
Received 13 March 2024, accepted 4 May 2024, date of publication 13 May 2024, date of current version 21 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3400167

Redefining Malware Sandboxing: Enhancing
Analysis Through Sysmon and
ELK Integration
RASMI-VLAD MAHMOUD1, MARIOS ANAGNOSTOPOULOS 1,
SERGIO PASTRANA 2, AND JENS MYRUP PEDERSEN 1
1Cyber Security Group, CMI Section, Department of Electronic Systems, Aalborg University, 2450 Copenhagen, Denmark
2Computer Security (COSEC) Lab, Department of Computer Science, Escuela Politécnica Superior, Universidad Carlos III de Madrid, 28911 Leganes, Spain

Corresponding author: Marios Anagnostopoulos (mariosa@es.aau.dk)

This work was supported by OTTO MØNSTEDS FOND.

ABSTRACT In cybersecurity, adversaries employ amyriad of tactics to evade detection and breach defenses.
Malware remains a formidable weapon in their arsenal. To counter this threat, researchers unceasingly pursue
dynamic analysis, which aims to comprehend and thwart established malware strains. This paper introduces
an innovative methodology for dynamic malware analysis while critically evaluating prevailing technologies
and their limitations. The proposed approach hinges on harnessing the capabilities of an open-source Security
Information and Event Management (SIEM) toolset, namely the Elastic-Stack. This toolset is utilized to
capture, structure, and analyze the behavioral patterns of malware without relying on any pre-existing
sandbox framework. This augmentation facilitates a profound understanding of the activities exhibited
by malware samples. With the help of the proposed ecosystem, we compile the AAU_MalData dataset
that encompasses distinctly the benign and malicious behavior. Specifically, we analyzed the behavior of
the 2,800 malware within a realistic network topology and systematically collected Windows event logs,
which serve as a comprehensive record of the malware’s actions. These event logs are precious as they
are organized in a timestamped format, providing a chronological list of system activities, such as event
descriptions, process and file details, and registry modifications. These are pivotal in comprehending the
malware’s functionality and repercussions on the compromised system. Furthermore, by incorporating the
MITRE ATT&CK framework, we leveraged the event logs to correlate the malware’s mode of operation,
delve into its Command and Control operations, and investigate its persistence mechanisms, enabling a
structured and practical approach to malware analysis. The AAU_MalData dataset, organized in a JSON
format data structure, is offered to the research community first as a proof of concept to demonstrate the
toolset’s feasibility for dynamic malware analysis and second as a potential training ground for anti-malware
mechanisms based on host and network Indicators of Compromise (IoCs).

INDEX TERMS Dynamic malware analysis, sandbox, Elasticsearch, MITRE ATT&CK, Sysmon.

I. INTRODUCTION
Contemporary cyberattacks exhibit advanced sophistication,
employing diverse techniques and methodologies to achieve
their desired impact [1]. Among the arsenal of tools leveraged
in such attacks, malware is a widely employed method

The associate editor coordinating the review of this manuscript and

approving it for publication was Kashif Saleem .

strategically designed to disrupt the target’s infrastructure
and engage in covert surveillance. Notably, these malicious
software are not limited to specific platforms or operating
systems (OS), as they are developed to operate on multiple
environments [2].

The pervasiveness of malware attacks and the proliferation
of malicious software is exhibiting a substantial surge,
demonstrating a notable increase of 22.9% in recent years [3].

68624

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-9193-8517
https://orcid.org/0000-0003-1036-6359
https://orcid.org/0000-0002-1903-2921
https://orcid.org/0000-0001-8062-3301


R.-V. Mahmoud et al.: Redefining Malware Sandboxing: Enhancing Analysis Through Sysmon and ELK Integration

Previous research identified these trends as alarming threats
that pose significant risks to computer users. The scale
of the issue is exemplified by the astonishing amount
of approximately one billion infected files reported in
January 2021 [4], and even worse, forecasting a further
escalation in the following years.

It is essential to acknowledge that malicious software not
only threatens individual end-users but also extends to diverse
entities, including governmental organizations, businesses
across various sectors, Fortune 500 companies, financial
institutions, industrial systems, medical and healthcare ser-
vices, educational institutions, and even law enforcement
agencies [5]. Thus, the detrimental consequences of malware
attacks are not limited exclusively to direct financial losses,
such as those resulting from ransomware incidents. They can
also significantly impact a company’s brand reputation and
customer base or even the security of critical infrastructures,
exacerbating the overall consequences affected entities and
society face.

Given the urgency and criticality of the issue, there is
a pressing need to proactively detect and mitigate such
malicious attempts and comprehend their mode of operation
before they can carry out their intended harm in an operational
system [6]. Consequently, thorough analysis processes of
malware samples must be pursued to understand their
characteristics and functionalities. Three primary analysis
approaches, namely static, dynamic, and hybrid methods,
are commonly employed in this domain. Furthermore,
it is imperative to investigate the continuous evolution of
evasion tactics employed by malware authors, as extensively
elucidated by [1]. These tactics can be classified into
detection-dependent and detection-independent evasions.

Detection-dependent tactics involve techniques like fin-
gerprinting, where various environmental indicators are
scrutinized to detect virtual or emulated host environ-
ments. Reverse Turing Tests analyze user behavior to
differentiate human-machine interactions from automated
processes. Targeted approaches aim to identify specific
environmental conditions required for malware activation.
On the other hand, detection-independent evasion strategies
aim to evade analysis environment detection by employing
techniques agnostic to the target environment, such as
stalling malware activities with time delays. Triggered-based
techniques activate malicious behavior based on specific
inputs from keyboards, system triggers, or network events [1].
Nonetheless, malware samples have also been developed to
execute in virtual environments since production services are
deployed there for efficiency, easy scalability, and ease of
management.

While identifying known malware poses relatively trivial
challenges, the main obstacle lies in accurately determining
the nature and characteristics of zero-day malware. Typically,
expert analysts play a pivotal role in assessing the nature of
executable files. Analysts calculate signatures that investiga-
tion tools can employ if deemed malicious to facilitate future
recognition and detection of similar malware specimens [6].

