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ABSTRACT In the domain of intelligent transportation systems, the advent of autonomous driving
technology represents a critical milestone, profoundly shaping the automotive industry’s evolutionary
path. This technology’s core, particularly the algorithms facilitating driverless path planning, has attracted
significant scholarly interest. This paper presents an advanced Deep Reinforcement Learning algorithm for
Path Planning (DRL-PP), designed to rectify the shortcomings inherent in existing path planning techniques.
Considering the complex nature of the environment, the DRL-PP algorithm is meticulously crafted to
ascertain optimal actions, thereby effectively reducing the propensity for overfitting. The algorithm harnesses
the capabilities of deep reinforcement learning, utilizing neural networks to identify the most advantageous
action corresponding to a specific state. It then constructs an optimal action sequence, extending from the
vehicle’s initial position to its designated target. Additionally, the algorithm enhances the reward function
by incorporating data pertinent to the objective. This refinement enables the nuanced differentiation of
action values based on dynamically adjusted reward metrics, thereby augmenting the efficiency of the action
selection process and yielding improved results in path planning. Empirical results validate the algorithm’s
proficiency in stabilizing the reward metric while minimizing exploratory steps, consistently surpassing
comparative models in path-finding effectiveness.

INDEX TERMS Deep reinforcement learning, path planning, autonomous driving, deepQ-learning network.

I. INTRODUCTION
In the contemporary era, the increasing incidence of traffic
incidents has cast a spotlight on the deficiencies and frailties
inherent in manual driving operations [1]. The imperatives of
sustained attentiveness in human-driven vehicular navigation,
coupled with inherent human limitations such as susceptibil-
ity to fatigue and distraction, accentuate these vulnerabilities.
The advent of autonomous driving technologies promises
a paradigm shift, mitigating the tedium associated with
extended periods behind the wheel while simultaneously
instituting advanced [2], intelligent control systems that are
instrumental in bolstering vehicular safety and operational
efficiency.
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Numerous researchers have delved into autonomous
vehicular technology, culminating in a corpus of research
that spans a gamut of disciplines [3]. A salient challenge
that contemporary autonomous vehicles contend with is the
extension of their reactive capabilities and their adaptability
in specialized vehicular scenarios. Conventional intelligent
driving systems predominantly leverage extensive datasets to
inculcate driving behaviors, yet the aggregation of exhaustive
data encompassing the full spectrum of road conditions
remains an arduous undertaking [4], [5]. While simulation
in naturalistic environments offers a partial remedy, the
requisite investment in terms of cost and resources is
not insignificant. Furthermore, during the initial phase of
reinforcement learning, autonomous vehicles—bereft of any
pre-existing environmental knowledge—must undertake a
thorough exploration of the state space to discern space values
and subsequently cultivate optimal driving behaviors [6], [7].
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Deep Reinforcement Learning (DRL) marries the percep-
tual acuity of deep learning with the strategic prowess of
reinforcement learning, heralding a vanguard of applications
across varied sectors [8]. DRL’s foray into the domain of path
planning is particularly noteworthy, where it demonstrates
remarkable competence in negotiating complex environments
and executing challenging tasks with notable alacrity. The
Deep Q-Network (DQN) paradigm [9], [10], [11], an amal-
gamation of Q-learning and deep learning, epitomizes this
synergy by transforming the state-action value function into a
construct amenable to neural network interpretation, thereby
enabling the calculation of action values pertinent to the
current state and facilitating the identification of an optimal
navigational strategy.

In this paper, we introduce a planning algorithm that
is embedded within the DRL framework. Harnessing the
predictive capabilities of neural networks, our algorithm
ascertains and enumerates superior actions pertinent to
discrete states, thereby sculpting an action set that maps a
trajectory from origin to terminus with heightened precision.
The caliber of the neural network and the refinement of its
parameters are of quintessential importance to the process of
action selection [12]. Accordingly, we utilize a multi-layer
perceptron (MLP), which undergoes parameter optimization
through a meticulously calibrated reward function, with
the aim of amplifying the efficacy of the action selection
mechanism and, by extension, enriching the efficiency of the
path-planning paradigm.

