IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 22 March 2024, accepted 4 May 2024, date of publication 13 May 2024, date of current version 20 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3399812

== RESEARCH ARTICLE

RMPF: Real-Time Message Processing Framework
on Multi-Service Domains

KYO-EUN KIM®1, SEONG-SOO HAN2, AND CHANG-SUNG JEONG?, (Member, IEEE)

!'Visual Information Processing, Korea University, Seoul 02841, Republic of Korea
2Division of Liberal Studies, Kangwon National University, Samcheok-si 25947, Republic of Korea
3Department of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea

Corresponding authors: Seong-Soo Han (sshan1 @kangwon.ac.kr) and Chang-Sung Jeong (csjeong @korea.ac.kr)
This work was supported in part by the 2023 Research Grant from Kangwon National University; in part by the Artificial Intelligence

Industrial Convergence Cluster Development Project funded by the Ministry of Science and ICT (MSIT), South Korea; and in part by
Gwangju Metropolitan City.

ABSTRACT In the world of real-time computing, there is a demand for platforms that deliver both
speed and efficiency while conserving hardware resources. High reliability applications typically use
dedicated platforms for their inherent reliability, but they are more expensive. On the other hand, tradi-
tional general-purpose platforms are cheaper but suffer from wasted hardware resources when processing
messages, hindering distributed processing and process monitoring. To address these limitations, this paper
presents the Real-time Message Processing Framework on Multi-service Domains (RMPF), an innovative
integrated platform for real-time distributed message processing on multi-service domains. The platform
supports a scalable and flexible multi-layer architecture by providing modularity that allows each layer to
be designed and updated independently. The interaction between each layer enables real-time distributed
message processing and distributed management of multi-service processing in a city-main based, high-
speed distributed environment. By accelerating message processing, using a dedicated buffer pool created
for each application process, and monitoring the status of all messages in the buffer, the high reliability
inherent in dedicated platforms is ensured. In addition, it minimizes the waste of hardware resources by
running application processes as daemons in buffer pools. In particular, to provide domain-based multi-
service, it supports RMPF grouping by task to distribute tasks to appropriate domains to eliminate system
bottlenecks. It is also implemented in a modular way to achieve both scalability and adaptability through
various multiservice distributed management schemes such as multiservice API, recovery, monitoring, and
multiservice provisioning.

INDEX TERMS Multi service, distributed message processing, unified platform, memory management,
multi domain.

I. INTRODUCTION
The Fourth Industrial Revolution has spurred remarkable

high-speed, real-time message processing platforms that are
essential for effective data management and processing [3].

advances in information and communication technology
(ICT), particularly with the proliferation of smart devices.
This surge has led to an exponential increase in real-time
data generation, especially in areas such as personal card
purchases, transport card authorizations and smart factory
operations [1], [2]. As a result, there is a growing demand for

The associate editor coordinating the review of this manuscript and

approving it for publication was Fabrizio Messina

High-reliability domains such as financial payments and
IoT-based smart factory systems require platforms that pro-
vide fault tolerance, independent memory management and
real-time data processing. Until now, only dedicated plat-
forms such as Tandem, Stratus, SUN and Sequoia have met
these stringent requirements, providing continuous monitor-
ing, fast fault recovery and exceptional system reliability [4],
[5]. However, these platforms are prohibitively expensive to
implement and maintain. However, because these platforms

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

67820

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024

https://orcid.org/0009-0003-6875-0481
https://orcid.org/0000-0002-3685-3879

K.-E. Kim et al.: RMPF: Real-Time Message Processing Framework on Multi-Service Domains

IEEE Access

are developed and implemented with expensive, dedicated
hardware and software as an integrated whole, they are very
expensive to operate and maintain, and their complex struc-
ture makes them expensive and difficult to scale. In addition,
general purpose platforms, while more economical, present
several challenges. Because general purpose platforms adopt
general purpose software on general purpose hardware, they
have low cost and high compatibility, but they have the
disadvantages of limited performance and poor system sta-
bility and reliability. In addition, general purpose platforms
have difficulty handling real-time multiservice processing,
mainly due to their message processing design. They also
lack efficient distributed message processing, which often
results in excessive consumption of hardware resources [6],
[7]. In addition, platforms such as Apache Tomcat and Tmax
TP Monitor often suffer from poor monitoring and recovery
capabilities, with limited or no native monitoring capabili-
ties. External application performance management solutions
often fill these gaps, but they are additional integrations and
not inherent to the platform [8].

In this paper, we present the Real-time Message Processing
Framework for Multi-Business Domains (RMPF), an innova-
tive integrated platform that bridges these gaps and provides
real-time distributed message processing for multi-service
domains. The reason for choosing the RMPF architecture
in this paper is to use the hardware of a general-purpose
platform to reduce the price competitiveness and implement
the same features and performance as a dedicated platform
in software. In addition, the proposed platform is designed
to secure high performance and reliability with low cost,
and it is modularized by function, so it is easy to add other
general-purpose systems and is highly scalable.

RMPF bridges these gaps by combining the high reliabil-
ity and system efficiency of a dedicated platform with the
economic benefits of a general-purpose platform. It is also
based on a general-purpose platform but implements the func-
tionality of a dedicated platform to handle faults, errors, and
exceptions for high reliability and competent system manage-
ment, which ensures message processing [9]. In particular,
it uses a dedicated message buffer pool for real-time multi-
service application processing, efficient distributed message
processing and optimized hardware resource utilization.
It also incorporates domain-based high-speed distributed pro-
cessing, a modular design for scalability, and a suite of
management functions, making it versatile for both cloud and
legacy systems [10].

The proposed platform manages resources within its own
platform, which allows for efficient utilization of resources
and reliable management. We also compared it to Apache
Tomcat, a widely used general-purpose platform, in a rig-
orous performance evaluation, and the results were quite
good. In all four tests, our platform consistently showed a
significant reduction in CPU usage. A key factor in this effi-
ciency is the platform’s architecture, which uses distributed
message processing with a message buffer pool and maintains
processes as daemons.

VOLUME 12, 2024

In summary, our main contributions can be summarized as
follows:

1) We present an integrated platform, RMPF, which pro-
vides real-time distributed message processing for
multi-service domains.

2) It supports multilayer architecture which achieves
extensibility and flexibility by providing modulariza-
tion in each layer which can be designed and updated
independently.

3) It provides the capability for fast message processing
while achieving reliability by using the dedicated buffer
created exclusively for each application process resid-
ing as a daemon for the incoming message, and then
tracking the status of all messages in the buffer through
monitor.

4) When messages come into the platform, the message
buffer pool is used to ensure message delivery. Mes-
sages that enter the platform are stored in the message
buffer pool, and messages are classified and tracked
through page-by-page indexing and unique hash value
generation. Processed messages are sent internally or
externally depending on their destination, and the entire
process is monitored in real time by the monitoring
module to enable rapid recovery in the event of a
failure.

5) It minimizes the waste of hardware resources due to
memory fragmentation and frequent process creation
arising in a general-purpose platform by keeping the
application process with its own memory space in the
buffer pool.

6) It provides domain-based multi-services by supporting
the grouping of RMPFs according to domains, and
remove the system bottleneck by enabling the distri-
bution of tasks to the proper domain.

7) It is further enhanced by various multi-service dis-
tributed management schemes such as multiservice
API, recovery, monitor and multiservice deployment,
each of which is implemented in a modular fashion
that ensures both scalability and adaptability, mak-
ing it suitable for a wide range of environments
from traditional legacy systems to modern cloud
infrastructures.

This paper is organized as follows: in Section II, we review
several memory management techniques, recovery and dis-
tributed service processing middleware as related works.
In Section III, we describe the architecture of our proposed
platform, and in Section IV, the overall operation of the
system. In Section V, we evaluate the performance of our
proposed system, and finally, in Section VI, we give a
conclusion.

Il. RELATED WORKS

This chapter introduces existing methods for memory man-
agement techniques, recovery techniques and distributed
service processing middleware, which are critical compo-
nents of the platform, and discusses their limitations. It also

67821

IEEE Access

K.-E. Kim et al.: RMPF: Real-Time Message Processing Framework on Multi-Service Domains

presents proposed methods to address the limitations of exist-
ing methods.

A. MEMORY MANAGEMENT TECHNIQUES

Memory management is very important in computer systems
to ensure efficient utilization of memory resources and to
prevent errors caused by memory misuse. In this chapter,
we shall describe about common types of memory manage-
ment techniques.

1) CONTINUOUS MEMORY ALLOCATION TECHNIQUES
Contiguous memory allocation is one of the simplest forms
of memory management, allocating a single, uninterrupted
block of memory to each process. It’s simple, fast and was
widely used in early computer systems. The main disadvan-
tage of this technique is fragmentation, where memory is
wasted as unusable white space. As processes are loaded and
unloaded from memory, available blocks of memory of differ-
ent sizes may be scattered around, leaving too little space for
new processes, and even if the total free memory is sufficient,
it may be fragmented into small chunks that cannot be used
by larger processes. Also, if a process does not fully use its
allocated block of memory, internal fragmentation occurs,
wasting the unused portion. When memory is fragmented,
it can slow down the system and introduce memory alloca-
tion overhead. Preventing this external fragmentation may
require memory compression, which can be time consuming
and degrade system performance [11]. In addition, as the
number of processes and memory requirements increase,
contiguous memory allocation becomes less feasible and
more inefficient, limiting scalability. In addition, as processes
grow in size, there is not enough space to store them in the
allocated block, requiring processes to be moved, which is
inefficient [12]. Recognizing these drawbacks, many modern
operating systems are moving towards more flexible mem-
ory management techniques such as paging and partitioning.
In this paper, we propose a solution to the fragmentation
and slowdown problems in these techniques, i.e. by storing
incoming messages in a message buffer pool with their hash
value instead of in a message queue, to support no memory
movement by processing by reference. This solves the prob-
lem of memory fragmentation and slowdown.

