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ABSTRACT Distracted driving, a leading cause of traffic accidents with severe consequences, still faces
numerous technical challenges in practical implementation for recognizing unsafe driving behavior. These
challenges include the complexity of feature extraction using traditional convolutional neural networks
(CNNs) for driver behavior analysis and the lack of real-time perception during driving. To address these
issues, this study proposes an improved method for distracted driving behavior recognition by combining
the Bi-LSTM model with an attention mechanism based on Dilated Convolutional Neural Networks (ID-
CNN). Firstly, we employ a dilated convolution model to extract features efficiently with fewer parameters
while enhancing multi-scale feature extraction capabilities and widening the receptive field. Subsequently,
we integrate the attention mechanism into the Bi-LSTM model to enhance its effectiveness in solving the
driving behavior classification problem. The integrated Bi-LSTM model with attention mechanism calcu-
lates correlation between intermediate and final states to obtain a probability distribution of attention weights
at each moment, thereby reducing information redundancy while preserving useful information effectively.
Furthermore, image feature vectors are enhanced to further improve accuracy in image classification tasks.
Compared to other methods, the proposed approach exhibits faster convergence rates and more stable model
accuracy. Specifically, on both the StateFarm dataset and our own collected Drive&Act-Distracted data,
we achieved accuracies of 95.8367% and 97.8911%, respectively. This indicates that incorporating dilated
convolution and attention mechanisms strengthens sequence data learning and feature weighting within our
network model, resulting in significantly improved accuracy for driving behavior recognition.

INDEX TERMS Distracted driving, Bi-LSTM, CNN, attention mechanisms.

I. INTRODUCTION
Road traffic accidents currently surpass AIDS, tuberculosis,
and diarrhea as the leading cause of mortality [1]. Among
individuals aged 5 to 29, traffic accidents are the primary

The associate editor coordinating the review of this manuscript and
approving it for publication was Wu-Shiung Feng.

contributor to fatalities. As per the 2018 World Traffic
Situation Report published by the United Nations Global
Conference on Sustainable Transport, road traffic accidents
claim over 1.2 million lives annually and result in up to
51 million injuries [2]. The report highlights an increase in
accidents attributed to high-risk distracted driving incidents.
Distracted driving, defined by the International Organization
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for Standardization as impaired driving ability due to engag-
ing in non-driving activities while operating a vehicle under
normal conditions, is acknowledged as a significant risk fac-
tor by the U.S. Department of Transportation. Data from
Columbia University’s Transportation Institute reveals that
distracted driving poses three times higher likelihood of
causing hazardous accidents compared to regular driving
practices. According to statistics released byChina’sMinistry
of Transport in 2019, approximately 57,000 motor vehicle
accidents occurred on Chinese roads including around 43,000
involving cars and roughly 10,000 involving motorcycles [3].

To effectively identify unsafe distracted driving behav-
ior exhibited by drivers during normal road operations and
provide timely early warnings, this study focuses on inves-
tigating distracted driving behavior as the research subject.
By employing deep learning techniques, amodel is developed
to detect abnormal drivers with the aim of minimizing traf-
fic accidents. However, there are still several technological
challenges associated with implementing the algorithm for
recognizing unsafe driving behavior in practical applications.
Considering its ability to simultaneously capture both for-
ward and reverse information from input sequences while
processing sequential data and exhibiting superior general-
ization capabilities, this paper selects the Bi-LSTM model as
the fundamental framework.

The challenge in recognizing human behavior in existing
video sequences lies in the fact that the target action occupies
only a small area or portion of the sequence. Simultaneously,
identifying the target face is susceptible to disturbances from
surrounding background information, such as noise, lighting
conditions, occlusions, and more. Consequently, extracting
effective spatio-temporal information pertaining to facial or
human behavior from video sequences has emerged as a piv-
otal concern for behavior recognition. The primary objective
of this study is to effectively mitigate interference caused by
surrounding background information and extract meaningful
spatio-temporal cues related to human behavior. The attention
mechanism (AM) serves as an internal resource allocation
mechanism in deep learning models. Its integration enhances
the extraction of key semantic information, thereby improv-
ing algorithmic recognition accuracy. Although there are
numerous documents describing the application of Bi-LSTM
models in human behavior recognition, face recognition,
object recognition, etc., scarce literature exists on utilizing
the organic fusion of Bi-LSTMmodel structure and attention
mechanism for face detection and fatigue driving.

Consequently, this paper proposes a technique that com-
bines the Bi-LSTM model with the attention mechanism to
identify distracted driving behavior. The Bi-LSTM model is
introduced based on feature extraction from cavity convolu-
tion, and the attention mechanism is utilized to calculate dif-
ferent weights between states in the Bi-LSTMmodel, thereby
significantly enhancing its capacity for feature expression.
Firstly, dilated convolution is employed to broaden recep-
tive aspects and improve multi-scale representation ability

of feature information while extracting local fine-grained
features of expressions and reducing computational costs.
Secondly, the linkage relationship between information is
fully considered in conjunction with LSTM.