Our objective is twofold. Firstly, we aim to introduce
a dynamic malware analysis framework that can bypass
malware evasion techniques using solely Virtual Machines
(VMs) without relying on existing sandbox technologies.
Secondly, we propose to organize the generated information
into a dataset that helps to advance cybersecurity research.
Specifically, the proposed framework facilitates the analysts
to gather host and network data over an extended period
within a simulated, realistic enterprise environment. The
system leverages Sysmon, Elasticsearch, and Kibana for data
collection, storage, and visualization and offers substantial
automation for analyzing malware samples. We acknowledge
that ELK is a recommended tool for manual malware
analysis [7]. However, it does not provide mechanisms
to automatically execute numerous malware samples in
parallel and collect the relevant data for further analysis,
which is the key requirement in our research. Thus,
we extend the ELK functionality and transform it into a
framework tailored for dynamic malware analysis on a large
scale.

In detail, Sysmon event logs offer detailed information
concerning system and process behavior. They provide
valuable insights into various Indicators of Compromise
(IoCs), including processes, files, and registries, thereby
enabling the analysis of operations’ interdependencies and
subsequent child processes. Furthermore, the framework
enables the integration of MITRE ATT&CK techniques
during the data collection phase, enhancing the information
in these logs and facilitating comprehensive exploration and
analysis of the security threats and attack vectors. Finally,
to demonstrate the feasibility of the proposed framework
for dynamic malware analysis, we compile and offer the
research community the AAU_MalData dataset that includes
distinctly benign and malicious behavior. To achieve that,
we record the behavior of 2,800 malware for 25 minutes each
within a realistic network topology and capture the events
representative of their activities. The dataset is organized
in a compact data structure, namely JSON format. Such
datasets can be helpful to the security research community,
for instance, for training anti-malware mechanisms based on
host and network evidence.

In brief, the contributions of the paper at hand are
summarized as:

• A dynamic malware analysis framework based solely
on a virtualization environment to effectively bypass
malware evasion techniques without relying on existing
sandbox technologies.

• Utilization of Sysmon, Elasticsearch, and Kibana for
data collection, storage, and visualization of host and
network evidence.

• Leveraging Sysmon event logs to acquire detailed and
meaningful insights into system and process behavior,
facilitating the analysis of different events and interde-
pendencies among operations.

• Enabling the integration of MITRE ATT&CK frame-
work during data collection, thus enhancing the

VOLUME 12, 2024 68625



R.-V. Mahmoud et al.: Redefining Malware Sandboxing: Enhancing Analysis Through Sysmon and ELK Integration

information in the logs and supporting comprehensive
exploration and analysis of security threats and attack
vectors.

• Analysis of 2,800 malware with the help of the
proposed framework enables the collection of host
and network data over an extended period, resulting
in the AAU_MalData dataset representing benign and
malicious behavior. This dataset is offered publicly to
the security research community to contribute to the
anti-malware research.

The remaining sections of the paper are organized as
follows: Section II provides an overview of the current
state of the art. In contrast, Section III outlines the study’s
framework and the tools utilized. Details about the structure
and collection of the AAU_MalData dataset are provided in
Section IV, which also presents some findings. Section V
explains how malware actions can be correlated using the
MITRE ATT&CK framework. Finally, Section VI discusses
the limitations of the approach, and the paper concludes with
a summary of essential points in Section VII.

II. MALWARE ANALYSIS
Two significant types of malware analysis exist: static
analysis, where the malware’s code is reviewed without being
executed, and dynamic analysis, which essentially involves
executing the malware’s code or scripts while monitoring its
actions and behavior for subsequent analysis.

Static analysis, being practical, comes at a cost that is
not scalable and cannot be applied to every sample. As a
solution, automatic tools for malware analysis have been
developed that perform different techniques, and at the end,
a report is produced with the action taken by the malware.
Typically, the report contains a heuristic classification
concerning the benign or malicious nature of the sample [6].
Although analysis techniques have evolved drastically to
detect advanced attacks and evasion techniques over the
years, the malware authors are thriving in constructing their
software to evade and trick detection mechanisms.

Dynamic analysis aims to discover the malicious activity
without compromising the security platform [6]. In contrast
to static analysis, dynamic analysis does not rely on analyzing
source code and focuses on meaningful behavioral patterns.
Therefore, it is not prone to standard evasive techniques, such
as packing or obfuscation. However, it is liable to malware
hiding or not fully performing its action if the malware
detects that it is running inside an analysis environment.
Analyzing the malware behavior in a controlled environment
allows monitoring the program’s operation on run-time and
acquiring the process and the resources used or accessed
by the malware during its execution, like files or registry
keys. Such a controlled environment can be VMs, simulators,
emulators, or isolated machines (sandboxes) equipped with
the necessary monitoring tools. Various dynamic analysis
techniques include function call tracking, function parameter
measuring, and information flow tracking.

Several online or on-premises automated tools exist that
can produce an in-depth analysis of malware behavior and its
actions. Most existing tools and frameworks can be grouped
within two categories: inside-the-box and out-the-box [8].
Inside-the-Box or Sandbox, refers to a malware analysis
methodology that relies on utilizing pre-installed tools within
the analysis host or establishing communication between
the infected tools framework and a virtual network. On the
other hand, Out-the-box refers to a new guest OS where the
analysis tools are installed and the environment is separated
correctly. For instance, Virtual Machine Introspection (VMI)
is an out-the-box type of analysis, where the suspicious binary
is run on a VM and the analysis in another one or hypervi-
sor [8]. VMI can monitor multiple VMs simultaneously in
real-time and facilitates isolation. Therefore, kernels are not
exposed, as in the case of the in-the-box approach.

In more detail, a sandbox environment is specifically
engineered for the execution of unknown files, providing a
secure way to assess amalware’s functionality without posing
any potential threat to the attached computing system. Such
environments predominantly comprise virtualized replicas
of authentic systems meticulously designed to mimic or
accurately replicate the characteristics of the systems they
emulate. This ensures that the examined files undergo
execution within a controlled and protected setting. The
sandbox platforms play an essential role in providing an
isolated environment where the behavior of executable
files can be closely examined, and data related to their
post-execution activities can be systematically documented
and subjected to an in-depth analysis [9].

Cuckoo sandbox [10] is a popular inside-the-box tech-
nology for analysts and researchers in the industry to
perform dynamic malware studies. Cuckoo creates a virtual
environment using different virtualization technologies, like
Virtualbox, VMWare, or Xen, to collect malware behavior
data. Cuckoo operates based on an analysis manager respon-
sible for submitting the malware samples and collecting the
reports, a virtual network, and an analysis guest system that
will be infected with the malware. The analysis process is
automated through the agent that is installed on the guest
system. The Cuckoo host interacts with the guest machines
via a virtual network, while the users can submit and control
samples via the GUI or command line through the manager.
Cuckoo’s drawback is represented by the in-guest agent
(python agent) that needs to be installed on the analysis VM,
since it can be fingerprinted by the malware, which limits the
effectiveness of the analysis framework [1].