The subsequent sections of this paper are organized as
follows: Section II elucidates related works, Section III
delves into the intricacies of the deep Q-network and deep
reinforcement learning, Section IV details the DRL-PP
algorithm, Section V presents the experimental design and
results, and finally, Section VI provides the concluding
remarks.

II. RELATED WORK
Path planning articulates a sequence of decisions for vehicles
to navigate future spatial and temporal domains. Typically,
it can be bifurcated into local (dynamic) and global (static)
path planning based on the scope and temporal duration
involved. Local path planning dynamically alters the driving
status in response to environmental stimuli, encompassing
actions like lane changing and obstacle avoidance. In con-
trast, global path planning designs a route to a destination
based on the vehicle’s present position on a pre-established
map. The general path-planning procedure can be segregated
into three stages:

• Establishing the environment model: Develop an
abstracted environment model rooted in the actual
road conditions, furnishing a schematic for algorithmic
strategies, thereby facilitating computational path
planning.

• Path search: Harness the abstract environment model to
delineate a route from the inception to the destination,
striving to discern the most optimal path.

• Path optimization: Refine the pre-established path by
pruning superfluous nodes and augmenting its fluidity.

Recent progress in the field of path planning has
increasingly emphasized the adoption of reinforcement
learning (RL) techniques. Distinct from traditional machine
learning algorithms, RL agents possess the significant
advantage of requiringminimal datasets for effective training.
This advantage is a pivotal reason for their integration
into path planning methodologies. Within this realm,
Q-learning (QL) and Deep Q-Learning (DQL) stand out as
two predominant RL algorithms. QL, for instance, determines
the Q-value using the Bellman equation, as demonstrated
in [13]. Nevertheless, QL’s scalability is limited, particularly
as environmental complexity and memory requirements
increase.

Mnih et al. [14] identified that traditional RL struggles
with tasks featuring large state spaces and continuous
action spaces that resemble real-world complexities. Deep
learning (DL), on the other hand, adeptly handles high-
dimensional challenges. DRL merges DL’s capacity for
high-dimensional perception with RL’s decision-making
abilities. This integration is achieved via neural networks,
offering solutions to the dimensional complexities that
traditional RL encounters. In this context, DL paves
the way for addressing cognitive decisions in complex
environments.

Conversely, DQL utilizes neural networks to predict the
Q-value, enhancing scalability. The implementation of DQL
in grid-world environments for path planning is evidenced in
studies like [15] and [16], where RL agents efficiently nav-
igate around static obstacles using available environmental
data. The advancement of DQL into dynamic environments,
characterized by moving and uncertain obstacles, is explored
in [17]. An alternative strategy in unknown environments,
as proposed in [18], involves training RL agents with sensor
data, offering the potential for dynamic scenario adaptation.

The convergence time, a critical factor in machine learning
and especially relevant in path planning, is the period required
for an agent to learn a specific task. Efforts to reduce this
convergence time in DRL-based path planning algorithms
have been substantial. In [19], initial training in a 2D
simulator environment, followed by subsequent training in
3D environments, has been shown to reduce convergence
time. The integration of generalized knowledge about goals
and current states in a Q-learning system, as discussed
in [20], significantly decreases training time. Additionally,
[21] presents the combination of RL with particle swarm
optimization to accelerate the agent’s convergence rate.

Deep Reinforcement Learning is fundamentally bifurcated
into two categories. Value-based DRL, exemplified by the
pioneering work of Mnih et al. with the advent of the Deep
Q-Network, encapsulates the process of distilling a value
model from sequential informational inputs to inform policy
updates [6]. Advancements in this domain include the Double
Deep Q-Network (DDQN) by Hasselt et al., which refines
the value estimation process of DQN, thereby enhancing
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the model’s efficacy in navigating complex decision-making
tasks [22]. A subsequent innovation, the Dueling DQN
conceived by Wang et al., partitions the Q network into
distinct streams: one assessing the value of states and the
other evaluating the advantages of actions, resulting in more
precise Q-value determinations [21].

