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ABSTRACT Human pose estimation (HPE) is a crucial computer vision task with a wide range of
applications in sports medicine, healthcare, virtual reality, and human-computer interaction. The demand for
real-time HPE solutions necessitates the development of efficient deep-learning models that can be deployed
on resource-constrained devices. While a few surveys exist in this area, none delve deeply into the critical
intersection of efficiency and performance. This survey reviews the state-of-the-art efficient deep learning
approaches for real-time HPE, focusing on strategies for improving efficiency without compromising
accuracy. We discuss popular backbone networks for HPE, model compression techniques, network pruning
and quantization, knowledge distillation, and neural architecture search methods. Furthermore, we critically
analyze the existing works, highlighting their strengths, weaknesses, and applicability to different scenarios.
We also present an overview of the evaluation datasets, metrics, and design for efficient HPE. Finally,
we identify research gaps and challenges in the field, providing insights and recommendations for future
research directions in developing efficient and scalable HPE solutions.

INDEX TERMS Survey, 2D human pose estimation, 3D human pose estimation, deep learning, efficiency.

I. INTRODUCTION
A. MOTIVATION OF HUMAN POSE ESTIMATION
Human Pose Estimation (HPE) has emerged as a fundamental
and challenging task in the computer vision community.
The primary objective of HPE is to predict human pose
information, such as the spatial locations of body joints
and/or body shape parameters, from monocular images or
videos [1]. HPE holds great significance due to its ability
to provide detailed pose information without the need for
complex multi-camera setups or wearable markers, making it
a crucial component of numerous computer vision tasks [2].

The motivation behind HPE research lies in its poten-
tial to bridge the gap between the digital and physical
worlds, enabling a deeper understanding of human behavior,
movement, and interaction. The rapid development of HPE
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methods, driven by advances in deep learning technologies
and the availability of large-scale 2D/3D pose datasets,
has led to significant performance improvements in both
accuracy and efficiency. This progress has driven research
efforts toward exploring innovative network designs, multi-
task interactions, and body model explorations, further
enhancing HPE’s capabilities [3].

Monocular HPE tasks can be divided into two main
categories based on the spatial dimension of the output
results: 2D pose estimation and 3D pose estimation. While
2D pose estimation focuses on locating the 2D coordinates of
human anatomical keypoints (body joints) in images, 3D pose
estimation aims to predict the depth information for a more
accurate spatial representation. The intrinsic connections
between 2D and 3D pose estimation and the growing demand
for detailed pose information have prompted researchers to
investigate HPE methods that bridge the gap between 2D and
3D representations [4].
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Despite the successes achieved in HPE performance and
practice, there is still room for improvement and further
exploration. Comprehensive reviews of representative algo-
rithms and insightful analyses of 2D-to-3D pose estimation
remain limited, highlighting the need for continued research
in this domain. As HPE continues to advance, its significance
and the motivation behind its development will only grow,
paving the way for new and improved applications in various
fields.

B. REAL-TIME HPE APPLICATIONS AND THE NEED FOR
EFFICIENCY
Real-time human pose estimation (HPE) applications require
efficient models that can process data quickly and accurately
while being deployed on resource-constrained devices.
As shown in Figure 1 The following subsections discuss
various real-time HPE applications and the importance of
efficiency in these use cases.

FIGURE 1. Real-world examples of various real-time applications: images
are from OpenPose HPE demonstration [5].

1) REMOTE PATIENT MONITORING
Remote patient monitoring systems allow healthcare pro-
fessionals to track patients’ vital signs, movements, and
activities outside clinical settings [6]. Efficient HPE models
can be used to monitor patients’ posture, exercise adherence,
and physical rehabilitation progress in real-time, providing
timely feedback and interventions. Such systems are partic-
ularly important during pandemics like COVID-19, where
remote monitoring can help minimize in-person interactions
and reduce the risk of infection [7].

2) ELDERLY CARE AND FALL DETECTION
Efficient real-time HPE can play a crucial role in elderly care
by detecting falls and monitoring daily activities to ensure
the well-being of older adults [8]. By identifying abnormal
movements, posture changes, or signs of distress, caregivers
can intervene quickly, potentially preventing injuries or other
adverse events.

3) FITNESS TRACKING AND PERSONAL TRAINING
Fitness trackers and personal training apps often use HPE
models to provide real-time feedback on users’ exercise form,

intensity, and progress. Efficient HPE models can help users
maintain proper form during workouts, prevent injuries, and
tailor their training programs based on individual needs and
goals [9], [10].