The most representative tool for VMI is Drakvuf [11],
capable of tracing Kernel and user-level malware by observ-
ing process execution, file operations, and system calls as
kernel functions at the hypervisor level. Drakvuf injection
technique allows it to monitor the instructions written into
the VM memory at the location of interest and, therefore,
can detect kernel rootkits and limits malware capability to
perform evasive techniques. Drakvuf has excellent potential
as amodern and open-source project maintained by the CERT

68626 VOLUME 12, 2024



R.-V. Mahmoud et al.: Redefining Malware Sandboxing: Enhancing Analysis Through Sysmon and ELK Integration

of Poland. However, it cannot collect network data from the
environment where the malware is analyzed.

As it is evident from the previous discussion, there are
multiple types of platforms [12] that can provide insights
into how malware samples are operating by monitoring
their behavior, either as they are attached to the analysis
framework or by binding them to the memory of the device.
However, some of these tools tend to be cumbersome
in their configuration, or they have a high subscription
cost. Furthermore, [13] underscores the significance of
privacy considerations, highlighting that not all samples
can be submitted to cloud-based analysis frameworks. This
limitation is particularly consistent in the case of malware
samples, where the sensitive nature of the data and the
potential risks associated with cloud-based analysis further
restrict their submission.

Furthermore, the virtual environments where malware
is analyzed differ from the real ones, so malicious code
can detect that it is running in an analysis platform and
limit its activity or not be triggered at all. For instance,
the malware may probe for an active Internet connection
or remain dormant and avoid conducting its malicious
purposes for a period of time after the infection to stall
the analysis process. It should also be noted that sandbox
technologies are susceptible to evasion techniques due
to the potential presence of artifacts from the analysis
tools or other virtualized components. Frequently, these
environments may also incorporate debugging tools, which
are commonly employed for software analysis purposes.
Moreover, many of these technologies rely on time-based
analysis, assuming that malware will initiate malicious
actions shortly after infection. This approach renders them
less effective for extensive analysis or malware’s tactic to
remain dormant during its initial phase, a phenomenon
referred to as ‘‘stalling’’. Similarly, ‘‘out-the-box’’ sandbox
technologies cannot capture and record network activity;
thus, they rely exclusively on kernel-level tracing mecha-
nisms, which results in a shortcoming in monitoring and
recording Command and Control (C&C) activities [14].
To verify these limitations, Chen et al. [15] demonstrated
that merely 2% of the considered malware samples exhibited
malicious activity when they were examined in an analysis
environment.

To overcome these limitations, we present a framework
for analyzing malware samples in the following section.
This system relies on Elasticsearch as its foundation for
data storage and indexing, facilitating rapid search and
analysis. Kibana also serves as a user-friendly interface for
extracting valuable insights, while Sysmon generates logs
containing critical security and operational data from system
events.

This way, we eliminate the requirement of utilizing a
sandbox environment and overcome the limitations posed by
such techniques. In addition, we deploy several anti-evasion
techniques to restrict the malware capability for fingerprint-
ing the analysis environment.

III. PROPOSED FRAMEWORK
This section presents our approach to malware behavior
analysis and activity collection. The desired outcome is
a sandbox-independent infrastructure using VMs as guests
and a managing system for automatic configuration and
monitoring of malware execution. This way, the proposed
framework can be utilized to analyze multiple samples in
parallel and at scale.

A. ARCHITECTURE
The proposed architecture provides a framework, where
malware can be executed in isolation, while still creating
an environment that can be similar to a real one. Therefore,
the architecture is based on VMs, respecting the inside-the-
box model for isolation and containment that interconnected
via a virtual network. The guest machine is a pre-configured
Windows 10 OS that will be infected with the malware
samples for analysis, as detailed in the next section. The
analysis component is build upon Elastic-Stack, an open-
source and popular set of tools in industry, proven effective
for network measurements [16]. Figure 1 illustrates the
overall architecture of the proposed framework. On the left
side, it is depicted the Windows VM that undertakes the role
of the target machine for the samples, while on the right
side is the analysis framework along with the malware farm,
where the samples reside. This setup can be replicated into
n parallel blocks for analysis, with the only restriction the
amount of the available resources (e.g., RAM memory) for
the VM execution.

FIGURE 1. Architecture of the sandbox environment.

B. WORKFLOW OF MALWARE ANALYSIS
The platform aims to trigger the malware samples to infect
and execute their malicious operation in a controlled and
isolated environment, concretely a desktop machine, and
record their behavior. Therefore, the workflow is divided into
five phases as follows:

1) PHASE 1 — PREPARATORY STEP
The analysis environment is initially prepared as illustrated
in Figure 2. The procedure sets the required VMs once and
saves their initial state, so it can be used as it is for every new
analysis task and at scale. In detail:

VOLUME 12, 2024 68627



R.-V. Mahmoud et al.: Redefining Malware Sandboxing: Enhancing Analysis Through Sysmon and ELK Integration

FIGURE 2. Preparation of the environment before analysis.

• Preparation of the malware (triage and filtering):
During this step, malware samples are collected from
VxUnderground [17], an online platform known by its
extensive collection of malware samples, functioning as
a comprehensive repository and resource hub dedicated
to the academic exploration of advanced computer
security, malware analysis, and cyber threats. The pro-
cedure begins with the filtering of the malware samples,
involving an inspection of the PE (Portable Executable)
information contained within the file header. It is impor-
tant to emphasize that this file header is specifically
employed by executable files exclusive to the Windows
operating system. In more detail, the Python Filtering
Tool systematically selects the malware, removing any
samples that lack a PE header. Simultaneously, the tool
assesses the compatibility of the identified samples with
the 64-bit architecture.
In our context, the primary focus is identifying and
excluding samples lacking executability. Once such
samples are successfully identified, they are stored at
the Malware Sample Farm for further analysis and
processing.