A novel contribution to this lineage is the quantum-inspired
experience replay (QiER) introduced by Li et al., which aug-
ments traditional DRL paradigms by incorporating quantum
bit (qubit) transition significance and utilizing Grover’s itera-
tion for amplitude amplification. This QiER method adeptly
balances the dichotomy between sampling priority and diver-
sity, as evidenced by comparative analyses that underscore
its preeminence over conventional DRL methodologies and
non-learning baselines [23]. This quantum-computational
synergy heralds a significant stride in UAV navigational
algorithms, encapsulating a unique action selection policy
and reinforcement strategy inspired by quantum mechanics’
inherent properties—specifically, the collapse phenomenon
and amplitude amplification. These principles confer upon
the QiRL method an innate equilibrium between exploration
and exploitation, alleviating the dependency on meticulously
tuned exploration parameters that often encumber traditional
reinforcement learning frameworks [24].
The alternate strand of DRL, predicated on policy

gradients, is characterized by the iterative refinement of
parameters. This is achieved through the persistent compu-
tation of gradients concerning the expected total rewards of
policies. An exemplary model of this class is Lillicrap’s Deep
Deterministic Policy Gradient (DDPG), situated within the
Actor-Critic framework. It builds upon DQN’s foundation—
utilizing experience replay and delineated target networks—
and adeptly extends its application to continuous action
domains [25]. This gradient-based strategy underscores a
continuous evolution in DRL, empowering agents to per-
form with heightened sophistication and adaptability across
diverse behavioral spectrums.

Yet, these reinforcement learning methods are primarily
designed for single-agent scenarios and are less effective
in Multi-Agent Systems (MAS). Lowe et al.’s Multi-Agent
DDPG (MADDPG) addresses this shortfall by extending
DDPG for global cooperation in MAS. MADDPG employs
centralized training and decentralized execution, where a
centralized critic module during training offers insights into
the observations and potential actions of all agents, making
unpredictable environments more predictable. In testing,
agents operate independently, guided only by their critic
modules. Thus, MADDPG, with its actor-critic network that
includes inputs from all agents, effectively mitigates the
non-static nature of the environment and is particularly suited
for collaborative crowd path planning.

III. DEEP Q-NETWORK
This section elucidates the frameworks integral to DRL-PP,
encompassing reinforcement learning and the deep
Q-network.

A. REINFORCEMENT LEARNING
At its core, deep reinforcement learning is a derivative
of reinforcement learning. It inherently seeks to modify
one’s action blueprint through sustained interaction with the
environment, obtaining rewards reflective of environmental
responses post-action [12], [26], [27]. This learning paradigm
can be mathematically represented as a Markov decision
process, characterized by a quintuple, ⟨S,A,P, r, γ ⟩. Herein,
the decision-making process is delineated in Fig 1.

FIGURE 1. Reinforcement learning framework.

Traditional reinforcement learning algorithms, however,
find their efficacy diminished in high-dimensional contin-
uous state and action spaces. To address this limitation,
enhanced solutions like deep neural network Q-learning
algorithms have been devised.

B. NEURAL NETWORK
The Deep Q-Network amalgamates the Q-learning algorithm
with deep learning [28], [29], [30]. In this synthesis, a neural
network personifies the state-action value function intrinsic
to Q-learning. This network ingests the state as its input,
producing the value of potential actions in the present state.
Consequently, the optimal action for execution is selected
based on these derived values.

The DQN algorithm typifies a genre of deep rein-
forcement learning algorithms. Its crux lies in juxtaposing
neural networks with the Q-learning algorithm [31], [32].
By leveraging the formidable feature extraction capabilities
of neural networks, it processes sequential images, deeming
each a state for reinforcement learning, thereby guiding
the subsequent neural network model. This model, in turn,
dispenses theQ-value of every conceivable action, facilitating
the determination of the most auspicious action in the
prevailing state.

C. APPROXIMATING THE VALUE FUNCTION
For low-dimensional, discrete state and action spaces,
tabular methods offer a viable solution. However, in sce-
narios with high-dimensional, continuous state and action
spaces, approximation methods come to the fore. Here,
the action-value function Q(s, a, θ) approaches the opti-
mal action-value function Q∗(s, a) via the parameter θ ,
as expressed in Eq. 1.

Q(s, a, θ) ≈ Q∗(s, a). (1)
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Deep learning’s capacity to autonomously extract intri-
cate features from data makes it a preferred choice for
reinforcement learning tasks characterized by continuous
high-dimensional state spaces. As a result, deep learning is
deployed to construct a value network to discern the value
function, drawing on the principles of reinforcement learning.

