IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 29 March 2024, accepted 19 April 2024, date of publication 13 May 2024, date of current version 20 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3399732

== RESEARCH ARTICLE

A Study of Sleep Time Alignment of CPU Cores

for Power Saving

IKUO OTANI™ AND KEI FUJIMOTO

NTT Network Innovation Center, NTT Corporation, Tokyo 180-8585, Japan

Corresponding author: Ikuo Otani (ikuo.otani @ntt.com)

ABSTRACT Ecxisting processing models take an immediate processing model that starts processing tasks
as soon as a task arrives. This is wasteful in terms of power consumption, because the power-saving
mechanisms of CPUs cannot work effectively. To suppress the increase in server power consumption,
we propose a power-saving processing model. In this model, multiple tasks are processed together and
the sleep timing of each logical core is aligned so that the C-state of the physical core can be put into a
deep state. We implemented the proposed method and evaluated its performance on multiple traffic models.
Results showed that it can reduce server power consumption with little effect on the processing performance

per second.

INDEX TERMS CPU core, sleep, C-state, power saving.

I. INTRODUCTION

In recent years, network traffic has exploded with the
spread of devices such as smartphones and the growth of
online video-streaming. Part of this traffic is processed by
general-purpose servers located in a data center of a network
operator or service provider. More and more servers are
needed to cope with the network traffic, and the total power
in the data center will increase significantly. According to
one estimate [1], the power consumption of the servers
is predicted to be about 3,400 times greater in 2050 than
in 2018. This will not only affect the management of
network operators and service providers but also hinder the
low-carbonization of society as a whole.

General-purpose server hardware has been enhanced with
power-saving mechanisms to solve the problem of power
consumption. Recent CPUs can reduce power consumption
considerably by setting appropriate conditions. For example,
by using Low Power Idle (LPI, also called C-state), which
takes advantage of the idle state of the CPU, power
consumption can be reduced by about 4W per CPU core [2].
On the other hand, the application side does not take full
advantage of the power-saving mechanism of the server.
This is because applications running on general-purpose

The associate editor coordinating the review of this manuscript and

approving it for publication was Abdel-Hamid Soliman

servers use a processing execution model that is incompatible
with power-saving mechanisms. In the processing execution
model, the CPU immediately starts processing when a
processing request arrives at the application. Even if C-state
is used as one of the power-saving mechanisms, the CPU
can be woken up from sleep by processing requests in small
intervals, so the power-saving effect will be small. In this
paper, we call the above processing model the immediate
processing model.

We aim to create a technology to further reduce power
consumption of servers by maximizing the use of CPU
power-saving mechanisms. The technology should be highly
versatile and be able to be used in many data center servers
to reduce power consumption. Therefore, the technology
needs to meet two requirements. Requirement (a) is that it
is applicable to a wide range of applications, not limited
to specific applications. Requirement (b) is that it does
not modify the applications themselves. For this purpose,
we devised a power-saving processing model instead of an
immediate processing model. In the power-saving processing
model, even if a request arrives, the application can stop
processing once and force the CPU to sleep. Then, the
processing is resumed after the CPU returns from sleep.
We implemented the power-saving processing model and
evaluated its power-saving effect and performance impact on
several traffic models.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

67416

For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 12, 2024

https://orcid.org/0009-0009-5450-7089
https://orcid.org/0000-0001-7436-6978
https://orcid.org/0000-0001-7382-1107

1. Otani, K. Fujimoto: Study of Sleep Time Alignment of CPU Cores for Power Saving

IEEE Access

The rest of this paper is organized as follows. In Sect.
II, we introduce existing research using CPU power-saving
mechanisms. In Sect. III, we explain why the existing
processing model increases power consumption. In Sect.
IV, we outline our proposed method and explain how the
model saves power. In Sect. V, we evaluate the power saving
effect and performance impact of the proposed method on
applications. In Sect. VI we conclude and discuss future
work.

Il. RELATED WORK
This section introduces related research on server power
saving by utilizing CPU power saving mechanisms.

CARB [3] is a power-saving technology that uses the
request arrival rate and response time to calculate the
minimum number of cores required to meet service level
agreements (SLA) and reduce the number of active CPU
cores. However, it violates the requirement (a) because its
inability to be applied under conditions where applications
are pinned to cores means it cannot be applied to applications
where pinning to a specific core is desired.

WASP [4] divides servers into active/sleep server pools
and transitions between each server pool in accordance with
the amount of processing in the server. In addition, the sleep
state of the servers is dropped in stages while also utilizing a
delay timer. However, apps must be modified to scale across
multiple servers, which does not meet requirement (b).

Peafowl [5] saves power by scaling in the threads that
process requests in accordance with the amount of workload,
thereby reducing the number of active CPU cores during
periods of low load. However, the application must be
modified to scale in and out of threads, which does not meet
requirement (b).

YAWN [6] uses machine learning to calculate the appropri-
ate C-state residence time on behalf of the C-state governor
and performs C-state transitions. It also reduces latency by
allocating requests so as to avoid causing C-state transitions
and sleeping cores as much as possible. However, apps need
to support request load-balancing. This violates requirement
(a) because YAWN cannot be applied to applications that are
not suitable for load-balancing and must be processed in a
specific thread.

