
IEEE VEHICULAR TECHNOLOGY SOCIETY SECTION

Received 17 April 2024, accepted 4 May 2024, date of publication 13 May 2024, date of current version 22 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3399841

Enhancing the Safety of Autonomous Vehicles:
Semi-Supervised Anomaly Detection With
Overhead Fisheye Perspective
DIMITRIS TSIKTSIRIS 1,2, ANTONIOS LALAS1,
MINAS DASYGENIS 2, (Member, IEEE), AND KONSTANTINOS VOTIS 1
1Information Technologies Institute, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece
2Department of Electrical and Computer Engineering, University of Western Macedonia, 50100 Kozani, Greece

Corresponding author: Dimitris Tsiktsiris (tsiktsiris@iti.gr)

This work was supported by European Union’s Horizon Europe Research and Innovation Program ‘‘Advancing Sustainable User-Centric
Mobility with Automated Vehicles (ULTIMO)’’ under Grant Agreement 101077587.

This work involved human subjects or animals in its research. Approval of all ethical and experimental procedures and protocols was
granted by the CERTH Ethical Committee.

ABSTRACT Autonomous vehicles (AVs) have the potential to revolutionize transportation. However,
ensuring passenger safety within these vehicles in the absence of a dedicated onboard authority figure
necessitates the development of intelligent, autonomous surveillance systems. This paper presents a novel
semi-supervised anomaly detection system specifically designed to enhance safety within autonomous
shuttles. Our approach leverages overhead fisheye cameras to provide comprehensive, occlusion-resistant
monitoring of the cabin interior. This unique perspective maximizes visibility, even in crowded conditions.
Our spatiotemporal autoencoder architecture, composed of both convolutional and reccurrent layers,
is trained on extensive unlabeled video data to learn representations of regular passenger behavior using
a Center-Weighted Loss (CWL) function that focuses in the cabin’s central region, where critical events are
most likely to occur. This reduces the potential for false positives triggered by rapid changes on the periphery
due to the vehicle’s movement. To enhance the system’s ability to discriminate between specific safety
and security incidents, we introduce a classifier fine-tuned on a labeled subset of our dataset. We evaluate
our method’s performance through experimentation on a real-world dataset (CERTH-AV) collected with
an overhead fisheye camera. Our method demonstrates superior anomaly detection capabilities, achieving
the highest Area Under the Curve (AUC) performance on the CERTH-AV dataset. Further comparative
evaluations on established benchmarks, including UCF-Crime and ShanghaiTech, validate our system’s
robustness and adaptability. Finally, we have successfully integrated our method into autonomous minibuses
using NVIDIA Jetson embedded systems for real-time processing, demonstrating the practical efficacy of
our approach in safeguarding passengers within autonomous vehicles.

INDEX TERMS Anomaly detection, artificial intelligence (AI), autonomous vehicles (AVs), computer
vision, edge computing, overhead fisheye imaging.

I. INTRODUCTION
A Autonomous vehicles (AVs) hold the potential to signif-
icantly transform transportation, offering increased safety,
improved efficiency, and greater accessibility [1]. The
autonomous shuttles are operating without a human driver,
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promising convenient on-demand transportation solutions.
However, the absence of an onboard authority figure
dedicated to passenger well-being poses unique safety and
security risks [2]. The development of systems capable of
autonomously monitoring the shuttle’s interior and detect-
ing potential threats in real time is crucial to protecting
passengers and enabling timely interventions when needed.
Overhead fisheye cameras offer a compelling solution for
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comprehensive interior surveillance in autonomous shut-
tles [3]. Their wide field of view inherently minimizes
occlusions frequently encountered in confined spaces and
under dynamic conditions, offering enhanced visibility of the
passenger area.

The integration of advanced computer vision and machine
learning techniques facilitates the automated detection of
anomalous events based on video data, contributing to
onboard safety. Autoencoders [4], are employed for anomaly
detection by learning compressed representations of normal
passenger behavior from video data. Deviations from this
learned normality result in higher reconstruction errors,
indicating potential anomalies.

