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ABSTRACT With the advancement of technology in vehicle-road collaboration and autonomous driving,
new commercial applications have surfaced. These include autonomous ride-hailing vehicles and unmanned
delivery vehicles. As a result of the challenges presented by commercial applications, dispatching systems
are moving towards being maintenance-free, centralized, multitasking, and real-time. Yet, most existing
dispatching systems have been designed for single-task purposes and cannot tackle multitasking issues.
Moreover, traditional optimization algorithms make it difficult to achieve timeliness in real-time changing
traffic conditions. Therefore, this paper innovatively proposes a task allocationmethod based onMulti-Agent
Reinforcement Learning (MARL). Firstly, this study introduces a classification model of task relationships
through the binary assumption model of geographical areas and vehicles. Secondly, the study matches the
classification model’s task cost state transition process with the Markov Decision Process, constructing a
Multi-Agent Reinforcement Learning framework. Finally, the study constructs a simulation environment
suitable for reinforcement learning based on Simulation of Urban Mobility (SUMO). Simulation results
indicate that the task allocation system based on MARL can effectively improve the system’s overall
efficiency by determining the order of task allocation and the matching relationships between tasks.

INDEX TERMS Combinatorial optimization, multi-agent system, reinforcement learning, simulation of
urban mobility, task allocation.

I. INTRODUCTION
The communication information between vehicles, as well as
between cars and operational infrastructure, can be further
transmitted to the cloud system, forming the basic structure
of vehicle road collaboration [1]. Based on this informa-
tion, the cloud decision-making system can allocate tasks
to each vehicle reasonably, ensuring that each vehicle can
fully utilize its capabilities and complete as many tasks as
possible [2]. Ren [3] believes that reasonable task allocation
and path optimization can significantly reduce operational
costs. At the same time, Yu, J. [4] also proves that by focusing
on system costs, total driving distance, and delay indicators,
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the system’s overall efficiency can be improved as much as
possible.

Nowadays, advancements in task allocation systems have
complemented the development of unmanned driving tech-
nology [5]. This technology enables the coordination of
several unmanned vehicles to accomplish tasks as a team.
At container terminals, automated-guided vehicles (AGVs)
are navigated to designated areas to coordinate the handling
of containers [6]. In the ride-hailing industry, autonomous
vehicles must coordinate with each other to minimize pas-
senger wait times [7]. In underground mines, due to narrow
roadways, multiple unmanned mining trucks need to coordi-
nate their routes to maximize transport capacity [8]. In the
express delivery industry, autonomous delivery robots must
collaborate to reduce delivery expenses and maximize the
number of fulfilled orders [9].
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However, the introduction of autonomous driving tech-
nology has raised higher requirements for task allocation
technology. Dispatching systems should evolve to become
maintenance-free and capable of multitasking coordination
[10]. For instance, in the past, taxi drivers would personally
take care of their vehicles by charging and cleaning them
after each passenger trip. However, autonomous ride-hailing
companies need a more efficient dispatch system that can
allocate tasks for each vehicle uniformly. These tasks include
transporting passengers, charging, and cleaning.

Furthermore, these tasks are not completely independent of
each other.Multiple tasks can interact and become constraints
for each other. If a vehicle with a low battery is assigned
a task that requires it to travel far from a charging station,
it will take longer for the vehicle to reach the charging station.
In such scenarios, the scheduling system should shift from
single-objective optimization to multi-objective optimization
to coordinate multiple tasks effectively.

However, considering the interdependence of various tasks
and the need to set corresponding constraints, task assignment
becomes more complex, significantly increasing the time
required for the solution. Finding the optimal strategy for task
assignment has been proven to be a challenging problem [9].
It is challenging to balance accuracy and speed when allocat-
ing multiple objectives, especially in vehicle scheduling. This
is because tasks arise in real time, and the traffic environment
frequently changes. As a result, scheduling systems need to
make quick decisions.

For the analysis above, the overall objective of this paper is
to design a vehicle task assignment system that can coordinate
multiple tasks and have real-time capabilities. Many current
vehicle scheduling systems are designed to optimize for mul-
tiple objectives in static scenarios where tasks do not change
in real-time [11]. Others use graph theory or reinforcement
learning for real-time optimization of a single objective [12].
However, there is currently no established system architecture
capable of scheduling vehicles based on multiple objectives
in dynamic scenarios. This research aims to introduce new
approaches to the field of multi-vehicle dispatching. The
main contributions of this study are summarized below:

1. This study creates a classification model that can be
used in vehicle tasks and describes the interdependent
relationship betweenmultiple tasks. The model assumes
that each task completed by a vehicle incurs a cost and
can analyze the process of cost transition. This analysis
will provide a theoretical framework for constructing a
reinforcement learning model.

2. This study presents a framework that uses multi-agent
reinforcement learning to assign tasks to vehicles. In this
architecture, agents guide the vehicles to pick up tasks
through a policy network. As each vehicle completing a
task incurs a corresponding cost, the state value network
always represents the total estimated cost of remaining
tasks. This means that the value network continuously
updates the agent’s policy network towards lower costs.

3. A simulation system has been developed based on Simu-
lation of Urban Mobility (SUMO), which is suitable for
training reinforcement learning. The system provides
a considerable amount of data and enables real-time
interaction for the intelligent agent during its train-
ing. Furthermore, the simulation system supports the
replacement of maps, vehicle tasks, and basic models of
reinforcement learning based on the architecture of the
study.

The basic structure of this study is shown in Figure 1, and
the rest of this article is organized as follows.

Section II summarizes the theoretical framework and
research status of Multi-Robot Task Allocation and explains
reinforcement learning and its application in task assign-
ments. Section III proposes mathematical models and opti-
mization objectives to analyze the dependencies in vehicle
tasks. Section IV proposes the principles and construction
methods of multi-agent reinforcement learning architecture.
Section V compares the simulation results based on the sim-
ulator. At last, Section VI concludes the paper.

II. BACKGROUND
This section briefly introduces the relevant theories and cur-
rent research status of Multi-Robot Task Allocation (MRTA)
and explains the reinforcement learning methods and their
application in the field of task allocation.

A. OVERVIEW OF MRTA
The research on multi-robot systems (MRS) [13] focuses
on designing and controlling multiple robots to collaborate
and complete tasks. Multi-Robot Task Allocation(MRTA) is
a critical problem in MRS [14], which can be traced back
to classic operations research problems such as the Travel-
ing Salesman Problem (TSP) and Vehicle Routing Problem
(VRP). However, unlike these traditional problems, Multi-
Robot Task Allocation typically includes time constraints
and the need to consider dynamic and uncertain environ-
ments. With the popularization of unmanned aerial vehicles,
autonomous vehicles, and other autonomous systems, the
importance of MRTA has further increased, and its appli-
cation areas have gradually expanded to include search and
rescue [15], agricultural monitoring [16], and logistics distri-
bution [17].

Currently, many task allocation algorithms for multi-agent
systems have been proposed by researchers. These algo-
rithms can be categorized as follows: distributed full search
algorithms [18], distributed local search algorithms [19],
auction-based mechanisms [20], distributed particle swarm
optimization [21], and distributed ant colony algorithms [22].
However, the algorithms mentioned in this study still have

some shortcomings when it comes to dynamic multi-vehicle
scenarios. Distributed full search algorithms can provide the
optimal solution for task allocation, but they come with high
communication and computational costs. Some scholars have
developed event-triggered multi-agent control algorithms to
reduce the dependence on global information [23], [24], but
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FIGURE 1. Abstract view of novel contribution.

it is still unrealistic to use them when scheduling a large
number of vehicles. Distributed local search algorithms can-
not guarantee the quality or diversity of solutions. Auction
mechanisms rely on artificially designed evaluation crite-
ria and cannot optimize multiple objectives simultaneously.
Lastly, heuristic algorithms still lack systematic research and
evaluation in dynamic scenarios [25].