2) PAGING TECHNIQUES

Memory is divided into fixed-size blocks called pages, and
each process consists of fixed-size blocks. A process’s pages
can be distributed throughout physical memory. This reduces
fragmentation, since smaller fixed-size blocks fit better than
larger variable-size blocks. Each page is mapped to a frame
in physical memory, and a page table keeps track of where
each page is in physical memory. Its advantage is that it
makes it easier to swap pages in and out of RAM to accom-
modate more processes, while its disadvantages are that it
takes time and resources to maintain and retrieve the page
table, which creates overhead; it also wastes space, since the

67822

last page of a process is not fully utilized, which can lead
to internal fragmentation; the page table size can be large if
the process is large, which can cause the page table to grow
and require more memory. Therefore, there is the need for
multiple memory accesses (double references). One for the
page table and one for the actual data. This makes accesses
slow, and frequent page swaps between RAM and disk cause
thrashing that can seriously degrade performance. Paging
mitigates the fragmentation caused by contiguous allocation,
but it also introduces its own problems [13], [14]. To address
these issues, the proposed platform creates, and uses message
buffer pool to minimize memory usage, thus eliminating pag-
ing and minimizing throughput and performance degradation.

3) PARTITIONING TECHNIQUES

Partitioning is one of the primary memory management
techniques used, especially in early computer systems, and
involves dividing physical memory into multiple partitions to
accommodate multiple processes. Main memory is divided
into multiple partitions. Each partition can hold exactly one
process. When a process enters main memory, it is assigned
a partition. The size of a partition can be fixed or variable,
and memory is divided into segments based on different types
of data or instructions. Each segment can be expanded or
shrunk independently. Partitioning allows you to divide a
process into logical segments, such as code, data, stack, and
so on. Each segment has a base address and a limit, and the
system protects against unauthorized access by ensuring that
the accessed address is within the segment limit [15], [16].
This technique is used when the message size is small and is
not suitable for processing large amounts of message data.

4) VIRTUAL MEMORY TECHNIQUES

Virtual memory technology allows processes to run even
when they are only partially located in primary memory. The
rest of the process resides in secondary storage, which is
usually a hard drive. Virtual memory uses both hardware and
software to allow a computer to use disk space to compensate
for a lack of physical memory. When a part of a program
or data that is not in main memory is accessed, a page fault
occurs [17]. The operating system then replaces the required
page with memory, and replaces other pages if necessary. This
gives the user the illusion that the available memory is almost
unlimited, and also introduces potential performance degra-
dation due to overhead swapping due to context switching
between main memory and disk [18], [19]. To address these
issues, the proposed platform creates a message buffer pool
to minimize memory usage, and minimize processing speed
and performance degradation.

5) GARBAGE COLLECTION TECHNIQUES

Garbage collection is primarily used in the context of
advanced programming languages to automatically reclaim
memory that is no longer in use or referenced by the program.
Languages like Java and C# have built-in garbage collectors,

VOLUME 12, 2024

K.-E. Kim et al.: RMPF: Real-Time Message Processing Framework on Multi-Service Domains

IEEE Access

and these systems periodically check for data in memory that
is no longer accessible to the program. When such data is
found, the memory it occupies is freed and returned to the
system for other uses. While this technique reduces the risk
of memory leaks, it incurs an overhead due to the garbage col-
lection process [20]. To address this overhead, the proposed
platform uses a message buffer pool, which means that the
memory is standardized to a certain size to minimize memory
fragmentation and overhead.

6) DATA PAGE BUFFER POOL TECHNIQUES

This technique is one of the methods for managing data
stored in memory for processing data acquired through a
network device. As a method of processing packet data
acquired through a network device, the packet data acquired
through the network device is delivered to a central pro-
cessing unit (CPU) or written directly to memory at the
request of the CPU so that the central processing unit can
process the packet data. In general, memory provides a rel-
atively compact and quickly accessible memory structure.
However, while this technique is suitable for small-scale
and limited memory management, it suffers from system
inefficiency when applied to large-scale memory manage-
ment due to the frequent increase in processing count and
the increase in management points [21]. The platform pro-
posed in this paper enables large-scale memory management
through large-scale message processing by organizing and
utilizing a message buffer pool in the memory in addition to
small-scale.

7) LOOKUP TABLES TECHNIQUES

This technique is a memory allocation technique using a
lookup table, which converts the requested memory size into
a key value of logarithmic size to access the lookup table,
which is a hash table, and searches for a free memory block
of the requested size from the linked list of blocks with the
corresponding logarithmic size. In addition, the free memory
blocks are organized as a double linked list with a FIFO
policy, and all memory blocks are managed as an addressed
ordered double linked list, which has the advantage of per-
forming memory merges quickly when returning memory.
However, as the memory size increases, the number of pro-
cessor operations increases due to the memory fragmentation
phenomenon, resulting in a slowdown and decrease in system
efficiency [22], [23]. To solve this memory fragmentation
phenomenon and decrease in system efficiency, the proposed
platform standardizes the buffer memory to a fixed size in
order to minimize memory fragmentation, and hence prevent
slowdown and system degradation.

B. RECOVERY

The primary goal of a database system recovery mecha-
nism is to ensure that the database can be restored to a
consistent and correct state after any kind of failure, such
as a system crash or media failure. Recovery mechanisms

VOLUME 12, 2024

ensure the ACID properties (atomicity, consistency, isolation
and durability) of a database system. The main focus of
this chapter is on popular recovery mechanisms, specifically
log-based recovery techniques and shadow paging recovery
techniques [24], [25].

1) LOG-BASED RECOVERY TECHNIQUES

Log-based recovery techniques use logs to record all oper-
ations on the database. This log helps to return the system
to a consistent state after a failure. The basic principle
of log-based recovery is that the actions of each transac-
tion are recorded in a log before they are applied to the
database, ensuring that these records can be used for recovery
purposes [26].

o Immediate Update Technique: In the immediate update
technique, changes are applied directly to the database
even before the transaction is committed, but they are
also written to the log. Complexity is increased by the
need to support both undo and redo operations. More
I/0O operations compared to lazy updates because the
changes are applied immediately. Must deal with trans-
actions that may have been partially completed during a
crash [27].

o Deferred Update Technique: In a lazy update technique,
changes are logged but not immediately applied to the
database. Changes are only applied after the transaction
is committed, potentially increasing recovery time as
all transactions may need to be re-executed since the
last checkpoint. It is necessary to keep a significant
portion of the login in memory until the transaction is
committed [28].

o Check Point Recovery Techniques: Checkpoint recov-
ery techniques take regular snapshots of the system
to minimize the number of log entries that need to
be considered during recovery. The disadvantage is
the trade-off between recovery time and system over-
head; frequent checkpoints can reduce recovery time,
but at the expense of system performance. Also, if not
implemented carefully, concurrent transactions during
checkpoints can complicate recovery.

A common disadvantage of log-based recovery techniques
is storage overhead, as logs can grow over time and consume
significant storage. There is also a performance overhead,
as writing to logs and databases can double I/O operations,
especially on highly transactional systems. Managing, archiv-
ing, and deleting old log records can be complex, and there
are concurrency issues, requiring proper synchronization,
especially when multiple transactions access the logs in a
distributed system. In addition, a combination of logs and
periodic backups is required for a complete recovery mecha-
nism, and relying on logs alone may not be sufficient in the
event of a catastrophic failure. In practice, despite these draw-
backs, log-based recovery remains one of the most reliable
ways to ensure database consistency and durability, especially
when combined with other strategies such as backup and
replication [29].

67823

IEEE Access

K.-E. Kim et al.: RMPF: Real-Time Message Processing Framework on Multi-Service Domains

2) SHADOW PAGING RECOVERY TECHNIQUES

Shadow paging is an alternative to the log-based recovery
model; instead of using logs, this technology uses a paging
mechanism. The process is that when a transaction modifies
a page in the database, instead of overwriting the original
page, anew ‘“‘shadow’ page is created to record the changes.
The original remains unchanged, and when the transaction
commits, the database pointer is updated to point to the new
shadow page, which becomes the current page [30]. The
advantage of this technique is immediate recovery. In case
of failure, the system can revert to the previous page, and no
undo or redo logs are required as the previous page naturally
acts as a backup. On the downside, shadow paging can lead
to fragmentation because changes create new shadow pages.
It can also require more storage space as the original and
shadow pages coexist for a period of time [31], [32].

To solve the shortcomings of the log-based recovery and
shadow paging recovery methods presented above, the pro-
posed platform proposes a message swap method in the
message recovery function. This method replicates data from
the message buffer pool and stores the same data on disk as an
archive. In addition, this technique recovers message failures
by using the message buffer pool in case of failure.

C. DISTRIBUTED SERVICE PROCESSING MIDDLEWARE

In the era of distributed systems and cloud computing,
middleware plays an important role in ensuring seamless
communication, data exchange, and process management
across different services. In addition, multi-protocol gateway
solutions that facilitate data exchange between entities with
different technical origins provide efficient data exchange in
the gateway context for major automotive IoT Ethernet-based
communication technologies in a variety of service-oriented
architectures, requiring compatibility and real-time response
capabilities [33], [34].