While autoencoders excel at detecting unseen anoma-
lies [5], the lack of readily available labeled datasets
for anomalous events in AVs presents a challenge. Semi-
supervised learning paradigms address this limitation by
effectively capitalizing on abundant unlabeled data alongside
a smaller set of labeled examples, leading to improved model
generalization and robustness. This approach is particularly
suitable for autonomous shuttles as collecting large amounts
of normal operational data is comparatively simple, while
incidents requiring intervention occur less frequently.

Semi-supervised learning, leverages limited or imprecise
training labels to learn the underlying patterns in the data,
making it particularly suitable for scenarios where obtaining
exhaustive and precise annotations is challenging or infeasi-
ble, such as in the detection of rare abnormal events [6]. This
approach is advantageous in imbalanced datasets because it
alleviates the need for extensive labeled data for each class,
thusmitigating the bias towards themajority class that is often
observed in fully supervised methods. Furthermore, semi-
supervised methods are designed to exploit the structure and
distribution of the data, enabling them to learn from both
labeled and unlabeled data, thereby enhancing their ability
to generalize from limited examples of the minority class
(abnormal events) [7].

In this work, we propose a novel semi-supervised
anomaly detection system specifically designed to enhance
safety within the shuttles of autonomous minibuses. These
minibuses have a maximum capacity of 10 people, and the
seating arrangement typically places passengers within close
proximity to the center of the cabin. Our system utilizes over-
head fisheye cameras (Figure 1b) for comprehensive cabin
monitoring as focusing on the central region encompasses
the majority of passenger interactions and potential incident
locations and leverages an autoencoder-based framework for
anomaly detection. Key contributions of our work include:

• Occlusion-resistant monitoring based on a single fisheye
camera perspective, ensuring improved performance
under crowded conditions, seamless installation and
reduced power consumption.

• Semi-supervised spatiotemporal autoencoder architec-
ture with a center-weighted loss function that learns
from ‘‘regular’’ unlabeled video data to detect deviations
in passenger behaviour.

FIGURE 1. Examples from different camera setup in an autonomous
minibus: (a) Side perspective with a limited field of view and occlusion
issues, (b) Overhead fisheye (top-down) camera perspective with a
panoramic overview of the cabin.

• Hybrid approach with a head classifier fine-tuned on a
smaller labeled subset to identify the abnormal events.

• An extensive evaluation on a real-world dataset, show-
casing our method’s ability in detecting critical safety
events.

Furthermore, we describe the challenges posed by existing
anomaly detection methodologies in the context of fisheye
imagery within AVs, such as geometric correction prepro-
cessing and the adaptation of traditional deep learning archi-
tectures. By addressing these challenges, our research intro-
duces a fisheye-aware spatiotemporal autoencoder designed
for direct application to fisheye image sequences, facilitating
enhanced anomaly detection without the need for geometric
correction.

The remainder of this work is structured as follows.
In Section II, other recent studies in the field of anomaly
detection on video surveillance are presented, specifically
proposed for overcoming the inherent challenges of weakly
supervised settings. Section III offers a detailed overview of
the proposed methodology, as well as the training stages that
were followed during this work, while Section IV presents
the experimental results of this study, along with the system’s
real-world implementation in minibuses. Finally, Section V
provides a comprehensive discussion on the selection of
fisheye cameras, particularly focusing on distortion issues
and the justification for prioritizing the central cabin area,
while Section VI summarizes the conclusions of this work.

II. RELATED WORK
The integration of deep learning and computer vision
for abnormal event detection, particularly in identifying
specific actions such as fighting and aggression, has
seen notable advancements. Convolutional neural networks
(CNNs), specifically, have gained a growing popularity
thanks to their high performance in a variety of computer
vision applications [8], [9], [10], hence making them also an
obvious choice for vision-based human activity recognition
tasks.

In the field of weakly supervised learning for anomaly
detection in video surveillance, there has been a signif-
icant paradigm shift based on the need to alleviate the
labor-intensive process of frame-by-frame video annota-
tion [11]. The common thread across this research area
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is mainly focused around efforts to control video-level
annotations, leveraging the inherent spatial and temporal
dynamics captured in surveillance footage to determine
anomalies with minimal human intervention. This section
summarizes the approaches of recent studies in this domain,
highlighting the diverse strategies employed to address the
challenges associated with minimal manual annotation.