4) SURVEILLANCE AND CROWD ANALYSIS
Real-time HPE can be employed in surveillance and crowd
analysis applications to detect unusual or potentially dan-
gerous activities. Efficient models can analyze multiple
people simultaneously, providing valuable insights into
crowd behavior and enabling rapid response to security
threats or emergencies [11], [12].

5) PEDESTRIAN DETECTION FOR AUTONOMOUS DRIVING
Among many objects that autonomous vehicles must accu-
rately detect and interpret, pedestrians are among the
most crucial. A fast response HPE enhances pedestrian
detection systems within these vehicles. By analyzing the
pose and posture of individuals, the HPE algorithm [13]
allows the system to predict potential pedestrian movements
more accurately, whether it’s someone about to cross the
road or a person momentarily pausing on the sidewalk.
Given the need for swift data processing in autonomous
driving, lightweight, streamlined, effective models are essen-
tial. Such models ensure the vehicle responds promptly
to dynamic street scenarios, significantly bolstering road
safety.

The ever-evolving landscape of HPE applications, from
augmented reality experiences and gaming interfaces to
advanced healthcare monitoring and industrial automation,
demands real-time processing for seamless user interaction
and safety. This real-time requirement implies that any
delays, even if minimal, can hinder user experience or even
result in potential hazards, especially in applications like
patient monitoring or machinery control.

Furthermore, many real-time HPE applications operate
in environments where high computational power is not
readily available. Consider, for instance, a fitness app on a
smartphone providing real-time feedback on an individual’s
exercise form. The app cannot afford to drain the battery
rapidly by demanding extensive computational resources, nor
can it compromise on accuracy, which can lead to incorrect
feedback. Similarly, edge devices in remote locations,
like surveillance cameras in wildlife settings, need to be
efficient both in terms of computational demands and energy
consumption.

Hence, balancing computational efficiency with model
accuracy becomes not just an aspiration but an essential factor
in designing HPE systems. It’s a challenging intersection
where the academic and industrial research communities are
investing significant efforts. The call for efficient models
aligns not only with the technical constraints but also
the aspiration for broader applicability and accessibility
of real-time HPE solutions across diverse platforms and
scenarios.
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C. REVIEW OF PREVIOUS SURVEY WORK ON HPE
In this section, we present an overview of prior survey until
2023 works related to Human Pose Estimation (HPE). Our
primary goal is to discuss the contributions of these works
while also identifying the research gaps that our current
survey is to bridge. Subsequently, Figure 2 offers insights into
these previous HPE surveys, their focus, and the gaps they
leave.

FIGURE 2. A diagram of previous HPE surveys and ours.

The previous surveys [14], [15] have made significant
contributions to summarizing and reviewing the advance-
ments in HPE. However, those employing deep learning
methods [3], [4], [16], [17] have mainly focused on either
2D and 3D HPE methods. And they mainly emphasize on
improving the detection accuracy. These surveys have not
addressed the efficiency of HPE methods, which is crucial
when considering real-time applications and environments
constrained by computational resources.

Our survey fills this gap by providing a comprehensive
review of efficient HPE methods based on deep learning,
covering both 2D and 3D HPE approaches. By focusing on
the efficiency aspect of HPE, we aim to offer valuable insights
to researchers and practitioners working on real-time HPE
applications, such as mobile, edge computing, and remote
monitoring.

D. CONTRIBUTIONS
This survey aims to provide a comprehensive and updated
overview of efficient Human Pose Estimation (HPE)methods
based on deep learning, with a focus on both 2D and 3D HPE
approaches. Our contributions are as follows:

• We consider both efficient 2D and 3D HPE methods:
Unlike previous surveys that focused on either 2D or
3D HPE separately, we provide a holistic view of the
efficient HPE methods in both domains. This allows
researchers and practitioners to better understand the

connections between 2D and 3D HPE and explore
potential synergies in their work.

• We emphasize the efficiency of HPE methods: While
previous surveys have mainly concentrated on improv-
ing detection accuracy, we specifically focus on the
efficiency aspect of HPE methods. This is particularly
important for real-time applications and resource-
constrained environments, such as mobile devices, edge
computing, and remote monitoring.