The efficacy of the DQN algorithm in seamlessly inte-
grating deep learning with reinforcement learning can be
attributed to three pivotal innovations:

• Objective function formulation: Rooted in the Q-
learning algorithm, rewards are utilized to craft labels,
yielding a viable objective function for deep learning.

• Experience Replay: By introducing an experience
pool, challenges arising from data correlation and
non-stationary distribution are surmounted.

• Dual networks: Two distinct neural networks are
employed—one to generate the prevailing Q-value
and another for the target Q-value—enhancing model
stability.

IV. ALGORITHMIC FRAMEWORK
A. FORMULATION OF THE DRL-PP ALGORITHM
When transforming environmental information into a
grid-based format for path planning, the integration of
convolutional neural networks with the deep Q-network
algorithm can introduce overfitting challenges. This study
introduces a refined deep Q-network path planning algorithm
that incorporates a multilayer perceptron into the deep
Q-network paradigm and employs an enhanced reward
function during each neural network iteration.

1) MULTILAYER PERCEPTRON
The Multilayer Perceptron is a neural network architecture
featuring multiple hidden layers between its input and output
layers. It utilizes backpropagation with gradient descent for
training, aiming to minimize classification error through
an optimal parameter set ω. Forward propagation in MLP
produces output y, represented as:

yj =

M∑
i=0

ωijxj, j = 1, 2, · · · , n. (2)

Here, i and j denote the neuron indices in the preceding
and current layers, respectively, with ωij as the corresponding
weight. The MLP’s design significantly influences the
structure of networks within the DRL-PP algorithm, ensuring
consistency across network architectures.

For the prediction network, the input is derived from the
experience pool (s, a), where s represents spatial coordinates
(x, y) of the object. The network employs a tri-layered fully
connected structure to determine the reward for executing
action a in state s. Conversely, the target network’s input,
sourced from the experience pool

(
s′, r

)
, involves computing

the cumulative reward based on actions in state s′ and the
corresponding reward r .

2) REWARD MECHANISM AND ACTION
SELECTION STRATEGY
In contemporary path planning research, the design of
reward structures plays a crucial role, especially when
employing reinforcement learning techniques. Traditional
reward schemes often adopt a uniform approach, assigning
similar reward values to a range of actions within an
exploratory path context. This uniformity can undermine the
learning process, blurring the distinction between optimal
and less effective actions, which may lead to subpar neural
network training outcomes.

To counteract this, this paper incorporates advanced
principles derived from cubic processing to refine the
reward function. This innovation enables the allocation of
distinct reward values for different actions, facilitating a
more nuanced and effective alignment with the optimal
action-state value function. Such an approach ensures a
more sophisticated and tailored learning process, crucial for
navigating complex path planning scenarios.

Table 1 details the specific reward metrics assigned
to different states encountered during the path planning
process. ‘Value 1’ is allocated for reaching the target state
successfully, thereby reinforcing goal-oriented navigation.
Conversely, ‘Value 2’ is assigned as a penalty for colliding
with obstacles, thereby encouraging obstacle avoidance
strategies.

TABLE 1. Reward allocation table.

The reward function, denoted as R, computes the expected
reward for a given state s, as outlined in the table. This
computation can be mathematically expressed as follows:

Rs = E [Rt+1|s = st ] (3)

Here, E denotes the mathematical expectation. The
formulation is based on the premise that if the agent
successfully navigates without colliding with obstacles, the
reward calculation is influenced by whether a target is
detected or not:

r =

{
0, if no target is detected
l × (x−h)3 , if a target is detected

(4)

where l is employed to delineate the function’s monotonicity,
directly influencing the rapidity with which the function’s
output converges towards the symmetry center. Concurrently,
the parameter h signifies the x-axis intercept, serving as a piv-
otal reference point in the function’s graphical representation.
Additionally, x represents the Euclidean distance between the
agent and its target during the exploration phase, excluding
scenarios where the agent is terminating the path or directly
finding the target. This measure is crucial for evaluating the
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agent’s proximity to its objective throughout the navigation
process.