In this context, a key advancement was introduced by
Sultani et al. [12] that presented the application of multiple
instance learning (MIL) frameworks, establishing the use
of video-level annotations for localizing anomalies within
videos without precise frame-level labels. This approach laid
the key foundations for further exploration of MIL and its
capacity to detect anomalous events by exploiting aggregated
video observations rather than relying on the granular detail
of individual frames.

Graph convolutional networks (GCN) are another emerg-
ing advancement in this field that was introduced to refine the
approach to handling weakly labeled datasets. Studies in this
field [13], [14], [15], [16] have showcased the effectiveness
of GCNs in cleaning noisy labels and enhancing the feature
extraction process, thereby improving the robustness of
anomaly detection models. The key innovation lies in the
ability of GCNs to capture complex relationships within the
data, enabling a more refined understanding of anomalous
patterns.

Moreover, the integration of motion and appearance
features has been a key focus for advancing the accuracy
of detection models. In this field, existing approaches
demonstrate a collective move towards two-stream networks,
combining RGB and flow streams [17], [18] to better capture
the subtle differences of anomalous behavior, underscoring
the recognition that anomalies in video surveillance are often
characterized by both unusual appearances and movements,
necessitating models that can efficiently navigate this duality.

Adaptive video compression techniques [19], [20], rep-
resent another important step towards enhancing real-time
detection capabilities. By prioritizing significant events
during the preprocessing of surveillance footage, these
methods aim to streamline the analysis process, allowing
deep learning models to focus on potentially anomalous
activities with greater efficiency.

On the other hand, feature amplification mechanisms,
introduced by Chen et al. [13], further demonstrate the
ongoing efforts to refine anomaly detection accuracy.
By amplifying discriminative features and employing mag-
nitude contrastive loss, these models try to overcome the
limitations of conventional approaches that rely heavily
on feature magnitude for anomaly identification, thereby
facilitating a more insightful analysis of surveillance footage,
enabling the detection of subtler anomalous activities that
might otherwise avoid detection.

Finally, the integration of temporal granularity and spatial
features is another approach that has been explored [21],
[22], [23] that focuses on anomaly context-dependency,
proposing frameworks that address the multifaceted nature of

anomalous events. Through the combined learning of motion
and appearance features and the application of multiple
ranking measures, these studies contribute to a more holistic
understanding of what constitutes an anomaly within the vast
and varied background of video surveillance data.

The collective effort of the aforementioned research
reveals a dynamic and evolving field, with a steady com-
mitment to overcoming the challenges of anomaly detection
in weakly supervised settings. However, as previously
explained, none of these approaches leverage overhead fish-
eye cameras for occlusion-resistant monitoring, as opposed
to the proposed method. While existing works have explored
various methods for anomaly detection in video surveillance,
including weakly supervised learning, two-stream networks,
and adaptive video compression techniques, they often
lack the specific considerations necessary for autonomous
vehicles.

Our proposed approach distinguishes itself by leveraging
the unique advantages of overhead fisheye cameras for
comprehensive cabin monitoring, minimizing occlusion and
maximizing visibility within the confined space of an AV.
Additionally, the introduction of the Center-Weighted Loss
(CWL) function prioritizes the central region of the cabin,
where critical events are more likely to occur in the context of
autonomous minibuses, further reducing false positives and
enhancing the system’s effectiveness. The hybrid approach,
combining a spatiotemporal autoencoder with a classifier
fine-tuned on a labeled subset of data, allows for accurate
anomaly detection and distinction between specific types of
abnormal events. Furthermore, our system is designed for
real-world deployment on resource-constrained embedded
platforms, taking into account power consumption and
real-time processing requirements.

III. METHODOLOGY
The convolutional autoencoder (CAE) is a specialized form
of neural network designed to process data in multiple
dimensions, such as images or video frames. It consists of
two main parts: an encoder, which compresses the input data
into a lower-dimensional latent space; and a decoder, which
reconstructs the data from the latent space back to the original
input space. The CAE learns to capture the important features
of the input data while removing noise or redundancy.