• We analyze and explore various approaches to improve
efficiency: We present a detailed analysis of various
techniques employed to enhance the efficiency of HPE
methods, such as model compression techniques, net-
work pruning and quantization, knowledge distillation,
architecture search (NAS), and smaller baseline network
designs with improved accuracy.

• We review of evaluation datasets and metrics: We
provide an extensive overview of the datasets and
evaluation metrics used in HPE research, which is
crucial for understanding the progress and challenges in
the field.

• We identify future research directions: We discuss
the challenges and limitations of existing efficient
HPE methods and propose promising future research
directions. This analysis can inspire and guide
researchers working on HPE to explore new ideas and
solutions.

By offering a comprehensive, up-to-date (until 2024), and
focused review of efficient HPE methods, we believe that
this survey will serve as a valuable resource for researchers,
practitioners, and students interested in HPE and its
real-world applications.

E. PAPER ORGANIZATION
The structure of this survey paper unfolds as follows:
After this introduction, Section II explores deep learning
frameworks employed in both 2D and 3D HPE, along
with their associated applications. Section III delves into
methodologies for efficient deep learning. Section IV out-
lines evaluation metrics pertinent to HPE efficiency and
introduces commonly used 2D/3D datasets. In Section V,
we holistically compare various methods within 2D and
3D efficient HPE. Section VI presents prevailing chal-
lenges, unresolved queries, and potential avenues for future
research.

II. DEEP LEARNING FRAMEWORKS FOR HPE
Adapting these foundational deep learning architectures for
both 2D and 3D HPE showcases the versatility and depth
of these models. The nuances of each method highlight
the increasing specificity and accuracy of pose estimation
techniques in modern computer vision applications.
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A. CONVOLUTIONAL NEURAL NETWORKS (CNNs)
CNNs [18] harness specialized layers, namely convolutional
layers, that are adept at learning spatial hierarchies from
image data.

1) APPLICATIONS IN 2D HPE
CNNs process images to detect 2D coordinates of human
anatomical key points in images. Fine-tuned CNNs like VGG
and ResNet process image patches around body joints to
determine their 2D positions in images. Wei et al. [19]
present Convolutional Pose Machines (CPMs), a method that
integrates convolutional networks into a sequential prediction
framework to improve 2D human pose estimation. This
approach learns image features and spatial models directly
from data and demonstrates state-of-the-art performance
on benchmarks such as MPII, LSP, and FLIC, marking a
significant advancement in the early development of deep
learning-based HPE. Singh et al. [20] review 2D human pose
estimation challenges, evaluates various research methods,
introduces a CNN-based model, and suggests potential future
research directions. Toshev and Szegedy [21] introduce a
holistic human pose estimation method utilizing Deep Neural
Networks, which offers precise joint localization through a
cascading DNN approach, leveraging the advantages of deep
learning for this task.

2) APPLICATIONS IN 3D HPE
For 3D HPE, CNNs often use depth maps or employ a
regressionmechanism to infer depth for each joint, converting
2D joint positions into 3D coordinates. Mehta et al. [22]
introduce a CNN-based technique for 3D human pose
estimation from single RGB images, leveraging both existing
2D and 3D pose data for improved generalizability. They
also present a new diverse dataset for pose estimation and
highlight the significance of transfer learning for achieving
robust results in real-world scenarios [23]. A novel method is
proposed by Ghezelghieh, et al. to estimate 3D human pose
from a single RGB image by leveraging camera viewpoint
in tandem with 2D joint locations, utilizing a trained CNN
and 3D computer rendering, resulting in a significant error
reduction on the Human3.6m benchmark.

B. STACKED HOURGLASS NETWORKS
This innovative network captures multi-scale information
using a repeated bottom-up, top-down processing structure.

1) APPLICATIONS IN 2D HPE
Designed to capture information at various scales, this
network works effectively for 2D HPE by focusing on
spatial hierarchies and estimating joint locations in images
at multiple resolutions. Newell et al. [24] firstly presents
a ‘‘stacked hourglass’’ convolutional network architecture
for human pose estimation that utilizes repeated bottom-up,
top-down processing with intermediate supervision. The
network is based on the successive steps of pooling and

upsampling that are done to produce a final set of predictions,
which achieves state-of-the-art results.

2) APPLICATIONS IN 3D HPE
Extensions of the stacked hourglass model have been used to
predict 3D skeletal joint positions. Themulti-scale processing
assists in extracting depth information from 2D images.
Xu and Takano [25] present the Graph Stacked Hourglass
Networks, a unique graph convolutional design for 2D-to-
3D human pose estimation, emphasizing multi-scale skeletal
representations and deep multi-level features to enhance
estimation accuracy.