Distributed service processing middleware also plays an
important role in facilitating and managing interactions
between different services and components so that they can
operate consistently in a distributed environment. Middle-
ware abstracts the details of where a component or service
is running [35], [36], meaning that clients do not need to
know a specific location within the distributed system when
trying to access a service. Middleware also provides mecha-
nisms to handle concurrent access, ensuring data consistency
and integrity [37]. And middleware provides mechanisms
for failure detection, failure masking and recovery. On the
other hand, middleware provides various functions such as
load balancing, security protocols and service discovery to
efficiently, and effectively manages operational issues in a
distributed environment [38], [39].

1) APACHE TOMCAT

Apache Tomcat is a popular open source middleware solution
that acts as a Java servlet container. It also creates threads
or uses other mechanisms to parallelize or execute tasks

67824

in parallel. However, if you have specific requirements for
external processes, Java provides a way to launch and manage
them. On the other hand, the creation process can consume a
lot of system resources. Especially in a web server environ-
ment, where many requests can be processed simultaneously,
these resources need to be managed appropriately. Also, this
method does not provide error handling, so you will need to
work separately on comprehensive error handling. In addi-
tion, since there is no process management, it can sometimes
become a “zombie’ process, and it is tedious to clean up the
resources after the process has finished [8], [40]. To address
these issues, the proposed platform uses Message Router
(MR) units to enable large-scale concurrent processing, and
a message buffer pool is used for error handling and process
management via the monitor function.

2) OBJECT REQUEST BROKER (ORB)

An ORB is a middleware system that enables communication
in distributed object-oriented systems by allowing program
calls to be made from one computer to another over a network.
Through location transparency, the calling application does
not need to know the location of the remote object. ORBs also
rely on interface definitions such as IDL to define and expose
object methods. Advantages include the ability to seam-
lessly integrate and communicate object-oriented systems
over networks, and to provide a high level of abstraction and
encapsulation. Disadvantages include potential performance
overheads due to the abstraction layer and the complexity of
setting up and managing distributed objects [41], [42].

3) TRANSACTION PROCESSING MONITOR (TPM)

A TPM is a middleware system designed to manage and
monitor the execution of a series of tasks, ensuring that these
tasks are completed as a single unit (transaction). In essence,
it ensures that all tasks in a transaction are completed and that
nothing is completed if they are not. It also ensures that each
transaction runs independently of the others. Pros: It ensures
the ACID properties of transactions in distributed systems:
atomicity, consistency, isolation, and durability, and pro-
vides robustness and reliability for applications that require
transactional integrity. Disadvantages include latency due to
transaction confirmation and locking, and potential race con-
ditions that can occur when many transactions compete for
the same resources [43].

4) MESSAGE-ORIENTED MIDDLEWARE (MOM)

Message-oriented middleware is a category of middleware
that facilitates communication between distributed compo-
nents through message passing. Components communicate
by sending and receiving messages, even if they are not
online at the same time. Because components communicate
asynchronously, they do not have to wait for a response
after sending a message, and if the receiving component
is unavailable, the message is held in a queue until it is
delivered. The advantages are that components can operate

VOLUME 12, 2024

K.-E. Kim et al.: RMPF: Real-Time Message Processing Framework on Multi-Service Domains

IEEE Access

,:'/ 0 \
II &
- Domain B
Evas
(if .)
—t— Domain A —\
Multi-Service Processing Layer(MSPL]
T
) 9 “
1 Ry “.._ [Multi-Service Manager(MSM)| .~ .
‘. - = S o Card companies
e E——
Multi Domain | s \\ e
GatewayMDG) | T . e s \
’ \\il_' I Payment
Message Message Network | [¢ >\)
Nebwork l<--p| Converter Message (. Converter #--9| Interface
Interface(NI) MO Router(MR) (MC) D)
4 L L A A -
A 4 A 4 v v v
| Message Buffer Pool(MBP) | L/ Settlement systems
k Distributed Message Processing Layer(DMPL)
- — L/ B
) Multi-service Multi-service Central Control
Recovery Monitor API deployment Center
manager(MSDM)
—
Multi-Service Distributed Management Layer(MDML))

\\

FIGURE 1. RMPF architecture.

independently, making them highly scalable and resilient to
component failures due to message queues. The disadvan-
tages are that message delivery is not always guaranteed and
the asynchronous nature can complicate application logic and
error handling.

To improve these problems, a message queuing approach
was used in [9]. However, the RMPF proposed in this paper
improves the problems in [9], which greatly improves the
message processing speed and system efficiency of the plat-
form. In addition, the proposed platform separates units into
independent layers, which simplifies the connection steps,
reduces the number of processing steps, and greatly improves
the system efficiency.

Furthermore, since the existing system uses OS-managed
queues, queue congestion slows down the overall operation,
while our system uses dedicated buffers from a pool of mes-
sage buffers created exclusively for each application process,
which speeds up message processing.

Ill. RMPF ARCHITECTURE

RMPF is designed to use the hardware of a general-purpose
platform to achieve the functionality and performance of
a dedicated platform at a lower price point. In addition,
it is designed to secure excellent performance and high reli-
ability despite its low price, and it is easy to add other
general-purpose systems and is highly scalable because it is
modularized by function. In addition, it manages resources
within its own platform, enabling efficient utilization of
resources and reliable management. In addition, RMPF is
an integrated platform that provides real-time distributed

VOLUME 12, 2024

message processing to various terminals such as payment
companies, banks, settlement systems, and central control
centres, and multi-service domains such as VAN, transporta-
tion cards, smart factories, and IOT. As shown in Fig. 1, it con-
sists of three layers: Distributed Message Processing Layer
(DMPL), Multi-Service Processing Layer (MSPL) and Mul-
tiservice Distributed Management Layer (MDML). RMPF
supports multilayer architecture which achieves extensibility
and flexibility by providing modularization in each layer
which can be designed and updated independently. The inter-
action between those layers enables multiservice processing
using real-time distributed message processing and multiser-
vice distributed management on domain-based high-speed
distributed environment.

A. DISTRIBUTED MESSAGE PROCESSING LAYER (DMPL)

DMPL receives each message from terminal, then sends it to
the corresponding service application unit (SAU) in MSPL,
which in turn sends the additional processing request to the
external service via DMPL according to the processing results
from SAU. It consists of five components: Network Interface
(NI), Message Converter (MC), Message Router (MR), Mes-
sage Buffer Pool (MBP) and Multi Domain Gateway (MDG)
as shown in Fig. 2. NI receives a message from terminal,
which in turn is converted into application format by MC, and
then sent to the proper application process in the correspond-
ing SAU by MR. Each SAU consists of several application
processes for the same application. MC converts external
messages to internal common data format for SAU, providing
easy maintenance and extensibility for SAU According to

67825

IEEE Access

K.-E. Kim et al.: RMPF: Real-Time Message Processing Framework on Multi-Service Domains

FIGURE 2. DMPL configuration.

the processing result of the SAU, MR sends the additional
request to the external service via MC and NI to further
process external services such as card company service from
stores, payment settlement system from bus, smart automa-
tion system from factory and central control center from IoT
sensors. MBP stores the messages from NI, MC and MR for
buffering, and manages a queue for each process in SAU for
easy migration of task between processes in the same SAU.
Each RMPF has its own unique domain to which it belongs
to, and each message stores information about thedomain of
RMPF on which it can be processed. MDG has the role of
sending the message received from NI to the proper RMPF in
the corresponding domain for the message.

1) NETWORK INTERFACE (NI)

NI handles messages from various external terminals, and
connects to the external services. For example, messages
from stores are connected to card company service, from
bus to payment settlement system, from factory to smart
automation system, from IoT to central control center, etc.
NI has consisted of two components: terminal interface unit
and external interface unit. Terminal interface unit receives
message, and checks, for each message, its domain. If it
belongs to the other domain, it forwards the message to MDG
so that it can be processed in the proper domain; otherwise
sends it to MC. External interface unit connects to the proper
external service according to the processing result from SAU
in MSP, receives the result from the external service, and
sent back to the SAU, which in turn completes the task by

67826

MuTt :
Domain m dl — :

Gateway iadieware I VisA S Wiesord
(MDG) | visa €}
— I ! Card companies
Terminal External| | N

Interface Message Message Interface| 1
Unit |—% Comerte —p L_p Conerte . p|| Unit ! fﬁﬁ
VMO Message o) A/:w Payment
Nework | €— <4—| Router < ¢ Nework i
o STU (MR) STU o :
(ND I
i GTU GTU :
: Settlement systems
I
1
Message Buffer Pool(MBP) | —
! Central Control
Distributed Message Processing Layer(DMPL) i Center g
___________________________ 1 - -

returning the final result to the terminal through terminal
interface unit. External interface unit acts as bridges that
provide connectivity between RMPF and external service,
and hence play a pivotal role in integrating internal subsys-
tems with external organizations, ensuring that data can move
flexibly and efficiently across various boundaries.

2) MULTI DOMAIN GATEWAY (MDG)

RMPFs can be divided into multiple business domains or area
domains. MDG supports the grouping of RMPFs according
to domains by providing a link between domains in multi-
domain construction, and remove bottlenecks by enabling the
transfer of tasks to the proper domain. MDG in the current
RMPF performs the role of calling the task in the master
RMPF of residing in the domain for the incoming message,
which in turn processes it, returns the result to the current
RMPF unless the bottleneck occurs; otherwise performs the
load balancing by transferring the task to the other RMPF in
the same domain according to its priority order.