The main contributions of this paper are as follows:
(1) Incorporating an attention mechanism into the

Bi-LSTM model structure enhances the model’s generaliza-
tion ability by allowing it to focus on relevant information
and ignore irrelevant information when processing sequence
data;

(2) Combining the Bi-LSTM model with dilated convo-
lution enables multi-scale feature extraction and perception,
making it better suited for image recognition tasks with com-
plex backgrounds and multi-scale targets;

(3) This model has achieved excellent performance on the
StateFarm dataset. Simultaneously, the validity of this model
is further substantiated through its application on our self-
collected Drive&Act-Distracted dataset.

II. RELATED RESEARCH
In foreign countries, drivers’ level of distraction is initially
assessed based on brainwave patterns and heart rate. For
instance, the analysis of brainwave waveforms and heart
rate data provides input to evaluate a driver’s degree of dis-
traction while driving. Monitoring these two parameters can
accurately assess the driver’s state under normal conditions.
However, widespread implementation in real-life scenarios is
challenging due to the requirement for drivers to constantly
wear biometric sensors, which may interfere with their ability
to drive safely.

In 2017, Craye and Karray [4] developed an efficient mod-
ule that utilizes active sensors and deep learning to assess
the driver’s dangerous driving state. The module incorpo-
rates sensor-based color recognition of driving hazards, head
position analysis, and facial expression evaluation to deter-
mine the driver’s current driving state. To achieve accurate
classification, a combination of hidden Markov model and
AdaBoost classifier techniques is employed. The experimen-
tal results demonstrate the high recognition accuracy of this
approach. However, it should be noted that the dataset used
for identification is solely based on simulations, lacking
real-world environment inspections. Li and Liu [5] made
significant contributions to the initial exploration. In 2018,
they proposed a method for identifying anomalous driving
behavior using a multi-class LogitBoost classifier and a
covariance manifold based on a dichotomous notion. The
method achieved an impressive correct recognition rate of up
to 81.08% for various recognition targets. In 2019, Yin [6]
introduced a technique for detecting driver fatigue based on
gated cyclic units and full convolutional networks. Firstly,
an infrared camera acquisition system captured the driver’s
face image. Subsequently, a multi-task cascaded convolu-
tional neural network was employed to detect the driver’s
face and locate feature points, enabling extraction of the
driver’s eye image through geometric position relationships
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of these key points on the face. Finally, a convolutional
neural network recognition algorithm was utilized to deter-
mine whether the extracted eye image represented open or
closed states accurately. Overall, this approach exhibited
excellent performance in detecting driver fatigue. In 2019,
Tamas and Maties [7] proposed a real-time model for recog-
nizing dangerous driving behaviors based on convolutional
networks, enabling real-time assessment of the driver’s cur-
rent driving state. The recognition delays for texting and
hands leaving the steering wheel were approximately 0.05s
and 0.08s respectively. In 2020, Karri et al. [8] introduced
a network structure grounded in support vector machine
principles that accurately identifies various unsafe driv-
ing states under realistic conditions. Additionally, in 2020,
Dong et al. [9] successfully achieved identification of dan-
gerous driving states using a combination of convolutional
neural networks and the Region Proposal method. How-
ever, in practical applications, the recognition accuracy is
suboptimal, the model convergence speed is sluggish, and
the real-time perception of driver behavior during driving is
inadequate. In 2021, Liu et al. proposed a real-time system
for detecting driver fatigue based on convolutional neural
networks and short- and long-term memories (CNN-LSTM)
[10]. Building upon an enhanced short- and long-duration
memory network, Shi et al. suggested a method for detect-
ing driving behavior by incorporating attention mechanisms
to improve the network structure. They further developed
a hybrid dual-flow convolutional neural network algorithm
based on both CNNs and long- and short-term memory net-
works [11]. Feng et al. [12] utilized an integrated approach,
incorporating eye, mouth, and head features for driver fatigue
detection. This method involves face detection based on LBP
features, extraction of drivers’ facial feature points using
a multi-cascade residual regression tree algorithm, deter-
mination of drivers’ head posture through 3D face model
matching, establishment of a fatigue detection model specific
to drivers, and subsequent training. The optimization and
acceleration of the face detection process were achieved by
reducing the background difference-based detection area and
video frame image size. Fu et al. [13] combined a neural
network with distracted driving prediction methodology that
comprehensively considers external uniform speed and driver
state to provide more accurate predictions.

The memory and forgetting functions of LSTM contribute
to the enhancement of recognition accuracy for temporal
images, making LSTM models widely employed in video
behavior analysis, facial recognition, as well as monitoring
fields like attendance and security. Bi-LSTMmodel, a variant
of LSTM that integrates forward LSTM and reverse LSTM,
is capable of capturing more comprehensive contextual infor-
mation. In this study, we enhance the Bi-LSTM model by
incorporating ID-CNN to improve its multi-scale feature
extraction capability. Additionally, we introduce an attention
mechanism to facilitate the extraction of crucial semantic
information, thereby further improving the algorithm’s recog-
nition rate.