• Windows Environment Hardening: As previously
mentioned, malware employs evasion techniques, espe-
cially when dissected in virtual environments. While
determining the specific actions required for individual
samples to activate requires extensive manual effort,
this methodology prioritizes addressing the prevalent
evasion techniques. Therefore, in preparing the guest
Windows Destkop 10 OS VM, we systematically
eliminate any artifacts susceptible to fingerprinting,
such as VirtualBox hardware components, substituting
them with authentic device names. Additionally, for
each analysis instance, novel MAC addresses are gen-
erated, distinct from the allocated space of VirtualBox.
Furthermore, we employ PAFish [18], an open-source
tool designed for evaluating the robustness of sandbox
environments by simulating the evasion techniques
employed by malware to fingerprint a sandbox. Con-
cretely, the PAFish tool is executed to assess the
efficacy of our configuration in thwarting these evasion
attempts, thereby enabling an evaluation of the analysis
environment’s reliability. Subsequently, files and folders
are strategically positioned in the system to emulate the
behavior of a genuine user interactingwith the computer.

It is imperative to note that, to facilitate the execution of
malware, all defensive mechanisms, includingWindows
Defender and the firewall, are intentionally disabled.

2) PHASE 2 — DYNAMIC ANALYSIS
The actual dynamic analysis of the samples takes
place in this phase. For consistency, the part of the
infrastructure that contains theWindowsVM is spawned
and destroyed for each analyzed sample. At the same
time, the VM, where ELK resides, is kept intact during
the analysis. As enablers for this analysis, ElasticSearch,
Winlogbeat, and Sysmon are used; specifically, Elastic-
Search stores the data, Winlogbeat ships the events, and
Sysmon grabs the information from the Windows logs.
As detailed in our previous work [16], such a setup
can collect, organize, store, and ship various types
of information. Particularly, as this work focuses on
malware behavior analysis, the following activities are
recorded during the analysis:

- - Process creation (including full command line and
hashes)

- - Process termination
- - File events (Creation, Deletion, Modifications)
- - Driver/image loading
- - Raw disk access
- - Process memory access
- - Registry access (create, modify, delete)
- - Named pipes
- - Network connections (DNS requests, Network

Flows)

While this infrastructure still falls under most of the
sandboxes’ approach by having the analysis tools and
target VM communicate over a virtual network, the
primary difference and novelty comes with the usage
of ELK as a method to monitor the malware behavior.
The framework does not depend on recognized sandbox
technologies susceptible to malware fingerprinting,
as proposed by [19]. Instead, it exclusively utilizes ELK,
a widely adopted cross-platform toolset for Security
Information and Event Management (SIEM) operations.
Furthermore, the framework’s relevance extends beyond
Windows machine examples as the infrastructure can be
expanded by employing diverse operating systems for
the target virtual machine. Therefore, the malware might
be able to fingerprint that it is running inside a VM,
but it cannot deduce, based on the appliances installed,
that its behavior is logged. Indeed, deploying production
services in virtual machines is currently a common
practice in the industry due to the ease of management
and cost reduction of virtualization technology.

• Injecting andRunningMalware: As this infrastructure
does not rely on a sandbox agent to control the analysis
process, the injection of the malware sample is initiated
by the Windows VM, meaning that each time the
Windows machine starts, it automatically requests a

68628 VOLUME 12, 2024



R.-V. Mahmoud et al.: Redefining Malware Sandboxing: Enhancing Analysis Through Sysmon and ELK Integration

new malware sample from the farm. Once a sample
is grabbed, it is deleted from the farm, and stored on
a specific location at the Guest VM, that handles its
activation. In this context, the activation of the malware
sample denotes the moment where the mechanism
executes the specific sample in order to start recording
its potential malicious behavior.

• Collection of information: The Windows VM is
prepared beforehand with Sysmon to grab the events
at the host level. Since Sysmon provides a modular
architecture based on its configuration file, in our case,
we employ a configuration file that can catch all types
of events and thus provide rich information. At the same
time, Powershell logs are collected alongside the events.
On the other hand, regarding the network traffic, we opt
only to record the network flows and DNS requests.
To ingest all the information, we use similar to [16]
Winlogbeat, a lightweight log shipper used to collect
and forward Windows event logs and other log data to
a centralized repository, and Packetbeat, a packet sniffer
that supports a wide range of protocols.

• Clean-up and Restart: Monitoring the malware behav-
ior lasts approximately 25 minutes. This specific
timeframe is chosen to provide ample time for the
infrastructure to execute effectively and circumvent
any evasion tactics reliant on time-based mechanisms
employed by the malware. It is important to note that
certain malware samples may remain inactive beyond
the designated timeframe. The precise duration of
a sample’s dormant period can only be ascertained
through static analysis and reverse engineering.

FIGURE 3. Workflow of the proposed framework iterated for each sample.

We aim to extend the observation period for the samples’
analysis to gain a more comprehensive understanding of
their potential activities. For this reason, the decision for
25 minutes is based on the trade-off between potentially
providing enough time for the malware to execute
its actions and not significantly delaying the entire
analysis pipeline based on the available computational
capabilities.

Once this interval has elapsed, the Windows VM is
terminated, and a new and cleaned instance is spawned.
This way, we ensure no traces from the previous analysis
can affect the new one. The overall process of the
malware analysis is detailed in figure 3.

• Creation of the dataset - Before & After Infection:
Here, the goal is to split the generated events into two
subsets, one related to the ‘‘typical’’ operation of the
Windows OS (i.e., before the triggering of the malware),
with the latter including the events potentially generated
by themalware (i.e., after the infection). This is achieved
based on three timestamps:
If we consider T0 the timestamp that the target Windows
VM is spawned, while T2 is the timestamp that the
VM is destroyed, we can safely assume that all the
Windows activity occurs during this duration. The
exact timestamp (T1) that the malware is activated
is determined based on a preconfigured flag within
the logs that signals the execution of the malware
binary. Thus, any subsequent events from this time
are presumed to be related to the malware execution.
Therefore, we initially query ELK to include all the
activity between T2-T0. Afterward, we separate the
events before and after the malware activation based
on the T1 timestamp. The Python Post-Processing
tool facilitates this procedure by executing queries and
segregating events. It stores events occurring after the
flag’s appearance in the AAU_MalData_Contagious
subset, while events preceding this occurrence are
stored in the AAU_MalData_Pure subset. Additionally,
the Python tool performs further refinements on the
logs, involving removing metadata information and
the selective extraction of events generated by the
underlying operating system.

IV. ANALYSIS
In total, we download and experiment with 2,800 malware
samples from VxUnderground [17], covering 89 Malware
families and two classes, namely Trojans and Backdoors.
These sample distinctions were derived from VxUnder-
ground, where the samples are appropriately labeled.