The encoder part of the CAE consists of a series of
convolutional layers that apply learned filters to the input
data. Convolutional layers are particularly effective for
extracting spatial features from images due to their ability to
learn hierarchical patterns. The encoder’s architecture can be
formalized as a function:

henc(x) = f (Wenc ∗ x + benc) (1)

where x is the input data, Wenc represents the weights of
the convolutional filters, benc denotes the biases, ∗ indicates
the convolution operation, and f is a non-linear activation
function such as ReLU or Sigmoid.
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FIGURE 2. Model architecture of the autoencoder: The convolutional layers are spatial encoders, followed by temporal encoder and decoder. Bottleneck
compress the features to eliminate non useful information. At the end, we perform spatial decoding, reconstructing the input image to the same format.

The ConvLSTM2D layer is a recurrent layer that processes
data in both space and time. It is specifically designed for
problems where the context in both dimensions is crucial,
such as videos. The layer not only applies a convolution
operation to the input data but also maintains a hidden state
that captures temporal information. The ConvLSTM2D layer
can be expressed mathematically as:

ht , ct = ConvLSTM2D(ht−1, ct−1, xt ) (2)

where ht is the hidden state at time t , ct is the cell state at time
t , and xt is the input at time t .
The decoder mirrors the encoder structure but uses decon-

volutional (transposed convolution) layers to reconstruct
the input data from the latent space representation. The
reconstruction can be quantified using the proposed CWL
loss.

A. CENTER-WEIGHTED LOSS
Regarding our loss function, we combined the traditional
mean squared error (MSE) loss with a spatial weighting
mechanism that assigns higher weights to pixels closer to the
center of the image. This weighting can help the autoencoder
focusmore on accurately reconstructing the central part of the
image, which has a higher impact based on the distribution of
passengers in the cabin space. The proposed loss function is
defined as follows:

L(Y, Ŷ) =
1
N

H∑
i=1

W∑
j=1

w(i, j) · (Yij − Ŷij)2,

where L(Y, Ŷ) is the loss function, Y is the ground truth
image, Ŷ is the reconstructed image produced by the

autoencoder, and H and W are the height and width of the
images, respectively. The weight function w(i, j) is defined
using a Gaussian distribution:

w(i, j) = exp
(

−
(i− ic)2 + (j− jc)2

2σ 2

)
,

with (ic, jc) representing the coordinates of the center of the
image and σ controlling the spread of the Gaussian function.
The normalization factor N , often the total number of pixels
in the image, is used to keep the loss value scale consistent.

Incorporating the Gaussian function into the weighting
mechanism allows for a smooth transition of importance from
the center towards the edges of the image, which aligns with
the goal of enhancing focus on the central areas during the
autoencoder’s training process.

B. TRAINING STAGES
At the first stage (Figure 2), the CAE is trained on regular
‘normal’ events using back-propagation to minimize the
reconstruction loss. The process optimizes the weights and
biases to capture the regular patterns of the input data. After
the initial training, a second stage of supervised training
follows with a slightly modified architecture (Figure 3).
In this training stage, we use the encoder part of the model
along with a classification head for supervised training.
We perform fine tuning via transfer learning using the
weights from the previous training session, which can ensure
the ability of the encoder to compress critical features
into the latent space to improve the robustness of our method.
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The head is trained using categorical cross-entropy loss:

LCE = −

M∑
c=1

yo,c log(po,c) (3)

whereM is the number of classes, yo,c indicates the presence
of class c in observation o, and po,c is the predicted probability
of class c for observation o.
The two-phase training strategy of the CAE allows the

model to be capable of distinguishing irregular changes in the
sequences and then to identify deviations from this baseline as
anomalies. The integration of ConvLSTM2D layers enables
the model to capture temporal dependencies in addition to the
spatial features learned by the Conv2D layers. This method
provides a robust approach to anomaly detection in video
sequences.

IV. RESULTS
In this section, we present the datasets, the evaluationmetrics,
the parameter settings and the experimental results of our
approach. Moreover, we present the result of a real-world
deployment of an NVIDIA Jetson embedded system, capable
of detecting four types of abnormal events: bag snatching,
falling down, fighting and vandalism. The system is installed
and operates inside autonomous minibuses and utilizes the
proposed method for abnormal event detection.