In this framework, Rs encapsulates the projected cumula-
tive reward from a specific time t onward. The action value
for the current state is further elucidated in Eq. 5:

Gt = Rt+1 + γRt+2 + · · · =

∞∑
i=0

γ iRt+i+1. (5)

This equation incorporates the immediate reward Rt+1 and
the discount factor γ for future rewards.
For action selection, our model incorporates a strategic

balance between exploration and exploitation. The ε-greedy
strategy is employed, which is a well-recognized method
in the realm of RL. This algorithm sets the probability
ε for choosing the most effective action known to date,
while assigning a complementary probability (1-ε) for
exploring new actions. Importantly, as the training advances,
ε gradually increases in line with the number of training
iterations. This increment in ε strategically reduces random
exploration, progressively steering the algorithm towards
identifying and selecting the most advantageous actions,
thus guiding the learning process towards an optimal path
planning solution.

B. NEURAL NETWORK TRAINING
To mitigate undue fluctuations in loss values and enhance the
robustness of the neural model, our algorithm implements
a dual neural network architecture, comprising a primary
network and a target network. This design is pivotal in
stabilizing the learning process, as these networks are
responsible for generating the currentQ value and the targetQ
value, respectively. This is outlined in Eq. 1, whereQ (s, a, θ)

represents the current Q value, and r + γ maxQ
(
s′, a′, θ ′

)
signifies the target Q value, crucial for determining the
direction of model updates. The target Q value calculation
is detailed in Eq. 6.

Target Q=

{
r, if the goal is reached
r + γ maxQ

(
s′, a′, θ ′

)
, otherwise

(6)

In Eq. 6, the condition of reaching the goal (or target frame)
is indicated by G. The discount factor γ is applied to future
rewards, balancing immediate and long-term rewards.

Fig 2 provides a schematic overview of the neural network
training logic. Key functions include:

(1). Observe: This function transforms the current state s
into a vector format, preparing it as input for the neural
network. (2). Predict: Representing the forward propagation
in the neural network, this function calculates the current Q
value based on the input state. (3). Fit: Central to training,
this function utilizes parameters input (the input vector) and
target (the desired output). This process adapts the network’s
parameters to reduce the difference between predicted and
target Q values.

Though the schematic may depict a single data sample,
the training process typically involves a mini-batch approach.
Each batch, usually containing around 16 samples, allows the
network to learn from a variety of scenarios concurrently,
thereby enhancing the generalization and efficiency of the
learning process. This batched approach is instrumental in
facilitating more stable and reliable gradient estimations,
a critical aspect of training deep neural networks effectively.

FIGURE 2. DRL-PP update process.

C. ANALYSIS OF ALGORITHM
In this paper, the analysis of computational complexity
encompasses both time and space dimensions, each bearing
substantial weight in algorithmic efficacy and efficiency.
Time complexity in this context pivots largely on the neural
network’s architecture, entailing the forward and backward
pass computations across its layers. In this paper, a network
comprising two hidden layers, each with 128 neurons,
engages in computational processes that scale with the
product of the inputs and neurons for each layer, rendering
a time complexity of O(n × m) per layer. Moreover,
the magnitude of the action space directly influences the
computation time for determining the optimal action.

Space complexity, conversely, is anchored in the storage
requisites for the neural network’s parameters—weights and
biases—as well as the experience replay buffer, integral to
the learning process. The storage demand is proportional
to the total number of network parameters, which grows
with the depth and breadth of the network, alongside the
replay buffer capacity, which stores a multitude of agent
experiences. The architecture consisting of two sequential
layers with 128 neurons each, demands storage for 1282

weights per layer and an additional 128 biases, amounting to
an aggregate of approximately 2× (1282 + 128) space units.
The interplay between performance, time, and space com-

plexity manifests as a series of trade-offs. Augmenting the
network’s complexity can amplify learning and generaliza-
tion capabilities (performance) but at the cost of heightened
computational time and increased memory requirements.
Similarly, enlarging the experience replay buffer enriches
the learning landscape but incurs additional space com-
plexity due to escalated memory demands. This intricate
balance between the algorithm’s structural intricacies and
its operational efficacy delineates the nuanced landscape of
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computational complexity in deep reinforcement learning
models like DRL-PP.

V. EVALUATIONS
In this section, we systematically assess the efficacy of
the algorithm we have put forth. Initially, we delineate
the experimental parameters that form the backbone of our
investigation. This is succeeded by an elaborate discourse on
the evaluation methodology, which is designed to rigorously
scrutinize the algorithm’s performance against a spectrum of
criteria.