III. METHODS
A. ID-CNN
The Convolutional Neural Network (CNN) is a neural net-
work architecture developed by Malini et al., inspired by
the biological brain [14]. It consists of multiple hidden lay-
ers, similar to recurrent neural networks. To reduce network
complexity, measures such as limited range perception are
employed. Additionally, CNN exhibits adaptability to trans-
lation, rotation, and scale changes in data. While CNN excels
in strong feature extraction ability and parameter efficiency,
it may lack fine-grained features and their interrelationships.
Therefore, this research employs the dilated convolution
model with moderate parameters to widen the receptive field
of features and enhance multi-scale feature extraction capa-
bilities for expression analysis.

In contrast to regular convolution, dilated convolution
introduces a new parameter known as the dilation rate, which
determines the spacing between values during data process-
ing by the convolution kernel. By skipping certain input
elements while maintaining a constant kernel size, dilated
convolution expands the receptive field of the kernel. This
approach preserves data structure and avoids downsampling,
offering distinct advantages.

The receptive field is the size of the area mapped by the
pixels on the feature map output by each layer of the network
on the original image. The calculation formula of receptive
field r2i+1 as shown in Eq. (1).

r2i+1 = [(ri − 1) + (2d + 1)]2, (1)

where ri represents the change of receptive field in ith layer,
and d represents the expansion coefficient of dilated convo-
lution.

Dilated convolution has the same size as the convolution
kernel of ordinary convolution, and its parameters remain
unchanged in neural networks; however, it possesses a larger
receptive field. Dilated convolution is achieved by intro-
ducing zero-padding between each weight in the ordinary
convolution kernel, thereby expanding the network’s expan-
sion coefficient. The operation of ordinary convolution can
be expressed as shown in Eq. (2).

(s) = (x ∗ k) (s) =

∑m−1

i=0
x (s− i) · k(i). (2)

In Eq. (2), x is the input sequence, ∗ is the convolution oper-
ation, k is the convolution kernel, and m is the convolution
kernel size. The dilated convolution is expressed as shown in
Eq. (3).

F (s) = (x ∗d k) (s) =

∑m−1

i=0
x (s− d · i) · k (i) . (3)

In Eq. (3), ∗d is the dilated convolution calculation of expan-
sion rate d , and when d = 1, ordinary convolution is the same
as dilated convolution.

The receptive field of dilated convolution increases expo-
nentially. As depicted in Figure 1, all convolution kernels
are of size 3 × 3. FIGURE 1(a) illustrates the characteris-
tic diagram obtained from the original image using dilated
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FIGURE 1. Receptive field of dilated convolution.

FIGURE 2. Convolution kernel result graph with expansion rate of 2.

FIGURE 3. Stepped dilated convolution structure diagram.

convolution with d = 1, which is equivalent to ordinary
convolution. Each element in the first layer represents a 3 ×

3 portion of the original image, while maintaining a receptive
field size of 3 × 3. The feature map in FIGURE 1(b) is
obtained through a dilated convolution operation with d =

1 applied to the originalmap at layer 2.With an expansion rate
of 2, the convolution kernel is effectively distributed across
the positions indicated by dots in the map, resulting in a
receptive field of each element in layer 2 being 7× 7 relative
to the original map. In FIGURE 1(c), we observe the charac-
teristic diagram of the third layer obtained by applying dilated
convolution with d = 4 on the second layer. Similarly, with
an expansion rate of 4, each element in the third layer has a
receptive field of size 15 × 15.

The conventional 3-layer 3 × 3 convolutional kernels can
only achieve a receptive field of 7 × 7. While the number of
factors involved in the convolution remains unchanged and

so does the computational workload, increasing the size of
the kernel allows for feature values in the feature map to
correspond to larger regions, thereby expanding their range
of perception.

Although dilated convolution effectively expands the
receptive field and preserves feature map information,
it introduces a limitation where not all image features con-
tribute to the convolution calculation due to the presence
of dilation in the convolution kernel. If continuous con-
volution layers have identical expansion rates, a gridding
effect may occur. FIGURE 2 illustrates this phenomenon
when stacking multiple 3 × 3 convolution kernels with an
expansion rate of 2. Furthermore, while dilated convolutions
enhance receptive fields, they can hinder the extraction of
detailed features during convolutional analysis. The sever-
ity of detail feature loss increases with higher expansion
rates.

67714 VOLUME 12, 2024



Z. Wang, L. Yao: Recongnition of Distracted Driving Behavior Based on Improved Bi-LSTM Model and AM

FIGURE 4. LSTM model structure diagram.

Therefore, in this paper, we adopt a stepped expansion rate
strategy by setting the expansion rates to 1, 2, and 5 in the
three-layer convolutional network.