A. DATASETS
There are various well-established datasets for anomalous
activity recognition within video surveillance footage, with
the most prominent among them including the UCSD
Pedestrian [25], Subway [26] and CUHK Avenue [27]
datasets. However, despite their extensive application, these
datasets show various limitations, including the simplicity
of the depicted scenes, their restricted range of anomalous
activities and the lack of detailed spatial annotations, that may
lead to unsatisfactory outcomes in real-world scenarios.

On the other hand, datasets such as the UCF-Crime [12]
and the ShanghaiTech [24] offer a comprehensive collection
of videos sourced from various online platforms, recorded
across multiple surveillance systems under a wide array
of environmental conditions, thereby introducing additional
layers of complexity. More specifically, the UCF-Crime
dataset includes approximately 1900 extensive, unedited
videos, evenly split between normal and abnormal events,
and covers 13 types of real-world anomalies, including but
not limited to abuse, burglary and vandalism. Additionally,
the ShanghaiTech dataset aims to address real-world applica-
bility issues by including anomalies characterized by sudden
movements, like chases and fights, including 130 anomalous
events across 13 settings in 437 videos, totaling over 270,000
frames for training. It specifically labels unusual activities
such as bag snatching and unauthorized vehicle use.

However, while the UCF-Crime dataset initially con-
tributed video-level annotation, which was especially useful
for weakly supervised learning approaches, the Shang-

haiTech dataset has been utilized for unsupervised learning
to determine regular patterns. The availability of frame-level
annotations for both datasets facilitates the adoption of fully
supervised learning methods. The UCF-Crime dataset, with
its varied activity rate and environmental settings, is partic-
ularly practical for anomaly detection tasks, enhancing the
development of surveillance systems operating in real-world
environments.

Besides the two benchmark datasets mentioned previously,
we collected a real-world dataset (CERTH-AV) using the D-
Link DCS-4625 fisheye camera with an overhead panoramic
perspective. The camera has a dome design, featuring a 5-
megapixel 1/2.5’’ CMOS sensor, paired with a 1.37 mm
F2.0 fisheye lens. It has a maximum image resolution of
2560×1920 pixels and has Wide Dynamic Range (WDR)
support along with IR lighting for night vision. During
the data collection, several abnormal events were simulated
(bagsnatch, falldown, fighting, vandalism) with a duration of
approximately 30 minutes. Moreover, we collected regular
vehicle operation, whether stationary or in motion, with
various lighting conditions and passengers. Table 2 presents
some metrics about these datasets. It is important to note
that in the initial training phase of the CAE only the regular
‘‘normal’’ class is used, while a subset of the class is used
for fine-tuning the hybrid approach. Consents were obtained
from all passengers who contributed to this dataset for the
purpose of this research.

B. EVALUATION METRICS
The experimental results of this work were evaluated
against established benchmarks in the field using universally
recognized metrics for detecting anomalies. To keep con-
sistency with previous studies in anomaly detection [24],
[28], the findings are expressed through the frame-level
Area Under the Curve (AUC) to facilitate a comparison of
performance levels, with a higher AUC indicating better
detection capabilities. Given the challenges posed by datasets
where anomalies are rare, AUC is preferred over accuracy
as it offers a more refined assessment [29]. Additionally,
the model’s ability to distinguish between different types of
anomalies was assessed using confusion matrices (Figure 4)
and the accuracy metric.

C. ABLATION EXPERIMENTS
To investigate the influence of different weighting functions
on the anomaly detection performance, we conducted an
ablation study comparing the Gaussian distribution with three
alternative functions: Linear Decay (Equation 4), Inverse
Distance (Equation 5), and Sigmoid (Equation 6).

w(i, j) = 1 −

√
(i− ic)2 + (j− jc)2

dmax
(4)

w(i, j) =
1

1 +
√
(i− ic)2 + (j− jc)2

(5)
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FIGURE 3. Fine-tuning hybrid classifier: The pretrained encoder weights from the previous stage are transferred and a classification head is added for
detecting the abnormal events.