Our objectives are firstly to provide proof that the proposed
framework can be used for the dynamic analysis of malware
samples in parallel and at scale and secondly to monitor
and compile a dataset of their activity containing network
and host-based logs. Such a dataset can be useful for future
anti-malware research and training detection algorithms.

Overall, the analyzed samples exhibited sophisticated
techniques to achieve persistence, evade detection, and
control compromised systems. By comparing the event
actions of Trojans and Backdoors samples, we can gain
valuable insights into their behaviors. We categorize the
type of the events according to Create Remote Thread,
DNS query, Driver loaded, File created, File creation time
changed, Process Create, Registry object added or deleted,
and Registry value set. Then, we accumulated the total

VOLUME 12, 2024 68629



R.-V. Mahmoud et al.: Redefining Malware Sandboxing: Enhancing Analysis Through Sysmon and ELK Integration

occurrence of the events for each category to understand
which malware classes were more active in the designed
framework. As displayed in Figure 4 the samples to create
an equivalent number of activities with a slight increase for
the case of Backdoors.

A. WINDOWS EVENTS DATA-SET
The analysis of the malware samples yields two dis-
tinct subsets, e.g., AAU_MalData_Pure and AAU_MalData_
Contagious. The former encompasses everydayWindows OS
activity events created prior to the triggering of the samples,
while the latter comprises events predominantly generated
by the malware samples. The generated logs undergo a data
cleaning process, aiming to minimize their size and optimize
their readiness for future research; for instance, meta infor-
mation and events generated by legitimate Windows system
processes are stripped out for the AAU_MalData_Contagious
but maintained for the benign one. The resulting datasets
incorporate various fields.

• @timestamp - Indicates the timestamp of the event.
• ECS: Refers to the Elasticsearch Common Schema
utilized to standardize and organize the data.

• Event: Details the event type, corresponding code, and
provider. Each Event in Sysmon is assigned a unique
event number or type that helps to identify specific
activities or behaviors associated with potential security
threats. Knowing the event type and number can help
filter out the events in a possible forensic investigation
and also facilitate the creation of specific alerting rules.

• Message: Contains a general message related to the
specific Event in a textual description.

• Winlog: Windows Event Logs (Winlogs) provides a
chronological record of the system events, including
actions performed by the malware. From the sequence
of the events, a malware’s behavior and activity can be
deduced, like process injection, creation of persistence
mechanisms, command-and-control communications,
or attempts to evade detection. The details for each
of these events are structured under the Event_data
field, similar to Fig. 1 where it is listed as a snippet of
processes created by a malware sample.

In turn, Event_data represents the specific data associated
with eachWindows Event log; this information is essential as
it provides valuable insights into system activities and events.

• CommandLine: This field refers to the specific com-
mand line utilized to initiate the execution of the process.
It contains the complete command, including arguments
and parameters.

• CurrentDirectory: Denoting the current working direc-
tory at the process execution time, this field signifies the
directory path within the file system where the process
is executed. It helps to understand the context in which
the process operates.

• Image: This field specifies the file path or location of
the process executable file. It provides the exact location

within the file system where the process executable is
stored.

• Hashes: The Hashes field contains the hash values
computed for the process executable file. Hash functions
and techniques, such asMD5, SHA256, and IMPHASH,
are applied to the file to produce a unique and fixed-
length value. These hashes can be used to verify the
integrity and authenticity of an executable file.

• IntegrityLevel: This field indicates the integrity level
assigned to the process. Integrity levels are security
mechanisms that enforce restrictions and permissions
on processes, ensuring that they operate within prede-
fined boundaries. There are four integrity levels: Low,
Medium, High, and System. The System integrity level
can only be acquired through OS processes.

• LogonGuid and LogonId: LogonGuid is a globally
unique identifier assigned to a user logon session,
while LogonId is a numeric identifier assigned by the
OS to differentiate between different logon sessions.
LogonGuid and LogonId are helpful in tracking and
associating events and activities with specific user logon
sessions, but they represent different identifiers.

• OriginalFileName: This field specifies the original
name of the process executable file. It provides the
filename, as it was initially determined during the
development and compilation of the process.

• ParentCommandLine, ParentImage, ParentProcess-
Guid, ParentProcessId, ParentUser: The Parent key-
word refers to the parent process that launches the
current process. It provides crucial information for
investigating the lineage and relationship between
processes, enabling the identification of the specific
parent process responsible for initiating the execution of
the current process.

• RuleName: The RuleName field represents the rule’s
name associated with a particular event. It provides
valuable information about predefined rules or criteria
that were evaluated in the event context. Mapping
these rule names to the MITRE ATT&CK framework
can enhance the understanding of specific techniques
employed during the event.

The produced dataset is publicly available to the security
community [20]. The AAU_MalData_Contagious folder
contains four data collections with the Backdoor malware
samples’ activity and eight Trojan data collections. All
these events are recorded by monitoring the execution of
the corresponding malware samples within the proposed
framework.

The events produced by the malware samples are struc-
tured as shown in listing 2. They follow a key-value
format, with the key being the sample’s SHA256 hash value,
while the value comprises all the events, namely event_1;
event_2; . . . ;event_n, generated by the malware, organized
as described in Section IV-A. The AAU_MalData_Pure
folder adheres to the same structure and encompasses routine
activities, consisting of actions initiated by the OS system

68630 VOLUME 12, 2024



R.-V. Mahmoud et al.: Redefining Malware Sandboxing: Enhancing Analysis Through Sysmon and ELK Integration

FIGURE 4. Trojan vs. backdoor malicious action count.

without any user or program interference. In addition, we syn-
thesize the AAU_MaAlData_Synthetic dataset, by recording
the activity typically generated by a user utilizing the
same Windows VM machine. The generated events include
legitimate activities related with office tasks, such as creating
and editing file documents, opening multimedia files, e.g.,
music and video files, browsing to the Internet, installation
or deletion of legitimate applications and other miscellaneous
tasks. The intention of this dataset is to supplement the
AAU_MalData_Pure dataset by introducing benign activity
besides the passive mode events of the running OS, thus,
facilitating a more explicit distinction between malicious and
non-malicious activities.