C. HIGH-RESOLUTION NETWORK (HRNet)
Unlike traditional models that downsample and then
upsample, HRNet maintains high-resolution representations
through parallel multi-resolution convolutions.

1) APPLICATIONS IN 2D HPE
By maintaining high-resolution representations through-
out, HRNet captures minute details essential for accurate
2D pose estimation, especially in high-resolution images.
Sun et al. [26] introduce a unique approach to human pose
estimation that consistently maintains high-resolution repre-
sentations, initiates with a high-resolution subnetwork, and
progressively integrates high-to-low resolution subnetworks,
utilizing multi-scale fusions for enriched representation
throughout the process.

2) APPLICATIONS IN 3D HPE
There is no known application of HRNet in 3D HPE to our
knowledge

D. TRANSFORMERS
Transformers have recently gained prominence in both 2D
and 3D Human Pose Estimation (HPE) due to their ability
to capture long-range dependencies and global evidence
of keypoints, outperforming conventional CNNs in certain
aspects.

1) APPLICATIONS IN 2D HPE
The advent of transformer-based models for 2D HPE
has introduced new capabilities in capturing fine-grained
evidence and overcoming occlusions. An early example,
TransPose [27], leveraged attention layers to predict key-
point heatmaps, effectively handling occlusion scenarios.
Subsequent models like TokenPose [28] utilized token
representations to capture constraint cues and visual rela-
tionships, enhancing the understanding of keypoint con-
figurations. HRFormer [29] introduced a high-resolution
approach by integrating transformer modules into HRNet,
improving memory and computational efficiency. The
Token-Pruned Pose Transformer (PPT) [30] further advanced
the field by efficiently estimating poses and enabling direct
instance-aware body pose estimation.
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2) APPLICATIONS IN 3D HPE
In the realm of 3D HPE, transformer integration has been
explored to regress SMPL mesh vertices from single images,
combining CNNs with transformers for improved accuracy
but at the cost of higher computational and memory demands,
as seen in METRO [31] and MeshGraphormer [32]. Efforts
to mitigate these costs have led to the development of
lightweight transformer architectures like FeatER [33], which
significantly reduce the parameter count and computational
overhead while outperforming METRO in efficiency, mark-
ing a critical step towards scalable and effective 3D human
pose estimation.

III. IMPROVING EFFICIENCY FOR HPE
Improving the efficiency of Human Pose Estimation (HPE)
is essential, especially in applications necessitating real-time
response or deployment in resource-constrained environ-
ments. Here’s a deep dive into various strategies to optimize
HPE models for efficiency:

A. NETWORK PRUNING AND QUANTIZATION
Pruning eliminates less important neurons or connections,
significantly reducingmodel size and computational demand.
In conjunction, the Quantization of neural networks involves
converting a model’s continuous-valued weights and activa-
tions to a discrete set of values, often represented with lower
precision. This is achieved by mapping the full-precision
values to a set of fixed levels, typically within a lower bit-
width format, thereby compressing the model. This reduces
the memory footprint and computational requirements,
allowing for faster model operations and deployment in
resource-limited settings.

For HPE, the synergy of reduced computational complex-
ity through pruning and quantization means faster inference
times, a cornerstone for real-time pose estimation. Bulat and
Tzimiropoulos [34] utilize the binarized network based on an
Hourglass network, and convert most of the parameters into -
1 or 1. The proposed hierarchical, parallel, and multi-scale
residual architecture can improve the accuracy over their
bottleneck blocks but significantly reduce the model’s size,
which makes it accommodate resource-limited platforms.

B. KNOWLEDGE DISTILLATION
Knowledge Distillation [35], [36] is a model compression
technique where a smaller model, often referred to as the
student, is trained to mimic the behavior of a larger model,
known as the teacher. Instead of learning from the original
ground truth labels, the student model is trained on the softer
output distributions (probabilities) of the teacher model. This
softer distribution, which might contain information about
the relationships between different classes, can be more
informative than the hard labels, allowing the student to
achieve better performance than if it were trained directly
on the ground truth. A knowledge distillation system is
composed of three key components: knowledge, distillation

algorithm, and teacher-student architecture, as shown in
Figure 3.

FIGURE 3. A general teacher-student framework for knowledge
distillation [36].