Revised sentence: In contrast to utilizing the same expan-
sion rate, stepped dilated convolution employs convolution
kernels with varying expansion rates. Stepped dilated convo-
lution offers the following two advantages:

1. The stepped dilated convolution enables the acquisition
of a multi-scale extended receptive field without introducing
additional model parameters or computational complexity,
thereby facilitating the extraction of long-range inter-feature
information.

2.The utilization of stepped dilated convolution effectively
mitigates the ‘‘gridding’’ phenomenon arising from local
information loss caused by expansion of the convolution
kernel.

The receptive fields of elements in each dilated convolution
layer are 3, 7, and 19 respectively when the convolution
kernel is set to 3 × 3, as depicted in FIGURE 3. By sharing
feature mapping parameters across all dilated convolution
layers, model parameters can be significantly reduced while
computational overhead is saved.

The incremental expansion rate ensures the preservation
of input information, while simultaneously accommodat-
ing the requirements for detailed features and inter-feature
correlations.

By setting the stepped expansion rate, the receptive field
can be adjusted to obtain multi-scale feature information.
In our experiment, we adaptively determine the size of the
feature map extracted by void convolution based on the orig-
inal image size and then set the expansion rate accordingly.
Convolution with different expansion rates enables us to cap-
ture behavior features at multiple scales, while assigning a
weight of 0 to non-relevant points in the convolution process.

B. BIDIRECTIONAL LONG SHORT MEMORY NETWORK
The Long short-term Memory (LSTM) [15] is a Recurrent
Neural Network (RNN) that incorporates memory capac-
ity [16], representing an advancement over traditional RNNs.
When dealing with long-term dependent data, the generaliza-
tion capabilities of RNNs are suboptimal. Specifically, when

FIGURE 5. Flowchart of Bi-LSTM module.

handling distant nodes, issues such as gradient disappearance
and explosion may arise. Numerous subsequent solutions
have been explored, among which the threshold recurrent
neural network stands out as particularly noteworthy. The
LSTM model demonstrates superior generalization capabil-
ities compared to other threshold recurrent neural networks.
By incorporating three types of gating units and a state update
mechanism within a single cell in the hidden layer, LSTM
enables dynamic internal circulation weights. Consequently,
it allows for variable integral scaling at different time points
while keeping network parameters unchanged. FIGURE 4
illustrates the structural diagram of the LSTM model.

The LSTM model exhibits significant advantages over
RNN in handling sequential data, owing to its distinctive long
and short-term memory module that incorporates a memory
unit with enhanced capacity.

The input gate possesses the capability to either accept or
reject the input features, thereby generating memory cells.
Subsequently, the input gate at the subsequent layer can
transmit the acquired memory cell state to the neuron in that
layer or discard it as output to the next layer. Furthermore,
by regulating alterations in cell state, the forgetting gate deter-
mines whether current cell characteristics should be retained
or past characteristics ought to be disregarded.

The Bi-LSTM model extracts input information and effec-
tively captures the temporal dependencies between connected
moments in the sequential data [17], [18]. This enables it
to optimize the utilization of input model information by
accurately capturing the flow of information.

The forward and backward modules in the model were
independently constructed based on the bidirectional long
short-term memory network with two distinct architectural
layouts. All modules in the reciprocal backward positions
shared an identical output layer. The temporal extension of
the network enables all units in the output layer to access
comprehensive information from both past and future tenses
of the input layer at any given time point. In the task of
recognizing distracted driving behavior, continuous driver
state information can be stored in the hidden layer. Each
operator within the model is associated with a corresponding
weightW .
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FIGURE 6. IDC-Bi-LSTM-Att model structure diagram.

The calculation process of Bi-LSTM is analogous to that
of LSTM, albeit with distinctions in the output mode between
the two. During Bi-LSTM operation, incoming data is prop-
agated through both forward and backward hidden states,
yielding a hidden layer output derived from bidirectional
temporal operations.

As shown in FIGURE 5, xt−1, x t and xt+1 represent the
input data corresponding to time t−1, tand t+1 respectively.
ht−1, ht and ht+1 represent the hidden state of the correspond-
ing forward iteration of the LSTM, respectively. h′

t−1, h
′
t

andh′

t+1represent the hidden state of the corresponding back-
ward iteration of the LSTM, respectively. ot−1, ot and ot+1
represent the corresponding output data.w1,w2, · · · ,w6 indi-
cates the weight of each layer.

The status update of the hidden layer of forward LSTM and
backward LSTM and the final output process of BiLSTM are
shown in Eqs. (4)-(6).

ht = f1(w1xt + w2ht−1), (4)

h′
t = f2(w3xt + w5h′

t+1), (5)

ot = f3(w4ht + w6h′
t ), (6)

where, f1, f2 and f3 are activation functions between different
layers respectively.