This research involves developing algorithms capable of
managing dynamic scenarios involving multiple vehicles
while also taking into consideration the constraint relation-
ships among different tasks within these vehicles. Several
scholars have suggested classification methods for these con-
straint relationships [26], [27], [28]. This study has adopted
the iTAX method [29] as the theoretical foundation, which
can describe both the instantaneous, independent relation-
ships among similar tasks and the extended, interrelated
multi-step relationships among different tasks. The approach
identifies four main types of task relationships, which are
illustrated in Figure 2.
1. No Dependencies (ND): The cost of a given pair robot

task is independent of all others.
2. In-Schedule Dependencies (ID): The cost of a given pair

robot-task depends on the other tasks assigned to this
robot. It is intra-schedule dependencies.

3. Cross-Schedule Dependencies (XD): The cost of a given
pair robot-task depends not only on the other tasks
assigned to this robot but also on other robots’ sched-
ules. It is inter-schedule dependencies.

4. Complex Dependencies (CD): Under this dependency,
heterogeneous tasks are involved. On the basis of cross-
scheduling dependencies, the cost of a given pair of
robot tasks also depends on the constraint relation-
ship between heterogeneous tasks. Therefore, the task
decomposition problem is coupled with the task alloca-
tion problem, and individual agents cannot be decoupled
from each other.

B. OVERVIEW OF RL
Reinforcement learning has certain advantages over tra-
ditional optimization methods when it comes to solving

dynamic problems. Compared with optimization methods
that require iterative optimization to find solutions, reinforce-
ment learning involves training a neural network to forward
propagate the relevant parameters of the solution. The solving
speed is only related to the complexity of the network [30].
Therefore, reinforcement learning has been used as a solution
for real-time problems in many fields [31], [32], [33].

In reinforcement learning, problems are typically mod-
eled as Markov Decision Processes (MDP), where the
decision-maker selects one action from a set of possible
actions at each time step to interact with their environment
and receives a reward and a new state from the environment.
Under this framework, the Bellman equation plays a central
role, outlining the relationship between the state-value func-
tion or action-value function and their subsequent states or
actions. These equations provide a theoretical foundation for
finding the optimal strategy, with the action-value function’s
Bellman equation being as follows:

Qπ (s, a)

=

∑
s′,r

p
(
s′, r | s, a

) [
r + γ

′∑
a

π
(
a′ | s′

)
Qπ

(
s′, a′

)]
(1)

where Qπ (s, a) is the expected return of taking action a in
state s and following policy π ; s, s′ are the current and next
states; a, a′ are the current and next actions; p

(
s′, r | s, a

)
is

the probability of transitioning from state s taking action a
to state s′ and receiving reward r ; γ is the discount factor;
π

(
a′ | s′

)
is the probability of choosing action a′ in state s′

according to policy π . The state-value Bellman equation is:

V π (s) =
∑
a

π (a | s)
∑
s′,r

p
(
s′, r | s, a

) [
r + γV π

(
s′
)]

(2)

where V π (s) is the expected return of following policy π in
state s; s, s′ are the current and next states; a is the action
taken in state s; π (a | s) is the probability of taking action
a in state s; p

(
s′, r | s, a

)
is the probability of transitioning

from state s taking action a to state s′ and receiving reward r ;
γ is the discount factor.
Based on the two value functions mentioned above, rein-

forcement learning enables a single agent to learn the optimal
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FIGURE 2. Four dependencies in the iTAX classification model.

strategy through two fundamental learning methods: value
learning [34] and policy learning [35]. Value learning focuses
on estimating the value of taking specific actions in a given
state, while policy learning directly learns a policy that
maps states to action probability distributions. By employing
these two methods, intelligent agents can gradually enhance
their decision-making quality in complex and uncertain
environments.

However, constructing a reinforcement learning frame-
work for multi-task allocation remains a challenge. Exist-
ing reinforcement learning methods are usually applied to
multi-task allocation in unmanned aerial vehicles [36] or
multiple robots [37]. In these fields, the number of agents
involved is usually small. This makes it easier for the
reinforcement learning value network to converge during
training. However, in the field of vehicle scheduling, there are
usually a significantly greater number of vehicles involved.
This leads to a large number of corresponding agents, which
makes it difficult for the reinforcement learning value net-
work to converge during training [38]. As a result, the existing
multi-agent reinforcement learning frameworks lack general-
izability in vehicle task allocation problems.

In the field of vehicle dispatching, reinforcement learn-
ing is not directly used for vehicle allocation tasks. Instead,
it is applied to balance the demand for vehicle usage, indi-
rectly affecting vehicle allocation. Song et al. utilize Deep
Reinforcement Learning (DRL) to determine the demand for
ride-sharing vehicles in different areas at different times to
reduce waiting times for vehicles [39]. Liu et al. propose
transforming the action space of Deep Reinforcement Learn-
ing into a recommendation list to address high-concurrency
dispatch requests [40], guiding taxis to passenger areas.
In dealing with the road network in taxi dispatching
issues, Liu et al. introduce a new network segmentation
method to allow deep neural networks to better contextual
awareness [41], thereby reducing passenger waiting times.
Jiao et al. Utilizing reinforcement learning [42] to enhance
the economic benefits of addressing the vehicle repositioning
issue on ride-hailing platforms. These methods measure the
car demand in different areas through reinforcement learn-
ing, indirectly dispatching vehicles, thus making it possible
to dispatch multiple vehicles. However, these methods only

consider single-task requirements and are not suitable for use
in the multi-vehicle, multi-task scenario.

A system composed of multiple agents is referred to as
multi-agent reinforcement learning (MARL) in the field of
reinforcement learning, where each agent tends to use policy-
based learning. In a multi-agent environment, each agent’s
actions have an impact on the others, thus affecting their
state and return. This interdependence leads to a dynamic
environment for individual agents, where changes in other
agents’ strategies drive the dynamics. For this reason, pol-
icy learning methods are advantageous in adapting, as they
enable agents to respond more directly to changes in other
agents’ behaviors.

The Actor-Critic method, which integrates the advan-
tages of policy gradient (Actor) and value function (Critic),
achieves an effective balance of policy and value learning
through its dual-component structure [43]. The Actor, serving
as the policy function, often uses a parameterized form (such
as neural networks) to map a given state to a probability dis-
tribution of actions, aiming to learn a policy that maximizes
long-term cumulative rewards. On the other hand, the Critic
is responsible for evaluating the effects of actions chosen by
the Actor, using a parameterized value function to estimate
the value of a given state or state-action pair. The interaction
of these two components is key to the Actor-Critic method.

Based on the above analysis, this study adopts a fully
cooperative multi-agent reinforcement learning framework
and uses the multi-agent Advantage Actor-Critic (A2C)
method [44]. In this setup, all agents share the same goal
to maximize the overall performance of the system. Its
schematic is shown in Figure 3, where all agents have both
a value network v and a policy network π , sharing a common
value network and having their own policy networks. In a
fully cooperative context, the value network helps agents
evaluate the contribution of their actions to the overall goal.
The policy network is responsible for generating specific
action strategies.