In the context of Human Pose Estimation (HPE), by dis-
tilling the knowledge from a large, accurate, but compu-
tationally intensive HPE model (teacher) into a smaller,
faster model (student), it’s possible to retain much of the
performance of the larger model while benefiting from the
increased efficiency of the smaller one as presented by
Zhang et al. [37]. This makes the student model more
suitable for real-time pose estimation tasks, especially on
edge devices. Furthermore, the distilled model, being lighter,
consumes less memory and computational power, making
it more energy-efficient and faster in its predictions. This
amalgamation of speed and accuracy through Knowledge
Distillation can significantly elevate the efficacy of HPE
applications.

C. NEURAL ARCHITECTURE SEARCH (NAS)
NAS [38] is a method that automates the process of
selecting the best neural network architecture for a specific
task. To achieve this, NAS employs search strategies,
such as reinforcement learning or evolutionary algorithms,
to navigate through the predefined architectural space. Over
a series of trials, it evaluates the performance of various
architectures on the task, refining its search based on
the results. As it progresses, the search refines based on
performance outcomes, allowing NAS to algorithmically
pinpoint the optimal architecture rather than relying on
manual design. As shown in Figure 4, A search strategy
selects an architecture A from a predefined search space
a. The architecture is passed to a performance estimation
strategy, which returns the estimated performance of A to the
search strategy.

FIGURE 4. A workflow of Neural Architecture Search methods [38].

Within the context of HPE, NAS can lead to the
discovery of architectures that inherently balance efficiency
and accuracy. Given the constraints set during the search,

72654 VOLUME 12, 2024



X. Yan et al.: Efficient Monocular HPE Based on Deep Learning Methods: A Survey

custom architectures might emerge that are more adept at
handling HPE’s unique challenges without the overhead of
unnecessary parameters. Tan and Le [39] introduce an Effi-
cientNet achieving unparalleled accuracy and efficiency with
substantially fewer parameters. This method scales ConvNets
uniformly across depth, width, and resolution, enhancing
existing compact model performance. Bao et al. [40] propose
a model named PoseNAS that utilizes a NAS-driven method
to seek out a data-focused pose network comprising stacked
searchable units, optimizing both feature extraction and
fusion specifically for pose-related tasks. Xu et al. [41]
present a spatial network bymethodically structuring a search
realm across five varied parameters: network depth, width,
kernel dimension, group count, and attention mechanisms.
This approach is extended to video pose estimation, pinpoint-
ing temporal feature fusion and auto-calculating allocations
within videos.

D. MORE COMPACT NETWORK DESIGN
Starting with a minimalist baseline network and then
carefully integrating modules to enhance accuracy forms a
cornerstone for achieving efficiency without compromising
on performance. This tailored approach renders the model
adaptable across a broad spectrum of applications, from
mobile devices to extensive cloud-based systems, while
maintaining competitive accuracy with a reduced computa-
tional footprint.

Efficient architectures like MobileNets [42] and
SqueezeNets [43] play a pivotal role. MobileNets, for
example, utilize depth-wise separable convolutions to
significantly cut down the number of parameters and
computational complexity, facilitating the deployment of
HPE models on devices with limited processing power
without sacrificing estimation quality. Incorporating attention
mechanisms, which have shown substantial success in
natural language processing tasks, into compact HPE models
can further refine their ability to capture the nuanced
spatial relationships between body joints. The integration of
transformer models, known for their proficiency in handling
long-range dependencies [44], into smaller network designs
could elevate the performance of HPE systems in complex
scenarios. Moreover, the adaptation of compact transformer
architectures, such as those seen in recent studies for visual
tasks, could potentially minimize the computational demands
typically associated with transformers while retaining their
effectiveness in capturing intricate patterns within data [45].

IV. DATASETS AND EVALUATION METRICS
A. EFFICIENCY EVALUATION METRICS
1) THE NUMBER OF PARAMETERS
The number of parameters in a deep learning model is a
metric for its efficiency for various reasons. Firstly, it directly
relates to the model’s size in storage, making it crucial for
deployment in storage-constrained devices like smartphones
or embedded devices [34], [46]. Secondly, a model with
fewer parameters is computationally efficient in training and

inference, making it more time-efficient [47]. Additionally,
lightweight models are more energy-efficient, a critical factor
for battery-powered devices [48]. However, it’s essential to
strike a balance. Reducing the number of parameters can
make a model more efficient, but if the model becomes too
simple, it might not capture the complexities of the data,
leading to underfitting. The optimal number of parameters
is highly problem-dependent and often discovered through
experimentation and iterative refinement.

