organized presentation of our findings

To guide the reader through the subsequent sections, the
outlined paper structure provides a roadmap as shown in
Figure 3.

A. MOTIVATION
The exploration of DTs in the context of healthcare stems
from the pressing need for a comprehensive understanding
of their potential impact on the industry [9]. The inter-
section of DT technology and healthcare holds promise
for transformative advancements in patient care, operational
efficiency, and medical research. Several key factors motivate
the undertaking of this review paper as shown in Figure 4:

FIGURE 3. Roadmap of paper structure.

FIGURE 4. Key factors motivate the undertaking of this review paper.

• Rapid Advancements in DT Technology: The field
of DT has witnessed rapid advancements, driven by
innovations in sensor technologies, data analytics, and
artificial intelligence [10], [11]. Understanding how to
harness these technological breakthroughs to optimize
healthcare processes and outcomes is paramount [12].

• Emerging Trends in Healthcare Digitization: The
healthcare sector is undergoing a significant shift
towards digitization and smart healthcare solutions.
Investigating the role of DT in this evolving landscape
is crucial to staying abreast of emerging trends and
harnessing the full potential of innovative technologies
[13], [14], [15].

• Potential for Personalized Healthcare: The potential
of DT to revolutionize personalized medicine and
healthcare delivery is a compelling motivation. Exam-
ining the applications of DT in tailoring treatments
based on individual patient characteristics aligns with
the broader goal of improving patient outcomes and
experiences [16], [17].

• Addressing Healthcare Challenges: Healthcare faces
numerous challenges, including rising costs, resource
constraints, and the need for more effective and patient-
centric care models. This review aims to explore how
DTs can address these challenges by offering innovative
solutions for healthcare optimization, resource manage-
ment, and enhanced patient care [18], [19], [20].

• Research Gaps and Open Questions: Despite the
growing interest of DTs in healthcare, there exist
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research gaps and open questions that warrant explo-
ration. This review seeks to identify these gaps, offering
a foundation for future research endeavours and guiding
the development of more effective DT applications in
healthcare [7], [21].

• Synthesizing Existing Knowledge: By synthesizing
existing knowledge and research findings, this review
aims to provide a comprehensive overview of the
current state of DTs in healthcare. This synthesis will
contribute to the establishment of a knowledge base that
can guide practitioners, researchers, and policymakers
in leveraging DT technology for improved healthcare
outcomes [22].

In summary, the imperative to comprehensively explore
and understand the roles, benefits, challenges, and potential
applications of in the healthcare domain is what motivates
this review paper. We anticipate the insights derived from
this examination to inform future research directions and
contribute to the ongoing transformation of healthcare
through innovative technological solutions.

II. RESEARCH QUESTIONS AND OBJECTIVES
A. RESEARCH QUESTIONS
In this section, we will describe the research questions
discussed in the paper and their purpose. The following are
the research questions:

• RQ1: Roles and Benefits of Introducing DT in
Healthcare
– Purpose: This question aims to comprehensively

explore and delineate the specific roles and benefits
associated with the introduction of DT technology
in the healthcare sector. The focus is on under-
standing how DTs contribute to various aspects of
healthcare delivery, patient outcomes, and opera-
tional efficiency.

• RQ2: What are the design principles for Building a
DT System for a Smart Healthcare Industry?
– Purpose:The focus is on understanding the founda-

tional components, technologies, and infrastructure
necessary to build an adaptive and effective DT
ecosystem in the healthcare domain.

• RQ3: What are the key Layers for Implementing a
DT Smart Healthcare System?
– Purpose: It focuses on understanding the founda-

tional elements such as data acquisition, modeling,
analytics, and communication that contribute to the
successful deployment and operation of DT-based
healthcare infrastructure.

• RQ4: What are the existing tools and frameworks
available to construct a DT for healthcare?
– Purpose:The focus is on understanding the techno-

logical landscape, identifying available resources,
and guiding future developments to leverage DT
technology for improved healthcare outcomes.

TABLE 1. Research questions and corresponding sections.

FIGURE 5. Benefits of DT.

• RQ5: What are the potential Applications of Using
DT for a Smart Healthcare Industry?
– Purpose: The focus is on identifying specific areas

within healthcare wherewe can effectively useDTs,
such as patient monitoring, treatment optimization,
and healthcare facility management.

• RQ6: What are the open Challenges to Applying DT
in Personalized Healthcare?
– Purpose: It seeks to identify obstacles and research

gaps that may hinder the seamless integration of
DTs and personalized healthcare solutions.

III. THE CONCEPT OF DT AND IT’S BENEFITS
RQ1: What are the roles and benefits of introducing DT
in Healthcare?

DTs are virtual representations of physical objects or
systems that can be used to simulate and analyse them.
Reference [23] In the healthcare context, we can employ DTs
to create personalized models of patients, enabling healthcare
providers to gain deeper insights into their conditions and
make informed treatment decisions [24]. offer a plethora of
benefits that can enhance patient care and improve healthcare
outcomes as shown in Figure 5:

• PersonalizedMedicine:DTs facilitate the development
of personalized medicine by enabling the creation of
detailed patient models that incorporate their unique
genetic, medical, and lifestyle factors [25]. We can
use these models to predict individual responses to
treatments, allowing for the tailoring of therapies to
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FIGURE 6. DT in personalized healthcare [174].

optimize patient outcomes as shown in Figure 6 [26].
In a landmark study published in 2020, researchers
at Stanford University showcased the power of DTs
for personalized diagnosis and treatment [27]. They
created a DT of a patient with a rare liver disease,
enabling them to identify a potential treatment that
was previously unknown to be effective. The field of
drug discovery and development also stands to benefit
significantly from DTs. A research team at Novartis
exemplifies this potential in their use of DTs to develop
personalized cancer treatment [28]. By simulating the
effects of various drugs and therapies on a virtual
representation of the patient’s tumour, they were able to
design amore effective treatment than existing therapies.
This personalized approach to drug development holds
immense promise for accelerating the development of
effective treatments tailored to individual patients’ spe-
cific needs. DTs also empower patients to take control
of their health and engage actively in their healthcare
journey. A study by researchers at the University of
California, San Francisco, found that patients using
DTs were more likely to adhere to their medication
regimens and achieve their health goals [29]. This
demonstrates how DTs can foster patient engagement
and self-management, ultimately leading to improved
adherence, better outcomes, and a more empowered
patient population. DTs offer significant benefits for
optimizing clinical workflows and resource allocation
within healthcare systems. A study by researchers at
the Mayo Clinic demonstrated this potential by utilizing
DTs to manage operating room schedules [30]. This
resulted in reduced wait times for patients and improved
overall efficiency, showcasing the ability of DTs to
streamline clinical processes and optimize resource
allocation for better healthcare delivery.

• Predictive Healthcare: DTs empower healthcare
providers to transition from reactive to proactive care
by enabling the identification of patients at risk of
developing specific diseases [31]. By analysing patient
data and identifying patterns, DTs can predict potential
health issues before they manifest, allowing for timely
interventions and preventive measures [32]. Moving
beyond diagnosis, researchers at MIT utilized DTs for

predictive analytics and risk assessment in personalized
medicine [33]. In their 2021 study, they successfully
predicted the risk of heart failure in patients with dia-
betes, allowing for early intervention and improvement
in patient outcomes. This highlights the potential of
DTs to anticipate future health issues for individual
patients, enabling preventative measures and proactive
healthcare management. Reference [34]developed a
DT of a patient’s heart to predict the progression
of his heart failure and personalize his treatment
plan. Their results demonstrate the feasibility of using
DTs to improve outcomes for patients with chronic
diseases. Similarly, [16] created a DT of a patient’s
tumour to predict its response to various treatments
and personalized cancer therapy. These studies highlight
the potential of DTs to provide personalized, data-
driven insights into disease progression, enabling more
effective treatment strategies. Reference [36] proposed a
DT-based approach for analysing patient data to identify
individuals at risk for suicide or self-harm. This work
exemplifies the potential of DTs for early intervention
and prevention of mental health crises. Reference [37]
utilized DTs to identify patients at high risk for
developing chronic diseases, offering opportunities for
early detection and preventive intervention.

• Improved Diagnosis and Treatment:DTs can enhance
diagnostic accuracy by analysing patient data from vari-
ous sources, including electronic health records, medical
images, and wearable devices [37]. By identifying subtle
patterns and anomalies that traditional methods may
overlook, DTs can assist in early detection and accurate
diagnosis of diseases [25]. DTs facilitate early and
accurate diagnoses as they, can analyse medical images
with greater precision than traditional methods [38].
In silico modeling using DTs simulates individual
patients’ organs and systems, allowing doctors to predict
disease development and response to treatments [34],
[35]. Additionally,DTs can identify individuals at high
risk for specific diseases, enabling early intervention and
preventive measures [37].

• Virtual Trials: DTs can accelerate drug development
and reduce costs by enabling the simulation of clinical
trials [24]. By testing new drugs and treatments on
virtual patient models, researchers can assess their
efficacy and safety without the need for large-scale
human trials [26].