III. ANALYTICAL MODEL
This section will simplify all tasks into a binary model
of region-vehicle, based on an analysis of the vehicle dis-
patching task. Based on the binary model, this section
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FIGURE 3. Multi-agent actor-critic methods.

proposes a task categorization model using the iTAX model.
Furthermore, this section will establish the corresponding
mathematical model based on the simplified binary model
and analyze the optimization objective under this mathemat-
ical model. i

A. VEHICLE TASK CLASSIFICATION MODEL
With the application of unmanned driving technology in the
commercial field, the vehicle dispatching system is gradu-
ally developing in the direction of multi-task collaboration,
so the analysis of the dependency between vehicle tasks is
conducive to the design of the dispatching system. In terms
of commercial categories, vehicle tasks encompass a wide
range, such as ‘‘attended home delivery’’, ‘‘same-day deliv-
ery’’, and ‘‘mobility-on-demand’’. However, from the actual
subject of the task, where tasks can be broadly categorized
into transportation tasks [45] and vehicle supply and mainte-
nance tasks [46]. The information corresponding to these two
types of tasks is shown in Table 1. Transportation tasks are
typically requested by passengers or for moving goods. These
tasks are dependent on the locations that need to be reached
and are constrained by the carrying capacity of the vehicles.
It is possible that a single transportation task may require
the use of multiple vehicles to complete. Vehicle supply
and maintenance tasks can often limit transportation options.
These tasks are typically required by the vehicles themselves,
as they require regular maintenance and charging. Unlike
transportation tasks, vehicle maintenance can be performed
anywhere, but the corresponding vehicles must be available
for maintenance.

Due to the divergent nature of the two types of task
attributes, scheduling systems are not conducive to analyz-
ing tasks. Therefore, this study makes the following two
assumptions.
1. All task requirements are considered from the perspec-

tive of vehicles and correspond to TASK inMulti-Robot

TABLE 1. Task attributes in transportation systems.

Task Allocation. In order to standardize the framework,
this paper considers all tasks from the perspective of
vehicles, collectively referred to as vehicle require-
ments. From a certain perspective, the transportation
system itself exists to meet the needs of various vehicles,
such as fuel or energy supply requirements, road passage
requirements, passenger-carrying requirements, parking
requirements, etc. These different requirements corre-
spond to different tasks. The transportation task can also
be seen as vehicles traveling on the corresponding road
sections to meet operational needs.

2. Correspond traffic zones and infrastructure in Multi-
Robot Task Allocation as ROBOT. The diverse facilities
and road networks in the transportation system func-
tion similarly to robots in Multi-Robot Task Allocation
systems. Taking ride-hailing services as an example,
the varying passenger flow in different areas at differ-
ent times provides vehicles with different passenger-
carrying opportunities. At the same time, specific
areas are equipped with charging facilities to meet the
vehicles’ endurance needs. The design and layout of
transportation facilities directly affect the efficiency and
functionality of the transportation system. Additionally,
transportation facilities also have resource constraints,
such as the traffic flow volume allowed at intersections,
the number of charging vehicles that charging stations
can support, and the vehicle capacity that parking lots
can accommodate. These resource constraints require
vehicle scheduling systems to have better resource allo-
cation capabilities.

It should be noted that in the context of Multi-Robot Task
Allocation, ROBOT is typically a movable object. However,
in the assumption of this study, it is the transportation facili-
ties that complete the tasks, and they do not possess the ability
to move on their own. Vehicles need to move to them instead.
However, from the perspective of topology, there is no dis-
tinction in terms of who serves as the moving subject. As long
as the travel time of the moving subject is taken into account
by the task assignment system. However, this assumption
fixes the number of agents and is advantageous for the con-
struction of multi-agent reinforcement learning [47].
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After simplifying all vehicle tasks into a binary relationship
of region-vehicle, it is possible to analyze the dependency
relationships within vehicle tasks based on the iTAX model
and derive the following four classifications, as depicted in
Figure 4.
1. No Dependencies in vehicle tasks: The cost of a given

pair vehicle-task is independent of all others, meaning
there is only one vehicle at a time, and the vehicle only
needs to pass through waypoints in a fixed order.

2. In-Schedule Dependencies in vehicle tasks: The cost
of a given pair vehicle-task depends on the other tasks
assigned to this task area. In this case, the same task area
faces multiple vehicles, so the task completion progress
depends on the vehicle arrival sequence.

3. Cross-Schedule Dependencies in vehicle tasks: The cost
of a given pair vehicle-task depends not only on the other
tasks assigned to this task area but also on other task
areas’ schedules. In this case, there will be multiple task
areas and corresponding multiple vehicles. Therefore,
matching too many vehicles in a particular task area can
result in other task areas being unable to obtain vehicles,
thereby delaying the progress of tasks in other areas.

4. Complex Dependencies in vehicle tasks: Based on
the cross-schedule dependencies, this dependency rela-
tionship involves multiple categories of tasks. These
different types of tasks will serve as constraints for
each other. The cost of a given pair of vehicle tasks
depends on the order in which different types of tasks are
completed. Therefore, the vehicle task decomposition
problem is coupled with the vehicle task assignment
problem.

Assuming that there is a cost associated with each vehicle
completing each task, based on the above four categories, the
vehicle scheduling system can better analyze the sources of
cost in practical tasks. Particularly in reinforcement learning,
both the reward function and state value are related to this
cost. Therefore, the state space transition process of rein-
forcement learning needs to be matched with the cost state
transition process. In section IV, this study will analyze in
detail how to design a corresponding reinforcement learning
framework based on dependencies.

B. MATHEMATICAL MODEL AND OPTIMIZATION
OBJECTIVE
Building on the binary hypothesis of vehicle and task area
mentioned in the previous section, the theoretical framework
mentioned has characterized all traffic tasks as dependencies
between vehicles and task areas. In the mathematical model,
the vehicle set V = {V1,V2, . . . ,Vn} n∈ N, and the task area
set P = {P1,P2, . . .Pn} n∈N. Each task area has a fixed
geographical location that can be uniquely determined by
four coordinate points:

Pi = {(xi1, yi1) , (xi2, yi2) , (xi3, yi3) , (xi4, yi4)} (3)

The availability or capacity of the task area is represented
by a time slot, assuming that the start time of the time slot is

t0 and the time interval is1t . Therefore, the set of time points
at each time slot ends can be represented as:

T = {t0 +1t, t0 + 21t, t0 + 31t, . . . , t0 + n1t} (4)

Each task area corresponds to a different state Sn in each
time slot tn, with three categories of states: unavailable
state N ; Available state A and occupied state O.

Each vehicle Vi in the vehicle queue moves on the road
network and has real-time changing geographic coordinates
(xi, yi), which are limited by the topology of the road network
and traffic rules. In addition, each vehicle has the following
four core attributes:
1. Resource Ownership VRi: Each traffic task is related

to a particular attribute of the vehicle, such as cargo
capacity and battery level, which are collectively
referred to as resources in this article, represented as
VRi =

{
r1i , r

2
i , r

3
i , · · ·

}
. For each resource r ji , a maxi-

mum threshold maxr ji designates adequacy in resource
ownership and a minimum threshold minr ji signifies
insufficiency.