B. DNS TRAFFIC ANALYSIS
In addition to the host level logs, the ELK toolset provides
the capability to record the network activity of the malware
samples in the form of network flows and DNS transactions.
For brevity, we further detail the DNS query behavior of
the analyzed malware samples. Such analysis can provide
valuable insights, although it is challenging to draw gener-
alized conclusions due to the unique characteristics of each
sample. Despite the restricted network environment, namely
no allowed access to the Internet, particular malware samples
demonstrate a clear intention to establish communication
with potential C&C servers. To further analyze this behavior,
the distribution of the corresponding countries is calculated
based on the Geo-location of the IP addresses associated with
the domain names. This results in 50 countries; however,
only countries with more than 20 occurrences are presented
in Figure 5, while the rest are grouped under the ‘‘Others’’
category. Furthermore, we investigate if these domain names
are already blocklisted in the VirusTotal (VT) DB. For the

FIGURE 5. Distribution of countries by the Geo-location of the IP
associated with the domain.

domain names flagged as malicious, we extract the type of
activity associated with them based on the label assigned
by VT.

The results reveal that almost half of the domain names
correspond to IP addresses in the United States. Remarkably,
a considerable percentage of the names associated with
malware are not flagged as malicious by the VT analysis.
However, these domains are confirmed to be requested by
processes created by the malware samples. Specifically,
out of the 1,292 unique domains, only 416 are classified
as malicious by at least two security vendors on VT.
The distribution of the malware categories, presented in
Figure 6, sheds light on the types of activities associated
with these domains, making it challenging to decisively
conclude whether they are malicious or merely linked to
benign activities.

VOLUME 12, 2024 68631



R.-V. Mahmoud et al.: Redefining Malware Sandboxing: Enhancing Analysis Through Sysmon and ELK Integration

LISTING 1. Snippet of a malware sample action in Windows OS.

FIGURE 6. Categories drawn from VT for the malicious domains.

V. MITRE ATT&CK
Utilizing MITRE Adversarial Tactics, Techniques, and
Common Knowledge (ATT&CK) framework for malware

analysis offers a structured taxonomy that categorizes and
comprehensively describes adversarial tactics and tech-
niques as also documented by [21]. MITRE contains
12 tactics [22] that describe adversary objectives for their
actions:

• Initial Access involves the methods adversaries employ
to gain a foothold in a system.

• Execution occurs after gaining initial access, where
adversaries may execute malicious code through a
Command-Line Interface or Graphical User Interface or
wait for the user to trigger the binary.

• Persistence is the effort to maintain access, even when
users change passwords, by hijacking legitimate code on
the victim system to move deeper into it.

• Privilege Escalation involves adversaries elevating their
permissions within an enterprise system by exploiting
vulnerabilities in applications and servers.

68632 VOLUME 12, 2024



R.-V. Mahmoud et al.: Redefining Malware Sandboxing: Enhancing Analysis Through Sysmon and ELK Integration

LISTING 2. Malicious activity JSON format sample.

• Defense Evasion is the act of clearing traces to
avoid detection and bypass security controls, ensuring
uninterrupted malicious activities.

• Credential Access entails capturing additional user-
names and passwords through techniques like Bash
History or Keychain to achieve objectives and maintain
access.

• Discovery follows gaining access, where adversaries
explore and gather information about vulnerabilities,
stored data, and network resources through techniques
like Network Service Scanning.

• Lateral Movement occurs when adversaries shift from
one compromised user account to others within an
office area, exploiting trusted internal accounts through
techniques like Internal Spear-phishing.

• Collection involves adversaries gathering data to
achieve malicious objectives, collected from compro-
mised computers or peripheral devices using techniques
like Data from Removable Media, with the next step
being data exfiltration.

• Command and Control enables adversaries to control
operations within an enterprise system remotely, turning
compromised computers into controlled botnets.

• Exfiltration follows data collection, where adversaries
package data using techniques like Data Compression
to make exfiltration less conspicuous and capable of
bypassing detection.

• Impact includes breaching confidentiality, degrading
integrity, and limiting asset availability within an
enterprise system.

While the absence of an internet connection presents
constraints on the Execution of the samples, potentially

forbidding the activation of certain samples, the authors
opted against allowing internet connectivity due to security
considerations.

This categorization can help an analyst investigatemalware
campaigns, understand their methods, and formulate more
effective detection and mitigation strategies. Therefore, the
framework could provide a systematic approach to formu-
lating behavior and establishing the format for comparing
similar malware classes.

For instance, Trojans and Backdoors represent two cat-
egories of malicious software with some standard func-
tionalities. However, they aim for diverse objectives. These
distinctions can be elucidated by leveraging the MITRE
framework to associate their actions with specific Tac-
tics, Techniques, and Procedures (TTPs), thus offering a
comprehensive and standardized perspective on potential
adversary actionswithin systems. As such, Figure 7 illustrates
the operational behavior of these two malware classes,
derived from the accumulated log files of the 2,800
analyzed malware samples and correlated with MITRE’s
ATT&CK matrices with the help of the MITRE ATT&CK
Navigator [23].

Overall, Trojan malware masquerades as legitimate pro-
grams to deceive users into executing them, thereby grant-
ing unauthorized access to attackers. On the other hand,
Backdoor malware are hidden entry points intentionally
inserted by developers or attackers to bypass authentication
mechanisms and gain remote access at a later stage.
Consequently, it is valuable to compare their behavior with
the use of the proposed platform. In this direction, the
MITRE ATT&CK framework [24] is utilized to provide
a comprehensive overview of their TTPs. A color coding
scheme is applied to the generated matrices to distinguish
between the techniques used by Trojans and Backdoors.
In this scheme, Yellow is assigned to techniques that are
exclusively utilized by Trojans, Red to techniques specific
to Backdoors, while Green to techniques employed by both
types of malware as depicted in Figure 7.

The examined samples demonstrate similar behaviors
within the environment, albeit with some variations. Typ-
ically, the Backdoors exploit a crucial Windows OS
component called Winlogon helper DLL to bypass user
authentication. They operate during early system startup to
ensure their presence remains active, covert, and seamlessly
integrated with legitimate processes. This tactic enables
them to evade detection, especially by employing techniques
that load the backdoor after system reboots or updates.
On the contrary, Trojans focus on establishing persistency
within compromised systems by exploiting system boot
or logon autostart locations. By leveraging these entry
points, Trojans ensure automatic execution upon system
startup. Additionally, Trojans employ deceptive tactics by
masquerading as legitimate binary files and following the
typical execution flow triggered by benign events. This
camouflage technique allows them to blend in and avoid
suspicions.

VOLUME 12, 2024 68633



R.-V. Mahmoud et al.: Redefining Malware Sandboxing: Enhancing Analysis Through Sysmon and ELK Integration

FIGURE 7. MITRE techniques employed by Trojans and Backdoors.