• Real-time Monitoring and Intervention: DTs can be
used to monitor patients’ health in real-time, providing
healthcare providers with early warning of potential
health issues [26]. This can enable proactive interven-
tions to prevent complications and optimize patient
outcomes. The way patients are monitored and cared for
is also being enhanced by .DTs enable remote patient
monitoring, allowing for early detection of potential
health problems and timely intervention [25], [38].
Patients with chronic diseases can better manage their
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FIGURE 7. Overall working of DT.

conditions with personalized insights and recommen-
dations provided byDTs [39], [40]. Communication
and collaboration between doctors, patients, and other
healthcare professionals are also facilitated by, leading
to a more coordinated and comprehensive approach to
care [41], [42].

• Optimizing Resource Allocation:We can employ DTs
to optimize resource allocation in healthcare systems,
such as staffing, equipment, and beds, to improve
efficiency and reduce costs [23]. This can lead to
better use of healthcare resources and improved patient
experiences.

Overall, the potential of DTs to revolutionize the healthcare
industry is vast. By enabling personalized medicine, predic-
tive healthcare, and improved diagnostic accuracy, DTs can
help to improve patient outcomes, reduce healthcare costs,
and transform the way we provide healthcare.

IV. PRINCIPLES AND FRAMEWORKS FOR THE SMART
HEALTHCARE INDUSTRY
A. HIGH-LEVEL DESIGN PRINCIPLES FOR SMART
PERSONALISED HEALTHCARE
RQ2: What are the design principles for building a DT
system for a smart personalized healthcare industry?
Building a DT system for a smart personalized healthcare
industry requires a comprehensive approach that encom-
passes various technical and non-technical considerations.
Figure7 represents the overall working of DT. Here are the
key requirements:

• Data Collection and Integration: A DT system must
be able to collect and integrate data from a variety
of sources, including electronic health records (EHRs),
wearable devices, medical imaging data, and patient-
generated data (e.g., social media posts, and fitness apps)
[17].Figures 8 and 22 show an example.
This requires the establishment of data pipelines and
data governance frameworks to ensure data quality
and security [43]. Building a comprehensive DT in
healthcare relies heavily on establishing a robust data
collection and integration framework, which necessi-
tates addressing several key requirements (Figure 10)
[44], [45]: Firstly, a diverse range of data sources,
including clinical records, imaging data, sensor data
(from wearables and implanted devices), genomic data,
environmental data, and lifestyle information, must be

holistically captured to support the DTs functionality.
Secondly, interoperability and standardization are cru-
cial for overcoming the fragmentation of healthcare data
across various systems and formats, ensuring seamless
integration and analysis [25], [38]. Thirdly, prioritizing
data privacy and security is paramount, necessitating
robust cybersecurity measures and adherence to ethical
guidelines to protect patient data throughout its lifecy-
cle [40], [46]. Ensuring data quality and consistency
is the fourth requirement, where the implementation of
data cleansing and validation procedures is critical for
accurate and reliable simulations and predictions [39],
[47]. The fifth requirement involves real-time data
integration from various sources, facilitated by robust
data streaming and processing pipelines, enabling con-
tinuous updates and dynamic decision-making within
the DT [41], [42].

• Data modeling and Simulation: The DT system must
be able to create and maintain accurate models of
patients that it can use to simulate their behaviour
and predict their outcomes [31]. This requires expertise
in data modeling, machine learning, and artificial
intelligence (AI) to develop sophisticated models that
capture the complex dynamics of human physiology
and disease progression. Data modeling and simu-
lation are pivotal elements in the development and
utilization of DTs for personalized healthcare [25].
Data continuously enriches, serving as virtual replicas
of real-world entities, to emulate their behaviour and
forecast future outcomes [45]. In the intricate process
of constructing and leveraging, data modeling and
simulation play a vital role as shown in Figure 11.
First is, the meticulous modeling of the physical sys-
tem, encompassing detailed representations of human
anatomy, physiology, and disease mechanisms [44],
[48]. These models, sourced from medical imaging
data, anatomical databases, and scientific literature,
facilitate simulations of disease progression, treatment
response, and potential complications. Secondly, data
integration and processing are imperative for maintain-
ing the DTs currency, incorporating real-time data from
diverse sources such as sensors, wearables, and medical
records [38], [48]. It employs advanced algorithms,
including machine learning and artificial intelligence,
to derive meaningful insights and refine DT models for
personalized predictions and recommendations. Thirdly,
the power of DTs is harnessed through simulation and
predictive analysis, enabling scenarios like treatment
impact assessment, disease progression under varied
conditions, and personalized treatment planning [47],
[49]. In silico clinical trials expedite the testing of new
drugs and therapies, fostering advancements in person-
alized medicine and enhancing patient outcomes [40],
[50]. Lastly, a continuous improvement and feedback
loop, utilizing data generated by the DT and patient
input, refines models over time, ensuring their relevance
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FIGURE 8. Data collection, integration, and analysis [27].

FIGURE 9. Data collection, integration, and analysis.

and value in personalized healthcare decisions [41],
[42]. This holistic approach, integrating data modeling
and simulation, underscores the transformative potential
of DTs in revolutionizing healthcare delivery, ultimately
resulting in improved patient care, optimized treatment
plans, and a more patient-centric approach to medicine.

• Real-time Analysis and Decision Support: The DT
system must be able to analyse patient data in
real-time and provide decision support to healthcare
providers [75]. This involves developing algorithms and
tools that can detect anomalies, identify patterns, and

predict potential health risks (Figure 12. The system
should also provide clear and actionable insights to
healthcare providers, enabling them to make informed
decisions about patient care. Real-time analysis within
DTs involves the continuous processing of data from
an array of sources such as wearable sensors, medi-
cal devices, and health records. Employing advanced
algorithms andmachine learning techniques, it promptly
analyses this data to discern trends, predict potential
complications, and generate personalized alerts and
recommendations [44], [48]. Noteworthy instances
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FIGURE 10. Requirements for data collection and integration framework.

FIGURE 11. Intricate process of constructing and leveraging, data
modeling and simulation.

encompass the real-time monitoring of vital signs in
critical care, the analysis of wearable sensor data for
early detection of disease progression, and the tracking
of medication adherence. Concurrently, DTs furnish
decision support tools that offer clinicians personalized
assistance by amalgamating diverse data sources and
expert knowledge. These tools assist clinicians in craft-
ing individualized treatment plans, simulating potential
treatment outcomes, and prioritizing resources based
on real-time risk assessments [34], [40]. Exemplary
instances include AI-powered algorithms predicting
patient responses to medications, virtual reality sim-
ulations facilitating surgical planning, and personal-
ized dashboards providing clinicians with real-time
overviews of a patient’s health status. The advantages
encompass not only improved clinical outcomes but also
heightened patient experiences through active participa-
tion and increased efficiency and productivity achieved
through task automation and streamlined workflows.

• Security and Privacy: Establishing robust security
and safeguarding patient privacy are fundamental
prerequisites for the transformative potential of DTs
in healthcare. In the pursuit of this, we need to
address several critical aspects (Figure 13. In terms
of data security, [9] stresses the importance of data
encryption at rest and in transit, alongside stringent
access control measures highlighted by [38], and the
adoption of established security frameworks such as the
NIST Cybersecurity Framework as proposed by [48].
Furthermore, [34] advocates for data anonymization and
pseudonymization to balance privacy protection with

FIGURE 12. Real-time analysis and decision support.

FIGURE 13. Critical importance of security and privacy considerations in
the implementation of.

the need for research and analysis. Privacy consider-
ations include [36] emphasis on obtaining informed
patient consent, [37] call for transparency and patient
control over their data, and [40] recommendation for
data minimization and clear data governance policies.
Underscoring legal and ethical compliance is the
necessity of adhering to relevant data privacy regu-
lations, including HIPAA and GDPR. Technological
considerations, as proposed by [39], suggest the use
of block chain for secure data storage, while [47]
advocates for federated learning to enable collaborative
analysis without compromising patient privacy, and [49]
proposes homomorphic encryption for enhanced privacy
protection during data computations. It remains crucial
to address challenges and ethical concerns, such as the
delicate balance between data accessibility and privacy,
algorithmic biases, and equitable access across popu-
lations. Building trust and transparency through open
communication, patient involvement, and independent
oversight mechanisms, as recommended by [36], [39],
and [41], respectively, further solidifies the foundation
for deploying DTs as powerful tools in advancing
personalized healthcare. This multifaceted approach
integrates technical measures, governance frameworks,
and ethical considerations, envisioning a future where
data-driven healthcare optimizes patient outcomes while
upholding individual rights and privacy.