2. Executable Status VE i: An indicator to determine if the
current vehicle Vi is capable of performing a specific
task. VEi =

{
e1i , e

2
i , e

3
i , · · ·

}
. The cardinality of VE i is

equivalent to that of VRi, namely, |VRi| = |VEi|. Each
element eji follows a 0-1 distribution, The formula is as
follows:

eji =

{
1 if r ji minr

j
i

0 otherwise
(5)

3. Journey Waiting Time JL i: Represents the time loss l ji
for vehicle Vi during its journey due to not reaching
the task area Pj. JLi =

{
jl1i , jl

2
i , jl

3
i , · · ·

}
. An indicator

function IPj (Vi), which uses the cross product [44] to
determine whether vehicle Vi has reached Pj:
c1 =

(
xi − xj1

)
∗

(
yj2 − yj1

)
−

(
yi − yj1

)
∗

(
xj2 − xj1

)
c2 =

(
xi − xj2

)
∗

(
yj3 − yj2

)
−

(
yi − yj2

)
∗

(
xj3 − xj2

)
c3 =

(
xi − xj3

)
∗

(
yj4 − yj3

)
−

(
yi − yj3

)
∗

(
xj4 − xj3

)
c4 =

(
xi − xj4

)
∗

(
yj1 − yj4

)
−

(
yi − yj4

)
∗

(
xj1 − xj4

)
(6)

IPj (Vi)

=

{
1 ifc1 ∗ c2 ∗ c3 ∗ c4 > 0
0 otherwise

(7)

When IPj (Vi)= 0 and vehicleVi is in an executable state
eji = 1 at the current time tn, the corresponding sub-
element jl ji in the travel waiting time JL i will accumulate
as the time slot progresses, until the vehicle reaches the
task area Pj, that is:

Ijlji
=

{
1 ifeji= 1andIPj (Vi)= 0
0 otherwise

(8)
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FIGURE 4. Different degrees of interdependence of Vehicle–Task utilities.

jl ji (tn) = jl ji (tn−1)+ Ijlji
(tn)×1t (9)

4. Resource Waiting Time RLi: Represents the time rl ji
consumed by vehicle Vi while it has already arrived the
task area. RLi =

{
rl1i , rl

2
i , rl

3
i , . . .

}
. Specifically, when

the vehicle has already arrived at the geographical area
Pj of the traffic task, with the arrival time being tn, and
its corresponding task area is in a non-available state,
i.e., Sn = O or Sn = N , this state would be represented
by indicator Irlji

, then the value of the corresponding
sub-element in the vehicle’s resource waiting time will
accumulate according to the time slot. The correspond-
ing formula is as follows:

Irlji
=

{
1 ifeji= 1andIPj (Vi) = 1
0 otherwise

(10)

rl ji (tn) = rl ji (tn−1)+ Irlji
(tn)×1t (11)

As vehicles engage with the road network and traffic task
areas, their four aforementioned attributes undergo corre-
sponding changes. In addition to this, the model also has the
following constraints.

Define the allocation function D
(
Vi,Pj

)
. Each task area

assigns a unique sequence number to every vehicle it encoun-
ters, and each sequence number can only be assigned to one
vehicle:

D
(
Vi,Pj

)
= Sk

∀Vn,Vm,Vn ̸= Vm ⇒ D
(
Vn,Pj

)
̸= D

(
Vm,Pj

)
(12)

Define the vehicle resource increment function
H

(
Vi, r

j
i , tn

)
, which indicates whether the resource quantity

r ji increases for vehicle Vi within the time slot tn. So, the
occupation status of the task area often has a one-to-one
mapping relationship with the duration of the increase in
vehicle resource ownership:

∀Sn = O, ∀tn
∑
j

Sn =
∑
i

H
(
Vi, r

j
i , tn

)
(13)

At any given time slot tn, the task area Pj can only be
occupied by a specific vehicle Vi:

∀tn, ∀Pj
∑
i

H
(
Vi, r

j
i , tn

)
⩽ 1 (14)

Considering the mathematical model and constraints men-
tioned above, the optimization objective of this paper is to
minimize the sum of the journey waiting time jl ji and resource
waiting time rl ji of all vehicles:

Min
∑
i

∑
j

(
jl ji + rl

j
i

)
(15)

It is important to note that this optimization objective
is based on the binary assumption model of vehicles and
task areas. Different task categories are all described in the
same form and,therefore, have the same form of optimiza-
tion objective. However, this optimization objective cannot
express the interrelationships between different task cate-
gories. Taking an example of a freight vehicle Vi with
insufficient battery, the time cost of the freight vehicle trav-
eling to charging station P1 is denoted as jl1i , and the waiting
time within the charging station is denoted as rl1i . Both of
these times will accumulate into the time cost of the vehicle
traveling to the freight location P2 denoted as jl2i . In the
next section, this study will analyze in detail how to design
the corresponding reinforcement learning framework based
on the dependencies between tasks to solve the optimization
problem.

IV. PROPOSED METHOD
This section will construct a task allocation system based on
reinforcement learning. Firstly, it will analyze the relationship
between the classification model proposed and reinforce-
ment learning. Secondly, it will elaborate on the construction
method of interactive simulation environments in reinforce-
ment learning. Finally, it will construct frameworks for both
single agents and multi-agent combinations. The code link of
this study is:

https://github.com/naiheyudeshui/multi_agent_vehicle_
scheduling.git

VOLUME 12, 2024 81459



S. Zhang et al.: Real-Time Multi-Vehicle Scheduling in Tasks With Dependency Relationships

TABLE 2. The Relationship between Classification Models and RL.

A. THE CONSTRUCTION PRINCIPLE OF RL BASED ON
TASK DEPENDENCY
This section will analyze the relationship between task
dependency-based classification methods and Markov deci-
sion processes in reinforcement learning. The corresponding
relationship is shown in the Table 2.
In reinforcement learning, an individual intelligent agent

needs to gather information from the environment and make
corresponding decisions. Earlier in this text, different vehicle
tasks were assumed to have a binary relationship between
task areas and vehicles. Different task areas typically have
different environmental information, so it is reasonable to
consider different task areas as distinct intelligent agents.

The action space in reinforcement learning determines how
the agent interacts with the environment. Building on the
analysis of binary relationships in the previous section, it is
reasonable to consider a sequence of vehicles as the action
space for the agent. As a result, each agent’s decision-making
process involves a deterministic matching between vehicles
and task areas.

The reward function in reinforcement learning needs to
reflect the impact of current decision steps. Based on the
mathematical model in the previous context, it can be under-
stood that each cost in the binary relationship actually reflects
the journey waiting time jl ji and the waiting time in the region
rl ji . Therefore, the reward function needs to be related to these
parameters.

In In-Schedule Dependencies, the impact of each cost in
the current binary relationship originates from the impacts
brought by previous decision steps rather than from changes
in the environmental dimension over time. Therefore, the
decision steps of reinforcement learning in this study adopt
event-driven asynchronous updates [48].
In Cross-Schedule Dependencies, areas with similar tasks

will influence each other during decision-making. There-
fore, it is necessary to construct multi-agent reinforcement
learning to describe this influence by summing the values of
multiple agents within the same decision step.

In Complex Dependencies, tasks of different types will
interact with each other to become constraint conditions.

Therefore, it is necessary to construct multiple types of intel-
ligent agents based on the types of tasks to differentiate the
sources of reward for different types of tasks.

In Complex Dependencies, tasks of different types are
influenced by different sources. Therefore, tasks of different
types require different state spaces to be designed. The state
space needs to include information about the constraints and
the amount of influence in the task to facilitate the intelligent
agent’s value network to regress the correct model.