Dynsleep [7] achieves a deep sleep state by delaying the
timing of task processing as much as possible within the
latency requirements and processing tasks together. However,
apps needs to calculate the allowable delay time to predict
the randomness of the request arrival interval and processing
time, which violates requirement (b).

uDPM [2] uses a statistical model to predict processing
time when a request arrives and delays processing until the
appropriate timing to meet the processing deadline. If the
processing deadline is exceeded at the current frequency,
the frequency will increase. Although not explicitly stated,
a queue to hold requests and a function to manage the queue
would need to be added to the application like Dynsleep.

VOLUME 12, 2024

IIl. ANALYSIS OF POWER CONSUMPTION IN EXISTING
PROCESSING MODEL

In this section, we analyze why existing immediate pro-
cessing models fail to take advantage of CPU power-saving
mechanisms and to reduce power.

A. POWER-SAVING MECHANISM OF CPU

Various vendors produce CPUs, many of which have power-
saving mechanisms. For example, most Intel CPUs have
LPI (C-state) and Dynamic Voltage and Frequency Scaling
(DVES, also called P-state) as power-saving mechanisms.
Since most data centers have Intel CPUs, in this subsection,
we provide an overview of C-state and P-state, which
significantly affect CPU power.

1) C-STATE

LPI (C-state) puts the CPU to sleep and reduces power by
dropping the power consumption elements of the CPU in
stages when the CPU is inactive. In C-state, CO represents
the active state, and C1 or higher represents the idle state [8].
The larger the number, the more power consumption factors
are eliminated and the deeper the sleep state. The deeper the
sleep state, the greater the power-saving effect, but the longer
the wake-up time to return to the original active state. C-
state is a hierarchical structure. C-state controls logical cores
(hardware threads) when Simultaneous Multi-Threading
(SMT) is used. Core C-state controls the physical core, and
package C-state controls the CPU package (socket) [9].

2) P-STATE

DVES (P-state) saves power by reducing the frequency of the
CPU core and the supply voltage in the active state of the
CPU. The lower the CPU frequency, the lower the voltage
and power [8]. However, at the same time, the performance
that the CPU can deliver is also reduced. Therefore, P-
state dynamically reduces frequency and voltage when high
performance is not needed.

As mentioned in Sect. II, many existing studies have
proposed power saving method by utilizing C-state and P-
state. However, existing studies have not attempted to match
the control timing of multiple logical cores when using SMT
to drop the physical core into a power-saving state. In Sect.
IV, we propose a method to reduce power consumption of a
physical core by coordinating the control timing of two logi-
cal cores associated with one physical core. This idea could be
used not only for C-state control but also for P-state control.

B. POWER CONSUMPTION WITH EXISTING PROCESSING
MODEL

In this subsection, we explain how power is consumed
wastefully in the immediate processing model.

1) CONTINUOUS SHALLOW SLEEPS
When no particular process is being executed, the logical
cores of the CPU are in sleep mode. The longer this state lasts,

67417

IEEE Access

1. Otani, K. Fujimoto: Study of Sleep Time Alignment of CPU Cores for Power Saving

(1) Continuous
Shallow Sleeps
Physical

Core #0 OESOEYOENOENO
NN R
Core #0

Physical
Core #0

Logical
Core #0

(2) Sleep
- Timing Gap

.

Core #1

Legend
@ CCO (Active) @ CC1 (Shallow Sleep)

FIGURE 1. Power consumption factors in existing processing model.

the more power is saved. In the immediate processing model,
once a processing task arrives, the logical core immediately
wakes up and starts processing. After a series of processing
tasks is completed, the logical core sleeps again. If processing
tasks come frequently, the logical core repeats a short loop of
waking and sleeping. The logical core does not enter a deep
sleep state and repeats shallow sleep, and the power-saving
effect becomes small. We call this “continuous shallow
sleeps™.

2) SLEEP TIMING GAP

A logical core can sleep if there is no processing task
on it, but a physical core cannot sleep unless all logical
cores on it are sleeping. Moreover, core C-state is capped
at the shallower one, so the physical core cannot enter
deep sleep. In other words, power cannot be saved unless
all the processing timings on the same physical core are
synchronized. In the immediate processing model, however,
each logical core operates independently when a processing
task arrives. Because the processing timings do not align
among the logical cores, the physical cores cannot fall in
deep sleep. We call this “sleep timing gap’. These power
consumption factors are illustrated in Fig. 1.