3) MESSAGE BUFFER POOL (MBP)

MBEP is essentially a dedicated memory space or storage
designed to temporarily store incoming intermediate mes-
sages before they are processed. Its primary role is to act
as a cushion for sporadic or unexpected spikes of incoming
data, ensuring that the system is not overloaded, and each
message is processed efficiently in real time. By providing
a buffer for incoming data surges, intelligently categoriz-
ing messages, andensuring rapid message processing, MBPs

VOLUME 12, 2024

K.-E. Kim et al.: RMPF: Real-Time Message Processing Framework on Multi-Service Domains

IEEE Access

SAU1

(ro0) (oo @]
A

SAU 2

[Y £ b EEEERm
(Proc) (Proc)

A A A
\/ A £ v v v 4
Bifr#1 || Bifer®2 || Bifer#3 || Bffer#s || Buffer#s EmmEnm Buffer#n
! i i
A4
A4 A 4
Message le »l Index and e »l Temporary M;;:?e
Storage Hash Storage Pool(VBP)
MBP manager

FIGURE 3. MBP components.

greatly improve the efficiency, responsiveness and reliability
of such systems. From a design perspective, MBP is geared
toward rapid allocation and deallocation of buffers. This
means that as soon as a message is received, it can be quickly
placed in a buffer, and once processed, the buffer can be
immediately freed up for the next message. This approach
minimizes latency and ensures smooth data flow through the
system.

As in Fig. 3, it consists of five components: message
storage, index and hash storage, buffer, temporary storage
and MBP manager. Message storage stores intermediate mes-
sages, and index and hash storage stores information for
accessing messages. Buffer is a queue for storing index and
hash information for the messages of each process in SAU,
and temporary storage stores the index and hash information
removed from the buffer when the bottleneck in buffer space
occurs.

The existing system makes use of the queue managed
by OS, thus causing the slowdown of the overall operation
and reliability degradation due to the overload arising in the
queue, while our RMPF speeds up the message processing,
and achieves reliability by using the dedicated buffer in MBP
exclusively created for each application process in SAU, and
following up the status of all the messages in the buffer in
MBP through monitor in MDML. In the existing system,
as the memory size of buffer varies, the number of opera-
tions in each process of SAU increases due to the memory
fragmentation resulting in slowdown and decrease in system
efficiency.

RMPF provides an efficient MBP management scheme
for the dedicated buffer memory space which can minimize
memory fragmentation, and hence prevent system degrada-
tion. To solve this memory fragmentation phenomenon and
decrease in system efficiency, RMPF standardizes the buffer
memory to a fixed size, and transfers the content of the
buffer into temporary storage in case overload occurs in
the buffer in order to minimize memory fragmentation, and
hence prevent slowdown and system degradation. Moreover,
we store the hash and index values of incoming messages into
buffer instead of the message data in order to support data

VOLUME 12, 2024

Message Encoder
Typel Type2 TypeN Monitor
Format Format raEE Format Agent
A A
Message Decoder
v v
Line Management Logger
NI

FIGURE 4. STU configuration.

processing by reference without memory movement, prevent-
ing the problem of slowdown.

MBP manager provides a buffer pool management scheme
for generating a plurality of message storage organized in
parallel, generating index and hash storage for storing index
and hash information for the messages in message storage in
parallel, generating buffers each with fixed size for storing
index and hash information for the messages into each pro-
cess of SAU, and generating temporary storage for storing
the data removed from buffer when the bottleneck event is
determined to have occurred. Thus, it is possible to omit
the process of additional memory allocation by creating a
buffer pool in advance, and to allow the application process
to directly access the previously created buffer pool thereby
reducing the burden of overloading caused by the process for
memory allocation.

Temporary storage capability is especially important for
handling high-throughput scenarios or ensuring that mes-
sages are not lost or delayed due to processing bottlenecks
during peak load times.

In addition, in a multi-business domain framework, mes-
sages often have varying priorities and complexity. MBPs can
be equipped with intelligent mechanisms which not only store
messages, but also classify or prioritize them. For example,
in a system that processes both financial transactions and user
feedback, financial messages may be given a higher priority
so that they are processed before feedback messages. This
prioritization ensures that business-critical or time-sensitive
data is processed immediately.

4) MESSAGE CONVERTER (MC)

MC converts messages from a terminal format to an appli-
cation format and vice versa. It consists of two types of
units: Single Type Unit (STU) converts from single terminal
format to the corresponding application format, and vice
versa. A Group Type Unit (GTU) converts a group of ter-
minal formats to the corresponding application format, and
vice versa. MC executes parsing, encoding and decoding
different external messages. It also uses ISO 8583 and Free
Format as internal message standard that is common within

67827

IEEE Access

K.-E. Kim et al.: RMPF: Real-Time Message Processing Framework on Multi-Service Domains

Message Encoder
External Service Special Monitor
Message mmmm Format Agent

Message Decoder T
\
\ 4

Connection Management Logger
NI

FIGURE 5. GTU configuration.

the platform. The input process of MC receives messages
from the network interface, converts them to the appropriate
application format, and transfer them to MRU. The output
process of MC receives messages from the MRU, converts
them to the appropriate terminal format, and transfer them
to NI, which intern sends them to the appropriate external
service.

o Single Type Unit (STU): STU is responsible for analyz-
ing, converting serially incoming messages into proper
single type from terminal interface unit of NI to MR,
or vice versa. It consists of connection management,
parser, encoder and decoder, logger and monitor agent
as shown in Fig. 4. Connection management module
manages the status of terminal equipment, and provides
flexibility to cope with new equipment as it becomes
available without making major system-wide changes
when you add new types of terminals or new commu-
nication methods. Messages are parsed, encoded and
decoded in a prescribed manner, and all messages are
logged in real time as needed. The timer is activated
after the text message is received, and if the result is not
received within the specified time, it will automatically
fail. Monitor agent checks the status for each converted
message in order to maintain the correct format of the
message.

e Group Type Unit (GTU): GTU converts a group of
incoming messages from MR into a complex message,
and sends it to external interface unit of NI or versa.
It can greatly decrease communication overhead by
encapsulating a large volume of messages to the same
external service into one group message and processing
them in a batch at once. As shown in Fig. 5, it con-
sists of connection management, parser, encoder and
decoder, logger and monitor agent. Similarly, as STU,
connection management module manages the status of
terminal equipment, and message encoder and decoder
receives a group of messages from MR, convert it to a
complex message or vice versa, and all messages are
logged in real time as needed. The timer is activated
after the text message is received, and if the result is not

67828

SAU 1 SAU 2 SAU n

,
) o) @) | oo () | 20|
Y

A A A
v \ 4

App. Link Logger

Manager Monitor Agent

Auditor

App. Scheduler

Multi-Service Manager(MSM) |

FIGURE 6. MSM components.

received within the specified time, it will automatically
fail. Monitor agent checks the status for each converted
message in order to maintain the correct format of the
message.

5) MESSAGE ROUTER (MR)

MR receives messages from the MC, routes them to the
MSP’s Message Service Manager (MSM) for processing,
and, if necessary, sends the results from SAU to the MC to
access external services through the NI, or returns the final
termination status to terminal via MC and NI.

B. MULTI SERVICE PROCESSING LAYER (MSPL)

In the realm of real-time message processing for multi-
business domains, the multi-service processing module is
emerging as a key element. It enables the efficient and seam-
less integration of various business processes each ofwhich
process messages from different sources simultaneously.
It consists of Multi-Service Manager (MSM) and Service
Application Unit (SAU).

1) MULTI SERVICE MANAGER (MSM)

MSM plays an important role in orchestrating the vari-
ous services in a real-time message processing framework.
As shown in Fig. 6, it consists of application link man-
ager, application scheduler, monitor agent, logger and auditor.
It acts as a central hub to coordinate message routing to the
proper application service process in SAU through applica-
tion link manager, and ensure proper service invocation by
application scheduler. MSM also prioritizes tasks, handles
service failures, transmits various statuses, message process-
ing information, logs, and protects the integrity of message
transactions in a multi-business environment by monitor
agent, logger and auditor. In addition, it enables loss-less
processing of messages through application-specific queue
management for each SAU even in the event of overload,
solving the user’s risk of message loss.

VOLUME 12, 2024

K.-E. Kim et al.: RMPF: Real-Time Message Processing Framework on Multi-Service Domains

IEEE Access

2) SERVICE APPLICATION UNIT (SAU)

SAU is a dedicated processing component designed to exe-
cute several identical processes for the specific application
service within the framework. That is, in each SAU, the
distinct business service is covered, and the clones of the same
process that performs the same task are managed as a group.
For example, SAU 1 is for banking logic, SAU 2 for card
company logic, and so on.

Essentially, each SAU ensures that each service request is
met in a customized execution environment, optimized for
performance, and suited to the unique requirements of that
service. Therefore, each SAU can be customized for different
service type. The use of SAUs also greatly simplifies the
handling of multiple services. Each service can be queued,
run, and managed in the corresponding SAU with a level of
precision that is difficult for traditional systems to achieve.
SAU is also the core of the multi-service processing module,
responsible for real-time data processing and multi-service
on the platform with adaptive design, resource efficiency and
seamless integration.

By isolating each service application and providing a cus-
tomized environment, the SAU ensures optimal efficiency
and performance for each task. It is also a pivotal compo-
nent of modern distributed systems designed to encapsulate
specific service logic and functionality. Operating as modular
units within a larger system, SAUs streamline the execution
of specific tasks to ensure both efficiency and accuracy.

C. MULTI-SERVICE DISTRIBUTED MANAGEMENT LAYER
(MDML)

In the realm of distributed systems, managing multiple
services effectively and efficiently is paramount. MDML
addresses this complexity, and provides various management
schemes for recovery, monitoring, multi-service API and
multi-service deployment manager to facilitate service coor-
dination, deployment and fault tolerance.