B. INTERACTIVE ENVIRONMENT FOR RL
The simulation environment is an essential part of reinforce-
ment learning because it requires interactive trial-and-error
to optimize its own value and policy networks. This study
built a complete set of simulation environments suitable for
reinforcement learning based on SUMO. During training, the
proposed multi-agent reinforcement learning architecture can
interact in real time and obtain corresponding data. By chang-
ing the map and vehicle tasks, this simulation system can
simulate vehicle dispatching in different scenarios. Through
adjusting the reinforcement learning algorithm, it can train a
multi-agent system adapted to the specific scenario. The fol-
lowing section will further explain the construction method
of reinforcement learning in this study based on a specific
problem.

In order to reduce the impact of road complexity on the
speed of simulation software and improve the efficiency of
data acquisition by intelligent agents, this study selected large
industrial park roads as the basic model. Figure 5 shows a
partial road network of Suzhou Industrial Park. In this study,
an area covering approximately sixteen square kilometers
within the park was selected as the simulation area for task
allocation.

To ensure that the simulated problem types accurately
reflect the complex dependencies of traffic problems men-
tioned earlier, it requires at least two task types, with each
corresponding to multiple task areas. Additionally, mutual
dependencies between task types are also necessary. There-
fore, this article selects cargo transportation and charging
tasks. Through investigation, it was found that there are five
charging stations within the simulation area. Additionally, six
locations were chosen as warehouses.

For transportation tasks, each warehouse has specific and
quantity-limited parking locations. For each specific trans-
portation task, two warehouse locations will be randomly
selected, one as the loading location and the other as the
unloading location. In a transportation task, vehicles need
to drive from one warehouse to another in order and fol-
low parking location restrictions. The method of setting up
warehouse stops in SUMO is the same as that of bus stops,
which are viewed as fixed areas on the road. The specific task
information is shown in Table 3.

For charging tasks, the simulation environment includes
the maximum and current battery levels of each vehicle.
Each charging station contains a limited number of charging
poles, which are uniformly set at 200kw. Each charging task
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FIGURE 5. Construction of simulation environment in SUMO.

TABLE 3. Task attributes in a simulation environment.

requires the vehicle to go to an idle charging station and stay
until fully charged to complete. In SUMO, the implemen-
tation of charging stations and charging poles in this study
follows the approach of Kurczveil et al. [49]. The specific
task information is shown in Table 3.
Each vehicle in the simulation environment has random

initialization parameters. The specific initial parameters of
the vehicles are described in Table 4. Additionally, the

TABLE 4. Initial vehicle parameters in the simulation.

Krauss [50] car-followingmodel, LC2013 [51] lane-changing
model, and Dijkstra [52] path-searching model are employed.

C. CONSTRUCTION OF AGENTS FOR CHARGING STATIONS
The action space of each charging station intelligent agent
needs to include its matching relationship with all vehicles.
As analyzed earlier in the paper, the task assignment problem
in traffic essentially involves matching task vehicles with
task areas. Furthermore, since this paper regards charging
stations as intelligent agent objects, their action space needs
to determine which vehicle to assign a charging task to under
the current situation or decide not to assign any charging
tasks. Therefore, their action space comprises 51 discrete
actions. When it chooses to schedule a charging task for a
certain vehicle, the vehicle will go to the current charging
station to perform the charging task. When all charging poles
in the charging station are fully occupied, the vehicle will
queue up and wait.

The objective of the charging station agent is to ensure all
task vehicles maintain sufficient battery levels while mini-
mizing the time lost due to charging. To achieve this, the
charging station agent needs to continuously monitor the
current battery status of each vehicle in real time and schedule
charging tasks for vehicles with low battery levels. Addition-
ally, to minimize the time lost due to charging, the charging
station agent needs to reduce the frequency of vehicle charg-
ing, aiming to schedule charging tasks when the vehicle
battery levels are low. Furthermore, the charging station agent
needs to minimize the waiting time for vehicles to reach
the charging station (denoted as JL i), by directing vehicles
to the nearest available charging station whenever possi-
ble. Moreover, the charging station agent needs to minimize
the waiting time for vehicles to access charging resources
(denoted as RLi), by scheduling charging tasks to avoid con-
gestion at the charging station.

In order to achieve the goals of the charging station intel-
ligent agent mentioned above, the following reward function
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has been set:

R1 =
M∑
i

(50× ln
(
r1i + 0.3

)
+ 20) (16)

where, M represents the set of vehicles that have not been
assigned charging tasks, r1i denotes the current battery level
ratio of vehicle Vi. This reward function reflects the attention
paid to the battery status of all vehicles. When a vehicle has
a low battery level and has not been assigned a charging task,
the intelligent agent will receive a relatively large negative
reward.

R2 = 500× N −
N∑
i=1

(
j1i + r

1
i + j

2
i

)
(17)

whereN represents the set of vehicles that have been assigned
charging tasks, j1i denotes the time vehicle Vi consumes when
traveling to the charging station, r1i represents the time vehi-
cle Vi spends waiting in queue at the charging station, and
j2i represents the time vehicle Vi consumes on the way to
complete transportation tasks. Here, it indicates the extent
to which traveling to the charging station affects the original
transportation tasks.

Apart from the aforementioned rewards, it is essential to
ensure that multiple agents do not conflict over the allocation
of a particular vehicle. Such conflicts encompass two scenar-
ios: firstly, assigning charging tasks to vehicles that already
have charging arrangements, and secondly, multiple agents
simultaneously assigning charging tasks to the same vehicle
in a single decision step. Therefore, this paper implements
a reward adjustment mechanism based on auction theory.
At each decision step, if conflicts arise involving the afore-
mentioned two scenarios, the central controller first estimates
the total waiting time that vehiclesmay experience at different
charging stations to complete their charging tasks. Based on
this estimation, the central controller then adjusts the rewards
for the charging station agents accordingly.

T (i, j) = Tjl (i, j)+ Trl (i, j) (18)

R3 = 50× (Min(T (i, j))− T (i, j)) (19)

where T (i, j) represents the estimated total waiting time for
vehicle Vi to complete its charging task at the charging station
Pj, encompassing the anticipated travel waiting time Tjl and
the anticipated queue waiting time Trl at the charging station.
Among all participating charging stations in the task compe-
tition, the shortest estimated time is denoted as min (T (i, j)).
In each iteration step, the rewards obtained by the charging
station intelligent agent are the sum of the above rewards,
namely:

Rtotal = R1 + R2 + R3 (20)

The state space of the charging station agent includes
real-time information on each vehicle and the current situ-
ation of each charging station. For each vehicle, it includes
the current battery level, real-time distances to all charging
stations and warehouses, the executable status of the current

charging task, and the executable status of the current trans-
portation task. The charging station situation includes the
future idle time of the five charging poles at each charging
station. Therefore, the total dimensionality of the state space
is 725.

D. CONSTRUCTION OF AGENTS FOR WAREHOUSES
The action space dimensionality of the warehouse agent is
the same as that of the charging station agent, which includes
50 discrete dimensions for matching specific vehicles and
one dimension for indicating no action at the current decision
step. Whenever a warehouse agent selects a task vehicle, the
task vehicle needs to proceed to the designated warehouse
for cargo loading, and the designated unloading warehouse is
automatically set as the next destination.

The objective of the warehouse agent is to schedule vehi-
cles to complete all current delivery tasks while maximizing
delivery efficiency. To achieve this goal, the warehouse agent
needs to monitor vehicles that have not been assigned tasks
in real time to utilize each vehicle’s transportation capac-
ity as much as possible. Furthermore, the warehouse agent
needs to prioritize selecting vehicles with sufficient battery
levels to ensure that vehicles do not require charging during
a single transportation process. Additionally, the warehouse
agent needs to assign cargo tasks to vehicles closer to itself
to minimize time loss during cargo transportation.