Trojans and Backdoors employ defense evasion mecha-
nisms as observed in the literature [1]. They execute various
checks, including system-based and time-based checks,
to determine if they operate within a sandbox environment.
Furthermore, Trojans attempt to hidemalicious artifacts, such
as files, processes, and registry keys, to evade detection
by security tools and analysts. In addition, they try to
disable or modify antivirus software, firewalls, intrusion
detection systems, and similar defensive mechanisms to
remain undetected and maintain their presence. However,
the outcomes of these activities are documented in the log
files, serving as robust IoCs and providing evidence that the
samples manifested techniques from their arsenal.

VI. LIMITATIONS
This study acknowledges several limitations inherent to its
methodology and scope. Firstly, the sample selection process
deliberately focused solely on Windows-based executable
files, omitting other file types to minimize the risk of

compromising the host system, a Linux operating system.
However, this selection bias may have excluded potentially
relevant file types that entail further analysis.

Secondly, the analysis environment was deliberately iso-
lated from the Internet, which constrained the researchers’
ability to observe the actual network activity, both outgoing
and incoming traffic, between the samples and their C&C
servers or other online resources. Consequently, it remains to
be seen whether the observed malicious activities represent
the full extent of the malware’s capabilities or if the absence
of further instructions from potential commands from these
C&C servers limited them.

Third, we ignore whether malware that did not execute
was due to the lack of triggering from external sources
(e.g., opening a specific program or a time-based trigger)
or due to actual evasion due to the environment being
fingerprinted. Understanding the exact cause will require
dedicated analysis, probably using static analysis tools, which
would delay the overall pipeline.

68634 VOLUME 12, 2024



R.-V. Mahmoud et al.: Redefining Malware Sandboxing: Enhancing Analysis Through Sysmon and ELK Integration

Lastly, the computational resources required to conduct
this scale analysis were substantial. The study required a
significant allocation of hardware resources to accommodate
the processing and storage demands of analyzing a large
sample size. In scenarios where resource availability is
limited, the scope and scale of the analysis may be
compromised, potentially impacting the breadth and depth
of the findings. We believe, however, that a production
system with higher resources, e.g., from the security industry,
can quickly implement our methodology and bypass such
limitations.

Acknowledging these limitations is crucial, as it compre-
hensively explains the constraints inherent to our academic
study’s design and execution. These limitations offer valuable
insights for future research endeavors, informing potential
refinements and avenues for improvement in similar inves-
tigations.

VII. CONCLUSION
The perpetual struggle between attackers and defenders
within the field of malware research remains a driving force
behind progress. This paper has emphasized the importance
of dynamic malware analysis in exploring novel attack
patterns and techniques and in forensic investigations by
extracting various IoCs to acquire more profound insights
into system breaches. The work presented in the current
paper has a twofold contribution: a sandbox-independent
framework for malware dynamic analysis and a realistic
dataset that captures the Windows event activities of
2,800 malware samples scrutinized within the aforemen-
tioned framework.

In particular, the proposed framework introduces an
innovative approach to the dynamic analysis of malware,
intending to trigger and monitor the malware’s activity
while evading the fingerprinting of pre-existing sandbox
technologies by the malware. Researchers can systemati-
cally collect, organize, and enrich valuable information by
analyzing the malware samples by utilizing Windows VMs
as targets for infection and employing open-source tools
such as Sysmon, ElasticSearch, and Kibana. Furthermore,
the ability to segregate the malware activities into event
datasets is demonstrated through the offering to the cyber-
security research community of the AAU_MalData dataset.
The AAU_MalData dataset is divided into two subsets,
AAU_MalData_Pure and AAU_MalData_Contagious; the
first one corresponds to the regular operation of the Windows
OS, while the latter to the analysis of 2,800 malware samples
of Trojans and Backdoors type with the help of the proposed
framework. Such dataset can be utilized, for instance, for the
training of machine learning algorithms as suggested in [25]
for advancing anti-malware research.

As the race between attackers and defenders in themalware
landscape persists, the ongoing pursuit of research and
innovation in dynamic analysis techniques will remain vital
for maintaining an advantageous position against malicious
actors.

ACKNOWLEDGMENT
The authors are grateful to OTTO MØNSTEDS FOND for
their financial support for the author’s research stay at the
Universidad Carlos III de Madrid (UC3M), which has not
only enriched the academic journey but has also strengthened
international research collaboration.

REFERENCES
[1] A. Afianian, S. Niksefat, B. Sadeghiyan, and D. Baptiste, ‘‘Malware

dynamic analysis evasion techniques: A survey,’’ ACM Comput. Surv.,
vol. 52, no. 6, pp. 1–28, Nov. 2020.

[2] A. Sharma, B. B. Gupta, A. K. Singh, and V. K. Saraswat, ‘‘Orchestration
of APT malware evasive manoeuvers employed for eluding anti-virus and
sandbox defense,’’ Comput. Secur., vol. 115, Apr. 2022, Art. no. 102627.

[3] F. A. Aboaoja, A. Zainal, F. A. Ghaleb, B. A. S. Al-rimy, T. A. E. Eisa,
and A. A. H. Elnour, ‘‘Malware detection issues, challenges, and future
directions: A survey,’’ Appl. Sci., vol. 12, no. 17, p. 8482, Aug. 2022.

[4] M. Asam, S. J. Hussain, M. Mohatram, S. H. Khan, T. Jamal, A. Zafar,
A. Khan, M. U. Ali, and U. Zahoora, ‘‘Detection of exceptional malware
variants using deep boosted feature spaces and machine learning,’’ Appl.
Sci., vol. 11, no. 21, p. 10464, Nov. 2021.

[5] H. Oz, A. Aris, A. Levi, and A. S. Uluagac, ‘‘A survey on ransomware:
Evolution, taxonomy, and defense solutions,’’ ACMComput. Surv., vol. 54,
no. 11s, pp. 1–37, Jan. 2022.

[6] O. Or-Meir, N. Nissim, Y. Elovici, and L. Rokach, ‘‘Dynamic malware
analysis in the modern era—A state of the art survey,’’ ACMComput. Surv.,
vol. 52, no. 5, pp. 1–48, Sep. 2020.