C. ATTENTION MODULE DESIGN
When utilizing CNN for image feature extraction, the com-
putational complexity and training time are significantly
increased due to its ability to perceive global image features.
In the domain of image recognition, extracting information
from photos often involves a substantial amount of irrele-
vant data, which not only hampers model training efficiency
but also diminishes recognition accuracy. The incorporation
of attention mechanism in deep learning aims to emulate
the brain’s functioning mechanism, thereby mitigating the
adverse impact of superfluous information during model

training, enhancing recognition accuracy, and optimizing
computer computing resources utilization [19].

The attention strategy employed in this essay is primarily
focused on addressing the issue of multiple inputs with vary-
ing input vector sizes. It effectively enhances the ability to
capture internal correlations within data or features, surpass-
ing the performance of the original attention mechanism and
reducing reliance on external information [20].

The weighted sum is the core of the attention mechanism.
When the attention mechanism is applied in the practical
application of deep learning, there exist n feature vectors
to form the feature matrix X = [x1, x2, · · · , xn], assuming
that its dimension is d , and the information of n features
is integrated. Direct calculation of the relationship between
features in attention can shorten the distance between remote
features and calculate the attention feature vector gi contain-
ing context information. The calculation process is as shown
in Eq. (7).

gi =

∑
i̸=j

αij·xj, (7)

among them, αij > 0 is the attention weight, and∑
j αij = 1. Each feature vector’s corresponding weight is

determined using the tanh function. The following is the
weight calculating process as shown in Eqs. (8), (9).

αij =
es(xi,xj)∑
j e
s(xi,xj)

, (8)

s
(
xi, xj

)
= vTa tanh(wa[xi ⊕ xj]). (9)

MLP is used to calculate s
(
xi, xj

)
to represent the corre-

lation between xi and xj features. In Eqs. (8), (9), vand w
are learnable parameter matrices. ⊕ represents the addition
operation.

The attention module dimension employed in this study is
set to 512, while the batch size is fixed at 64. All samples
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TABLE 1. Parameters of ID-CNN model.

undergo a total of 30 training iterations. Weight calcula-
tion is based on the correlation degree between the feature
vector and the recognized object. To obtain the probability
distribution of attention and enhance recognition accuracy by
optimizing image feature vectors, higher correlation degrees
correspond to higher scores.

D. MODEL STRUCTURE DESIGN
The IDC-Bi-LSTM-Att network model developed in this
study is illustrated in FIGURE 6. This model consists of three
dilated convolution layers, one BiLSTM layer, an attention
module, and a fully connected layer. In the experiment, two-
dimensional images were used as input, and deep features
were extracted from the data through convolutional opera-
tions. Subsequently, a Bi-LSTM network was constructed to
capture temporal order information within the feature vec-
tors. Furthermore, an attention mechanism was employed to
enhance the focus on important regions of the image during
training, thereby improving the network’s ability to accu-
rately identify hazardous driving conditions. Finally, a fully
connected layer with Softmax classifier was utilized for
image classification.

(1) The image is initially processed through the ID-CNN
architecture, comprising three layers of cavity convolutional
layers denoted as Conv1, Conv2, and Conv3 respectively,
to extract structural features from the image. The first con-
volutional layer employs a 3∗3 parameterized convolution
kernel with sixteen channels and applies the Rectified Linear
Unit (ReLU) activation function. The second convolutional
layer utilizes a 3∗3 parameterized convolution kernel with
thirty-two channels and also applies the ReLU activation
function. Similarly, the third layer of the convolutional net-
work adopts a 3∗3 parameterized convolution kernel with
sixty-four channels along with the ReLU activation function.
In this three-layered configuration, expansion rates are set
as 1, 2, and 5 correspondingly. The utilization of different
expansion rates enables the capture of multi-scale context
information. A smaller expansion rate facilitates the gen-
eration of fine-grained features, while a larger expansion
rate allows for the inclusion of a broader range of features,
thereby forming convolution nuclei with varying receptive
fields and acquiring multi-scale information. The schematic
diagram illustrating the structure of ID-CNN is presented in
FIGURE 7. The detailed network structure configuration for
ID-CNN is provided in Table 1.

(2) After passing through the ID-CNN module, the images
are connected to the Bi-LSTM layer with 128 hidden units.

FIGURE 7. ID-CNN model structure diagram.

(3) The Attention module incorporates a dimension of
128 in its attention mechanism, reducing reliance on external
data and enhancing its ability to capture internal correlations
between information and features. This enables more effec-
tive extraction and retention of key information aspects.

(4) The wdilated connection layer has 10 output units,
utilizing the softmax function for classification.

IV. EXPERIMENTAL ANALYSIS
A. DATA SET
The experiment utilized the StateFarm dataset, which
was published by State Farm Insurance on Kaggle
(https://www.kaggle.com/datasets/rightway11/state-farm
-distracted-driver-detection). The organizers of the study aim
to employ images captured by a compact dashboard camera
in order to discern hazardous driving conditions, thereby
notifying drivers and safeguarding their lives.