1) RECOVERY

Recovery is critical in a multi-service distributed manage-
ment module. In a distributed environment, services can fail
for a variety of reasons, including network issues, hard-
ware failures, software glitches and unexpected traffic spikes.
Effective recovery mechanisms are therefore essential not
only to ensure service continuity, but also to ensure data
integrity and maintain user trust. Backup and restore mecha-
nisms ensure that service state and data are regularly backed
up so that services can be restored to their most recent and
consistent state in the event of a failure. Transaction logging
is also necessary in distributed environments where multiple
services often interact in complex ways. Transaction logs
provide a detailed record of all these interactions. In the
event of an error, these logs are critical to understanding the
sequence of events leading up to the error and ensuring that
all services can be rolled back or forwarded to a consistent
state.

VOLUME 12, 2024

Application Management Module

Mgmt.
Agent
Configuration Management
Cul
Module
Authentication Management Logger

Module

FIGURE 7. Monitor components.

The proposed platform supports message loss prevention
during failover and upgrades through hot swap support. The
hot swap feature saves data to disk as an archive as it comes
into the message buffer pool, and then watches each module
and unit on the monitor, and monitors the processing status
of each message. In the event of a failure, the message buffer
pool data is swapped with the data stored on the disk for
recovery. In addition, the following processing is done to
ensure message processing because it can solve the risk of
message loss when sending messages. In the case of faults,
if the message from the outside is not recognized, it is retrans-
mitted according to the set rules by repeating the processing
3 times, and if an internal fault occurs, the process (SAU) is
stopped and the processing is handed over to another process
(SAU) waiting for processing. In addition, if an error occurs
and the fault cannot be handled and is outside the scope
of exception processing, the error is checked in the status
monitoring and the error message is alarmed through dump
processing so that the administrator can check it. In addition,
it does not affect the system as a whole when handling the
error. And in the case of exceptions exception handling, the
message is exceptionally handled by creating a certain event
rule corresponding to the exception. With these features, the
proposed RMPF can be used in various fields such as finance,
transport, [oT, and retail.

2) MONITOR

Monitor continuously monitors the status of all services, and
watches the flow and processing of all the messages within
the platform. This proactive approach allows for early detec-
tion of potential problems before they escalate into larger
issues. Therefore, it achieves reliability by creating the dedi-
cated buffer in MBP exclusively for each application process,
and following up the status of all the messages in the buffer
in MBP through monitor.

As shown in Fig. 7, it consists of application manage-
ment, configuration management, authentication manage-
ment, command line user interface (CUI), management agent
and Logger. Application management module starts, stops,
and monitors all the online and batch application processes.
Configuration management module stores all the informa-
tion for the configuration of each component in RMPF, and
Logger collects the status of each component in real time.
Authentication management module manages, and controls

67829

IEEE Access

K.-E. Kim et al.: RMPF: Real-Time Message Processing Framework on Multi-Service Domains

Environment User
Registration Management
Status Fault Log
management Management Viewer
Application Alarm
Management Management
WAS Server
Logger
Monitor Connector

FIGURE 8. MSDM configuration.

user permissions to access the framework, and CUI provides
emergency failure handling functions. Management agent
transmits the information of each component in RMPF to
MSDM.

3) MULTI SERVICE API

In today’s interconnected digital ecosystem, the ability to
interface, interoperate, and integrate diverse services is more
important than ever. The rise of cloud computing, microser-
vices architectures, and IoT has led to a proliferation of
different services, each offering unique capabilities. Multiser-
vice application programming interfaces (APIs) have become
key in this scenario, ensuring seamless integration, scalability
and accessibility of numerous services. A multiservice API is
an interface that facilitates communication and data exchange
between many different services, regardless of their under-
lying architecture or platform. Rather than a single-purpose
API dedicated to a specific service, a multiservice API serves
as an integration layer that binds various service endpoints
into a unified and accessible interface. It also provides frame-
work functions for efficiency and structuring such as business
development, and standard functions for use in business.
It supports various languages such as NMC and C, and pro-
vides a dynamic framework with built-in major functions for
creating applications. It also provides functions for commu-
nication with the modules of the framework and libraries in
the form of packages that facilitate the construction of various
business systems.

4) MULTI SERVICE DEPLOYMENT MANAGER (MSDM)

MSDM provides customized tools and features to supervise,
control and optimize the operation of multiple individual
services. The proposed framework provides an EMS in a sep-
arate web environment, providing a Ul for administrators to
remotely manage the main functions of the approval system.
The main functions include environment registration, user
management, status management, fault management, appli-
cation management, alarm management, and log inquiry, and

67830

External
Service

E) {2 ¥

Agenda
—— Real Message
------ Message Address
—— Backup Message
------ Fault signals

FIGURE 9. Framework message processing diagram.

communicate with the Monitor Unit in real time through the
Monitor Connector Module to collect and provide the latest
information. Fig. 8 shows the configuration of MSDM, and
each component plays the following roles.

Environment Registration serves as the entry point for
integrating new environments or systems into the monitor-
ing framework. Administrators specify, and configure the
parameters of each environment so that monitoring tools
can recognize all assets, and collect relevant data correctly.
User Management manages user profiles, roles and permis-
sions. It also determines who can access the monitoring
framework, what they can see, and what actions they can
take. Status Management is an essential component that pro-
vides real-time status information for all monitored assets,
capturing the operational status of services, applications
and environments. Fault Management continuously scans
the system for anomalies or failures. Application Manage-
ment oversees the deployment, updating, monitoring and
retirement of applications within the monitored environment.
Alarm Management raises alarms based on predefined con-
ditions or thresholds. Log Viewer provides a user-friendly
interface to view, search, filter, and analyze logs generated
by the platform. Web application server (WAS) hosts the
web-based interface of the monitoring framework, allowing
users to access the tools through a browser. Logger is respon-
sible for recording events, transactions, errors and other
important activities within the platform. Monitor connector
provides a passage for connecting to the monitor.

IV. DATA PROCESSING FLOW
The data input to the Network Interface consists of various
messages such as card authorization/cancellation messages
from various external terminals, transportation cards, smart
factory data and IoT. When a message is entered, NI checks
the corresponding domain through the multi domain Checker.
If the system is divided into multiple business domains, the
message is routed to the appropriate domain via MDG.
When messages come in from the outside, they are received
by the Network Interface (NI) and stored in the message
buffer pool, which is stored on a page-by-page basis to
index and manage messages. It generates a unique hash value

VOLUME 12, 2024

K.-E. Kim et al.: RMPF: Real-Time Message Processing Framework on Multi-Service Domains

IEEE Access

Server Client(Terminal)
Tomcat Simulater 1
R
RMPF Simulater 2
< | -

FIGURE 10. Test environment diagram.

TABLE 1. Test conditions.

Number
Test case 1 2 3 4 of
message
Test 20 x 40 x 60 x 80 x
requirements 1000 500 333 250 20000

for each message. It passes this hash value address to the
message converter (MC). The message converter goes to the
hash value address and converts the stored raw message into
an internal standard message (internal message form). After
the conversion is complete, it sends the hash value address
back to the Message Router (MR). The MR sends the hash
value address to the corresponding SAU, which then goes to
the hash value address to receive and process the converted
internal message. It sends the completed internal message to
its destination. For external service messages, they are sent
through the MR, then the MC, then the NI to the external
service. Since messages have a unique hash value, even if the
message is processed and the value changes, the hash value
remains unchanged and follows the message, ensuring the
delivery of the message. In addition, since these processes
are monitored in real time by the monitoring module, even
if there is a failure, rapid recovery is performed according to
the failure handling procedure, and the delivery of messages
on the platform is guaranteed through this process. In addi-
tion, after the service system receives the authorized message
through NI, the corresponding SAU of the MSP checks the
authorization process of the message. If successful, the mes-
sage is sent to the sending terminal to complete the message
processing. DMPL also monitors the status of all components
and application processes in each module through monitors.
If a problem occurs due to an abnormal message, the recovery
component handles the failure in real time and normalizes
the system. In addition, because the units in each module
are individually configured, if a failure occurs in one unit,
it only affects that unit and does not affect the entire process
because only that unit needs to be handled in the event of a
failure. Fig. 9 is a flowchart of the message processing in the
framework.

V. PERFORMANCE EVALUATION

We evaluate the proposed RMPF to prove that it performs
well. We also evaluate the system by comparing RMPF
and Apache Tomcat for middleware performance evaluation.

VOLUME 12, 2024

Tomcat is a widely used general-purpose middleware that
serves as a Java servlet container. For performance evalua-
tion, two test environments are configured to compare and
evaluate the performance under different test conditions.

A. EVALUATION ENVIRONMENT CONFIGURATION

Our evaluation environment consists of a server and a client
(terminal) for testing. In addition, simulator is developed
and utilized to replace the terminal to generate an accurate
number of messages per unit time. The terminal is config-
ured as a Linux environment to act as a card terminal. The
simulator is developed, and used as a terminal model for card
authorization system. The server consists of two software
environments: the one is Tomcat as shown in Fig. 10, and the
other is our RMPF for performance comparison. The client
consists of two simulators each connected to one of software
environments respectively.

The hardware specifications of the server system for testing
are CPU: Intel(R) Xeon(R) CPU E5-2660 0 @ 2.20 GHz
8 core, RAM: 65776920 kB (65 GB), HDD: sda 1TB (for
0OS) and sdb 2TB (for monitor log collection). The software
specifications are OS: CentOS 7.9, WAS: Apache Tomcat
9.0.64, Java 1.8.1_362, SQL-Lite 3.7.17, Logger, MRU, HIU,
TIU and Log-Viewer.