• Interoperability: Interoperability, defined as the seam-
less exchange of data between diverse systems, emerges
as a foundational prerequisite for the development and
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FIGURE 14. Critical importance of interoperability in the development
and utilization of DTs.

utilization of DTs in healthcare. Devoid of interoperabil-
ity, DTs remain isolated entities, incapable of accessing
and integrating data from diverse sources such as
medical records, imaging data, sensors, and genomics,
consequently constraining their potential to deliver
personalized care and enhance health outcomes. Inter-
operability empowers DTs in several crucial ways as
shown in Figure 14. Firstly, it facilitates data integration,
allowing DTs to collect and integrate information from
various sources and thereby construct a comprehensive
profile of an individual’s health [38], [49]. Secondly,
it fosters collaboration and care coordination among
healthcare professionals by providing access to shared
patient data and insights, leading to improved decision-
making and more effective care coordination [41],
[42]. Thirdly, interoperability enables the generation
of personalized insights and recommendations within,
tailored to the unique needs and health conditions of
individuals, thereby paving the way for more efficient
personalized medicine approaches [41], [45]. Finally,
it supports innovation and research by allowing data
sharing and collaboration across institutions, expediting
research and innovation in healthcare, and contributing
to the swift development of new treatments, therapies,
and diagnostic tools [47].

• Scalability: The DT system must be scalable to
accommodate the growing volume of patient data and
the increasing demand for personalized care [26]. This
requires designing the systemwith cloud-based architec-
ture and distributed computing capabilities to handle the
computational demands of data analysis and modeling.
Ensuring scalability is a pivotal requirement for unleash-
ing the transformative potential of DTs in healthcare.
Despite their capacity to offer personalized insights and
predictive capabilities, the true revolution lies in their
ability to efficiently handle and process data amidst the
ever-growing demands of the healthcare landscape. Key
considerations underscore the significance of scalability
(Figure 15): the escalating volume of healthcare data, the
expanding user base, diverse healthcare settings, and the
imperative for real-time data processing. Strategies to

FIGURE 15. Key considerations for scalability.

achieve scalability encompass leveraging cloud comput-
ing for elastic resources, employing data optimization
techniques, adopting a micro-services architecture for
modular scaling, and exploring edge computing for
improved real-time performance. Prioritizing scalabil-
ity, as elucidated by [34], [47], and [48] among others,
is fundamental for developing robust DTs capable of
meeting the burgeoning demands of the healthcare
industry.

• User-centric Design:We need to design the DT system
keeping the needs of healthcare providers in mind,
providing a user-friendly interface that is easy to learn
and use [32]. The system should also incorporate
feedback from healthcare providers to ensure that it
meets their clinical needs and workflow preferences.

These requirements highlight the complexity and mul-
tifaceted nature of building a DT system for a smart
personalized healthcare industry. Addressing these require-
ments will require collaboration among healthcare providers,
technology experts, data scientists, and policymakers to
ensure effective and ethical implementation of DTs and to
transform patient care and improve healthcare outcomes.

B. LAYERS OF THE REFERENCE FRAMEWORK
RQ3: What are the key layers for implementing a
DT smart healthcare system? Implementing a DT smart
healthcare system involves a multi-layered approach as
shown in Figure 16 that encompasses various technical
and non-technical considerations. The four key layers for
implementing a DT smart healthcare system are [51]:

• Layer 1: Device Layer The device layer consists of
the physical devices that collect and transmit data to
the DT system. This includes wearable devices, medical
imaging devices, patient-generated data (e.g., social
media posts, fitness apps), and other sources of patient
data. The device layer plays a crucial role in ensuring the
quality and consistency of data input into the DT system.
In the realm of, ensuring the accuracy and reliability
of sensor data through proper calibration and noise-
filtering techniques is imperative. Reference [53] pro-
pose a novel machine learning-based calibration method
for wearable sensors, employing supervised learning
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FIGURE 16. Layers of a DT framework.

algorithms to dynamically correct biases and drifts by
analysing sensor data alongside referencemeasurements
from gold standard devices. Reference [54] present a
framework for automatic calibration of medical imaging
devices using deep learning, ensuring consistent data
quality by automatically correcting distortions and
inconsistencies in images from uncalibrated devices.
Noise filtering techniques are crucial [55], suggesting a
hybrid approach combining Kalman filter and wavelet
transform for wearable sensor data, offering robust noise
filtering. Reference [56] explores adaptive filtering
and deep learning-based image denoising techniques
for medical images used in, ensuring noise reduction
without compromising important details. Reference [57]
addresses establishing gold standards and baselines
through a wearable sensor, dataset benchmarked against
laboratory-grade equipment, providing a valuable ref-
erence for evaluating sensor technologies, calibration
methods, and noise filtering techniques. Reference [58]
emphasizes the importance of reference standards in
medical imaging, advocating for established phantoms
and standardized protocols to ensure the accuracy and
reliability of data used in, thereby enhancing the validity
of insights for clinical decision-making.

• Layer 2: Data Layer The data layer collects, stores, and
manages patient data. This includes electronic health
records (EHRs), medical images, laboratory results,
and other types of clinical data. The data layer also
transforms and cleans data to ensure its quality and
consistency. Additionally, the data layer integrates data
from different sources, such as wearable devices and
patient-generated data, to create a comprehensive view
of each patient’s health. DTs Essential data processing
techniques encompass cleaning and pre-processing,
addressing inconsistencies and errors through outlier
detection, data imputation, and normalization, as advo-
cated by [59] and [60]. Transformation and feature
engineering, a pivotal step, involve converting raw
data into an analysable format, utilizing techniques
such as feature selection and dimensionality reduc-
tion, as emphasized by [61] and [62] Integration and
fusion of data from disparate sources, including EHRs,
medical images, sensors, and patient-generated data,
create a holistic view of a patient’s health, involving
techniques like data alignment and merging, according
to [63] and [64]. Real-time data processing, facili-
tated by streaming algorithms, distributed processing,
and edge computing, ensures immediate insights and

decision-making in dynamic healthcare environments,
aligning with the insights of [17] and [65]. In terms of
storage and transmission, data warehouses and lakes,
cloud storage, block chain technology, and robust
encryption measures collectively provide secure and
scalable solutions for centralized and decentralized
storage, guaranteeing patient privacy and data integrity,
as elucidated by [66], [68], [69], and [70]. This
comprehensive orchestration, situated within layer 2 of
the DT architecture, establishes the data layer as the
linchpin in the seamless operation and effectiveness of
DT applications in smart healthcare systems

• Layer 3: modeling Layer The modeling layer acts a
pivotal role in the DT architecture, shaping and sus-
taining precise patient models essential for simulating
behaviours and predicting outcomes. In addressing the
inherent complexities of healthcare systems, such as
nonlinear dynamics, data heterogeneity, and individual
variances, robust modeling techniques become imper-
ative. Acknowledging the intricate interplay between
physiological systems, nonlinear dynamics necessi-
tates modeling approaches beyond linear paradigms,
as emphasized by [17] and [71]. The presence of diverse
data sources, including wearable sensors, medical
images, and genomics, contributing to data heterogene-
ity, mandates adept feature engineering and integration
techniques, as outlined by [63] and [64]. Moreover,
individual variations in treatment responses underscore
the need for personalized modeling approaches, a facet
emphasized by [72] and [73]. Within the arsenal
of modeling techniques, machine-learning methods,
spanning supervised and unsupervised learning, and
deep learning strategies, exemplified by convolutional
and recurrent neural networks, enable intricate analyses
of complex datasets, catering to diverse healthcare
applications. Agent-based modeling captures emergent
behaviours within specific environments, illustrating
complex system dynamics, as highlighted by [67].
Artificial intelligence (AI) models, such as Explainable
AI (XAI) techniques, generative adversarial networks
(GANs), and federated learning, further contribute to the
modeling layer’s versatility. Existing exemplary mod-
els, including DeepMind’s AlphaFold, IBM’s Watson
Oncology, and NVIDIA’s Clara AI platform, showcase
the practical implementation of these techniques in
predicting protein structures, recommending personal-
ized cancer treatment plans, and providing tools for
AI-powered healthcare applications. In summary, the
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modeling layer not only encapsulates the multifaceted
techniques and methodologies addressing the intricacies
of healthcare systems but also serves as the linchpin
for ushering in personalized medicine, predictive health-
care, and virtual trials within the DT framework.

• Layer 4: Application Layer The application layer,
situated at Layer 4 of the DT in healthcare (DTH)
architecture, serves as the interface between the DT
system and healthcare providers, offering a suite of
tools for effective analysis and interpretation of complex
datasets. Central to this layer are diverse data visual-
ization techniques that play a pivotal role in presenting
insights to healthcare providers in a clear, concise, and
actionable manner. Dashboards, as highlighted by [59]
and [74], provide a consolidated view of key metrics and
indicators, empowering healthcare providers to monitor
health trends and make informed decisions. Various
chart types, such as bar charts, line graphs, and scatter
plots, serve to visualize temporal trends and correlations,
as discussed by [70] and [73]. Heat maps, a technique
noted by [66] and [58], employ colour gradients for
the quick identification of areas of interest within com-
plex datasets. Additionally, interactive 3D models and
technologies like Virtual Reality (VR) and Augmented
Reality (AR), as advocated by [67], [68], and [75],
facilitate realistic visualization of anatomical structures,
disease progression, and treatment outcomes.
To enable these visualizations, the DTH ecosystem
employs various methods, tools, and frameworks.
Unity3D, a game engine with capabilities for interactive
3D environments [72], [76], Microsoft Azure DTs
(integrating with Azure services), Eclipse Ditto (an
open-source DTH platform) [53], [54], and NVIDIA
Clara AI platform (providing tools for medical data
visualization and simulations) [55], [56] are instru-
mental in creating immersive and informative user
interfaces. Together, these visualization techniques and
tools empower healthcare providers to glean actionable
insights, fostering seamless interactions and decision-
making within the DTH system.