The data set is divided into 10 categories:

• c0: safe driving
• c1: texting - right
• c2: talking on the phone - right
• c3: texting - left
• c4: talking on the phone - left
• c5: operating the radio
• c6: drinking
• c7: reaching behind
• c8: hair and makeup
• c9: talking to passenger

Dataset example is shown in Table 2.
The dataset comprises a total of 10 states, denoted as

c0-c9, and the data distribution for each state is illustrated
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TABLE 2. Dataset example.
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FIGURE 8. Dataset distribution.

in Figure 8, demonstrating a relatively uniform distribution
pattern.

B. DATA ENHANCEMENT
In the real driving environment, variations in personal height
and habits result in differences in the distance and angle
between the head and the operating wheel. Additionally,
external factors such as driving turbulence and lens fouling
further influence this relationship. Therefore, it is crucial
for the model to acquire a diverse range of training data to
enhance network robustness. Data augmentation techniques
can effectively expand the original dataset by incorporating
various operations.

• Rotation: The image is subjected to clockwise or
counterclockwise rotation within a maximum angle of
20 degrees in order to preserve data integrity during the
dangerous driving behavior recognition experiment.

• Zoom: Adjust the magnification level of the image,
ensuring that excessive zooming does not result in
information loss.

• Flip: Apply inward or outward tilting transformation to
the image.

• Splicing: Combine images of different drivers belong-
ing to the same category through cutting and propor-
tioning techniques.

C. EXPERIMENTAL ENVIRONMENT AND
IMPLEMENTATION DETAILS
The ratio of the training set to the test set’s image count is
4:1. The training set consists of approximately 30,840 photos,
while the test set comprises roughly 7,720 images. The photo
distribution between the training and test sets remains con-
sistent. The comparison experiment described above directly
utilizes the pre-drive training set.

During the data reading phase, maintain an input image
size of 64 × 64. To achieve rapid convergence, this paper
utilizes the Adam optimizer with an initial learning rate of
0.00001 and employs Relu as the activation function. The
learning rate decay strategy is applied every 10 epochs with
a decay factor of 0.9. The batch size is set to 4, and a total
of 30 epochs are trained. Experimental parameter settings are
presented in Table 4.

FIGURE 9. The training and testing accuracy of the model in this paper.

The experimental setup includes Windows10 operating
system, TensorFlow-2.0 software framework, Nvida GeForce
GTX2080 GPU with video memory capacity of 24GB, and
Python programming language (version 3.7).

The deep learning framework selected for this paper is
TensorFlow, an artificial intelligence system developed by
Google and globally available free of charge. Renowned as
one of the most popular deep learning frameworks on Github,
TensorFlow is an open-source software library that employs
data flow diagrams for numerical computations.

D. COMPARATIVE EXPERIMENTAL ANALYSIS
The following experiments examine the efficacy and superi-
ority of the proposed model from various perspectives.

Experiment 1:
The IDC-Bi-LSTM-Att model is employed in this study to

predict each type of action in the dataset of abnormal driving
behavior for statistical analysis. The confusion matrix [21]
can be utilized to represent the distribution of predicted
actions compared to the actual data set. Table 5 presents
the classification mixture matrix of data sets in IDC-Bi-
LSTM-Att, while FIGURE 9 illustrates the test and training
accuracies of the model using the StateFarm dataset from this
research.

Through the analysis of the experimental data in Table 5,
it can be observed that in the distracted driving dataset, there
is a similarity between the handmovements and state changes
associated with calling on hair (C8) and right (C2), which
leads to potential confusion between these two types of dis-
tracted states. The lower recognition rate for certain driving
states, as indicated by the confusion matrix, can be attributed
to both similarities among objects and relatively limited data
samples available for some categories. Consequently, achiev-
ing a high recognition rate becomes challenging. Notably,
normal driving (C0) and tuned radio (C5) exhibit relatively
high accuracy in recognition due to their distinguishable char-
acteristics compared to other driving states and also owing to
an abundance of corresponding images within the distracted
driving dataset.
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TABLE 3. Data enhancement contrast.

TABLE 4. Table of experimental parameters.

FIGURE 10. The training and testing accuracy of the model in this paper.

Experiment 2: Complexity analysis.
Based on this model, a comparison is made between the

complexities of ordinary convolution and dilated convolution.
Comparative experiments are conducted in the same experi-
mental environment and dataset to evaluate their respective
parameters and computational complexity, as presented in
Table 6. From the table, it can be observed that the number of
parameters and computations required by dilated convolution
is approximately one third of those needed by ordinary convo-
lution. This demonstrates that dilated convolution effectively
reduces both parameter count and computational load in the
model.

Experiment 3: Layer analysis.
The performance of the entire network is influenced by

the number of layers in the feature extraction component,

FIGURE 11. Accuracy comparison chart.

and this paper presents an improvement to the algorithm
through adjustments made to the number of convolutional
layers. Specifically, hyperparameter L denotes the quantity
of cavity convolution modules utilized.