In addition, the hardware specifications of the client (ter-
minal) system are CPU: Intel(R) Xeon(R) CPU E5-2660 0
@ 2.20 GHz 8 core, RAM: 3819380 kB (3.8 GB), HDD:
sda 40 GB (for OS) and sdb 5 GB (for monitor log collection).
The software specifications are OS: Red Hat Enterprise Linux
(RHEL) 8.6, WAS: Apache Tomcat 9.0.65 and Java 1.8.322.

B. EVALUATION METHODS

We compare our proposed RMPF with Tomcat system for
4 cases as in Table 1, where the number of terminals and
messages varies, and measure the performance in terms of
response time, execution time, CPU utilization and memory
usage as shown in Table 2. The test sequence is to generate
a message from the client, and send it to each platform in
the server system. Each platform then processes the received
messages, and sends the results back to the client. For each
time period, we send messages simultaneously, and mea-
sure the processing time for a total of 20000 messages, that
is, the maximum number of messages which can be pro-
cessed without busy condition in Tomcat server. The reason
why the number of messages processed cannot be increased
further in this test is that while CPU utilization of RMPF has
sufficient margin, that of Tomcat platform become close to
the limit very fast.

The following metrics were used for testing. The test case
was tested four times, and the test environment consisted of
two platforms, Tomcat and RMPF, on one hardware to create
the same environment. Number of message per second (sec)
is the number of messages per second sent from the terminal
to the platform. Total cases is the total number of messages
sent per test case. Response time per message (sec) is the
time for one message sent from the device to the platform,

67831

IEEE Access

K.-E. Kim et al.: RMPF: Real-Time Message Processing Framework on Multi-Service Domains

TABLE 2. Summary of evaluation results.

Number of message Response time per Total execution time
Test Test per second (sec) Total message (sec) (sec) CPU | MEMORY Free / Total
case | environment . message . . (%) (KB)
Min Max Min Max Min Max
Tomcat 57.4 57.8 20000 0.02 0.17 346.07 348.12 82.92 62192'.4 /642353
1 (use: 2042.9)
39747.8 / 64235.3
RMPF 65.1 65.1 20000 0.03 2.16 307.05 307.09 0.70 (use: 24487.5)
Tomcat 61.7 62.6 20000 0.02 0.16 319.13 324.14 95.94 62155'.8 /642353
) (use: 2079.5)
39522.9/64235.3
RMPF 131.5 131.5 20000 0.03 0.16 152.07 152.09 1.11 (use: 24712.4)
Tomeat 60.7 612 19980 0 309 | 32603 | 32012 | og4g | 6213387642353
3 (use: 2103.0)
RMPF 123.4 162.6 19980 0.02 2.16 123.08 162.05 0.96 39271‘_1 /642353
(use: 2131.8)
Tomcat 60.4 61.7 20000 0 3.18 324.16 331.14 99.27 62103‘_5 /642353
4 (use: 2131.8)
38978.4/64235.3
RMPF 132.4 134.2 20000 0.03 2.14 149.04 151.15 0.92 (use: 25256.9)
System Summary Tomcat _T20 (CPU/IO) System Summary RMPF _T20 (CPU/I0)
—CPU% —IO/sec —CPU% —I10/sec
100 100.0 -
90 - 90.0 e
0 20.0
g g o W MM\M’%'IF"‘"“"“'hlL‘\‘”W"','r W!“"“""i“w")f"l!‘w‘W "M"M!W“
E L7 % 60.0 ' -
£ g
EE 2 _g 0.0 -
S 3 ‘=:" 30.0
20 ‘} X -
10 e
- LIl
Memory Usage Tomcat_T20 Memory Usage RMPF_T20
—memfree —memfree
8, 3%
40 0
20
20 10
(| e R e S e RS A RAR TR e (]
B memtotal = memtotal
o 709 @ 70
O 60 [CR=4]
50 50
a0 “
30 20
20 20
10 10
[0 gy

FIGURE 11. Case 1: (a) Tomcat CPU, MEMORY usage, (b) RMPF CPU, MEMORY usage.

processed by the platform, and received back from the device.
Total execution time is the total time for all 20000 messages
sent in one test case to be processed. CPU (%) is the percent-
age of CPU utilization in processing messages for each test
case. Memory Free/Total (KB) is the amount of memory used
and free memory for processing messages for each test case.

In test case 1, each of 20 terminals simultaneously sends
1000 messages, and in case 2, each of 40 terminals simul-
taneously sends 500 messages. Similarly, in case 3, each of

67832

60 terminals simultaneously sends 333 messages simultane-
ously, and in case 4 each of 80 terminals simultaneously sends
250 messages. We also measure, and compare the CPU and
memory usage of the server running the message processing
in each environment.

Fig. 11 through Fig. 14, the vertical axis represents CPU
utilization (%) and memory (GB), and the horizontal axis rep-
resents measurement time (seconds). The redline indicate I/O
usage for reference. In Fig. 11, (a) shows the CPU utilization

VOLUME 12, 2024

IEEE Access

67833

system software operations, platform and processor creation
and message processing. In (b), the average CPU utilization
is 0.7 %, and the average memory usage is 24.4 GB on RMPF

Tomcat (a) CPU, MEMORY usage, RMPF (b) CPU, MEMORY usage.

K.-E. Kim et al.: RMPF: Real-Time Message Processing Framework on Multi-Service Domains

H £ H t..“._.a e e g 3 2 !J“.:' ’ 2
t 0t 8§ § § 3 il = i § & & 3§ 8§ 3§ 8z .
ogzt &z &un 9€TT
oezt &un e 92t
1449 24 =48 —
] 9621
o szt i 41 o seat
S~y (1224 & 2] g Flad
w sz &z &2 W sezt
a ezt w2 s sezt
sezt o 2 = a. cul | ©
o sa| | wa = o | | O
sear| | = 2 =2 sezt| | b=
“ sz _.r_ w2 w2t o ez |
8z & ou © pETT L
T— %) f 1249 [au au T o vELT o
2 au| | S @a @u | 3 wa| | S
w 2 wu o au| g @ w 2 ¥ETT ®
a o wn ﬂ 14 @a| g @a [} et o m °
@ = au| 2 @ i w At
2| Go| | oo £ wal & % S | | & E
X = szar ° £ sea | g sz o @ et [m m
>z 9zt Ca s wu 0 >z seer CJ
56 — su| | =D sca| W sz s & 5] x| | =D | =
L1449 9T ST % En
£ [92zt & 21 P S £ I 2 z
£ szt =] o T > £ wa o
S szar £ sz s x 5 wu £
sz s ST ®
(7] szzt (] sz sz =) w w2 Q
m L1449 M sen ST M m 1€ M
o vzzr sea see [} o e
— vz v wu _ €2
- — vzt wa wu M' % ez
> g == vzt W T =) > M oezt
(] vzzr v v o wv . ogzt
2 9 2 292 8 2229 Ll o o 2 2 2 92 9 9 9 9 9 3
§ 8 8 R 8 8 ¢ 8 8 8 R9RKS° RBRAIRKRE° —_ & 8 8 R 88 § 8 ' 8 ° egRgRssc°
(%)e1e4 uonezynn 49 a9 | (%)e1e1 uonEZINN 49
"™
o
w— o = — :
i 3 ® & % > : ; 5 5 3 =
6601 5
— ec01 o= oo n 00
- g0l 9501
— scot > © 9501 g0t
)o = st BE01 M _ 9501 B
- _—] scot M.m“ - o ssot 500
~ — ssot 3 Ly ssor S501
o) ——==i 8501 o -3) S50 01
o L£01 LEor o o vS0T vS01
o == sc01 m ot s o wor| | Q ol
-, g0t h S0t] % bs0T o 501
o — scor | se0l ° ssor| | b= 501
= — “MM“ - €01 = o gsior t_ £501
— © seor ~ gsiot €501
= —— 9c0r Q seor L €501 s
— o SE0T (-9 — o 50t -] =0
— SEOT| =
- 3 —— scor £) sor| © o - 2 501 £ o
8 S seot o il ©c < S S o 50| =
o O — = 2 wor| O —_ o O k) 1501 4
=} et = veor| & o L 1500 - 9 cotl ©
m | R 5 | [1501 4
veor [£ ~ 1501 ©
O « veor w 5 haid [- O « 1501 o £ wwor| £
e = @ 2 wo| £ 4] =3 wa | 8 F ol E
a 2
=5 —=Ga| |3 T worl o £ bl oor| | 5 | osor| W
© | —_—— 0l ot o © | o501 0501
£ zeo0r = [£ 6vor = 0L
eot .. 6ot ot
£ 2601 m ~N £ 6v 01 m 601
TE0T 8Y0T ot
w 1600 Q 2 .w svo1) w0l
€01 (-] 80T s¥or
3
€ oe0t o £ wo| | S or
E s .] ot s
- o - wor
1 oe0t - [b w0l
CVu. 6200 w CVu. 9v:0t o
6zt 9vot
S0t
= [2
§ 8 8 R 8 3 8 8 R8R9RRS° > § 8 8 R 83 8 8 889K ° R8ReRRY°
(%)@1e4 UOnEZINN [:5) o (9%)1e1 uOnRZYIIN a9 a9
e

FIGURE 13. Case 3

and memory usage of Tomcat, and (b) those of RMPF respec-
tively for case 1. In (a), the average CPU utilization is 82.92 %

and the average memory usage is 2.0 GB on Tomcat for

VOLUME 12, 2024

IEEE Access

K.-E. Kim et al.: RMPF: Real-Time Message Processing Framework on Multi-Service Domains

System Summary Tomcat _T80 (CPU/IO) System Summary RMPF _T80 (CPU/10)
—CPU% —l0/sec —CPU% —10/sec
100 1000
90 900
80 800
i -
[7] T (111 1
E 60 " E 600
S s ; § 00
§ 40 = _§ 400
g 30 g 300
20
10
o0
Memory Usage Tomcat_T80 Memory Usage RMPF_T80
—memfree —memfree
20 S0
8. 8o
20
= 20
» 10
’ EEREREREERRVEREERRR R R R b bbb ol ’ LR d b bt b b e R R R R R R R R bR R0 R R R
W memtotal m memtotal
@ n @ 70
[CR-1] (G-
50 50
40 40
20 20
20 20
10 10
0 0
FIIIGLLG99989985 SEYTTITERRRRRERRR

FIGURE 14. Case 4: Tomcat (a) CPU, MEMORY usage, RMPF (b) CPU, MEMORY usage.

for system software operations, platform and processor cre-
ation and message processing.