TABLE 1. AUC results evaluation of the proposed method on the datasets of CERTH-AV and benchmark datasets UCF-Crime and shanghai tech.

TABLE 2. Statistics of the overhead fisheye camera dataset (CERTH-AV).

w(i, j) =
1

1 + e−k(
√

(i−ic)2+(j−jc)2−r)
(6)

where w is the weight assigned to the pixel at coordinates
(i, j); coordinates (ic, jc) represent the center of the image and
(dmax) is the maximum distance from the center of the image
to any pixel (typically the diagonal distance). Moreover,
in equation 6, k controls the steepness of the sigmoid

TABLE 3. AUC performance with different weighting functions.

function, while r controls the midpoint of the transition
between high and low weights.

As shown in Table 3, the Gaussian distribution achieved the
highest AUC score, indicating the best overall performance
among the evaluated functions. The Sigmoid function
demonstrated a close performance, while the Linear Decay
and Inverse Distance functions resulted in slightly lower AUC
scores.
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FIGURE 4. Confusion matrix across multiple categories: The diagonal
represents accurate predictions and off-diagonal cells indicate false
predictions. The intensity of the color corresponds to the normalized
frequency of predictions, highlighting the precision and misclassification
rates between different classes.

TABLE 4. Precision, recall, and F1-Score for each class tested in
UCF-Crime dataset.

The results suggest that the Gaussian distribution’s smooth
transition of weights from the center to the periphery
effectively balances the focus on the central region with
consideration of the surrounding context. This characteristic
is beneficial in capturing anomalies that may involve
interactions between passengers or events that start in the
center and propagate outward. The Sigmoid function, with
its steeper slope, places a stronger emphasis on the central
region. This could be advantageous in scenarios where
anomalies primarily occur within a well-defined central
area. However, it may also lead to overfocusing on events
near the edges or interactions across a larger portion of
the cabin. Finally, the Linear Decay and Inverse Distance
functions, while performing adequately, may not capture the
subtle movements of passenger behavior and interactions

FIGURE 5. Real-time detection of abnormal events with activation maps
visualization in red shades: (a) and (b) indicate a fighting event,
(c) passengers falling down due to a sudden deceleration (breaking) of
the vehicle, (d) bag snatching (stealing) event.

as effectively as the Gaussian and Sigmoid functions.
Their simpler weighting schemes may not fully account
for the spatial characteristics of the fisheye image and the
distribution of passengers within the cabin.

D. TRAINING SETTINGS
To achieve peak performance, we explored the optimiza-
tion of critical hyperparameters. We experimented with
parameters such as frame-skipping, data normalization,
temporal-length, temporal-stride, and the potential benefits
of randomized runtime data augmentation for temporal
sequence generation. We also carefully examine the potential
for enhancements within the deep network architecture itself.
We trained our model with a batch size of 16, a temporal-
length of 45 frames and an input image dimension of
224×224 with 3 channels. To prevent overfitting, we imple-
ment dynamic frame-skipping on input videos with a stride
between 1 and 5, and random runtime augmentations are
applied on image sequences with a probability of 0.3. Train,
validation, and test sets are randomized to ensure a robust and
unbiased evaluation.

Due to the large number of video data, the bottleneck
of our training process was the data loader. Operations for
decompressing videos, preprocessing, image transformations
and transferring data from the CPU to the GPU had a signif-
icant performance impact on the training process. In order
to maximize computational efficiency and streamline the
training process, we integrate NVIDIA DALI for accelerated
data loading. This optimization ensures that our hardware
isn’t bottlenecked by data preparation. Training is conducted
using the Adam optimizer with a learning rate of 0.0001.
To harness the latest in computational power, this training
process is powered by a system equipped with the high-end
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FIGURE 6. Real-world installation on NAVYA autonomous minibuses: (a) Inventer, (b) Installation area - panel, (c) Overhead fisheye camera (D-Link DCS
4625), (d) Location of the NVIDIA Jetson AGX Xavier embedded system, (e) Monitoring screen for passengers, (f) Power-supply cables hidden behind the
vehicle’s panel.