[7] A. Jewitt. (2021). How to Build a Malware Analysis Sandbox With
Elastic Security. [Online]. Available: https://www.elastic.co/es/blog/how-
to-build-a-malware-analysis-sandbox-with-elastic-security

[8] A. A. R. Melvin and G. J. W. Kathrine, ‘‘A quest for best: A
detailed comparison between drakvuf-vmi-based and cuckoo sandbox-
based technique for dynamic malware analysis,’’ in Intelligence in Big
Data Technologies-Beyond the Hype. Cham, Switzerland: Springer, 2021,
pp. 275–290.

[9] M. Vasilescu, L. Gheorghe, and N. Tapus, ‘‘Practical malware analysis
based on sandboxing,’’ in Proc. RoEduNet Conf. 13th Edition: Netw. Educ.
Res. Joint Event RENAM 8th Conf., Sep. 2014, pp. 1–6.

[10] D. Oktavianto and I. Muhardianto, Cuckoo Malware Analysis. Birming-
ham, U.K.: Packt Publishing Ltd, 2013.

[11] S. Ilić, M. Gnjatović, B. Popović, and N. Maček, ‘‘A pilot comparative
analysis of the cuckoo and drakvuf sandboxes: An end-user perspective,’’
Vojnotehnicki Glasnik, vol. 70, no. 2, pp. 372–392, 2022.

[12] Ö. A. Aslan and R. Samet, ‘‘A comprehensive review onmalware detection
approaches,’’ IEEE Access, vol. 8, pp. 6249–6271, 2020.

[13] K. Hamajima, D. Kotani, and Y. Okabe, ‘‘Partial outsourcing of malware
dynamic analysis without disclosing file contents,’’ in Proc. IEEE 47th
Annu. Comput., Softw., Appl. Conf. (COMPSAC), Jun. 2023, pp. 717–722.

[14] G. Kambourakis, M. Anagnostopoulos, W. Meng, and P. Zhou, Botnets:
Architectures, Countermeasures, Challenges. Boca Raton, FL, USA: CRC
Press, 2019.

[15] X. Chen, J. Andersen, Z. M. Mao, M. Bailey, and J. Nazario, ‘‘Towards
an understanding of anti-virtualization and anti-debugging behavior in
modern malware,’’ in Proc. IEEE Int. Conf. Dependable Syst. Netw. With
FTCS DCC (DSN), Jun. 2008, pp. 177–186.

[16] R.-V. Mahmoud, M. Anagnostopoulos, and J. M. Pedersen, ‘‘Detecting
cyber attacks throughmeasurements: Learnings from a cyber range,’’ IEEE
Instrum. Meas. Mag., vol. 25, no. 6, pp. 31–36, Sep. 2022.

[17] VXUnderground. (2022). The Largest Collection of Malware Source
Code, Samples, and Papers on the Internet. Accessed: Nov. 27, 2022.
[Online]. Available: https://www.vx-underground.org/#E:/root/
Samples/Bazaar%20Collection

[18] INFOSEC. (2023). Pafish (Paranoid Fish). Accessed: Jul. 10, 2023.
[Online]. Available: https://resources.infosecinstitute.com/topic/pafish-
paranoid-fish/

[19] A. Yokoyama, K. Ishii, R. Tanabe, Y. Papa, K. Yoshioka, T. Matsumoto,
T. Kasama, D. Inoue, M. Brengel, and M. Backes, ‘‘SandPrint: Finger-
printing malware sandboxes to provide intelligence for sandbox evasion,’’
in Proc. Int. Symp. Attacks, Intrusions, Defenses, Paris, France. Cham,
Switzerland: Springer, Sep. 2016, pp. 165–187.

VOLUME 12, 2024 68635



R.-V. Mahmoud et al.: Redefining Malware Sandboxing: Enhancing Analysis Through Sysmon and ELK Integration

[20] R. V. Mahmoud. (2023). Backdoor and Trojans Datasets of
Malicious Activity. Accessed: Jul. 15, 2023. [Online]. Available:
https://github.com/rasmim/malwareDatasets

[21] M. F. Abdelwahed, M. M. Kamal, and S. G. Sayed, ‘‘Detecting malware
activities with MalpMiner: A dynamic analysis approach,’’ IEEE Access,
vol. 1, pp. 84772–84784, 2023.

[22] W. Xiong, E. Legrand, O. Åberg, and R. Lagerström, ‘‘Cyber security
threat modeling based on the MITRE enterprise ATT&CK matrix,’’ Softw.
Syst. Model., vol. 21, no. 1, pp. 157–177, Feb. 2022.

[23] MITRE. (2023). MITRE ATT&CK Navigator. Accessed: Jul. 15, 2023.
[Online]. Available: https://mitre-attack.github.io/attack-navigator/,

[24] A. Georgiadou, S. Mouzakitis, and D. Askounis, ‘‘Assessing MITRE
ATT&CK risk using a cyber-security culture framework,’’ Sensors, vol. 21,
no. 9, p. 3267, May 2021.

[25] K. Steverson, C. Carlin, J. Mullin, and M. Ahiskali, ‘‘Cyber intrusion
detection using natural language processing on windows event logs,’’ in
Proc. Int. Conf. Mil. Commun. Inf. Syst. (ICMCIS), May 2021, pp. 1–7.

RASMI-VLAD MAHMOUD received the M.Sc.
degree in networks and distributed systems from
Aalborg University, Aalborg, Denmark, where
he is currently pursuing the Ph.D. degree. His
research interests include cyber ranges, threat
intelligence, and malware analysis.

MARIOS ANAGNOSTOPOULOS is currently
an Assistant Professor of cyber security with
Aalborg University, Copenhagen, Denmark. His
research interests include network and computer
security, specifically DNS security, denial of
service attacks, botnets, malware analysis, and
forensics.

SERGIO PASTRANA is currently an Associate
Professor with the Universidad Carlos III de
Madrid, Spain, where he teaches various courses
on cybersecurity and cryptography. His research
interests include different areas of security and
privacy, including the measurement, and analysis
of the socio-technical factors and human aspects
of cybercrime.

JENS MYRUP PEDERSEN is currently a Pro-
fessor of cyber security with Aalborg University,
with his main research interest being network
security. He is also the Head of the Cyber Security
Research Group, Aalborg University, and the
Cyber Security Masters Programme. In addition,
he is active in talent development of young people.
He has been involved in numerous Danish and
European projects within cyber security, including
projects focusing on sandboxing, virtualization

environments for training and data generation, deception technologies, such
as honeypots, and network traffic analysis applied to detection of malicious
activities. In addition to his research, he has received multiple awards for his
teaching.

68636 VOLUME 12, 2024