A. EXPERIMENTAL SETUP
Considering the inherent challenges of conducting real-
world path-planning trials with autonomous vehicles, our
study adopted a more pragmatic and controlled approach:
we validated the path-planning algorithms through agent
trajectory simulations.

For our experimental setup, we utilized the TensorFlow
deep learning platform, a choice influenced by its robust
computational graph architecture, which efficiently facilitates
neural network training and inference. Our computational
environment was based on the reliable and widely-used
Ubuntu operating system, known for its performance and
compatibility with deep learning applications.

The development of our algorithms and simulation
environment was executed within the PyCharm integrated
development environment. PyCharm’s suite of tools and fea-
tures for Python development allowed for streamlined coding,
debugging, and version control management, essential for
maintaining the integrity of complex codebases such as those
required for deep reinforcement learning simulations.

In terms of hardware, our experiments leveraged an
Intel(R) Pentium(R) G3260 @3.30 GHz CPU. Although not
the most powerful in the market, this CPU provided sufficient
computational capabilities for our simulation needs. The
GPU model utilized was the NVIDIA GTX 3090, a high-end
graphics card offering substantial parallel processing power,
crucial for accelerating neural network computations and
graphical simulations.

Our experiments derived their environments from the
literature [33], [34]. As illustrated in Fig. 3, we subdivided
the environment into meshes, simulating rectangular imped-
iments of various dimensions using eight blocks. Within this
setup, the square denotes the initial position or the agent’s
starting point, and the circle represents the pursuit objective or
the target destination. The intended outcome is to determine
the most direct route from the starting to the endpoint
while circumventing all obstructions. The action refers to
the agent’s movement decision at any given point within the
meshed environment, contingent upon the algorithm’s current
policy.

B. PARAMETER CONFIGURATIONS
Within the simulation, each grid’s side length was standard-
ized at a unitary value, while the diagonal of the grid was set

FIGURE 3. Depiction of the simulated environment.

at 20.5 units. The parameter d denotes the constraint distance
and is calculated based on the target position identified during
preliminary training sessions.

The primary objective of path planning is to ascertain the
route that yields the maximum reward upon reaching the
goal. To distinguish this from alternate scenarios, a reward
value of 50 is allocated when the target is successfully
reached. Conversely, colliding with an obstacle incurs a
penalty, resulting in a reward value of −5. In the event the
agent is still in the exploration phase, a neutral reward of 0 is
accorded when the target remains undetected. Once the target
is identified, an appropriate reward is attributed as detailed
in [35]. The rewards are categorized into specific scenarios
encountered by the agent: achieving the goal, encountering
an obstacle, or various states relative to target detection.
Specifically, a reward value of 50 is assigned when the agent
successfully reaches the goal, signifying the completion of
the objective. Conversely, a penalty of -5 is imposed when
the agent collides with an obstacle, indicating an undesirable
outcome that should be avoided. Additionally, the reward
formula r for target-related interactions varies conditionally:
it is set to 0 when no target is found, encouraging ongoing
exploration, and a cubic function −0.21 × (x − 3.12)3 is
applied when a target is detected but not hit, promoting
precision in navigation by adjusting the reward based on
the distance x from the target, with 3.12 being a critical
distance threshold. This dynamic reward system is designed
to optimize the agent’s learning process by enhancing its
decision-making in complex environments.

In the context of a multilayer perceptron, overfitting may
manifest when there’s an excessive number of network
parameters. Conversely, underfitting might be encountered
when these parameters are scanty. For optimal network
training, the parameter count is set at 15.

C. PERFORMANCE EVALUATION
Experiments were conducted simulating real-world scenar-
ios. In this environment, the target network parameters
were updated at intervals of every 200 iterations. Given the
experience pool’s initial state devoid of any records, the
first 400 training iterations emphasized continual exploration,
aiming to populate the pool. Subsequent to these initial
sessions, the network engaged in training, randomly drawing
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FIGURE 4. Preliminary path finding.

records from the experience pool, and updating its param-
eters employing the gradient descent method. The initial
paths often presented collisions with obstacles, necessitating
adjustments towards optimization, as depicted in Fig 4.
As training progressed, augmenting the experience pool,

network parameters evolved and the variable ε in the
ε-greedy algorithm incrementally increased by 0.00001 per
path exploration, capping at 0.9999. This ensured a gradual
convergence from a purely exploratory action selection to a
more exploitative approach, optimizing path selection. The
culmination of this progression can be observed in Fig 5,
illustrating the ideal path.