NVIDIA 4090 GTX 24GB GPU, an Intel Core i7-13700K
processor, and 64 GB of RAM.

E. MAIN RESULTS
Table 1 presents the comparative evaluation of various
anomaly detection methods based on the Area Under the
Curve (AUC) performance across three distinct datasets:
CERTH-AV, UCF-Crime, and ShanghaiTech. These datasets
are benchmarks in the domain of anomaly detection within
video surveillance, each presenting unique challenges and
complexities. The table illustrates a notable evolution in
methodological complexity and specificity, with recent
methods like Cao et al. [15] in 2022 WAGCN and
Chen et al. [13] in 2023MGFN showcasing significant strides
in performance, particularly on the UCF-Crime dataset. This
reflects a trend towards more adaptive anomaly detection
mechanisms, capable of handling the diverse and complex
scenarios presented by these datasets. Our proposed method,
CAE-Hybrid had the highest AUC of 0.878 on CERTH-
AV, alongside competitive performances on UCF-Crime and
ShanghaiTech. This suggests a robust and versatile approach,
capable of overcoming the challenges related to the overhead
fisheye camera perspective due to its incorporation of the
center-weighted function loss and hybrid approach.

It is important to note that the absence of results for
certain methods on our CERTH-AV dataset, is attributed to
the inability to reproduce the code for the respective methods.
In cases where code was not available, implementations
were based on the authors’ interpretations of the published
methodologies, which might not fully capture the original
intent of these approaches. By emphasizing the central
aspects of the image more significantly than the peripheral
ones, the robustness of this method is increased by reducing
false positives and focusing on core features that are
indicative of anomalous behavior, improving its sensitivity
and specificity in anomaly detection tasks.

F. VALIDATION IN NAVYA AUTONOMOUS VEHICLES
The system was evaluated on automated minibuses in
Copenhagen and Geneva. The solution was installed on
NAVYA autonomous vehicles, featuring a NVIDIA Jetson
AGX Xavier platform and a D-Link DCS-4625 fisheye
camera, as presented in Figures 6c and 6d. The camera was
connected directly to the Jetson system via Ethernet through
the RTSP protocol. Both components are powered by the
vehicle’s batteries and Tensor-RT conversion was performed
to maximize the algorithm’s efficiency, reducing the power
consumption to approximately 10 Watts.
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FIGURE 7. Dashboard showcasing a fighting abnormal event detection using the proposed method.

TABLE 5. Number of samples validated, along with the improved
accuracy and F1-Score metrics for each class.

The system was installed and validated in real NAVYA
autonomous vehicles by Amobility (HOLO) and Transports
Publics Genevois (TPG) operators, resulting in the validation
results presented in Table 5. As observed by the table, these
results indicate that the proposed semi-supervised anomaly
detection algorithm is able to identify most of the performed
scenarios (bagsnatch, falldown, fighting and vandalism) with
an accuracy of approximately 91%.

Figure 5 demonstrates snapshots during the real-time
detection of various abnormal events in HOLO vehicle P109,
route Slagelse in Copenhagen, Denmark. For visualization
purposes, activation maps are overlaid to highlight regions of
interest, denoted by red shades, where anomalous activities
are detected. Finally, as depicted in Figure 7, the abnormal
event identification has also been captured in the operator’s
dashboard in real-time, raising appropriate alerts for the

authorities, thereby enhancing the overall safety and trust of
onboard passengers.