C. IMPACT ANALYSIS FOR MULTIPLE TRAFFIC MODELS

The two power consumption factors in the previous
subsection can occur in most services. For example, they
can occur with applications such as Network Function
Virtualization (NFV), Artificial Intelligence (Al) inference,
and High-Performance Computing (HPC). The following
are examples of workload types. In a periodic workload,
tasks are generated in a certain cycle and the tasks are
processed at the time they are generated. In a random
workload, tasks are generated at random times and the
tasks are processed at the time they are generated. In a
batch processing workload, multiple tasks are aggregated and
processed in batches at specific times. In this paper, we take as

67418

(a) Periodic Request
with Immediate Processing Model

Physical (1) Continuous Shallow Sleeps
Core #0 Data Processing Period " IS

Core 70| NN ' -/
—

Logical
Core #1

(b) Periodic Request from Multiple Users

with Immediate Processing Model

(1) Continuous Shallow Sleeps

(2) Sleep

Timing Gap
_—

3 (2) Sleep

/ /‘/ Timing Gap
%Time

(c) Independent Request
with Immediate Processing Model

Physical (1) Continuous Shallow Sleeps
Core #0 y
Logical -
Core #0

) (2) Sleep
Pl S ¥~ Timing Gap
Core #1 Time

FIGURE 2. Immediate processing model impact on traffic models.

an example an NFV-like application that processes network
traffic and analyze the impact of each issue on several traffic
models. We use three traffic models as examples for our
case studies. The first is ““Periodic Request™. This is traffic
that arrives regularly and needs to be processed completely
before the next request. The second is ‘“‘Periodic Request
from Multiple Users”. This is traffic that arrives regularly
from multiple users and needs to be processed completely
before the users’ next request. The third is ‘“‘Independent
Request”. This is traffic that arrives independently and does
not need to be processed completely until the next request.
In other words, this traffic that can be batched and processed
together.

1) IMPACT ON PERIODIC REQUEST

In media processing such as IP telephony, web conferencing,
and video distribution, requests arrive periodically in a fixed
period and processing begins as soon as a request arrives.
Figure 2 (a) shows the periodic request traffic with the
immediate processing model. If the data processing period
is short, continuous shallow sleep can occur. However, if the
data processing period is long, such as several 10 ms, the
logic core can sleep deeply. Thus, the next sleep timing gap
is more important. In the figure, the sleep timings of logical
cores 0 and 1 are out of sync. This situation can occur when
logical cores are processing packets from different sessions.
This causes the sleep timing gap. If the application is unable
to complete processing before the deadline, an error can occur
and/or Quality of Service (QoS) can drop. The immediate
processing model is certainly suitable from the perspective
of meeting such deadlines. However, it generates power waste
such as the sleep timing gap, and there remains room to take
advantage of C-states.

VOLUME 12, 2024

1. Otani, K. Fujimoto: Study of Sleep Time Alignment of CPU Cores for Power Saving

IEEE Access

2) IMPACT ON PERIODIC REQUEST FROM MULTIPLE USERS
For example, in web conferencing, the tasks are processed
as soon as the requests from multiple users arrive. Figure 2
(b) shows the periodic request traffic from multiple users
with immediate processing model. Requests from users 1, 2,
and 3 arrive at logical core 0, and those of users 4, 5, and
6 arrive at logical core 1. Because tasks from multiple users
are processed on one logical core, the processing interval
becomes shorter, and the impact of continuous shallow sleeps
is more pronounced than in III-C1. In addition, because the
amount of processing and number of sleeps increases, the
number of times when sleeps are not aligned among logical
cores increases. Thus, the impact of sleep timing gap is also
more pronounced than in III-C1. In this case, there remains
room for power consumption reduction.

3) IMPACT ON INDEPENDENT REQUEST

For example, in a typical web server, independent requests
arrive from many users. Figure 2 (c) shows the independent
request traffic with the immediate processing model. Because
the requests come in irregularly, the CPU is woken up
occasionally, resulting in continuous shallow sleeps. Because
the timing of incoming requests for each of the multiple
logical cores of the SMT does not align, the sleep timing
gap also occurs. The immediate processing model is suitable
when performance requirements are strict, such as when there
is a deadline, but in this case, the requirements are often not
that strict. Therefore, it is worth considering ways to save
power other than the existing model. We examine whether
these issues can be solved in the rest of this paper.

IV. PROPOSED METHOD

We proposed and implemented a power-saving method
that takes advantage of the CPU power-saving mechanism.
We describe our proposed method and explain how the model
saves power.

A. OUTLINE OF PROPOSED METHOD

When adopting the immediate processing model, the power
saving potential of longer and deeper sleep cannot be taken
advantage of. From a different perspective, this means
that there is still room for power saving. In Sect. I1II-B,
we mentioned that the extra power consuming factors in
the immediate processing model are (1) continuous shallow
sleeps and (2) the sleep timing gap. The key idea of our
proposed method for power saving is to create a forced sleep
time by aligning the sleep time of logical cores on the physical
cores so that the physical cores have time to enter deep
sleep. This can solve the problem of (1) continuous shallow
sleeps, because it allows a forced sleep with a longer time.
In addition, the timing of logical cores for processing and
sleeping can be aligned, thus resolving (2) the sleep timing
gap. Figure 3 shows how the proposed method aligns the
sleep timing of logical cores. The difficulty here, however,
is that forcing multiple logical cores to sleep can significantly

VOLUME 12, 2024

Forced Sleep Duration

—

Logical

| 1l Time
__

7 I Z// I
Legend

@ CCO (Active) @ CC6 (Deep Sleep)

< _LSleep Injection - Wakeup

FIGURE 3. Power-saving mechanism of the proposed method.