Fig. 12 (a) shows the test results of Tomcat for case 2,
where CPU utilization is 95.94 % and the memory usage is
2.0 GB. Fig. 12 (b) shows the test results of RMPF for case 2,
where CPU utilization is 1.11 % and the memory usage is
24.7 GB.

Fig. 13 (a) shows the test results of Tomcat for case 3,
where CPU utilization is 98.48 %, and the memory usage is
2.1 GB, while Fig. 13 (b) shows those for RMPF, where CPU
utilization is 0.96 %, and the memory usage is 24.9 GB.

Fig.14 (a) shows the test results of Tomcat for case 4, where
CPU utilization is 99.27 %, and the memory usage is 2.1 GB,
while (b) for those of RMPF, where CPU utilization is 0.92 %,
and memory usage is 25.2 GB.

To summarize the evaluation results, for case 1, CPU uti-
lization in RMPF is 118 times less than, and 22.4 GB more
memory than the baseline Tomcat. For case 2, CPU utilization
in RMPF is 86 times less than, and 22.6 GB more memory
than the baseline Tomcat. For case 3, CPU utilization in
RMPF s 103 times less than, and 22.8 GB more memory than
the baseline Tomcat. For case 4, CPU utilization in RMPF
is 106 times less than, and 23.1 GB more memory than the
baseline Tomcat.

Therefore, the CPU utilization of RMPF is very lower
than Tomcat, which shows its superiority over Tomcat. The
reason for this is due to the fact that Tomcat initializes the

67834

environment, and creates new application process whenever
the incoming message is received, while once our system
sets up the environment, and runs application process as a
daemon initially, it can continuously process messages on the
running processes without any further setup time. Therefore,
in RMPF, the CPU utilization is low, since the initially created
process resides as a daemon, and hence SAU only just needs
to invocate application process on CPU for the incoming
message. On the other hand, Tomcat mainly uses process
thread creation whenever a message comes in, a new process
is created, and requires a lot of CPU operations to and from
memory. Moreover, application process in SAU of our system
can directly access, and process data stored in the buffer of
message buffer pool dedicated to the process, while several
processes in Tomcat should access the same common system
queue.

Initially, the memory usage of RMPF is higher than that of
Tomcat, since RMPF requires a message buffer pool during
platform configuration, initial processor creation for moni-
toring, platform management, SAU execution, etc. However,
after initialization, the memory usage for RMPF is small,
since the created process only needs to process incom-
ing messages. Therefore, even if the message throughput
increases rapidly, the memory usage of RMPF does not
increase rapidly, which enables efficient and stable system
operation. The above performance evaluation results demon-
strate the superiority of our proposed platform.

VOLUME 12, 2024

K.-E. Kim et al.: RMPF: Real-Time Message Processing Framework on Multi-Service Domains

IEEE Access

VI. CONCLUSION

In this paper, we have proposed a new general-purpose
platform which provides real-time distributed message pro-
cessing for multi-service domains. It supports multilayer
architecture which consists of three layers: MDML, DMPL
and MSPL, providing extensibility and flexibility by modu-
larization of each layer which can be designed and updated
independently. It innovatively combines the affordability of
a general-purpose platform with the reliability and opera-
tional efficiency of a dedicated platform. RMPF provides
the capability for fast message processing while achieving
reliability by using the dedicated buffer in MBP created
exclusively for each application process residing as a daemon
for the incoming message, and then tracking the status of
all messages in the buffer through monitor. It minimizes the
waste of hardware resources due to memory fragmentation
and frequent process creation arising in a general-purpose
platform by keeping the application process in SAU with its
own memory space in MBP, and providing efficient MBP
management scheme for the dedicated buffer space. We also
provide SAU which can be customized for different service
type, and simplify the handling of multiple services by group-
ing the same tasks for each service.

Besides, it provides domain-based multi-services by sup-
porting the grouping of RMPFs according to domains, and
remove the system bottleneck by enabling the distribution of
tasks to the proper domain. Moreover, it is further enhanced
by various multi-service distributed management schemes
such as multiservice API, recovery, monitor and multiservice
deployment, each of which is implemented in a modular
fashion that ensures both scalability and adaptability, making
it suitable for a wide range of environments from traditional
legacy systems to modern cloud infrastructures.

Nevertheless, there are always issues that need to be
addressed. Our platform has many advantages and outper-
forms general-purpose platforms. However, we have not
yet reached the peak performance of dedicated platforms.
To improve this further, we need additional fault-tolerant
clustering capabilities and better independent storage mon-
itoring and management. We also recognize the need for a
more in-depth comparison of platform monitoring, recovery
and management capabilities. This will be the subject of
future research.

From a broader perspective, this work is an important step
in the development of a framework for real-time message
processing. Our vision for this framework is to evolve and
encompass not only existing domains, but also new domains
such as transportation, healthcare, Blockchain, Non-fungible
Token (NFT), and metaverses. In essence, this work is an
extension of our future research. The goal is to build a
universal messaging platform for multi-distributed real-time
processing systems.

REFERENCES

[1] Z. Liu, D. Zhou, F. Lu, J. Fang, and L. Zhang, “AutoShape: Real-time
shape-aware monocular 3D object detection,” in Proc. IEEE/CVF Int.
Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 15621-15630.

VOLUME 12, 2024

[2]

[3]

[4]

[5

[t

[6

17

—

[8]

[9]

[10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

S. Braun, H. Gamper, C. K. A. Reddy, and I. Tashev, ‘“Towards efficient
models for real-time deep noise suppression,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), Jun. 2021, pp. 656—660.

Y. Wu, H.-N. Dai, H. Wang, Z. Xiong, and S. Guo, “A survey of intelligent
network slicing management for industrial IoT: Integrated approaches for
smart transportation, smart energy, and smart factory,” IEEE Commun.
Surveys Tuts., vol. 24, no. 2, pp. 1175-1211, 2nd Quart., 2022.

Z. Li, Y. Sun, L. Zhang, and J. Tang, “CTNet: Context-based tandem
network for semantic segmentation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 44, no. 12, pp. 9904-9917, Dec. 2022.

T. Sharvari and K. S. Nag, ““A study on modern messaging systems—Kafka,
RabbitMQ and NATS streaming,” 2019, arXiv:1912.03715.

G. van Dongen and D. Van den Poel, “Evaluation of stream process-
ing frameworks,” IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 8,
pp. 1845-1858, Aug. 2020.

A. Amiri, S. Rezaie, C. N. Manchén, and E. de Carvalho, “Distributed
receiver processing for extra-large MIMO arrays: A message passing
approach,” IEEE Trans. Wireless Commun., vol. 21, no. 4, pp. 2654-2667,
Apr. 2022.

T. A. Khan, M. Ugur, K. Nathella, D. Sunwoo, H. Litz, D. A. Jimenez, and
B. Kasikci, “Whisper: Profile-guided branch misprediction elimination for
data center applications,” in Proc. 55th IEEE/ACM Int. Symp. Microarchi-
tecture (MICRO), Oct. 2022, pp. 19-34.

K. Kim, D. Seo, Y.-B. Jeon, S.-S. Han, D.-S. Park, and C.-S. Jeong,
“Real time message process framework for efficient multi business domain
routing,” in Advances in Computer Science and Ubiquitous Computing.
Singapore: Springer, 2018, pp. 271-278.

J. Lee, S. Jeong, S. Song, K. Kim, H. Choi, Y. Kim, and H. Kim,
“Occamy: Memory-efficient GPU compiler for DNN inference,” in Proc.
60th ACM/IEEE Design Autom. Conf. (DAC), Jul. 2023, pp. 1-6.

0. Bell, C. Gill, and X. Zhang, ‘“Hardware acceleration with zero-copy
memory management for heterogeneous computing,” in Proc. IEEE 29th
Int. Conf. Embedded Real-Time Comput. Syst. Appl. (RTCSA), Aug. 2023,
pp. 28-37.

1. S. Olmedo, N. Capodieci, J. L. Martinez, A. Marongiu, and M. Bertogna,
“Dissecting the CUDA scheduling hierarchy: A performance and pre-
dictability perspective,” in Proc. IEEE Real-Time Embedded Technol.
Appl. Symp. (RTAS), Apr. 2020, pp. 213-225.

R. V. W. Putra, M. A. Hanif, and M. Shafique, “ROMANet: Fine-grained
reuse-driven off-chip memory access management and data organization
for deep neural network accelerators,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 29, no. 4, pp. 702-715, Apr. 2021.

B. Asgari, R. Hadidi, J. Cao, D. E. Shim, S.-K. Lim, and H. Kim,
“FAFNIR: Accelerating sparse gathering by using efficient near-memory
intelligent reduction,” in Proc. IEEE Int. Symp. High-Perform. Comput.
Archit. (HPCA), Feb. 2021, pp. 908-920.