FIGURE 5. Deduced optimal path.

FIGURE 6. Comparison of the average training time.

First, we analyze the training duration, as depicted in the
Fig. 6. It offers a comparative overview of different deep
reinforcement learning algorithms applied to the domain of
path planning.

The Actor-Critic method, represented by the purple line,
manifests the most prolonged training duration coupled with
pronounced variability, suggesting a suboptimal algorith-
mic efficiency, particularly in the context of large-scale

applications such as crowd path planning. This inefficiency
may stem from the algorithm’s inability to adeptly navigate
the dynamically shifting policies inherent to multi-agent
systems—a challenge compounded by the algorithm’s fluc-
tuating policy adjustments.

In contrast, the DQN approach, denoted by the red line,
demonstrates a marked reduction in training time relative to
the Actor-Critic method, albeit with persisting fluctuations.
The enduring oscillations in training time may indicate that
the DQN algorithm, while more efficient, still encounters
limitations due to each critic network processing solely its
respective state-action information. Such a constraint may
inadvertently prolong the algorithm’s training duration.

The DRL-PP methodology, illustrated by the green line,
exhibits the shortest training times and a diminution in
fluctuations, underscoring a heightened efficiency and a
more stable training progression. This enhanced performance
may be attributable to the algorithm’s integrated approach,
combining centralized learning with decentralized execution
within a multi-agent framework. Moreover, the incorporation
of a mean field network likely facilitates a reduction in train-
ing complexity, optimizing the performance of collaborative
planning tasks throughout the training epoch.

In synthesizing the data, it becomes evident that the
DRL-PP method surpasses its counterparts concerning both
average and minimal training times. Such efficiency is
potentially due to the algorithm’s sophisticated design, which
synergizes centralized learning, decentralized execution, and
mean field theory to optimize the training process for
complex, multi-agent scenarios. Therefore, DRL-PP stands
as the superior path planning strategy within the evaluated
DRL methodologies, evidenced by its consistently lower and
more stable training times.

Next, we present a juxtaposition of the nascent DRL-PP
against the well-established DQN and Actor-Critic frame-
works. The comparative discourse pivots on the scrutiny of
reward trajectories synthesized by each algorithm across an
extensive span of 2,000 training rounds.

Illustrated meticulously in Fig. 7 is the reward trajectory
for DRL-PP. Herein, the inception of the algorithm is
marked by stochastic explorations, deliberately untethered
from experience pool-influenced parameter modifications,
rendering the initial reward metrics notably volatile. How-
ever, a notable inflection point is observed post the training
session mark. The aggregation of experiential insights begins
to substantiate parameter updates with enhanced consis-
tency. This progression, in conjunction with a progressively
ascending ε value, incrementally biases action selection in
favor of those yielding maximal rewards, culminating in the
emergence of stabilized reward metrics.

Contrastingly, Figs. 8 and 9 illustrate the reward dynamics
as characterized by theDQN andActor-Criticmethodologies.
These strategies, well-established within the domain of
reinforcement learning, exhibit reward trends that, although
structurally analogous, show significant divergence in their
patterns and stabilization points. The trajectories reveal that
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FIGURE 7. DRL-PP algorithm’s reward trend over 2,000 iterations.

FIGURE 8. Reward trend for the DQN algorithm across 2,000 iterations.

FIGURE 9. Reward trend for the actor-critic algorithm over 2,000
iterations.

while both the DQN and Actor-Critic approaches maintain
fidelity to the conventional frameworks of reinforcement
learning, the DRL-PP model introduces an evolution towards
an advanced learning regime, finely attuned to the com-
plex and dynamic nuances of environment interaction and
decision-making processes.

The detailed analysis supports the proposition that
DRL-PP, through its synergistic blend of exploratory stochas-
ticity and experience-informed refinement, achieves superior
adaptability. This adaptability transcends mere algorithmic
robustness, encompassing operational efficiency within real-
world applications, thereby highlighting its potential as a
pivotal innovation in the field of path planning.