User Application (App)
Data Processing Threads Preempt

read aaa- a >'—|

|| Forced Sleep Injector

[Sleep Info
‘ timerfd ‘ ‘ Powercap Driver
0S Kernel Threads
| hrtimer@(Qaa- Q

l l l pla}i_idle_precise
‘ Kernel Scheduler
|

Driver l cpuidle_enter
| cpuidie Driver |

Hardware Logical Cores imwait

(HW) | 0000 |

FIGURE 4. Architecture of proposed method.

impact performance. To avoid impacting performance, the
proposed method is designed to take a sleep duration and
sleep period considering the processing time and period of
the application. The details of each of these considerations
and implementation examples are described in the rest of this
section.

B. DETAILS OF PROPOSED METHOD

1) FORCED SLEEP INJECTION

First, we explain the forced sleep injection function, which is
the main component of our proposed method. We introduce
a sleep thread in each logical core, and the logical core is put
to sleep when the thread issues a sleep instruction. The sleep
thread is set to a higher priority than a user application so that
the thread can preempt while the application is running. The
sleep thread can specify a sleep duration on a timer to sleep
each physical core for a specified period of time. Also, the
sleep thread can specify a maximum latency that limits the
deepest C-state.

The implementaion of the proposed method is shown in
Fig. 4. The proposed method is roughly divided into a forced
sleep injector (FSI) and a group of Linux kernel drivers. The
reason for this is to make it easier to change the logic later.

67419

IEEE Access

1. Otani, K. Fujimoto: Study of Sleep Time Alignment of CPU Cores for Power Saving

In addition, the deep kernel part is kept simple to prevent
system stability degrading due to bugs and other problems.
The reason for utilizing existing kernel drivers is that mwait
must be issued to drop C-state, but it can only be issued from
ring0 (kernel space).

FSI is the brain of the proposed method and determines
the logical core to be controlled, sleep duration, sleep period,
and so on. FSI should have an interface to give and receive
parameters from the user, internal logic to determine sleep
time, and an interface to pass sleep information to the Linux
kernel. FSI can be implemented as a kernel module to be
embedded in the Linux kernel. This allows FSI to use kernel
drivers directly without additional user interface. Also, FSI
module can be unloaded when forced sleep is not needed.
In the hierarchy below FSI, CPU cores are controlled to sleep
according to the sleep information determined by FSI. For
this purpose, a function to create and manage sleep threads,
a scheduler to schedule idle time, and a driver to control
the CPU cores during idle time are required. Existing kernel
drivers can be used to implement the above. The powercap
driver creates a Linux kernel thread for each logical core
and executes sleep. The Linux kernel scheduler schedules
idle class tasks. The C-state (cpuidle) driver issues a mwait
instruction to the logical core and actually puts the CPU to
sleep.

Forced sleep injection is executed as follows. The sleep
thread is set to high priority (SCHED_FIFO) to preempt
the application thread. The sleep thread preempts the
running application when it becomes ready to execute itself.
The sleep thread issues a Linux kernel sleep instruction
(play_idle_precise) and specifies the sleep duration and
maximum latency. When the sleep instruction is issued, the
sleep thread enters a non-preemptable state to avoid context
switch. The C-state driver determines the C-state using the
maximum latency as a hint. The sleep thread sets a timer
for the sleep period and enters the idle state. When the timer
expires, the sleep thread wakes up and enters the preemptable
state. If the application was running earlier, Linux kernel
switches the context and the application obtains the execution
time.

2) DETERMINATION OF SLEEP CONDITIONS

In forcing sleep, the sleep duration and timing should
be considered to prevent performance degradation and
maximize power savings. For periodic request, the execution
time can be estimated on the basis of past results. The sleep
duration is determined by subtracting this execution time
from the execution period. A certain safety factor can be
applied to avoid performance degradation. It is better to use
the request execution period as the sleep period. If the sleep
period is different from that of the application, the number of
times the application sleeps and wakes will increase, which
can affect performance. The best timing for the start of sleep
is after the estimated execution time if possible, but this is not
a requirement.

67420

In independent request processing, the arrival of a request
cannot be predicted, so the sleep duration and period are
determined to some extent by predetermination. The sleep
duration should be long enough to allow the CPU to fall into
a deep enough core C-state and should not exceed the upper
processing time limit of the application. The CPU utilization
can be used to determine the sleep period. For example, the
idle ratio (100% - CPU utilization) is used to determine the
sleep ratio. To calculate the sleep period, the sleep duration is
divided by the sleep ratio.

C. POINTS TO NOTE IN THE PROPOSAL METHOD

To increase the effectiveness of the proposed method, it is
better to place threads that handle the same amount of load in
logical cores on the same physical core. This is because, even
if the sleep timing is aligned by FSI, if the load is different,
one of the logical cores is active and the physical core cannot
sleep. In addition, to prevent thread placement from being
changed, it is recommended to exclude the target logical core
from the kernel scheduler by setting isolcpus.

If the forced sleep is canceled in the middle of the
sleep, the power saving effect becomes small. The sleep
thread is processed in SCHED_FIFO, but when the hardware
interrupt is raised, the interruption is processed. Therefore,
the data processing threads should be kept in a state where
hardware interrupts occur as little as possible. For example,
two methods can be used. One is to set irgbalance to a logical
core separate from the data processing thread. The other is to
separate a polling thread from the data processing thread if
any.