In order to achieve the above goals, the warehouse agent
has the following reward function:

R1 = −100×
50∑
i

e2i (21)

Here, e2i denotes whether a vehicle is in an empty state. The
more vehicles that are empty, the more negative rewards are
obtained by the warehouse agent.

R2 = 500× N −
N∑
i=1

(
j2i + r

2
i

)
(22)

Here,N represents the number of vehicles already assigned
transportation tasks, j2i is the time consumed by vehicle Vi
when traveling to the warehouse, and r2i is the time vehicle Vi
spends waiting in the queue at the warehouse.

Apart from the aforementioned rewards, during the inter-
action process among multiple warehouse agents, conflicts
may arise due to the competition for specific vehicles. These
conflicts encompass two scenarios: firstly, assigning new
transportation tasks to vehicles that already have ongoing
transportation tasks; secondly, multiple agents simultane-
ously assigning transportation tasks to the same vehicle in a
single decision step. Therefore, similar to the setup for the
charging station agents in this study, a reward adjustment
mechanism is implemented.

T (i, j) = Tjl (i, j)+ Trl (i, j) (23)

R3 = 50× (Min(T (i, j))− T (i, j)) (24)
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Algorithm 1 Single agent decision-making

1 Agent Charging station Pi :
Input: State space St =[Current vehicle
information;
Current charging station information]

2 for ∀St do
3 At ∼ πPi

(
· | St ; θ i

)
Output: At
//(Specify a vehicle to perform a transportation
task, or chooses not to take any action.)

4 AgentWarehouse Pj:
Input: State space St , = [The specific information
of
the current transportation task; Current vehicle
information; Current warehouse information]

5 for ∀St do
6 At ∼ πPj

(
· | St ; θ j

)
Output: At
//(Specify a vehicle to perform a transportation
task, or chooses not to take any action.)

Here, T (i, j) represents the estimated total waiting time for
vehicle Vi to complete a single transportation task, encom-
passing the estimated travel waiting time Tjl and the estimated
queue waiting time Trl at the warehouse. Among the conflict-
ing transportation tasks, the shortest estimated time is denoted
as Min (T (i, j)).
In each iteration step, the rewards received by the ware-

house agent are the sum of the above rewards, namely:

Rtotal = R1 + R2 + R3 (25)

The state space of each warehouse agent needs to include the
specific information of the current transportation task, which
comprises the distance information to the destination and the
estimated energy consumption of the transporting vehicle.
Secondly, it includes the total number of pending transporta-
tion tasks for all warehouse agents. Finally, it encompasses
the specific information of all task vehicles, including their
current battery level, current cargo status, and distance infor-
mation to the six warehouses. The total state space is 407.

E. MULTI-AGENT RL GENERAL FRAMEWORK
This framework utilizes multi-agent reinforcement learning
to address the traffic task allocation problem with complex
dependencies. The construction of individual agent has been
provided in the preceding sections (overview as shown in
Algorithm 6). When multiple agents collaborate, this paper
categorizes them into two groups: warehouse agent group and
charging station agent group, as illustrated in Figure 6. The
policy network of the i-th agent can be represented as follows:

f̂ = π
(
· | s; θ i

)
(26)

FIGURE 6. Framework diagram of multi-agent reinforcement learning.

Here, s represents the input state of the policy network, f̂ is
the output vector whose dimension corresponds to the size of
the action space

∣∣Ai∣∣. Furthermore, f̂ signifies the probability
of each action output.

Due to each agent having its own policy network, the
actions of all agents at state St can be represented as At =[
A1t , . . . ,A

m
t
]
. Additionally, since all agents collectively influ-

ence the environment, the future returns U i
t of agent i also

depend on the future action sequences of all resource agents
[At ,At+1,At+2, . . . ,An]. However, U i

t is still a random vari-
able at this point. If, based on the observed At , and the
expectation is utilized to eliminate unknown actions and
states after time t + 1 in U i

t , the action-value function for
that agent can be obtained:

Qiπ (st , at) = ES,A

[
U i
t | St = st ,At = at

]
(27)

where st represents a fixed state among all possible states,
and at represents a fixed combination of actions among all
possible combinations in At .

The policy gradient theorem in reinforcement learning, fur-
ther extended with the introduction of the baseline algorithm,
is as follows:

∇θ iJ
(
θ1, · · · , θm

)
= ES,A

[
(Qπ (S,A)− b) · ∇θ i lnπ

(
Ai | S; θ i

)]
(28)

Where ∇θ iJ
(
θ1, · · · ,θm

)
represents the policy gradient

of the i-th agent’s policy parameters θ i; ES,A denotes the
expectation over future states S and actions A; b is a baseline
introduced to reduce variance during training, thus improving
the stability and efficiency of learning, typically represented
by the state value function Vπ (s); ∇θ i lnπ

(
Ai | S;θ i

)
is

the logarithmic policy gradient, representing the gradient of
agent i’s policy with respect to its parameters θ i. Based on
the policy gradient theorem, the policy network parameters
of the i-th agent can be updated, thereby facilitating contin-
uous improvement of all agents’ policies during the training
process. An overview of multi-agent interaction is shown in
Algorithm 16.

V. EXPERIMENTAL RESULTS AND ANALYSIS
This study proposes a multi-agent reinforcement learning
approach that enables real-time solutions to the scheduling
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Algorithm 2Multi agent interaction strategy
Data: Real-time vehicle data; Real-time warehouse
data;

Real-time charging station data
Result: Send scheduling information to vehicle Vi

1 Function Single iteration step:

2 Database
update
←− Real-time data;

3 Rewards
update
←− Real-time data;

4 for Charging station Pi in Agent set do
5 Update the specified state space S it of the

agent;
6 Schedule Charging station agent Pi and obtain

Ait ;

7 for Warehouse Pj in Agent set do
8 Update the specified state space S jt of the

agent;
9 Schedule Warehouse agent Pj and obtain Ajt ;

10 At =
[
A1t , . . . ,A

m
t
]
;

11 if scheduling conflicts occur in the task set
At then

12 Evaluate all conflicting tasks and obtain
Min(T (i, j));

13 Apply additional negative rewards to
conflicting agents;

14 Update At based on evaluation results;

15 Update policy gradient ∇θ iJ
(
θ1, . . . ,θm

)
;

16 Send scheduling information to vehicle Vi;

problem of multiple vehicles and multiple tasks. In order to
verify its performance, this section will conduct experimen-
tal comparisons from multiple perspectives and analyze the
reasons for the results.

A. DESCRIPTION OF TEST CASES
With the emergence of autonomous driving vehicles,
maintenance-free, multi-task integration, real-time capabili-
ties, and the ability to dispatch multiple vehicles will be an
inevitable trend for future systems. However, at present, this
field still lacks a mature theory and a universal method [53].
Especially in the timing of switching between multiple tasks,
current scheduling algorithms often lack adaptability. There-
fore, in designing the comparative algorithm in this paper,
a fixed rule task-switching method was adopted, whereby
when the battery level of a task vehicle drops below 30%,
the system will switch the vehicle’s task to charging. When
the battery level is above 30%, the system will switch the
vehicle’s mission to transportation. Within a single task, this
study has designed two scheduling methods as comparative
algorithms:
1) FCFS: When the vehicle’s battery level is above 30%,

the vehicle will be assigned a transportation task from
the nearest warehouse. When the vehicle’s battery level

TABLE 5. Hyperparameters.

is below 30%, the vehicle will go to the nearest charging
station to complete the charging task [54].