These four layers work together to create a comprehensive
DT smart healthcare system that can support personalized
medicine, predictive healthcare, improved diagnosis and
treatment, virtual trials, and real-time monitoring and inter-
vention. As DT technology continues to develop, we can
expect to see even more sophisticated and integrated DT
systems transforming healthcare delivery and improving
patient outcomes.

C. EXISTING TOOLS AND FRAMEWORKS FOR DT
RQ 4: What are the different tools and frameworks
available to construct a DT for healthcare? This section
addresses the essential tools needed for constructing a DT
in the healthcare sector, outlining the specific tools layer by
layer. Additionally, it provides insights into end-to-end tools
that encompass the entire DT development process.

FIGURE 17. Tools used in data acquisition and integration layer.

1) DATA ACQUISITION AND INTEGRATION LAYER
Wearable sensors from Fitbit, Apple Watch, and Garmin play
a pivotal role in collecting real-time health data, including
metrics such as heart rate, activity levels, and sleep patterns.
This data is valuable for creating a dynamic and personalized
digital representation of an individual’s health. Wearable
sensors contribute to the continuous monitoring aspect of
the DT, providing rich and timely data for analysis and
modeling [59].

Medical devices like Philips IntelliVue MX800 [77] and
GE Healthcare Vivid S6 are critical for acquiring detailed
clinical data. These devices capture information such as
vital signs, imaging data, and patient-specific measurements.
Integrating this data into the DT allows for a comprehensive
representation of a patient’s physiological status. This layer
ensures that the digital replica aligns closely with the real-
time condition of the patient.

Electronic Health Records (EHRs) are fundamental in
providing a historical context to a patient’s health. Systems
like Epic EMR [79], Cerner Millennium [79], and Allscripts
TouchWorks store and manage patient information, medical
history, and treatment plans. Integrating EHR data into the
DT ensures a holistic view, enabling the consideration of past
health records and facilitating a more accurate representation
of the patient’s health over time.

IoT platforms, including Azure IoT Hub, AWS IoT Core,
and Google Cloud IoT Core [80], offer scalable solutions for
managing and processing data from diverse sources. These
platforms are instrumental in handling the large volumes of
data generated by wearable sensors and medical devices.
They provide the infrastructure needed to securely transmit
and store data, facilitating the seamless integration of real-
time information into the DT.

Data integration tools like Informatica PowerCenter, IBM
DataStage [81], and Talend Open Studio play a crucial
role in aggregating and harmonizing data from heteroge-
neous sources. These tools can effectively integrate data
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from wearable sensors, medical devices, and EHRs into a
cohesive dataset for the DT. They streamline the process of
transforming raw data into actionable insights, contributing
to the accuracy and reliability of the digital representation.

2) MODEL DEVELOPMENT AND SIMULATION
Modeling and simulation tools such as AnyLogic [82],
Simulink [83], and COMSOL Multiphysics provide a foun-
dation for creating dynamic models that mimic real-world
healthcare scenarios. These tools are crucial for developing
the core structure of the DT, allowing for the representation
of complex systems, physiological processes, and medical
interventions.

Machine-learning libraries, including TensorFlow,
PyTorch, and sci-kit-learn, play a vital role in enhancing DTs
capabilities. By incorporating machine learning algorithms,
the DT can learn and adapt based on evolving health data,
enabling predictive analytics and personalized treatment
recommendations. TensorFlow and PyTorch, in particular,
offer versatile frameworks for implementing advanced
machine learning models tailored to healthcare applications.

Artificial intelligence platforms such as Google AI Plat-
form, AWS AI Services, and Microsoft Azure AI bring
cutting-edge AI capabilities to the DT. These platforms
empower the DT to analyse large datasets, identify patterns,
and derive meaningful insights. Through AI integration,
the DT gains the ability to interpret complex medical
data, providing valuable decision support for healthcare
professionals and contributing to personalized medicine
initiatives.

In the context of high-performance computing (HPC),
platforms like NVIDIA DGX A100 and Google Cloud TPUs
offer accelerated computational capabilities. These platforms
are instrumental in handling computationally intensive tasks,
such as complex simulations and large-scale data processing,
thereby enhancing the performance and efficiency of the DT.
The integration of HPC ensures that the DT can handle the
computational demands of real-time simulations and analyses
in healthcare scenarios.

3) VISUALIZATION AND USER INTERFACE
3D visualization software, including Unity [84], Unreal
Engine, and Blender [85], facilitates the creation of lifelike
representations of medical environments and anatomical
structures. These tools are instrumental in building a visually
rich DT, allowing healthcare professionals to interact with
and explore intricate medical scenarios in three dimensions.
Unity and Unreal Engine, enable the development of realistic
and dynamic visualizations that enhance the understanding of
complex healthcare data.

Augmented Reality (AR) and Virtual Reality (VR) hard-
ware such as Microsoft HoloLens, Meta Quest 2, and HTC
Vive Pro introduce an interactive dimension to the DT. These
platforms offer immersive experiences, enabling healthcare
practitioners to engage with virtual representations of patient

data, medical procedures, and healthcare environments.
AR and VR technologies enhance training, surgery planning,
and medical education by providing realistic simulations in a
virtual environment.

Data visualization libraries, including Tableau [86], Power
BI, and Plotly [87], contribute to the effective communication
of complex healthcare data. These tools enable the creation
of interactive and insightful visualizations, aiding healthcare
professionals in interpreting and analysing patient data within
the DT. Tableau and Power BI, for instance, empower users to
create dashboards and reports that convey critical information
in a comprehensible manner.

User Interface (UI) development frameworks, such as
React, Angular, and Vue.js, are essential for creating intuitive
and responsive interfaces for interacting with the DT. These
frameworks enable the development of user-friendly appli-
cations that facilitate seamless navigation and interaction
with the digital representation of healthcare scenarios. React,
Angular, and Vue.js are widely utilized for building dynamic
and engaging user interfaces, ensuring an optimal user
experience in healthcare applications.

D. END TO END DT FRAMEWORKS
1) ECLIPSE 3D
Eclipse 3D [88] is a potent open-source platform designed
specifically for building DTs in healthcare, offering a
comprehensive suite of features that cater to the unique
needs of healthcare professionals. Beyond conventional 3D
modeling, Eclipse 3D excels in creating intricate models of
organs, tissues, medical devices, and healthcare facilities.
It stands out by enabling the development of interactive
simulations for physiological processes, and medical device
behaviours, and visualizing potential surgical procedures
and treatment plans. It integrates real-time data into 3D
models, facilitating dynamic visualization and empowering
healthcare professionals to communicate complex informa-
tion effectively through insightful dashboards and charts. For
collaboration and training, Eclipse 3D supports collaborative
work on shared 3D models among medical professionals.
It also provides immersive training experiences for medical
procedures and surgeries. The platform’s open-source nature
ensures accessibility, making it cost-effective and available
to a broad range of healthcare institutions and researchers. Its
extensible and customizable architecture allows developers to
tailor functionalities, creating highly specialized solutions for
diverse healthcare applications. Eclipse 3D’s compatibility
with various 3D formats streamlines data integration, elim-
inating the need for costly conversions. Supporting AR and
VR technologies, Eclipse 3D enhances training and patient
communication with immersive experiences. Compliance
with standardized frameworks ensures interoperability and
seamless communication between different DT applications.

2) Unity3D DT
Unity 3D [89] stands as a transformative force in healthcare
by serving as a leading real-time 3D development platform,
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FIGURE 18. Tools used in model development.

FIGURE 19. Tools used in visualization and user interface.