2) FLOATING POINT OPERATIONS
The FLOP (Floating Point Operations) evaluates the com-
putational cost of deep learning models by quantifying the
number of operations required to generate an output. This
measure is valuable as it provides insights into a model’s
inference speed, which is especially vital for real-world appli-
cations. FLOP also helps determine a model’s compatibility
with devices with limited computational resources [49].

B. DATASETS FOR 2D HPE
Starting from 2014, various datasets were used for 2D HPE
tasks. However, most recent studies have shifted away from
these early datasets due to their limitations, such as the
lack of varied object movements and limited data quantity.
Since deep learning approaches thrive on vast training data,
we focus on contemporary large-scale datasets for 2D human
pose estimation.

1) MPII HUMAN POSE DATASET [2]
This dataset, created by the Max Planck Institute for Infor-
matics, stands as a benchmark for evaluating articulated HPE.
It comprises approximately 25,000 images showcasing over
40,000 individuals with marked body joints. Annotations in
MPII are comprehensive, covering aspects like body part
occlusions, 3D torso, and head orientations, all of which were
labeled through Amazon Mechanical Turk. This dataset is
especially apt for 2D single or multi-person HPE evaluations.

2) MICROSOFT COCO DATASET [50]
Undoubtedly one of the most utilized large-scale datasets,
COCO encompasses over 330,000 images with more than
200,000 labeled subjects having keypoints. Each labeled
person features 17 joint annotations. Expanding on this,
Jin et al. [51] introduced the COCO-WholeBody Dataset,
enhancing the annotations to capture the entire human body.

3) PoseTrack DATASET [52]
This dataset is specifically designed for HPE and articulated
tracking within video formats, especially addressing the
challenges posed by body part occlusion and truncation in
densely populated settings. It contains 1,138 video sequences
with 153,615 pose annotations, split into 593 for training,
170 for validation, and 375 for testing. Each individual in
PoseTrack is annotated with 15 joints, supplemented by a
keypoint visibility label.
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TABLE 1. Datasets for 2D HPE.

More datasets such as LSP [53], FLIC [54], Penn
Action [55] for single-person dataset, and AIC-HKD [56],
CrowdPose [57], HiEve [58] for multiple people datasets are
listed in Table 1, with the year of publication, type, number
of joints, number of datasets and the evaluation methods.

C. EVALUATION METRICS FOR 2D HPE
Evaluating 2D HPE is complex due to the diverse range
of factors to consider, such as human body size, single vs.
multiple pose estimation, and focus on upper or full body
parts. This has led to the development of numerous metrics,
and we outline some predominant ones below:

1) PERCENTAGE OF CORRECT PARTS (PCP) [59]
Historically prevalent in early 2DHPE literature, PCP gauges
the accuracy of limb localizations. A limb’s localization is
deemed accurate if the distance between the estimated and
actual joint is within a specified fraction (usually between
0.1 to 0.5) of the limb’s length. In certain contexts, this metric
is labeled as PCP@0.5, indicating a 0.5 threshold. Notably,
PCP focuses on single-person HPE, but its usage has declined
as it unfairly penalizes harder-to-detect shorter limbs.

2) PERCENTAGE OF CORRECT KEYPOINTS (PCK) [60]
This metric evaluates the precision of keypoint localizations
against a set threshold, commonly 50% of the head segment’s
length in a test image, termed PCKh@0.5. Another variant,
PCK@0.2, is used when the distance between detected and
actual joints is less than 0.2 times the torso’s diameter. Higher
PCK values indicate superior model efficacy.

3) AVERAGE PRECISION (AP) AND AVERAGE RECALL (AR)
[50]
AP is a metric that assesses keypoint detection accuracy
based on precision (the fraction of accurate positive results
out of all positive predictions) and recall (the fraction
of accurate positive predictions out of all actual positive
instances). AP calculates the mean precision for recall
values ranging from 0 to 1. Some variations of this metric
include Average Precision of Keypoints (APK) and Mean
Average Precision (mAP), popular on datasets like MPII
and PoseTrack. In contrast, the AR metric, prominent in the
COCO keypoint [50] evaluation, focuses on recall. Object

Keypoint Similarity (OKS), analogous to Intersection over
Union (IoU) in object detection contexts, is incorporated for
both AP and AR evaluations. COCO evaluations typically
utilize mAP across 10 OKS thresholds.