The applicability of the proposed method to each workload
is assumed to be as follows. For periodic workloads, tasks
arrive one after another in a certain cycle. The proposed
method allows the system to sleep steadily until the next
task after processing one task, thus achieving a power-
saving effect. Furthermore, the power-saving effect can be
increased by aligning the sleep timing of the logical cores. For
random workloads, tasks arrive at unpredictable and random
timing. If the allowable latency for each task is long, the
proposed method can be effective by forcing the system to
sleep for a certain period of time and processing multiple
tasks at once. Similar to periodic workloads, aligning the
sleep timing of logical cores is also effective. On the other
hand, if the allowable latency for each task is short, it is
difficult to process multiple tasks in batch and the proposed
method cannot be applied. In batch processing workloads,
a large number of tasks are aggregated and processed at
once. Because the tasks are already aggregated, it would be
inefficient to stop processing and sleep in the middle of the
processing. Therefore, the effect of the proposed method is
considered to be small.

V. PERFORMANCE EVALUATION

We evaluated how much power the proposed method can save
compared to the existing processing model. We also evaluated
whether the forced sleep will affect the performance of

VOLUME 12, 2024

1. Otani, K. Fujimoto: Study of Sleep Time Alignment of CPU Cores for Power Saving

IEEE Access

TABLE 1. Server specifications.

Server
Machine Dell PowerEdge R640
CPU Intel Xeon Silver 4208 2.1GHz 1 socket
8 physical cores (16 logical cores)
Memory 32 GB
Ubuntu 22.04.03 LTS
OS/Kernel 6.5.0-15-generic
Driver C-state driver: intel_idle (menu governor)
P-state driver: intel_ptate (performance governor)
ipmitool

. Data Processing Threads

Network Processing (Loaded on 14 Logical Cores)

O DOIPIDDDN [thread 0 }Sit_)ling
‘ NINRNININININIGS

Y
stress-ng Q Sleep Threads
(Loaded on 14 Logical Cores)

FIGURE 5. Core assignment.

applications. As a performance indicator, we measured
throughput because it is thought to be smaller due to dropped
requests during the sleep period. Also, we measured request
processing time because it is thought to be longer due to
injected sleep time and wake-up latency.

A. EVALUATION CONDITIONS

We evaluated power and performance with three typical
traffic models analyzed in Sect. III-C. The first is periodic
request, which assumes voice data arriving at 20-ms intervals,
such as real-time transport protocol (RTP) packets for IP
telephony. The second is periodic requests from multiple
users, which assumes voice data arriving at 20-ms intervals,
like RTP packets for web conferencing. The third is
independent request processing, which assumes HyperText
Transfer Protocol (HTTP) requests of 500 requests per second
(rps). The first and second traffic models correspond to
periodic workloads, while the third traffic model corresponds
to random workloads. Therefore, as discussed in Sect. IV-C,
the proposed method is expected to be effective for these
traffic models.

We prepared a data processing application that follows
the immediate processing model. The app starts processing
on a periodic timer, performs a simple CPU instruction,
and sleeps until the next timer. The load size of a request
and the arrival interval can be adjusted. It is assumed that
hardware interrupts caused by network arrivals are pinned
to be accepted by a dedicated core for network processing.
Therefore, the target cores should simply process workloads.
For baseline data, we acquired the power and the performance
data while the data processing threads were working. Each
logical core sleeps at its own timing under the control of the
existing Linux kernel and driver. On the other hand, for the
proposed method, we acquired data while sleep threads were

VOLUME 12, 2024

Immediate Legend .
Processing Model Data Processing

(Baseline) Threads

Data Processing Period (20ms)
() Sleep Threads

1. Wakeup & read timerfd
2. Process
(high/medium load size) |3, nanosleep

— | until next timer

Logical
Core #0 .

Processing Time (Measured)

Logical
et e - .

Proposed Method

Sleep Period (20ms)

iSleep Duration
(8ms/10ms)

Logical
Core #0

Logical
Core #1

Q
Q
Q
Q

FIGURE 6. Baseline and proposed method in periodic request.

working in addition to the above app. Each logical core sleeps
at the same timing under the control of FSI. By comparing
the baseline and the proposed method, we can evaluate the
power-saving effect of forcing the logical cores to sleep at
the same timing.

The sleep period of the proposed method was set to
20 ms, which is the same period of RTP pakcets for IP
telephony. Data processing threads consumed about 40% of
the CPU time for a medium load. Because about 8 ms of
the 20 ms period was consumed to process tasks, we used
10-ms sleep duration as the maximum value and 8-ms sleep
duration as a conservative value. For power evaluation, server
power increment from the no-load state was collected with
ipmitool. To suppress temperature and power blurring due to
environmental factors, the power was acquired three times
over a sufficiently long period of time. For performance
evaluation, throughput and request processing time were
collected from the application output. We tried five times and
averaged the performance values.

The server specifications are listed in Table 1, and core
assignment is shown in Fig. 5. One logical core is 100%
loaded by stress-ng. The reason for this is that when all
physical cores are idle, the package C-state becomes PC6
instead of the core C-state.