FIGURE 20. End to end frameworks.

uniquely equipped for constructing advanced. This dynamic
tool excels in creating virtual replicas of healthcare envi-
ronments, medical devices, and human anatomy, offering
a multitude of benefits across the healthcare spectrum.
Unity’s prowess lies in its advanced data ingestion capa-
bilities, seamlessly integrating data from diverse sources

such as BIM, CAD, PLM, ERP, and IoT [89] systems.
This integration results in accurate and dynamic DTs
that faithfully reflect real-world healthcare assets. The
platform’s user-friendly interface and robust creation tools
streamline the development process, enabling the rapid
deployment of interactive DTs with features like real-time
rendering, physics simulation, and scripting. Unity’s multi-
user functionality extends collaboration beyond design and
engineering teams, allowing various stakeholders such as
healthcare professionals, researchers, patients, and students
to interact with DTs across devices. The platform’s visual
scripting tools and real-time data visualization capabilities
facilitate in-depth analysis of complex healthcare data,
empowering professionals to gain deeper insights into patient
conditions, treatment effectiveness, and overall healthcare
operations. Unity’s AR/VR capabilities further contribute to
immersive training and educational experiences, enhancing
skill acquisition and knowledge retention among healthcare
practitioners. By incorporating individual patient data, Unity
enables the creation of personalized treatment plans and care
pathways, ultimately improving patient care and reducing
complication risks. Healthcare administrators and policy-
makers benefit from improved decision-making through the
platform’s data-driven insights into resource needs, facility
design, and workflow optimization. Unity’s scalability and
open-source nature provide adaptability to various project
sizes and requirements, allowing for extensive customization
and integration with other software tools and technologies.
In essence, Unity 3D emerges as a powerful and versatile tool,
empowering healthcare professionals to harness the potential
of DTs for enhanced patient care, advanced medical research,
and optimizing healthcare operations.

3) MICROSOFT AZURE DT
Microsoft Azure DTs [90] emerges as a robust and versatile
platform tailored for creating and managing, particularly
within the healthcare domain. Offering a comprehensive suite
of tools and services, this platform empowers organizations
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to model, connect, visualize, and analyse various healthcare
assets. The Azure DTs Definition Language (DTDL) allows
the definition of custom DT models, facilitating the creation
of detailed representations of medical equipment, facilities,
patients, and even the human body. Integration with IoT
Hub and other data integration services ensures real-time
data flow, maintaining accurate DT representations. The
platform’s capabilities extend to creating interactive 3D
visualizations of healthcare environments, employing pow-
erful data analytics tools for insights into patient conditions,
treatment effectiveness, and resource utilization. Azure
DTs support the development of personalized treatment
plans based on individual patient data and facilitate the
optimization of hospital operations through data analysis.
Collaboration and innovation thrive as the platform enables
seamless information exchange across healthcare teams and
encourages the development of innovative solutions on top of
its core features. Azure DTs stands out for its open modeling
language, live execution environment, comprehensive data
integration and output capabilities, and advanced visualiza-
tion and analytics tools. Overall, it proves instrumental in
empowering healthcare organizations to enhance patient care,
improve operational efficiency, and drive innovation in the
healthcare industry through the implementation of.

V. APPLICATION AREAS
RQ5: What are the potential applications of using DT
for a smart healthcare industry? The presented Figure 21
encapsulates a comprehensive overview of DT applications
in healthcare, categorized into four principal domains. In the
sphere of Personalized Medicine and Patient Care, DTs
assume a crucial role in Precision Medicine, where they
generate virtual models of individual patients by integrating
genetic, biological, and environmental data. This process
enables the tailoring of treatment plans, the advancement
of drug development, and the prediction of potential health
risks. Additionally, DTs play a vital role in Predictive
Diagnostics and Disease Monitoring, utilizing real-time
data from wearable sensors to continuously monitor health
status and predict potential disease outbreaks. Furthermore,
in Virtual Surgery and Surgery Planning, we can utilize
DTs of organs and anatomical structures for pre-operative
planning, simulating surgical procedures, and facilitating
risk-free surgeon training.

Transitioning to Hospital Operations and Resource Man-
agement, DTs are instrumental in Optimizing Patient Flow
and Resource Allocation. They simulate patient flow, predict
resource needs, and optimize staffing and equipment allo-
cation to enhance operational efficiency and minimize wait
times. Additionally, DTs support the Predictive Maintenance
of Medical Equipment, leveraging real-time data to monitor
performance, predict potential failures, and facilitate preven-
tative maintenance, thereby reducing downtime. In Virtual
Commissioning and Training, DTs of new hospital facil-
ities virtualize construction and commissioning processes,

identify potential issues, and optimize layout before physical
construction.

In Drug Development and Clinical Trials, DTs sig-
nificantly contribute to Virtual Drug Testing and Safety
Evaluation, creating virtual representations of organs and
physiological systems to reduce reliance on animal testing
and expedite the drug development process. Furthermore,
the application of Personalized Drug Dosage Optimization
involves using patient DTs to predict individual responses
to medication, optimizing drug dosage for enhanced efficacy
and minimized side effects. The utilization of DTs in Virtual
Clinical Trials allows for faster and more cost-effective
testing of new treatments and medical devices.

Lastly, within the domain of Public Health and Disease
Prevention, DTs facilitate Predicting and Mitigating Out-
breaks of Infectious Diseases by modeling the spread of
diseases among populations. This aids public health offi-
cials in anticipating outbreaks and implementing preventive
measures. Monitoring Chronic Diseases and Environmental
Risks involves the use of DTs to monitor and manage
chronic diseases, identify individuals at risk, and enable early
intervention. Additionally, DTs contribute to the develop-
ment of Personalized Health Interventions and Behavioural
Change, promoting healthy behaviours at both individual and
population levels, thereby enhancing overall public health.

VI. OPEN CHALLENGES AND DISCUSSION
RQ6: What are the open challenges to applying DT
in personalized healthcare? have emerged as a trans-
formative technology with the potential to revolutionize
the healthcare industry. DTs are virtual representations of
physical objects or systems that we can use to simulate
and analyse their behaviour [1]. In the healthcare con-
text, we can employ DTs to create personalized models
of patients, enabling healthcare providers to gain deeper
insights into their conditions and make informed treatment
decisions [24].

Despite the many potential benefits of DTs in personalized
healthcare, several open challenges need to be addressed
before they can be widely adopted as shown in figure 22.
These challenges include:

A. DATA QUALITY AND INTEGRATION
Ensuring the quality and consistency of patient data is
essential for creating accurate DT models [17]. However,
healthcare data is often fragmented and siloed, making it
difficult to integrate and analyse. This is due to several
factors, including the use of different electronic health record
(EHR) systems, the lack of standardized data formats, and the
reluctance of healthcare providers to share data.
Challenges and Solutions:

• Standardization of data formats and communication
protocols: Establishing standards for data formats and
communication protocols is crucial to facilitate seamless
data exchange between different healthcare systems
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FIGURE 21. Various applications of DT.

and [17]. This will enable the integration of data from
various sources, such as EHRs, wearable devices, and
patient-generated data, into DT models.

• Data governance and sharing policies: Implementing
robust data governance policies and encouraging data
sharing among healthcare providers can enhance data
quality and accessibility [17]. This will involve estab-
lishing clear guidelines for data collection, storage, and
sharing, ensuring patient privacy and security while
enabling the aggregation of rich patient data for DT
modeling.

B. MODEL DEVELOPMENT AND VALIDATION
Developing accurate and reliable DT models requires
expertise in data science, machine learning, and AI [31].
Additionally, we need to validate DT models against real-
world data to ensure their accuracy and generalizability. This
is a complex and time-consuming process, and it requires
the involvement of experts from a variety of disciplines.
Challenges and Solutions:

• Development of robust modeling methodologies:
Advancements in data science, machine learning, and AI
techniques are necessary to create robust DTmodels that
can capture the complex dynamics of human physiology
and disease progression [31]. This includes developing
algorithms that can handle large, heterogeneous datasets
and adapt to new data as it becomes available.

• Rigorous validation and testing: Stringent validation
methods and testing procedures are essential to ensure
the accuracy, generalizability, and reliability of DT
models [31]. This involves evaluating models against
real-world clinical data and patient outcomes, identify-
ing potential biases or limitations, and refining models
accordingly.

C. SECURITY AND PRIVACY
handle sensitive patient data, making security and privacy
paramount [24]. DT systems must implement robust cyber-
security measures to protect patient data from unauthorized
access, breaches, and misuse. This includes measures such as
encryption, access controls, and data governance policies.
Challenges and Solutions:
• Cybersecurity threats and mitigation strategies: Health-
care organizations face increasing cybersecurity threats,
including data breaches, ransomware attacks, and phish-
ing scams [24]. Implementing robust cybersecurity
measures, such as multi-factor authentication, data
encryption, and intrusion detection systems, is crucial
to protect patient data from unauthorized access and
misuse.

• Privacy-preserving data sharing and analysis: Balancing
the need for data sharing for DT modeling with
patient privacy is a critical challenge [24]. Secure data-
sharing mechanisms, such as federated learning and
anonymization techniques, can enable data collaboration
while safeguarding patient privacy.

D. INTERPRETABILITY AND EXPLAINABILITY
DT models are often complex and opaque, making it difficult
for healthcare providers to understand how the models make
decisions [32]. This can lead to distrust and reluctance to
adopt in clinical practice. Healthcare providers need to be
able to understand how DT models work to trust them and
to make informed decisions based on their outputs.
Challenges and Solutions:
• Explainable AI techniques: Developing and incorporat-
ing explainable AI (XAI) techniques into DT models
can enhance their interpretability [32]. XAI methods
provide insights into how DT models arrive at their
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FIGURE 22. Various challenges.

decisions, allowing healthcare providers to understand
the underlying logic and reasoning behind the model’s
predictions or recommendations.