Y. Cai, X. Chen, L. Tian, Y. Wang, and H. Yang, “Enabling secure
NVM-based in-memory neural network computing by sparse fast gradi-
ent encryption,” IEEE Trans. Comput., vol. 69, no. 11, pp. 1596-1610,
Nov. 2020, doi: 10.1109/TC.2020.3017870.

Y. Alotaibi, “A new meta-heuristics data clustering algorithm based on
Tabu search and adaptive search memory,” Symmetry, vol. 14, no. 3, p. 623,
Mar. 2022.

J. Tang, C. Yang, C. Feng, J. Li, X. Gu, and X. Jiang, “‘Energy cooperation
optimization in residential microgrid with virtual storage technology,”
Math. Problems Eng., vol. 2021, pp. 1-11, Jan. 2021.

B. Ko, G. Gu, and H.-G. Kim, “Learning with memory-based virtual
classes for deep metric learning,” in Proc. IEEE/CVF Int. Conf. Comput.
Vis. (ICCV), Oct. 2021, pp. 11772-11781.

V. Bogatyrev and A. Derkach, ““Evaluation of a cyber-physical computing
system with migration of virtual machines during continuous computing,”
Computers, vol. 9, no. 2, p. 42, May 2020.

I. Ataie and W. Yu, “SVAGC: Garbage collection with a scalable virtual
address swapping technique,” in Proc. IEEE Int. Conf. Cluster Comput.
(CLUSTER), Sep. 2022, pp. 357-368.

L. Cui, K. He, Y. Li, P. Li, J. Zhang, G. Wang, and X. Liu, “SwapKV: A
hotness aware in-memory key-value store for hybrid memory systems,”
1EEE Trans. Knowl. Data Eng., vol. 35, no. 1, pp. 917-930, Jan. 2023.

S. Xu, Q. Wang, X. Wang, S. Wang, and T. T. Ye, “Multiplication through a
single look-up-table (LUT) in CNN inference computation,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 41, no. 6, pp. 1916-1928,
Jun. 2022.

67835

http://dx.doi.org/10.1109/TC.2020.3017870

IEEE Access

K.-E. Kim et al.: RMPF: Real-Time Message Processing Framework on Multi-Service Domains

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

S. Boukhtache, B. Blaysat, M. Grédiac, and F. Berry, “Alternatives to
bicubic interpolation considering FPGA hardware resource consump-
tion,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 29, no. 2,
pp. 247-258, Feb. 2021.

B. T. Hoffman and D. Reichhardt, “Recovery mechanisms for cyclic
(Huff-n-Puff) gas injection in unconventional reservoirs: A quantitative
evaluation using numerical simulation,” Energies, vol. 13, no. 18, p. 4944,
Sep. 2020.

Y. Otsubo, A. Otsuka, M. Mimura, T. Sakaki, and H. Ukegawa,
“O-glassesX: Compiler provenance recovery with attention mechanism
from a short code fragment,” in Proc. Workshop Binary Anal. Res., 2020,
pp. 1-12.

R. Rajaraman, P. K. Kapur, and D. Kumar, “Determining software
inter-dependency patterns for integration testing by applying machine
learning on logs and telemetry data,” in Proc. 8th Int. Conf. Rel., INFO-
COM Technol. Optim. (Trends Future Directions) (ICRITO), Jun. 2020,
pp. 1080-1084.

R. Chiramdasu, G. Srivastava, S. Bhattacharya, P. K. Reddy, and
T. R. Gadekallu, “Malicious URL detection using logistic regression,”
in Proc. IEEE Int. Conf. Omni-Layer Intell. Syst. (COINS), Aug. 2021,
pp. 1-6.

H. Pan, J. Liang, S. C. Liew, V. C. M. Leung, and J. Li, “Timely information
update with nonorthogonal multiple access,” IEEE Trans. Ind. Informat.,
vol. 17, no. 6, pp. 4096-4106, Jun. 2021.

A. Alahmadi and T. S. Chung, “RSLSP: An effective recovery scheme
for flash memory leveraging shadow paging,” Electronics, vol. 11, no. 24,
p. 4126, Dec. 2022.

K.-A. Tran, C. Sakalis, M. Sjdlander, A. Ros, S. Kaxiras, and A. Jimborean,
“Clearing the shadows: Recovering lost performance for invisible spec-
ulative execution through HW/SW co-design,” in Proc. ACM Int. Conf.
Parallel Archit. Compilation Techn., Sep. 2020, pp. 31-42.

Y. Seneviratne, K. Seemakhupt, S. Liu, and S. Khan, “NearPM:
A near-data processing system for storage-class applications,” 2022,
arXiv:2210.10094.

H. Du, Q. Li, R. Pan, T.-W. Kuo, and C. J. Xue, ‘“Multi-granularity shadow
paging with NVM write optimization for crash-consistent memory-
mapped I/0,” in Proc. IEEE Int. Symp. High-Perform. Comput. Archit.
(HPCA), Feb. 2023, pp. 108-121.

A. Toana, A. Korodi, and 1. Silea, “Automotive IoT Ethernet-based com-
munication technologies applied in a V2X context via a multi-protocol
gateway,” Sensors, vol. 22, no. 17, p. 6382, Aug. 2022.

A. Toana and A. Korodi, “DDS and OPC UA protocol coexistence solu-
tion in real-time and Industry 4.0 context using non-ideal infrastructure,”
Sensors, vol. 21, no. 22, p. 7760, Nov. 2021.

H. Arnarson, B. Solvang, and B. Shu, ““The application of open access mid-
dleware for cooperation among heterogeneous manufacturing systems,” in
IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2020, pp. 1-6.

T. Wu, B. Wu, S. Wang, L. Liu, S. Liu, Y. Bao, and W. Shi, “Oops! It’s too
late. Your autonomous driving system needs a faster middleware,” IEEE
Robot. Autom. Lett., vol. 6, no. 4, pp. 7301-7308, Oct. 2021.

M. Jergler, K. Zhang, and H.-A. Jacobsen, ‘“Multi-client transactions in
distributed publish/subscribe systems,” in Proc. IEEE 38th Int. Conf.
Distrib. Comput. Syst. (ICDCS), Jul. 2018, pp. 120-131.

V. Ashiwal, M. Majumder, and A. Zoitl, “Evaluation of middleware tech-
nologies for the PLC-service bus in IEC 61499, in Proc. IEEE 27th Int.
Conf. Emerg. Technol. Factory Autom. (ETFA), Sep. 2022, pp. 1-4.

Y. Shi, J. Wong, H.-A. Jacobsen, Y. Zhang, and J. Chen, “Topic-oriented
bucket-based fast multicast routing in SDN-like publish/subscribe middle-
ware,” IEEE Access, vol. 8, pp. 89741-89756, 2020.

S. Sadeghianasl, A. H. M. T. Hofstede, S. Suriadi, and S. Turkay, “Col-
laborative and interactive detection and repair of activity labels in process
event logs,” in Proc. 2nd Int. Conf. Process Mining (ICPM), Oct. 2020,
pp. 41-48.

67836

(41]

[42]

[43]

il

D. R. K. M, J. Lee, E. Ko, S.-Y. Shin, J.-I. Namgung, S.-H. Yum,
and S.-H. Park, ‘“Underwater network management system in Internet of
Underwater Things: Open challenges, benefits, and feasible solution,”
Electronics, vol. 9, no. 7, p. 1142, Jul. 2020.

G. Chodak, G. Suchacka, and Y. Chawla, “HTTP-level e-commerce data
based on server access logs for an online store,” Comput. Netw., vol. 183,
Dec. 2020, Art. no. 107589.

K. Beyer, R. Uola, K. Luoma, and W. T. Strunz, “Joint measurability
in nonequilibrium quantum thermodynamics,” Phys. Rev. E, Stat. Phys.
Plasmas Fluids Relat. Interdiscip. Top., vol. 106, no. 2, Aug. 2022,
Art. no. L022101.

KYO-EUN KIM received the B.S. degree from
the Department of Computer and Telecommunica-
tions, Seoul Cyber University, Seoul, South Korea,
in 2015. He is currently pursuing the integrated
M.S. and Ph.D. degrees in visual information pro-
cessing with Korea University, Seoul. His research
interests include artificial intelligence, middleware
platforms, electronic payment systems, and dis-
tributed parallel computing.

SEONG-S0O0 HAN received the B.S. degree from
Gyeongsang National University, South Korea,
in 2000, the M.S. degree from Soonchunhyang
University, South Korea, in 2005, and the Ph.D.
degree from Korea University, South Korea,
in 2019. He was a Professor with Soonchunhyang
University, from 2018 to 2019. He is currently
a Professor with the Division of Liberal Stud-
ies, Kangwon National University. His research
interests include computer education, artificial

intelligence, blockchain, and distributed parallel processing.

CHANG-SUNG JEONG (Member, IEEE) recei-
ved the B.S. degree from Seoul National Uni-
versity, in 1981, and the M.S. and Ph.D. degrees
from Northwestern University, in 1985 and 1987,
respectively. He was an Assistant Professor with
POSTECH, from 1987 to 1992. He was an Asso-
ciate Researcher with UCSC, from 1998 to 2000.
He is currently a Professor with the School of Elec-
trical Engineering, Korea University. His research
interests include distributed parallel computing,

grid computing, ubiquitous computing, networked virtual computing, and
development of highly intensive applications, such as stereo image process-
ing and 3-D visualization on collaborative grid and ubiquitous computing
environment.

VOLUME 12, 2024