D. DATASETS FOR 3D HPE
Acquiring accurate 3D annotation for 3D HPE datasets is
a challenging task, compared to 2D HPE datasets. Datasets
for 3D HPE primarily originate from motion capture systems
or inertial measurement units (IMU), while some recent
datasets are generated from game engines. we’ll discuss some
prominent datasets, including recent ones, and provide an
overview in Table 2.

1) HUMAN3.6M [61]
Standing out as one of the most expansive motion capture
collections, it boasts 3.6 million human poses paired with
corresponding images. It provides precise 3D human joint
positions and synchronized high-resolution videos recorded
at 50 Hz. The dataset captures 11 professional actors
performing 17 scenarios from four distinct camera angles.
Human3.6M dataset is split into two protocols named
Protocol 1 and Protocol 2. Protocol 1 consists of S1, S5, S6,
S7, S8, S9 for training and S11 for testing. Protocol 2 contains
S1, S5, S6, S7, S8 for training and S9, S11 for testing.

2) MPI-INF-3DHP [22]
Utilizing a markerless motion capture system, this dataset
features 8 actors (4 female, 4 male) enacting 8 action
sets each. The actions span from simple walks to dynamic
activities. It also emphasizes clothing variability and even
offers chroma-key masks for background variations.

3) The MuPoTS-3D [62]
this dataset represents a test set designed for multi-person
3D pose estimation. Its authentic 3D poses originate from
a markerless MoCap system that encompasses 20 diverse
scenes (comprising 5 indoor and 15 outdoor settings). The
dataset presents inherent challenges, including occlusions,
significant shifts in lighting, and occasional lens flares,
especially in outdoor recordings. Across these 20 sequences,
the dataset amasses over 8,000 frames, captured by 8 different
subjects.
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TABLE 2. Datasets for 3D HPE.

E. EVALUATION METRICS FOR 3D HPE
We outline several widely utilized metrics, providing detailed
configurations according to datasets.

1) MPJPE (MEAN PER JOINT POSITION ERROR)
This is the most widely used metric to evaluate the
performance of 3D HPE. MPJPE is calculated by using
the Euclidean distance between the estimated 3D joints and
the ground truth positions as given by the equation:

EMPJPE (f ,S) =
1
NS

NS∑
i=1

∥PfS (i) − Pfgt,S (i)∥2 (1)

where f represents a frame and S denotes the associated
skeleton. PfS (i) signifies the estimated position of joint
i, and Pfgt,S (i) is its corresponding ground truth position.
Considering all joints, we have NS = Number of Joints.
The MPJPE values are subsequently averaged across

all frames. Furthermore, the derived normalized metrics
are referred to as NMPJPE. As the orientation remains
consistent, this transformation is less restrictive compared
to the popularly employed Procrustes alignment, which we
denote as PA-MPJPE.

2) MPVE (MEAN PER VERTEX ERROR) [68]
quantifies the Euclidean distances between the actual vertices
and their predicted counterparts:

EMPVE =
1
N

N∑
i=1

∥Vi − V ∗
i ∥2, (2)

where N signifies the total number of vertices, V represents
the ground truth vertices, and V ∗ stands for the predicted
vertices.

3) 3DPCK
is a 3D extension of the Percentage of Correct Keypoints
(PCK)metric utilized in 2DHPE evaluations. A joint estimate
is deemed correct if the distance between the predicted value
and the actual ground truth falls below a specified limit.

V. METHODOLOGY AND ANALYSIS
In this section, we comprehensively compare an array of
2D and 3D HPE methods designed with an emphasis on

efficiency. While previous research surveys have predom-
inantly focused on methods with better accuracy results,
our analytical framework adopts a more holistic approach,
considering accuracy and computational efficiency. This
assessment is manifested through two crucial metrics: the
number of parameters and the FLOPs. As delineated in
Table 3 and Table 4, while the methods have been sequenced
based on their accuracy metrics, it remains paramount for
readers to peruse the triad of columns on the extreme right
to discern an optimal equilibrium between accuracy and
efficiency for a given application.

A. EFFICIENT 2D HPE
Table 3 provides a comprehensive comparison of various effi-
cient 2D Human Pose Estimation (HPE) methods, evaluating
their performance across single-person and multiple-people
scenarios. For single-person HPE, the methods are assessed
on theMPII dataset using the PCKmetric, while for multiple-
person HPE, the evaluation is based on the COCO dataset
using the AP metric.