E. HUMAN-IN-THE-LOOP DECISION-MAKING
should augment clinical judgment, not replace it. Healthcare
providers need to be able to understand and interpret DT
insights and make informed decisions based on all available
information [75].
Challenges and Solutions:

• Development of decision support tools: Developing
decision support tools that integrate DT insights with
clinical judgment can help healthcare providers make
informed decisions in real-time. These tools can provide
personalized recommendations, risk assessments, and
treatment plans based on the patient’s individual DT.

• Education and training for healthcare providers: We
need to educate and train healthcare providers on how to
interpret and useDT insights effectively in their practice.
This includes understanding the limitations of DTs and
the importance of clinical judgment.

F. ADOPTION AND INTEGRATION INTO HEALTHCARE
WORKFLOWS
Implementing DTs into existing healthcare workflows can be
challenging due to organizational inertia, cultural resistance,
and the need for training and education [26].
Challenges and Solutions:

• Strong leadership and change management: Healthcare
organizations need strong leadership to champion DT
adoption and address any cultural resistance. This
includes creating a supportive environment for DT use
and providing training and education for healthcare
providers.

• Demonstrating the value of: Sharing success stories and
demonstrating the value of DTs can help overcome
scepticism and encourage wider adoption. Pilot projects,
case studies, and other initiatives that showcase the
benefits of DTs in clinical practice can help achieve this.

G. STANDARDIZATION AND INTEROPERABILITY
Establishing standards for data formats, communication
protocols, and APIs is essential for interoperability between
DT systems and other healthcare systems [1].

Challenges and Solutions:

• Collaboration among healthcare providers, technology
vendors, and standards organizations: Collaboration
among stakeholders is crucial to developing and imple-
menting standards for DT interoperability. This includes
establishing clear guidelines for data exchange, ensuring
interoperability with existing healthcare systems, and
developing open-source tools and platforms.

• Development of DT middleware: DT middleware can
play a key role in facilitating interoperability by provid-
ing a layer of abstraction between different DT systems
and healthcare systems. This can help to simplify data
exchange and integration.

H. REGULATION AND ETHICAL CONSIDERATIONS
raise many ethical considerations, such as patient autonomy,
informed consent, and the potential for discrimination.
We need clear guidelines and regulations to ensure the ethical
and responsible use of DTs in healthcare [17].
Challenges and Solutions:

• Public debate and discussion about the ethical implica-
tions of: There needs to be a public debate and discussion
about the ethical implications of DTs in healthcare. This
can help to raise awareness of the potential risks and
benefits of DTs and to develop guidelines for ethical use.

• Development of ethical guidelines for: Clear ethical
guidelines for the development, use, and governance
of DTs need to be developed. These guidelines should
address issues such as patient privacy, data security, bias,
and discrimination.

Despite the challenges, DTs have the potential to revolu-
tionize healthcare by providing personalized insights and
decision support for healthcare providers. By addressing the
challenges outlined above, we can integrate DTs into clinical
practice and help to improve patient outcomes.

VII. METHODOLOGY
virtual representations of physical assets or systems as
shown in figure 23, have emerged as a transformative
technology with the potential to revolutionize various indus-
tries. By continuously synchronizing data from the physical
counterpart, DTs enable real-time monitoring, predictive
analysis, and optimization of physical systems. To effectively
implement, a well-defined methodology is crucial. Several
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methodologies have been proposed for developing and
implementing. These methodologies typically encompass
four key phases [10] as shown in figure 24:

• Problem Definition and Requirements Gathering: The
initial phase involves clearly defining the problem or
challenge that the DT aims to address. This includes
understanding the stakeholder needs, the specific use
cases, and the data requirements.

• Data Collection and Analysis: The second phase focuses
on gathering and analysing relevant data from the
physical asset or system. This may involve sensor
data, historical records, and engineering models. Pre-
processing, cleaning, and structuring ensures its usabil-
ity for the DT.

• DT Development: The third phase involves the devel-
opment of the DT model. This may involve creating
physics-based models, machine-learning models, or a
combination of both. The model should accurately
represent the behaviour of the physical asset or system
under various conditions.

• Deployment and Validation: The final phase involves
deploying the DT and validating its performance. This
may involve testing the model’s accuracy, responsive-
ness, and integration with existing systems.

A. DYNAMIC AND MODULAR ARCHITECTURE OF A
DIGITAL MEDICAL TWIN (DMT) FOR ADAPTIVE
HEALTHCARE INFORMATION INTEGRATION AND
DECISION SUPPORT
The implemented Digital Medical Twin (DMT) in the
paper [10]. adopts a dynamic approach to data handling,
avoiding the persistence of case-related data to prevent
unnecessary duplication and update challenges. Instead,
it dynamically loads and caches only the necessary data to
respond to the current application’s request. Interfaces of
the DMT seamlessly integrate with established standards,
preserving existing information systems’ data representations
and ontologies through references. They embed case-related
data into an extendable internal data structure, MPMRe-
source, based on the Resource Description Framework
(RDF). Each resource contains DMT-specific metadata and
an RDF representation of the original data resource or
a reference, facilitating semantic linkage across various
modalities. The DMT concept encompasses modules for
trend analyses and abstractions based on different model
types. The architecture is agnostic to analysis methods,
with specialized collector modules aggregating patient data
from primary clinical information systems. RDF module
descriptions define modules, enabling on-demand compi-
lation of a module call hierarchy for complex requests.
They calculate an execution fingerprint for each successful
module call, enhancing reusability. The DMT offers a
GraphQL endpoint for third-party applications to request
information for assistance tasks. The response, provided as
an MPMResource, includes data from clinical information

systems and abstracted information from modules. They link
MPMResources, particularly data computed from modules
to all resources used for calculation, ensuring traceabil-
ity for constructing argument chains. This traceability is
crucial in computer-aided clinical decision-making. The
modular architecture accommodates both knowledge-based
and data-driven methods, allowing the extension of the
DMT implementation to incorporate new clinical knowledge,
and treatment strategies, or address additional diseases. The
design promotes adaptability, traceability, and integration of
evolving medical information and methodologies.

B. COMPOSITION AND FEATURES OF DT
1) COMPOSITION OF DT TECHNOLOGY
In the paper by [11] the DT is structured in five dimensions:
physical entity, virtual model, connections, DT data, and
service. The physical entity represents real-world objects, and
the Internet of Things (IoT) facilitates data collection through
methods like two-dimensional codes, data acquisition cards,
and sensors. The virtual model is a digital representation of
the physical entity, enhanced by technologies like Virtual
Reality (VR), Augmented Reality (AR), and Mixed Reality
(MR). Connections enable intercommunication between
different parts of DT models, utilizing 5G communication
technology. DT data encompasses diverse information cat-
egories, benefiting from Big Data for valuable insights and
block chain for data security. The DT service model serves
both the physical entity and virtual model, employing AI for
data analysis, fusion, and deep learning to enhance various
services.

2) SIMULATION CHARACTERISTICS OF
High fidelity is a crucial characteristic of the DT, ensuring
accurate simulations and real-time data collection. Valida-
tion of data as a benchmark, continuous calibration, and
the integration of sensor data and numerical simulations
contribute to accurate results. Standardization, lightweight
design, robustness, and modularization are essential for an
effective virtual model. Standardization in communication
protocols and encodings improves information sharing, while
modularity enhances flexibility by recombining or separating
individual models. These technical features pave the way for
mapping patient data in the medical process into a predictive
framework, aiding in precision medicine.

3) TECHNICAL CHARACTERISTICS IN THE MEDICAL FIELD
In the medical field, DTs offer precise diagnosis through
virtual fractional flow reserve, replacing invasive catheters
for monitoring arterial blood pressure. Computational models
and statistical models play a role in data acquisition,
diagnosis, and therapy planning stages. They create virtual
human organs using high-fidelity simulation data, enabling
the establishment of efficient AI models. Technologies like
motion capture systems, Inverse Kinematics (IK), and AI
models work together for real-time position and pose tracking
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FIGURE 23. Different methodologies of DT.

FIGURE 24. Key phases of methodology.

of the human body. DT technology, with its sophisticated
composition and simulation characteristics, has promising
applications in healthcare, particularly in precise diagnosis
and personalized medicine. The integration of AI and
advanced technologies enhances the capabilities of DTs in the
medical field.

C. ONTOLOGY-BASED DTs FOR PERSONALIZED MEDICINE
Personalized medicine aims to tailor healthcare interventions
to the unique characteristics of each patient. DTs can facilitate
personalized medicine by providing a structured framework
for representing and integrating a patient’s complex medical
data, including genetic, clinical, and phenotypic information.
Ontologies provide a structured and standardized way to
represent knowledge, enabling the integration of various data
sources without compromising data integrity or interoper-
ability. In the context of personalized medicine, ontologies
can capture the patient’s genetic profile, clinical history,
and phenotypic characteristics, forming a comprehensive
representation of the patient’s health status. The paper
by [16] proposes an ontology-based personalized medicine

DT platform for cancer treatment decision support. The
platform utilizes a comprehensive ontology to capture the
patient’s genetic profile, clinical history, and phenotypic
characteristics. This structured representation enables the
platform to identify patterns and relationships within the
patient’s data, facilitating the development of personalized
treatment recommendations.