G. COMPUTATIONAL EFFICIENCY
The proposed semi-supervised anomaly detection system
is designed to operate in real-time within the constraints
of an embedded system, ensuring prompt detection of
critical events in autonomous shuttles. To optimize compu-
tational efficiency, we employ several strategies. Firstly, the
convolutional autoencoder architecture utilizes depth-wise
separable convolutions, which significantly reduce parameter
size compared to standard convolutions. Moreover, network
optimizations via tools like TensorRT enable the model
to run efficiently on the NVIDIA Jetson platform, which
possesses limited computational resources when compared
to desktop GPUs. Experimental results demonstrate that
our approach achieves a processing speed of approximately
37 frames per second (FPS) using the Performance (MAX-
N) mode on the NVIDIA Jetson AGX Xavier embedded
system. However, we are restricting the processing framerate
to 15 FPS, accumulating a sliding buffer of 3 seconds.
The use of TensorRT optimizations (layer fusion, precision
reduction, kernel auto-tuning, and dynamic tensor memory
optimization) along with a reduced processing frame rate has
reduced the power consumption to an acceptable level for
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the AV’s battery. The NVIDIA Jetson AGX Xavier platform,
running the anomaly detection algorithms, operates at an
average power of approximately 10 watts, as measured by
the tegrastats utility. The D-Link DCS-4625 fisheye camera
has an average power consumption of 3.5 watts, based on
the manufacturer’s specifications. Based on our experiments,
we consider it sufficient for real-time deployment within
power-constrained autonomous shuttles, allowing for timely
notifications in case of critical safety or security events.

H. ETHICAL CONSIDERATIONS
While continuous surveillance within autonomous vehicles
offers significant potential to improve passenger safety, it’s
crucial to acknowledge the ethical implications involved.
The focus on edge computing within our system mitigates
a significant portion of privacy concerns, as no sensitive
raw video data is transmitted outside the vehicle. Only
the necessary metadata for operator notifications are sent,
respecting the privacy of the passengers. However, it is
still important to consider techniques that further preserve
the anonymity of individuals within the video feed while
maintaining robust anomaly detection [30], such as blurring
faces or Federated Learning [31]. Additionally, clear policies
on data retention and access must be established in alignment
with relevant regulations (e.g., GDPR). Transparency with
passengers regarding the use of the system and the protection
of their personal data is vital to establishing public trust.
The development of such systems demands a careful balance
between safeguarding passengers and protecting individual
privacy rights.

V. DISCUSSION
Our current work focuses specifically on demonstrating the
effectiveness of overhead fisheye cameras as a standalone
solution for anomaly detection in the context of autonomous
minibuses. Due to the relatively confined space, a single
overhead fisheye camera can provide sufficient coverage of
the entire cabin similar to a multi-camera setup.

However, multiple cameras would have a negative impact
on power consumption, due to the additional hardware as well
as the increased processing complexity. This is a significant
constraint for battery-powered autonomous vehicles.

Considering the practical aspects of implementation, the
NAVYA autonomous minibuses used in our study already
come equipped with a pre-installed overhead fisheye camera.
Therefore, our approach can take advantage of the existing
hardware infrastructure, making it a more cost-effective and
readily deployable solution.

Comparative evaluations with traditional narrow-field
cameras indicate that fisheye cameras capture a broader
view with fewer installation points, enhancing the system’s
efficiency and cost-effectiveness [32].

VI. CONCLUSION
This study has presented a novel semi-supervised anomaly
detection system specifically designed to enhance safety

within autonomous shuttles. The utilization of overhead fish-
eye cameras offers a comprehensive and occlusion-resistant
perspective on the cabin interior, maximizing visibility and
minimizing the potential for limited vision spots. Our spa-
tiotemporal autoencoder architecture, trained on unlabeled
video data, effectively models typical passenger behavior,
forming a baseline for anomaly detection. The integration of
a classifier, fine-tuned with the CWL function, enhances the
system’s capability to discriminate between specific types of
anomalies and regular activity, prioritizing events occurring
in the central image region. Extensive evaluations on the
real-world CERTH-AV dataset demonstrate the superior
performance of our method, as evidenced by its high AUC
score. Additionally, themethod’s strong results on benchmark
datasets like UCF-Crime and ShanghaiTech underscore its
robustness and adaptability to diverse surveillance scenarios.
The successful real-world deployment of our system on
NVIDIA Jetson embedded systems within autonomous
minibuses validates its applicability and effectiveness in
practical settings. Future work includes exploring the fusion
of data from multiple sensor modalities, such as depth or
thermal cameras, for enhanced anomaly detection. Addition-
ally, investigating the potential of reinforcement learning
techniques within the semi-supervised framework could offer
further refinement of the anomaly detection process. Finally,
this work contributes to the development of intelligent
surveillance systems designed to protect passengers and
enable the safe, widespread adoption of autonomous shuttles.
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