The performance of the ID-CNN module was analyzed
with varying layers of dilated convolution, as depicted in
FIGURE 10, which illustrates the model’s accuracy when
adopting different layers for the ID-CNN convolution layer
L. As evident from FIGURE 10, an increase in the number
of layers can indeed enhance the model’s performance when
initially few; for instance, a three-layer dilated convolution
improves the model’s accuracy by 7.2615%. This improve-
ment signifies that an expanded receptive field enables
capturing longer distance dependencies and enhances feature
extraction capabilities. However, surpassing three convolu-
tional layers does not yield further improvements but rather
escalates computational complexity. Thus, this paper con-
cludes that L=3 is appropriate.

The experimental results demonstrate that the number of
layers in the model significantly impacts its performance
during the feature extraction stage. As the number of layers
deepens, the model’s accuracy progressively improves until
it reaches a certain threshold, beyond which it gradually
diminishes. This phenomenon is primarily influenced by the
dataset size, as an excessively large model with increased
parameters can ultimately compromise its performance.

Experiment 4: Effect of expansion rate on model
performance.
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TABLE 5. Confusion matrix.

TABLE 6. Complexity analysis.

TABLE 7. Effect of expansion rate on model performance in cavity
convolution module.

After determining the number of layers L=3, the expan-
sion rate T is adjusted to achieve an optimal receptive field.
The performance of the model is influenced by adjusting
the expansion rate T in the cavity convolution module due
to its impact on filling within the module. The results are
presented in Table 7, where bold numbers indicate superior
values. Notably, parameter T is determined by parameter L.
As shown in Table 7, optimal performance is observed when
T takes values {1,2,5}, indicating that the model performs
best with sequential expansion factors of 1, 2, and 5 for each
of the three cavity convolution modules.

Experiment 5: Influence analysis of dilated convolution
module.

In order to validate the efficacy and superiority of the pro-
posed dilated convolutionmodule, we conducted experiments
based on a Bi-LSTM model. We compared and analyzed
the IDC-Bi-LSTM baseline model with an added dilated

FIGURE 12. Loss comparison chart.

convolution module. The change curves of accuracy and loss
values for both models are depicted in FIGURE 11 and
FIGURE 12, respectively.

FIGURE 11 demonstrates a significant improvement
in accuracy for the IDC-Bi-LSTM module compared to
the basic model. Additionally, FIGURE 12 illustrates that
the IDC-Bi-LSTM model with dilated convolution module
exhibits faster convergence speed. Furthermore, FIGURE 13
presents a comparison of model accuracy, indicating that
the Bi-LSTM model outperforms CNN, ID-CNN and LSTM
models. This is why we have chosen it as our base model.
Compared to the Bi-LSTM model alone, incorporating the
dilated convolution module has resulted in an improved
accuracy of 4.4895%. This suggests that multi-scale feature
extraction ability has been enhanced by considering all con-
textual information during feature extraction; thus enabling
more comprehensive capture of dependencies between fea-
tures. These results confirm the effectiveness of using a
dilated convolution module.

Experiment 6: Effect analysis of attention module.
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FIGURE 13. Accuracy comparison.

FIGURE 14. Accuracy comparison chart.

To validate the efficacy and superiority of the attention
module proposed in this study, we conducted experiments
based on IDC-Bi-LSTM. A comparative analysis was per-
formed between the basic model and a modified version
called IDC-Bi-LSTM-Att, which incorporates an attention
module. The change curves of accuracy and loss value for
both models are depicted in FIGURE 14 and FIGURE 15,
respectively. As illustrated in FIGURE 14, it is evident that
IDC-Bi-LSTM-Att outperforms IDC-Bi-LSTM in terms of
accuracy, indicating that the attention mechanism compels
the model to focus on discriminative features while enhanc-
ing its ability to extract directional features. Furthermore,
as shown in FIGURE 15, the inclusion of an attention
module accelerates model convergence rate significantly.
Additionally, these results demonstrate that the hole convo-
lution module effectively preserves positional information of
features.

FIGURE 16 is a comparison of the accuracy of the models.
The accuracy of the IDC-Bi-LSTM model is enhanced by
1.9906% when compared to the IDC-Bi-LSTM-Att model,
indicating that the incorporation of an attention module
enables optimal feature weighting, prioritization of crucial
information, and extraction of superior features.

Experiment 7: Contrast experiment

FIGURE 15. Loss comparison chart.

FIGURE 16. Accuracy comparison.

FIGURE 17. Accuracy comparison result.

To further validate the performance of IDC-Bi-LSTM-Att
model in recognizing distracted driving behavior, a compar-
ative model is established as follows:

• Model 1: Dong et al. [9] proposed the Fatigue Driving
Detection Based on Involuntary Expert Neural Network,
which aims to detect fatigue driving.

• Model 2: Liu et al. [10] introduced a real-time driver
fatigue detection model based on CNN-LSTM.