D. FEDERATED LEARNING-BASED DTs FOR SECURE
HEALTHCARE DATA SHARING
Healthcare data privacy is a critical concern, as we must pro-
tect sensitive patient information from unauthorized access
or misuse. Traditional data-sharing practices often involve
transferring patient data to centralized repositories, increas-
ing the risk of data breaches. Federated learning provides a
secure solution for sharing healthcare data while preserving
patient privacy. Federated learning algorithms enable the
training of machine learning models on distributed healthcare
data without directly accessing or sharing the underlying
patient data. They train models on local data sources,
and share only the aggregated model parameters, ensuring
that sensitive patient data remains protected. The paper
by [13] proposes a federated learning framework for privacy-
preserving DTs in healthcare. The framework enables the
training of machine learning models on distributed healthcare
data without compromising patient privacy. This approach
allows for the secure aggregation of knowledge and insights
while protecting patient privacy.

E. EXPLAINABLE AI-ENHANCED DTs FOR CLINICAL
DECISION SUPPORT
Explainable AI (XAI) techniques provide transparency and
interpretability for machine learning models. By explaining
the reasoning behind their predictions, XAI enhances trust
and understanding in machine learning models. We can
enhance DTs with XAI to provide clinicians with clear
explanations for their recommendations and predictions.
This transparency facilitates informed clinical decision-
making by empowering clinicians to understand the factors
influencing the DTs outputs. The paper by [14] proposes
an XAI-enhanced DT for clinical decision support in
sepsis management. The DT integrates XAI techniques to
explain its predictions for patient deterioration and treatment
recommendations. This transparency enables clinicians to
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understand the factors influencing the DTs decisions, foster-
ing trust and collaboration between clinicians and the DT.

F. REAL-TIME DTs FOR PATIENT MONITORING AND
SURVEILLANCE
Real-time DTs enable continuous monitoring and surveil-
lance of patient health status. They continuously update
these DTs with real-time data from various sensors and
monitoring devices, providing a comprehensive view of the
patient’s condition. This real-timemonitoring facilitates early
detection of changes in patient conditions and enables timely
interventions to prevent adverse events. For instance, we can
use real-timeDTs tomonitor vital signs, detect subtle changes
in electrocardiograms, and identify early signs of sepsis or
other critical conditions. The paper by [96] proposes real-
time DTs for patient monitoring and surveillance in the
intensive care unit (ICU). They update the DTs continuously
updated with real-time data from vital signs monitors,
electrocardiograms, and other ICU devices. This real-time
monitoring enables clinicians to identify subtle changes in
patient conditions and make timely interventions to prevent
complications.

G. DIFFERENT METHODOLOGIES OF DT
1) PATIENT-SPECIFIC

• Patient-specific DTs in healthcare involve the creation
of highly personalized virtual replicas of individual
patients. As shown in Figure 25 these DTs integrate
comprehensive patient data, including medical history,
genetic information, and real-time physiological data.
This methodology facilitates precise treatment planning,
personalized medicine, and the prediction of patient
responses to different interventions. By tailoring health-
care strategies to the unique characteristics of each
patient, this approach holds significant promise for
improving treatment outcomes and patient satisfaction

• ‘‘An Ontology-Based Personalized Medicine DT Plat-
form for Cancer Treatment Decision Support’’ by [35]:
This paper presents an ontology-based DT platform
to aid in cancer treatment decision support. It utilizes
ontologies to integrate a patient’s genetic, clinical, and
phenotypic data into a structured and interoperable
format, enabling personalized treatment plans.

2) ORGAN-SPECIFIC
• Organ-specific DTs focus on replicating the structure
and function of specific organs or organ systems in
a virtual environment. This methodology as shown in
Figure 26enables detailed modeling and simulation,
providing valuable insights into organ behaviour and
response to various stimuli. In healthcare, organ-specific
DTs are particularly useful for preoperative planning,
understanding disease progression, and optimizing treat-
ment strategies. Surgeons and healthcare professionals
can leverage these DTs to enhance their understanding

FIGURE 25. Patient-specific DT.

of complex anatomical structures and plan interventions
with greater precision.

• ‘‘A DT Approach for Personalized Aortic Valve Disease
Management’’ by [17]: This paper explores a DT
approach for personalized aortic valve disease manage-
ment. It constructs DTs of an individual’s aortic valves
to simulate their functionality under various conditions,
facilitating personalized treatment decisions and risk
assessment.

3) SURGICAL PROCEDURE SIMULATION
• The surgical procedure simulation methodology utilizes
DTs to create virtual environments for practicing and
simulating surgical procedures. This approach allows
surgeons to hone their skills in a risk-free and controlled
setting before performing actual surgeries. By providing
a realistic platform for training and rehearsal, surgi-
cal procedure simulation DTs contribute to improved
surgical outcomes, reduced risks, and enhanced patient
safety.

• ‘‘ADTApproach for Personalized Surgery Planning and
Simulation in Total Knee Arthroplasty’’ by [50]: This
paper proposes a DT approach for personalized surgery
planning and simulation in total knee arthroplasty.
It generates DTs of patients’ knees, allowing surgeons
to simulate and optimize surgical procedures virtually
before actual surgery.

4) IoT-ENABLED PATIENT MONITORING
• IoT-enabled patient monitoring integrates Internet of
Things devices to continuously collect and transmit
real-time data from patients. DTs created through
this methodology offer a dynamic representation of
a patient’s health status. Remote patient monitoring,
enabled by these, facilitates early detection of health
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FIGURE 26. Organ-specific DT [47].

issues, timely intervention, and ongoing care manage-
ment. This approach is especially valuable for patients
with chronic conditions, allowing healthcare providers
to monitor and respond to changes in health proactively.

• ‘‘A Real-Time IoT-Enabled DT Framework for Patient
Monitoring in the Intensive Care Unit’’ [18]: This paper
introduces a real-time IoT-enabled DT framework for
patient monitoring in the intensive care unit (ICU).
It continuously updates DTs with real-time patient data
from various sensors and monitoring devices, enabling
early detection of changes in patient conditions and
timely interventions.

5) PHARMACOLOGICAL
• Pharmacological DTs focus on modeling the effects of
drugs at a molecular level, simulating drug interactions,
and predicting individual responses. By integrating
genetic and physiological data, these DTs contribute to
drug development and personalized medicine. Virtual
testing within the DT environment helps identify
potential adverse effects and optimize drug regimens,
ultimately enhancing the efficacy and safety of pharma-
ceutical interventions

• ‘‘Pharmacological DTs for Personalized Medicine: A
Review’’ by [19]: This paper provides a comprehen-
sive review of pharmacological DTs for personalized
medicine. It discusses the potential applications of
DTs in drug development, personalized medicine, and
minimizing adverse effects through virtual testing.

6) VIRTUAL CLINICAL TRIALS
• Virtual clinical trials leverage DTs to simulate and
predict the outcomes of clinical trials. This method-
ology accelerates the drug development process by

allowing researchers to virtually test new treatments and
interventions. By reducing costs, shortening timelines,
and minimizing the need for physical participants,
virtual clinical trials contribute to more efficient and
streamlined drug development, potentially bringing
innovative therapies to market faster.

• ‘‘Virtual Clinical Trials in the Era of DTs and Predictive
modeling’’ by [20]: This paper explores the potential of
virtual clinical trials in the era of DTs and predictive
modeling. It highlights how we can use DTs to simulate
and predict the outcomes of clinical trials, accelerating
the drug development process and reducing costs.

7) REHABILITATION AND PHYSICAL THERAPY SIMULATION
• Rehabilitation and physical therapy simulation method-
ologies involve the creation of digital representations
of patients to simulate rehabilitation exercises and
track progress. Physical therapists can use these DTs
to design personalized rehabilitation plans, monitor
patient recovery, and adjust interventions based on real-
time feedback. This approach enhances the efficiency
and effectiveness of rehabilitation programs, supporting
patients in their recovery journey.

• ‘‘A DT Approach for Personalized Rehabilitation
Planning and Guidance in Stroke Patients’’ by [7]:
This paper presents a DT approach for personalized
rehabilitation planning and guidance in stroke patients.
It utilizes DTs to simulate patient-specific responses to
various rehabilitation exercises, facilitating personalized
treatment plans and monitoring patient progress.

8) HEALTHCARE FACILITY OPTIMIZATION
• Healthcare facility optimization DTs model the entire
healthcare ecosystem, including facilities, equipment,
and staff. This methodology aims to optimize resource
allocation, enhance operational efficiency, and improve
overall healthcare delivery. By simulating various
scenarios and analysing workflow data, healthcare
administrators can make informed decisions to reduce
wait times, improve patient care, and ensure optimal
utilization of resources.