2) Digraph: In the scheduling strategy, a directed graph can
incorporate all time-related variables as edge weights
[55]. Building upon the FCFS strategy, this approach
takes into account the occupancy of charging stations
and warehouses as road weights, utilizing the Dijkstra
algorithm to determine the optimal path to guide vehi-
cles in task pickups.

As a comparison, the training parameters of the multi-agent
reinforcement learning multi-task allocation method in this
article are shown in Table 5.

This paper will analyze the simulation from two perspec-
tives. The first perspective will consider the efficiency of
completing tasks from a holistic perspective. The second
perspective will provide a more detailed analysis of the dif-
ferences in task completion efficiency between rule-based
algorithms and MARL algorithms.

During the simulation, the frequency of transport tasks
affects the overall performance of multi-task allocation.
At higher task frequencies, queues may form at warehouses
and charging stations, leading to an increase in the average
task completion time. Therefore, higher task frequencies also
test the scheduling performance of algorithms. A parameter
is set in this paper to describe this frequency, namely the
number of tasks per square kilometer per hour. All subsequent
experiments in this article will involve this parameter.

The entire verification was implemented on a computer
equipped with an i7-14700 processor, a 4090 graphics card,
and the Ubuntu 22.04 operating system. In addition, this sim-
ulation used SUMO as the underlying environment, Python
as the programming language to interact with it, and imple-
mented a neural network architecture based on PyTorch.

B. TASK COMPLETION EFFICIENCY
This study first attempts to fix the frequency of transporta-
tion tasks in the simulation environment. Figure 7 records
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FIGURE 7. The distribution of completion durations for different
transportation tasks. (a) FCFS (b) Digraph (c) MARL.

the completion times of different order tasks under differ-
ent scheduling algorithms, corresponding to a frequency of
24 transportation tasks per square kilometer per hour. Each
scheduling algorithm was tested continuously with 1800 sets
of transportation tasks and the corresponding scatter plots
were provided.

As shown in Figure 7, the completion times of the three
algorithms for the initial hundreds of tasks are relatively short,
and the time required for the three scheduling algorithms to
complete the tasks is also similar. This is because, in the
current situation, the vehicles have sufficient battery power
and do not need to charge. Additionally, most vehicles are
initially empty, allowing them to respond to transportation
tasks in real-time.

With the ongoing transportation tasks, the three algorithms
showed differences in completion time. Clearly, in the FCFS
algorithm, the deviation in task completion time gradually
increased, with a significant fluctuation range in statistical
data. Some transportation tasks even required over 6000 sec-
onds to complete. Compared to FCFS, the directed graph
reduces peak values significantly, resulting in a substantial
decrease in the number of tasks completing after 4000 sec-
onds. However, there is still a wide range of completion

times for tasks, with an increasing deviation. In contrast,
the MARL algorithm proposed in this paper demonstrates
good robustness, with completion times for most tasks under
2500 seconds. Moreover, as transport tasks continue to
emerge, completion times remain stable, with few requiring
over 4000 seconds.

Due to the fact that a directed graph can comprehen-
sively consider all selection spaces, it can always make better
choices at the current time step compared to FCFS. However,
neither FCFS nor the directed graph takes into account the
dependencies between tasks before and after making deci-
sions, resulting in an increasing deviation in task completion
times for both algorithms. TheMARL proposed in this paper,
on the other hand, can integrate the influence between tasks
before and after, equalize the utilization of task intervals, and
keep the completion time of tasks within a stable range.

Additionally, this study divides the completion time of
order tasks into multiple intervals. The results of three task
allocation methods were statistically analyzed, as shown in
Figure 8. This figure canmore intuitively demonstrate the sta-
bility of the Multi-Agent Reinforcement Learning algorithm
proposed in this paper in task allocation problems, which
minimizes the number of high time-consuming tasks as much
as possible. Most tasks have completion times concentrated
between 1000 and 2000 seconds, and the distribution of
task times is relatively uniform. In contrast, in the FCFS
algorithm, the distribution of task completion times is the
most uneven and covers a wide span on the statistical chart.
The algorithm for directed acyclic graphs falls between the
two, reducing the workload of high-consumption tasks but
still having many tasks with completion times exceeding
3000 seconds. This graph also demonstrates that, compared to
FCFS, directed acyclic graphs can better optimize tasks with
high consumption time, but can onlymake the best decision at
the current time step, unable to coordinatemultiple tasks from
a temporal perspective. Therefore, the overall optimization
effect is not as good as Multi-Agent Reinforcement Learning
(MARL).

In order to further explore the scheduling capabilities of
algorithms at different task frequencies, this study established
a simulation environment with different task frequencies.
Specifically, these three algorithms need to schedule vehicles
to complete 2000 order tasks in a simulation environment
with 10 transport tasks per square kilometer per hour. Sub-
sequently, the task frequency in the simulation environment
gradually increases, and the three scheduling algorithms still
need to complete 2000 tasks each at different task frequen-
cies. Finally, the transport task frequency in the simulation
environment will reach 42 order tasks per square kilometer
per hour. Furthermore, this study aggregated and calculated
the average completion times of these three algorithms across
2000 tasks, as shown in Figure 9.
From the data graph, it can be further observed that the

proposed MARL algorithm exhibits better resilience under
high task densities. As task density increases, the increase
in average completion time is relatively gradual. Moreover,
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FIGURE 8. Histogram of completion durations. (a) FCFS (b) Digraph
(c) MARL.

FIGURE 9. The average completion time under different transportation
task frequencies.

when the task density is below 25, there is no significant
fluctuation in task completion time. In contrast, for FCFS
and Digraph, as task density increases, the average comple-
tion times of their ordered tasks show a more pronounced
increasing trend, with the Digraph algorithm consistently
outperforming the FCFS algorithm.With the increase in order
density, the performance gap between FCFS and Digraph
widens. However, surprisingly, when task density is low, the
performance of theMARL algorithm proposed in this paper is
inferior to the other two rule-based algorithms. The following
sections of this paper will further explore the reasons behind
this phenomenon.

C. REASONS FOR DIFFERENCES
This section will analyze the reasons for the differences
in task allocation of three algorithms from three perspec-
tives. The first perspective is the relationship between task

scheduling and task area utilization rate, the second perspec-
tive is the relationship between the timing of task matching
and the state of the vehicle, and the third perspective is the
sequential relationship between task scheduling.

For the utilization rate of the task area, this study fur-
ther set two different transportation task densities, which are
10 transportation tasks per square kilometer per hour and
26 transportation tasks per square kilometer per hour. Under
these two task densities, the total power of all charging sta-
tions in the simulation area was recorded, which can represent
the utilization rate of charging stations. The results are shown
in Figure 10.

Under the lower task density, we observed that the charg-
ing demand in the area did not reach the capacity limit,
meaning that some charging stations were idle. In this sce-
nario, focusing on optimizing path distances, the FCFS
algorithm can effectively reduce waiting times for vehicles,
with minimal differences between the Digraph method and
the FCFS method. In contrast, the Multi-Agent Reinforce-
ment Learning (MARL) framework seems to prefer evenly
distributing tasks at each time interval, maintaining the over-
all utilization of charging stations at lower levels. Thus,
some vehicle charging tasks may be scheduled at charging
stations further away. This allocation strategy results in a
significant number of vehicles still charging in the time period
of 3000-3500 seconds, as shown in Figure 10(a). This also
explains why in Figure 9, when the order task frequency
is low, the average waiting time of the MARL algorithm is
higher than that of the FCFS and Digraph methods. However,
the benefits of doing so are also very clear, as this task
allocation method will provide redundant charging resources
for task areas with high task density.