B. EVALUATION FOR PERIODIC REQUEST
In a periodic request case, each request has to be processed
before the next request. We aim to reveal whether the CPU
can enter a deep sleep by aligning the sleep timing of each
logical core. We tried a request of medium (1-1) or high (1-2)
load in a 20 ms period to investigate the proposed method’s
dependency on the load size for periodic request. Figure 6
shows how the baseline and proposed method work.

Table 2 shows the results of power evaluation. It can
be seen that power-saving effects are obtained. In addition,

67421

IEEE Access

1. Otani, K. Fujimoto: Study of Sleep Time Alignment of CPU Cores for Power Saving

TABLE 2. Power evaluation results for periodic request.

Load Size Baseline 8-ms sleep 10-ms sleep
(1-1) Medium 13.2W 10.3W (-2.9W) | 8.9W (-4.3W)
(1-2) High 15.2W 1T.9W (-3.3W) | 9.2W (-6.0W)

TABLE 3. Throughput evaluation results for periodic request.

Load Size Baseline 8-ms sleep 10-ms sleep
(1-1) Medium | 50.01 rps 50.01 rps 50.01 rps
(1-2) High 50.01rps | 49.63 rps (-0.76%) | 41.49 rps (-17%)
< 40,000 38,137
% 35,000
g 30,000
=
£ 25,000 17,725 23,502
g 20,000
2 15,308
o 15,000
& 10,504
g 10,000 8,432
<
o l I
0
Medium Load High Load
M Baseline 8 ms sleep 10 ms sleep

FIGURE 7. Processing time for periodic request.

the amount of reduction increases as the sleep period is
increased. The combination of medium load (1-1) and 10-
ms sleep reduces power by 4.3W (33% of baseline power),
and the combination of high load (1-2) and 10-ms sleep
reduces power by 6.0W (39% of baseline power). However,
because power may reduce due to lower throughput, we
should consider the performance impact to determine if this
reduction is appropriate.

Table 3 shows the results of the throughput evaluation.
We can see that when the sleep period is short, there is
no or slight impact. However, if the sleep period becomes
longer, we can see that performance is affected. The
abovementioned combination of high load (1-2) and 10-ms
sleep actually degraded performance. Also, the combination
of high load (10.5 ms processing time in the baseline) and 8-
ms sleep should ideally have no performance impact, but the
performance is slightly degraded. This means a safety factor
needs to be applied when using the proposed method in the
periodic request case. Because determining the optimal sleep
time considering the safety factor is difficult to do manually,
it is a future work to automatically calculate the sleep time.

Figure 7 shows the results of the request processing time
evaluation. It can be seen that the processing time increases
as the sleep period becomes longer. In the medium load (1-1)
case, the processing time does not exceed 20 ms up to 10-ms
sleep, indicating that power-saving can be achieved without
affecting performance. On the other hand, in the high load
(1-2) case, the processing time exceeds 20 ms even after 8-ms
sleep, which leads to the throughput degradation.

67422

Immediate Legend _
Processing Model Data Processing

(Baseline) Threads

Data Processing Period (20ms)
() Sleep Threads

Logical

Core #0 l(
10

=

Proceséiﬁg Time (Measured)

Sleep Period (20ms)

Logical
Core #1 t
10

Proposed Method

3

Sleep Duration
(8ms/10ms)

Logical Q R S i
Core #0 l % l %
&10 : ;

Logical Q T :

Core #1 l(
10

FIGURE 8. Baseline and proposed method in periodic requests from
multiple users.

TABLE 4. Power evaluation results for periodic requests from multiple
users.

Num of Users | Baseline 8-ms sleep 10-ms sleep
(2-1) 1 User 1.6W 1.7W (+0.1W) | 1.8W (+0.2W)
(2-2) 10 Users 13.5W 10.8W (-2.7W) | 9.9W (-3.6W)

C. EVALUATION FOR PERIODIC REQUEST FROM MULTIPLE
USERS
In the case of periodic requests from multiple users, each
request has to be processed before the users’ next request.
We aim to reveal whether the CPU can enter a deep sleep
by processing a batch of requests from multiple users.
We tried (2-2) 10 requests (i.e. 10 users) in a 20-ms period to
investigate the proposed method’s applicability. The load size
of a request is set to one-tenth of (1-1) to host 10 users. For
reference, results for a one-user (2-1) case are also obtained.
Figure 8 shows how the baseline and proposed method work.
Table 2 shows the results of power evaluation, and Table 5
shows throughput. It can be seen that power-saving effects
are obtained with a slight throughput impact in the 10-user
case. Figure 9 shows the results of the request processing
time evaluation. The average delay is well below 20 ms and
seemingly does not affect throughput. On the basis of these
findings, we developed the following hypotheses. Because
multiple users’ requests are processed together, the tail
latency may have increased in accordance with the number
of requests accumulated in the app’s queue. We checked the
experimental logs and found that the maximum processing
time actually exceeded 20 ms in some cases. It can be said that
because of the fluctuation effect compared to single users,
the safety factor needs to be considered more carefully in the
multiple-user case.

VOLUME 12, 2024

1. Otani, K. Fujimoto: Study of Sleep Time Alignment of CPU Cores for Power Saving

IEEE Access

TABLE 5. Throughput evaluation results for periodic requests from
multiple users.