• ‘‘A DT Framework for Healthcare Facility Optimiza-
tion: A Simulation-Based Approach’’ by [21]: This
paper proposes a DT framework for healthcare facility
optimization. It utilizes simulation-based optimization
techniques to improve hospital workflows, reduce wait
times, and ensure optimal utilization of resources.

9) GENOMIC
• Genomic DTs integrate genetic information to create
virtual representations of an individual’s genomic pro-
file. This methodology aids in disease risk assessment,
precision medicine, and treatment decision-making
based on genetic predispositions. By understanding the
unique genetic characteristics of each patient, healthcare
professionals can tailor interventions and therapies,
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FIGURE 27. Limitations and challenges of DT.

paving the way for more personalized and effective
healthcare strategies

• ‘‘Genomic DTs: ANew Frontier in PrecisionMedicine’’
by [22]: This paper discusses the concept of genomic
DTs and their potential in precision medicine. It empha-
sizes how genomic DTs can integrate genetic informa-
tion to create personalized models of an individual’s
health, aiding in disease risk assessment and treatment
decisions.

10) BEHAVIOURAL HEALTH
• Behavioural health DTs involve modeling and simulat-
ing behavioural patterns, mental health conditions, and
the impact of interventions on psychological well-being.
This methodology supports mental health profession-
als in treatment planning, intervention strategies, and
understanding patient responses. By creating a virtual
environment to explore behavioural health dynamics,
DTs contribute to improved mental health care, person-
alized interventions, and better patient outcomes

• ‘‘Behavioural Health: A Conceptual Framework for
Mental Health Assessment and Intervention’’ by [23]:
This paper introduces a conceptual framework for
behavioural health. It discusses how DTs can model
and simulate behavioural patterns, mental health con-
ditions, and the impact of interventions, supporting
mental health professionals in treatment planning and
understanding patient responses.

VIII. LIMITATIONS, CHALLENGES AND FUTURE
DIRECTIONS
Despite the considerable advancements and research efforts
dedicated to incorporating DTs into healthcare, several
challenges persist, shaping the future trajectory of this
technology as shown in figure 27. The following sections
outline key challenges and possible directions for addressing
them.

A. EFFICIENT COMPUTING AND COSTLY
INFRASTRUCTURE
A primary obstacle in deploying DTs within healthcare lies
in the sheer volume of generated data. To operate effectively,
DTs demand substantial data, leading to potential issues in
storage, processing, and bandwidth capacities. Addressing
this challenge requires the development of efficient storage

and computing systems capable of managing and processing
extensive datasets. Cloud computing offers scalable and flexi-
ble resources, enhancing the efficiency and cost-effectiveness
of DT systems. Additionally, emerging technologies like
edge computing show promise by processing data closer to
its source, thereby minimizing data transfer and reducing
latency. Building and maintaining the infrastructure for DTs
can be financially demanding, requiring substantial invest-
ments in computational resources, storage, and expertise.
Smaller healthcare providers or resource-constrained settings
may encounter challenges in implementing and sustaining
DTs due to financial limitations.

B. PRIVACY AND SECURITY CONCERNS
Privacy emerges as a critical challenge when integrating
DTs into healthcare, given the sensitivity of healthcare data.
Unauthorized disclosure could have severe consequences,
necessitating robust privacy measures. block chain tech-
nology is explored as a means to enhance data security
and privacy. Furthermore, federated learning, a decentralized
approach to training machine learning models, ensures data
privacy while building global models. Techniques such as
differential privacy, multiparty differential privacy, homo-
morphic encryption, multiparty computation, and detection
of data and model poisoning in federated learning contribute
to safeguarding data security and privacy. Additionally,
potential model manipulation and systemic vulnerabilities
within the digital twin ecosystem pose significant security
challenges.

C. INTEGRATION WITH EXISTING SYSTEMS
Integrating digital twins with existing healthcare systems
presents a significant challenge due to the widespread
presence of legacy systems. These older systems often
lack standardized data formats, which makes seamless
communication and data exchange with newer technologies
like digital twins difficult. Additionally, incompatibility with
modern communication protocols further hinders smooth
integration, creating roadblocks for real-time data exchange
and updates. The sheer volume of legacy medical equipment
still in use also contributes to data silos, limiting access
to historical and real-time data and preventing the full
potential of digital twins from being realized. This lack of
interoperability between digital twins and legacy systems
poses a major hurdle to achieving seamless and efficient
healthcare delivery. Upgrading these systems can be costly
and disruptive, while continued reliance on them creates
limitations on the potential benefits of digital twins in
healthcare.

D. REGULATORY FRAMEWORKS
The development of ethical guidelines and regulations is
imperative for the responsible use of DTs in healthcare.
Establishing standards for data security, data sharing, and
informed consent is crucial to protecting patient rights and
privacy.
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E. STAKEHOLDER INVOLVEMENT AND TRAINING
Successful development and implementation of DT tools for
healthcare necessitate active involvement from stakeholders,
including healthcare providers, patients, policymakers, and
governments. Input from these stakeholders ensures that DT
tools meet practical requirements and exhibit high usability.
Additionally, education and training programs for healthcare
professionals and patients are vital for the successful
adoption of DT technology. Healthcare professionals must
comprehend and utilize DT data to provide personalized and
effective care, while patients need training to navigate and
interpret DT information.

F. COMPLEX MODEL DEVELOPMENT
Creating accurate models for complex physiological systems
or diseases requires an in-depth understanding of underlying
biological processes. Representing these processes effec-
tively in virtual models is a challenging task that demands
expertise in both healthcare and technology [25].

G. DATA COLLECTION AND MANAGEMENT
Human DTs require deep and detailed datasets, but existing
Electronic Health Records (EHR) designs are heterogeneous
and challenging to navigate. Extracting information from
unstructured formats requires manual effort or the imple-
mentation of natural language processing technologies. The
quality of data from hospital data collection processes,
often reliant on blood tests and imaging systems, presents
challenges, with data collection being expensive and time-
consuming.

H. PROCESS AND INTERFACE DESIGN
Despite being labelled as fully autonomous, DT applications
require interdisciplinary knowledge due to the complexity of
human beings. User-friendly interfaces for DTs in healthcare
are lacking, hindering effective communication among soft-
ware, patients, and physicians. Mistrust on Decision Points:
Physicians’. Mistrust of decisions derived from algorithms
and big data stems from the lack of transparent explanations.
Scepticism arises due to concerns about misdiagnosis and
improper treatment.

I. FEAR OF CLINICIAN REPLACEMENT
The broader use of DTs in clinical tasks may evoke fears of
clinician replacement. While DTs may outperform clinicians
in certain scenarios, concerns about decision points and the
need for adaptation to clinicians’ needs and workflows are
prevalent.

In summary, while there has been notable progress in
integrating DTs into healthcare, we should systematically
address these challenges to facilitate widespread adoption
and maximize the benefits for patients and society [39].
Involving healthcare professionals, data scientists, tech-
nologists, policymakers, and regulatory bodies is crucial.
Investment in research, standardization initiatives, and the

establishment of robust governance frameworks are essential
steps to unlock the full potential of DTs in healthcare while
mitigating these concerns. It is imperative to address these
challenges systematically to ensure the successful integration
and sustainable use of DHTs in healthcare settings.

IX. CONCLUSION
In conclusion, this paper has provided a comprehensive
review of the current applications of DTs in healthcare,
shedding light on their immense potential while acknowl-
edging existing barriers that hinder widespread adoption.
The integration of DTs into medical decision-making is
impeded by computational, ethical, and cultural concerns
impede the integration of DTs into medical decision-making,
underscoring the importance of simultaneous evolution in
technological capacity and cultural acceptance, fostering an
environment of trust.

The recommendations put forth include the incorporation
of DTs in education programs and national pilot-diffusion
projects to prevent entropy and miscoordination. We empha-
size that while DTs can significantly support medical
decision-making, they should not replace clinical decision-
making, and caution against excessive reliance on technology
alone is warranted.

Addressing challenges such as data bias and the ethical
implications of genetic profiling, along with building trust in
decision points derived from algorithms, remains pivotal. The
paper underscores the need for developing ad-hoc methods to
incorporate DTs into clinical trials and evidence generation,
emphasizing the evolving nature of support within the
scientific community.

Moreover, DT applications in construction and healthcare
are gaining traction. In construction, DTs aid in repre-
senting the as-built versus as-designed project, minimizing
errors, and improving information flow. In healthcare, DTs
contribute to the discovery of illnesses, experimentation
with treatments, and enhancement of surgery preparation by
creating accurate full-dimensional human body models.

The technological advancements in AI, IoT, and cloud
computing have propelled the rapid evolution of DT solu-
tions, finding applications across various industries. The
paper highlights AI-enabled ’ ability to simulate com-
plex real-world systems, continuously identify improvement
areas, and optimize systems design to increase efficiency.

In essence, as we move into the future, DTs are positioned
to expand their reach, combining with emerging technologies
for a more immersive experience and unlocking novel
applications that have the potential to make a significant
positive impact on diverse sectors.
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