• Model 3: Shi et al. [11] presented an enhanced long
and short-term memory network for detecting driving
behavior.
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TABLE 8. Details of the drive&act-distracted dataset.

• Model 4: Fu et al. [13] Hybrid Neural Network predicts
driving behavior risk by incorporating distracted driving
behavior data.

The comparison of the accuracy of the aforementioned
models is illustrated in FIGURE 17. The results demonstrate
that the proposed strategy exhibits superior accuracy. CNN-
based feature extraction excels at capturing intricate features,
while the integration of Bi-LSTM module and attention
mechanism significantly enhances recognition accuracy.

Experiment 8: Test of generalization ability
In order to further validate the model’s generaliza-

tion ability, we utilized the Drive&Act dataset [22]

(https://www.driveandact.com/), which comprises a collection
of Distracted drivers behavior data named Drive&Act - Dis-
tracted. This dataset consists of 1200 images obtained from
15 drivers across six categories of driving behavior, including
safe driving, reaching behind, texting, talking on the phone,
operating the radio, and eating. The distribution of images in
the training set and test set follows a ratio of 4:1 as detailed
in Table 8.
The parameter settings and comparison model remain con-

sistent with those used in experiment 7. In this study, the
IDC-Bi-LSTM-Att model is evaluated using the Drive&Act-
Distracted dataset. Figure 18 presents a comparative anal-
ysis of the accuracy achieved by this model on the
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FIGURE 18. Accuracy comparison result.

Drive&Act-Distracted dataset. The results demonstrate that
the proposed IDC-Bi-LSTM-Att model achieves an impres-
sive accuracy rate of 97.8911%, surpassing other models
under evaluation. These findings provide evidence for the
robust generalization ability of our proposed IDC-Bi-LSTM-
Att model.

V. DISCUSSION
Building upon the advancements made in the Bi-LSTM
model, this paper proposes a novel approach for recogniz-
ing distracted driving behavior by integrating the Bi-LSTM
model with the attentionmechanism of Dilated Convolutional
Neural Networks (ID-CNN).

The key assumptions underlying this method are as fol-
lows:

1) Feature extraction is performed using the dilated con-
volutional model, which possesses a limited number of
parameters, facilitates an expanded feature sensitivity field,
and exhibits robust multi-scale feature extraction capabilities.

2) By incorporating the attention mechanism, distinct
weights are computed between states within the Bi-LSTM
model to further enhance its expressive power.

This methodology offers several advantages. It com-
bines the Bi-LSTM model with dilated convolutions to
enable multi-scale feature extraction and perception, mak-
ing it particularly well-suited for complex background and
multi-scale target image recognition tasks. Additionally,
by introducing an attention mechanism into the structure of
the Bi-LSTM model, relevant information can be selectively
attended to while disregarding irrelevant information during
sequence data processing, thereby augmenting its generaliza-
tion ability.

The potential limitations and challenges of this approach
are:

1) Computational complexity: When dealing with
high-resolution or high-frame-rate video data, the computa-
tional requirements of the proposed model in this paper will
further increase. Consequently, its implementation system
may have limited applications.

2) Data requirements: Training the model necessitates a
substantial amount of labeled distracted driving behavior
data. However, labeling such data is time-consuming and
costly.

3) Model generalization ability: Although the model per-
forms well on the dataset used in this paper, its applicability
to more complex scenarios or environments with fast driving
speeds remains uncertain. The performance of the model can
be influenced by various factors including individual driver
differences, vehicle types, road conditions, etc.

4) Real-time performance: While this approach demon-
strates good offline performance evaluations, maintaining
high performance in real-time driving environments poses
greater challenges. Further optimization is required to
enhance real-time performance which will be addressed in
future research.

VI. CONCLUSION
This method employs dilated convolution to reduce the cal-
culated parameters of the model, thereby expanding the
receptive field and focusing more on details while disregard-
ing irrelevant information. By incorporating bidirectional
long-term memory networks and an Attention mechanism
to capture relationships between key features, this approach
mitigates gradient disappearance issues and enables the net-
work to pay greater attention to driving state details. The
proposed model achieves an accuracy of 95.8367% on the
StateFarm dataset, surpassing both the Bi-LSTM network
model by 4.4895% and the IDC-Bi-LSTM network model by
1.9906%. At the same time, we get 97.8911% on Drive&Act-
Distracted data set, which is better than other models. This
study presents a novel method for recognizing distracted
driving behaviors, which can enhance recognition accuracy
in intelligent driving systems and provide safer guarantees
for future implementations. As behavior occurrences often
involve time information, accurately identifying their start
and end from data streams holds significant implications
for final behavior identification. Online behavior detection
has emerged as a promising direction for future research
efforts. Furthermore, existing approaches primarily focus on
detecting events that have already occurred; however, pre-
dicting anomalies and issuing alarms before such events
transpire would greatly expand the application scope of this
technology—a challenge that warrants further investigation.
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