Num of Users Baseline 8-ms sleep 10-ms sleep
(2-1) 1 User 50.01 rps 50.01 rps 50.01 rps
(2-2) 10 Users | 500.1rps | 500.0 rps (-0.01%) | 499.9 rps (-0.05%)

< 40,000

2

= 35,000

g

E 30,000

oo

£ 25,000

3

S 20,000

s 10,678

ED 15,000 4,071)

g 10,000 2082 8,897

B)

5,000 . 4,723
;= 0
1 User 10 Users
M Baseline 8 ms sleep 10 ms sleep

FIGURE 9. Processing time for periodic request from multiple users.

Immediate Legend
Processing Model Data Processing
(Baseline) Threads

() Sleep Threads

Physical Data Processing Period
Core #0 (2ms/1.6ms)
Logical
Core #0 ‘
Processing Time (Measured)
Logical
e INNNNRRRNENENRER

Proposed Method

Physical
Core #0

Sleep Period (20ms)

iSleep Duration
3 (8ms/10ms)

Logical Q lL ‘ ' ‘
Core #0 ‘l . .

Processing Time (Measured)
Logical Q : : __
Core #1 ‘l I I

FIGURE 10. Baseline and proposed method in periodic request.

D. EVALUATION FOR INDEPENDENT REQUEST

In the independent request case, unlike the case of periodic
requests, each request does not have to be processed before
the next request. We aim to reveal whether the CPU can enter
a deep sleep by processing a batch of independent requests
that come in short periods of time. We prepared two types of
requests for this purpose. One (3-1) has a 2-ms interval (500
rps), and the other (3-2) has a 1.6-ms interval (625 rps). Each
interval corresponds to CPU utilization of 43% and 54%,
respectively. Figure 10 shows how the baseline and proposed
method work.

Table 6 shows the results of power evaluation. It can be
seen that power-saving effects are obtained at both 2-ms
and 1.6-ms intervals. In addition, the amount of reduction
increases as the sleep period is increased. The combination of

VOLUME 12, 2024

TABLE 6. Power evaluation results for independent request.

Interval Baseline 8-ms sleep 10-ms sleep
(3-1) 2 ms 12.9W 9.9W (-3.0W) | 9.0W (-3.9W)
(3-2) 1.6 ms 15.0W 11.0W (-4.0W) | 9.1W (-5.9W)

TABLE 7. Throughput evaluation results for independent request.

Interval Baseline 8-ms sleep 10-ms sleep
(3-1) 2 ms 504.8 rps | 506.9 rps (+0.41%) | 507.7 rps (+0.77%)
(3-2) 1.6 ms | 631.11ps 625.6 rps (-0.87%) 521.1 rps (-17%)
= 600,000
2 5.1E+05
> 500,000
£
=
@ 400,000
g
§ 300,000 1.2E+05
% 2.0E+05
E" 200,000
g
B3 100,000 1.5E+04
3.9E+03 4.6E+03
2ms 1.6ms
M Baseline 8 ms sleep 10 ms sleep

FIGURE 11. Processing time for independent request.

a2-ms interval and 10-ms sleep reduces power by 3.9W (30%
of baseline power), and the combination of a 1.6-ms interval
and 10-ms sleep reduces power by 5.9W (39% of baseline
power).

Table 7 shows the results of the throughput evaluation.
We can see that when the sleep period is short, there is
no or slight impact. However, if the sleep period becomes
longer, we can see that performance is affected. The
abovementioned combination of a 1.6-ms interval (3-2) and
10-ms sleep actually degraded performance. Also, with the
1.6-ms interval, the performance is slightly affected with 8-
ms sleep. The combination of a 1.6-ms interval (54% CPU
utilization ratio) and 8-ms sleep (40% sleep ratio) should
ideally have no performance impact. This means a safety
factor needs to be applied when using the proposed method
in the independent request case.

Figure 11 shows the results of the request processing time
evaluation. It can be seen that the processing time increases
drastically as the sleep period is lengthened. The main cause
of this is that because multiple requests can be processed at
once, as more requests accumulate in the queue, the delay
increases rapidly. The 2-ms interval (3-1) and 10-ms sleep
appeared to be fine in terms of throughput, but the processing
time increased by more than 10 ms. In fact, the system fell into
a state where processing could not be completed in time, and
this is thought to have affected performance. To avoid such
increases in processing time, forced sleep should be skipped
when processing time begins to increase.

In summary, the proposed method can take advantage of
the power-saving margin that is not utilized in the immediate

67423

IEEE Access

1. Otani, K. Fujimoto: Study of Sleep Time Alignment of CPU Cores for Power Saving

processing model by aligning the sleep timing between logic
cores. The proposed method can also take advantage of the
power-saving potential that is not exploited in the immediate
processing model by processing multiple requests at once.
To avoid performance degradation, the sleep duration needs
to be determined with a sufficient safety factor. To avoid
processing time increases, forced sleep needs to be skipped
appropriately.

VI. CONCLUSION AND FUTURE WORK

To overcome the problem of power wastage with the existing
immediate processing model, we proposed, implemented,
and evaluated a method to align sleep timing among logical
cores. In the proposed method, each logical core is forced
to sleep, and the sleep timing can be aligned and multiple
requests can be processed together. When the proposed
method was applied to the traffic models of periodic requests
and independent requests, power was reduced by up to
4.3W (33%) without decreasing the throughput. Determining
appropriate sleep duration and skipping forced sleep are
needed to avoid performance impact.