At the high task density shown in Figure 10(b), the vehi-
cles’ charging demand has already reached the capacity limit
of the charging station. In this scenario, a more uniform
task allocation method actually helps improve the utilization
of task areas, thereby reducing the average waiting time
of vehicles and further enhancing the overall efficiency of
task completion. This suggests that the MARL architecture
proposed in this paper is more effective in dealing with high
task density allocation issues, leading to an improvement in
overall system efficiency. In contrast, the Digraph algorithm,
at around 2000 seconds, improves the charging station’s uti-
lization through scheduling, thereby shortening the average
waiting time of vehicles at the charging station. This is also
why the Digraph algorithm is always superior to the FCFS
algorithm.

In addition to studying the utilization rate of the task
region, this article also delves into the inherent connection
between the timing of task matching and the vehicle’s status.
The scheduling agent must accurately utilize vehicle status
information to determine the optimal timing for executing
charging tasks reasonably. If the charging task is scheduled
too late, the vehicle’s battery may have depleted to a very
low level, making it impossible for the remaining power to
support the vehicle’s arrival at the charging station. On the
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FIGURE 10. Charging station utilization based on grid power. (a) 10 transportation tasks per hour per square kilometer.
(b) 24 transportation tasks per hour per square kilometer.

contrary, if a charging task is arranged when the vehicle’s
battery still has sufficient power, it will result in unnecessary
loss of transportation time. Therefore, accurately balancing
the match between the vehicle condition and task timing is
crucial for optimizing scheduling efficiency and enhancing
vehicle operation effectiveness.

In order to evaluate whether the MARL system makes
full use of vehicle information in task assignment, 10,000
charging tasks were recorded in this study, and the remaining
power of the vehicle when it actually started charging was
calculated. This paper divides the remaining amount of elec-
tricity into different intervals and summarizes the statistical
results in Figure 11. Although FCFS and Digraph have dif-
ferent decision-making methods for handling a single task,
they both follow a fixed rule when switching tasks. Therefore,
in comparison, this study refers to these two types collectively
as Rule-based.

Experimental results show that compared with the rule-
based method, the power of the vehicle dispatched by the
MARL method is generally lower during charging. This phe-
nomenon has led to a reduction in the frequency of charging
of vehicles dispatched byMARL, which in turn has increased
delivery times and improved delivery efficiency. Specifically,
nearly 80% of vehicles are between 10% and 30% charged at
the time of charging, demonstrating that the MARL system
can efficiently use the vehicle’s own status information for
scheduling. However, it is worth noting that about 10% of

vehicles will only be charged when the battery level drops
below 6%, which exposes the need for the MARL system
to add a charging protection mechanism to ensure that the
vehicle does not fall into a low battery situation during task
assignment, so as to ensure the stability and safety of the
system. On the other hand, the charging scheduling of the
rule-based algorithm will intervene and arrange the charging
task when the power of the vehicle is less than 30% after
completing the order, so the power of most vehicles during
charging is maintained within a fixed range.

Furthermore, this study also investigated the sequential
relationships between task scheduling. Due to the division of
MARL agents into the charging station agent group andware-
house agent group in this research, the action spaces of these
two groups of agents are independent of each other. There-
fore, when warehouse agents and charging station agents
assign tasks to vehicles, different state combinations may
occur.

This study documents the sequence of vehicles with both
transportation and charging tasks going to their destinations.
The experimental results are shown in Figure 12. These
results further illustrate that the MARL architecture can
flexibly utilize the order of tasks during the task allocation
process, rather than strictly following a set of fixed rules. This
flexibility can improve the overall task completion efficiency.
For instance, during transportation, if a vehicle with insuf-
ficient battery power happens to be near a charging station,
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FIGURE 11. The proportion of remaining battery during task vehicle charging (a) MARL (b) Rule-based.

FIGURE 12. The proportion of task sequence for vehicles.

adopting the strategy of ‘‘Pickup-Charge-Delivery’’ may save
more time for the vehicle.

D. FUTURE OUTLOOK
The previous experiments have preliminarily demonstrated
the feasibility of the framework proposed in this study. The
goal of this research is to provide a universal solution for
real-time scheduling problems involving multiple vehicles
and tasks. However, the current experiments only show its
feasibility in specific scenarios.

In this section, we will briefly discuss the generalizability,
scalability, and future challenges of applying this research in
other multi-vehicle multitasking scenarios.

From the perspective of generalizability, it is necessary to
analyze whether this framework can be applied to a wider
range of task allocation problems. The core idea of this study
is to use the state value function in reinforcement learning to
describe the degree of interaction between tasks. In this study,
there are interactions between different types of tasks, and the
interactions within the same decision step can bemeasured by
instantaneous rewards during multi-agent games. The mutual
influence of different decision steps can be measured using
the Bellman equation. Similarly, the state-value function in
reinforcement learning is also derived from instantaneous
rewards and the recursive Bellman equation. Therefore, if the
impact sources of vehicle tasks can be detailed systematically,
the framework proposed in this study can be applied. Theo-
retically, the framework has good generalizability.

From the perspective of scalability, it is essential to further
analyze how the application of this research to a larger scale

would impact. This larger scale can be analyzed from two
perspectives: more vehicles and larger geographical areas.

From the perspective of vehicles, there are two ways to
scale up the size of the vehicles in this study. The first
approach is to set a large initial capacity for the state space
during training, so that the number of vehicles it can handle
matches the scale of the problem. The second approach is
to design a filtering mechanism for the state space, only
providing the agent with vehicles that are more relevant to
the current scheduling (for example, selecting the closest
50 vehicles to that area). This is because the state space of
the intelligent agent is not directly tied to specific vehicles in
the action space, but rather describes parameters of different
vehicles. By matching the vehicle selection in action space
with the vehicle parameters in state space, the agent can make
decisions in a larger scale of vehicle fleet.

From a regional perspective, a larger region implies a
greater number of intelligent agents, but a higher number
of intelligent agents is actually disadvantageous for the con-
vergence of multi-agent reinforcement learning. Therefore,
this study suggests that when the regional scope expands,
a hierarchical decomposition of the region can be conducted,
mapping regions of different sizes to intelligent agents at dif-
ferent levels, thereby combining multi-agent reinforcement
learning with hierarchical reinforcement learning [56]. This
may be a promising approach, but further experiments are
needed in the future for a more detailed exploration.

From a future perspective, there are still areas for improve-
ment in the current framework. For example, it needs to be
combined with fixed rules and constraints to enhance the
interpretability of reinforcement learning decisions. Addi-
tionally, the core idea of this study is to use the state-value
function in reinforcement learning to describe the degree of
interaction between tasks. Therefore, how to construct the
structure of the value function, how to design the training
method to make the description of future states more accurate
is still a question worth pondering.

VI. CONCLUSION
This study proposes a binary vehicle and task-area assump-
tion and a vehicle task classification model based on this
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assumption. The classification model provides a theoretical
basis for the multi-agent reinforcement learning constructed
in this study. After constructing a simulation environment
for the transportation by electric trucks in SUMO, the pro-
posed method is specifically applied. Experimental results
demonstrate that the method effectively improves the overall
efficiency of tasks and exhibits good robustness under high
task density conditions.
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