Furthermore, in evaluating performance metrics, partic-
ularly for path planning algorithms, efficiency is often
measured by the number of exploration planning iterations
required to achieve an optimal or satisfactory trajectory.
Thus, the count of these iterations serves as an essential
metric for assessing the comparative effectiveness of different
algorithms.

Within the framework of this paper, both the DQN
and Actor-Critic methods were employed as benchmark
algorithms to delineate the relative performance of the
DRL-PP approach. A consolidated view of the cumulative
planning steps taken by each algorithm during their respective

exploration phases is meticulously documented. The data,
as encapsulated in Table 2, suggests a distinct advantage in
favor of DRL-PP.

TABLE 2. Aggregate planning iterations for each algorithm.

A critical analysis of the tabulated iterations underscores
the salient efficiency of DRL-PP, which required significantly
fewer iterations to achieve comparable or superior path
planning outcomes. This pronounced reduction in exploration
iterations not only indicates an enhanced efficiency but also
suggests an algorithmic robustness of DRL-PP in navigating
complex environments and circumventing obstacles. Conse-
quently, DRL-PP exhibits an elevated efficacy, positioning it
as a method of choice for path planning within intricate and
dynamically changing landscapes.

Moreover, the lesser number of iterations signifies a
lower computational overhead, which in turn translates
to faster response times and a more rapid convergence
rate. This attribute is particularly valuable in real-time
applications where timely decision-making is paramount,
such as autonomous vehicle navigation or robotic motion
planning in unpredictable terrains. Hence, the efficacy of
DRL-PP extends beyond mere iteration counts, impacting the
broader spectrum of performance metrics that are vital for
real-world deployment of path planning algorithms.

FIGURE 10. Accumulated reward comparison.

Figure 10 provides a systematic depiction of the compar-
ative analysis on Accumulated Reward between a canonical
Q-learning construct incorporating ϵ-greedy and Boltzmann
exploration tactics, and the DRL-PP methodology. In the
initial phase, particularly within the first 500 rounds, the
divergence in cumulative rewards among the three algorithms
is minimal, indicating a stage where substantive learning has
yet to occur. This phase predominantly reflects the impact of
initial random explorations, a common characteristic across
all tested algorithms, underscoring a realistic assessment of
early learning dynamics.

It is pivotal to recognize that within the Q-learning
paradigm, the exploration parameters—ϵ for the ϵ-greedy
strategy and τ for the Boltzmann strategy—undergo
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methodical annealing concurrent with learning progress. This
strategic modulation of parameters facilitates a calibrated
trade-off between the exploratory and exploitative actions,
fundamentally influencing the trajectory and caliber of
learning.

The illustrative renditions within the figure succinctly
convey the learning pathways synthesized by the Q-learning
framework juxtaposed with those of the DRL-PP. The reward
trajectory profiles elucidated therein demonstrate that the
DRL-PP algorithm exhibits a notably expedited convergence
rate relative to the ϵ-greedy Q-learning construct. Even
when benchmarked against the more advanced Boltzmann
Q-learning approach, the DRL-PP maintains a superior
gradient of convergence, reinforcing the robustness and
effectiveness of its learning algorithm.

Such empirical evidence distinctively positions the
DRL-PP solution as a superior contender in the domain
of deep reinforcement learning, showcasing its adeptness
in swiftly navigating the complex landscape of strategic
decision-making processes.

VI. CONCLUSION
Path planning algorithms are pivotal for mission-oriented
decision-making. This significance has catalyzed a surge
of interest among researchers, leading to a diverse array
of competing methodologies. Given the limitations of
traditional single-strategy reinforcement learning networks,
which often struggle to efficiently navigate the action
space in intricate autonomous path planning scenarios, this
paper introduces an enhanced deep reinforcement learning
algorithm tailored for path planning in autonomous driving,
termed DRL-PP. Empirical results, benchmarked against
established DQN-based and Actor-Critic-based path plan-
ning algorithms, affirm the superior efficiency of DRL-PP.
Notably, it requires fewer exploration steps and discerns the
optimal pathmore expediently within identical environments.
The efficiency and efficacy of DRL-PP, as highlighted by
these results, signal its substantial potential to advance the
capabilities of path planning significantly.
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