The following improvements and evaluations will be
considered for future works. The sleep duration should be
automatically determined by the processing time character-
istics of the application. The sleep start timing should be
aligned after the completion of the app process to avoid
extra wake-up and sleep in the periodic request case. The
arrival timing of independent requests should be modified
in accordance with a Poisson process and the performance
evaluated again.

REFERENCES

[11 Current Status and Future Forecast of Data Center Energy Consumption
and Technical Issues, Impact Prog. Inf. Soc. Energy Consumption, Japan
Sci. Technol. Agency (JST), Tokyo, Japan, 2021.

[2] C.-H. Chou, L. N. Bhuyan, and D. Wong, “uDPM: Dynamic power
management for the microsecond era,” in Proc. IEEE Int. Symp.
High Perform. Comput. Archit. (HPCA), Feb. 2019, pp. 120-132, doi:
10.1109/HPCA.2019.00032.

[3] X. Zhan, R. Azimi, S. Kanev, D. Brooks, and S. Reda, “CARB:
A C-state power management arbiter for latency-critical workloads,”
IEEE Comput. Archit. Lett., vol. 16, no. 1, pp. 6-9, Jan. 2017, doi:
10.1109/LCA.2016.2537802.

[4] E Yao,J. Wu, S. Subramaniam, and G. Venkataramani, ‘“WASP: Workload
adaptive energy-latency optimization in server farms using server low-
power states,” in Proc. IEEE 10th Int. Conf. Cloud Comput. (CLOUD),
Jun. 2017, pp. 171-178, doi: 10.1109/CLOUD.2017.30.

67424

[5

=

E. Asyabi, A. Bestavros, E. Sharafzadeh, and T. Zhu, “Peafowl: In-
application CPU scheduling to reduce power consumption of in-memory
key-value stores,” in Proc. 11th ACM Symp. Cloud Comput., Oct. 2020,
pp. 150-164, doi: 10.1145/3419111.3421298.

E. Sharafzadeh, S. A. S. Kohroudi, E. Asyabi, and M. Sharifi, “Yawn:
A CPU idle-state governor for datacenter applications,” in Proc. 10th
ACM SIGOPS Asia—Pacific Workshop Syst., Aug. 2019, pp. 91-98, doi:
10.1145/3343737.3343740.

C.-H. Chou, D. Wong, and L. N. Bhuyan, “DynSleep: Fine-grained
power management for a latency-critical data center application,” in Proc.
Int. Symp. Low Power Electron. Design, Aug. 2016, pp.212-217, doi:
10.1145/2934583.2934616.

C. Gough, I. Steiner, and W. A. Saunders, Energy Efficient Servers:
Blueprints for Data Center Optimization. New York, NY, USA: Apress,
2015, doi: 10.1007/978-1-4302-6638-9.

Intel Corporation. (2011). Energy-Efficient Platforms—Considerations
for Application Software and Services. [Online]. Available:
https://www.intel.com/content/dam/doc/white-paper/energy-efficient-
platforms-2011-white-paper.pdf

[6

—

[7

—

[8

—

9

—

IKUO OTANI received the B.S. and M.S. degrees
in physics from The University of Tokyo, in
2011 and 2013, respectively. Since 2013, he has
been with NTT Network Service System Labo-
ratories, where he has engaged in improving the
efficiency of network processing in virtualized
servers. From 2019 to 2021, he engaged in devel-
oping virtualized server infrastructure for the core
network at NTT Docomo, Inc. He is currently a
Research Engineer at the NTT Network Innovation
Center. His research interests include power-aware computing and hardware-
assisted task processing. He is a member of IEICE. He received the Network
System Research Award and the Young Researcher’s Award from the IEICE
Technical Committee on Network Systems, in 2018.

KElI FUJIMOTO received the B.E. degree in
electrical and electronic engineering and the M.S.
degree in informatics from Kyoto University, in
2008 and 2010, respectively. Since 2010, he has
been with NTT Network Service System Labora-
tories, where he has engaged in the development of
a transfer system for ISDN services and research
of network-system reliability and network API.
From 2016 to 2018, he engaged in the creation
of new services related to big data at NTT West
Corporation. He is currently the Senior Manager at the NTT Network
Innovation Center. His current research interests include low-latency
networking and power-aware computing. He is a member of IEICE. He was
a recipient of the Young Researcher’s Award from the IEICE Technical
Committee on Network Systems, in 2020, the Highly Commended Paper
Award from the IEEE ITNAC, in 2021, and the Best Paper Award from the
IEICE, in 2023.

VOLUME 12, 2024

http://dx.doi.org/10.1109/HPCA.2019.00032
http://dx.doi.org/10.1109/LCA.2016.2537802
http://dx.doi.org/10.1109/CLOUD.2017.30
http://dx.doi.org/10.1145/3419111.3421298
http://dx.doi.org/10.1145/3343737.3343740
http://dx.doi.org/10.1145/2934583.2934616
http://dx.doi.org/10.1007/978-1-4302-6638-9