In the realm of 2D single-person efficient HPE, the
table features diverse approaches ranging from B-CNN’s
binarization and hierarchical, parallel, multi-scale strategy,
to NAS HPE’s use of Neural Architecture Search (NAS)
and spatial information correction modules. The methods
demonstrate varying degrees of accuracy, with Fast HPE
achieving a high 90.8% accuracy using knowledge distil-
lation. In terms of efficiency, Lite-HRNet-30 stands out
with a significantly lower FLOP count of 0.42G, while
DSPNet maintains a balance between accuracy (86.3%) and
computational efficiency with 0.73G FLOPs.

For 2D multiple-people efficient HPE evaluated on the
COCO dataset, the approaches again show diversity, with
NAS HPE and DSPNet both achieving high accuracy levels
of 76.5% and 69.4%, respectively. Here, CSN’s method
of suppressing unnecessary channels in conjunction with
a grouped bottleneck block shows a promising balance
between accuracy (69.9%) and computational efficiency
(1.08G FLOPs).

Overall, the table highlights the advancements in efficient
HPE methods, illustrating a trend toward achieving higher
accuracy without compromising computational efficiency.
This is pivotal for real-time applications and deployment on
resource-constrained platforms. The variety of approaches,
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TABLE 3. Efficient 2D HPE methods comparison.

TABLE 4. Efficient 3D HPE methods comparison on Human3.6 dataset using MPJPE.

from binarization and knowledge distillation to innovative
architectural designs, suggests a rich field of ongoing
research focused on optimizing both the accuracy and
efficiency of HPE systems.

B. EFFICIENT 3D HPE
Table 4 compares efficient 3DHuman Pose Estimation (HPE)
methods on the Human3.6 dataset using MPJPE, where
the lower error (mm) is better. HDFormer excels with the
lowest error of 42.6, using a U-shaped transformer and high-
order attention, with 3.7M parameters and 0.6G FLOPs.
MoVNect, though higher in error (97.3mm), is efficient with
1.03M parameters and 1.35M FLOPs due to knowledge
distillation. VNect, with a fully convolutional pose, has
an error of 80.5mm and 14.6M parameters. 3D Mobile
combines MobileNetV2 and skip concatenation for an errors
of 56.9mm, with 2.24M parameters and 3.92G FLOPs.
Deciwatch achieves 53.5mm errors with 0.621G FLOPs,
sampling 10% of frames. MotionAGFormer, integrating
transformer and GCNFormer, records 45.1 mmerror, 2.2M
parameters, and 1.0G FLOPs. This comparison underscores
the trend towards lower error and efficient 3D HPE methods,
crucial for real-time, resource-efficient systems.

Overall, this table reflects the current trend in 3D HPE
research towards developing methods that not only achieve
high accuracy but also maintain computational efficiency.

These advancements are crucial for practical applications
of 3D HPE, especially in real-time and resource-limited
environments. The variety in approaches, from knowledge
distillation to attention mechanisms, illustrates the diverse
strategies being explored to optimize both the accuracy and
efficiency of 3D HPE systems.

VI. CONCLUSION AND FUTURE DIRECTIONS
In the rapidly advancing domain of efficient monocular
human pose estimation (HPE) using deep learning, this
survey identifies several critical areas for future exploration,
with a particular emphasis on enhancing efficiency. Our
contributions in highlighting efficient HPE methods are
further underscored in the following key research directions:

A. FOCUSING ON EFFICIENT 3D POSE ESTIMATION FROM
MONOCULAR IMAGES
While advancements in 2D HPE are noteworthy, the tran-
sition to 3D pose estimation from monocular images poses
significant challenges, primarily due to the absence of depth
data. Our survey emphasizes the need for research into
efficient methods that can bridge this gap, possibly through
innovative algorithmic solutions that maintain computational
efficiency. The development of lightweight yet effective
models for 3D pose estimation represents a pivotal area of
future research, aligning with the core theme of our survey.
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B. ENHANCING MODEL ROBUSTNESS WHILE
MAINTAINING EFFICIENCY
Enhancing the robustness of HPE models in diverse envi-
ronmental conditions, without compromising their efficiency,
is crucial. This survey sheds light on the necessity of develop-
ing models that not only adapt to challenges like occlusions
and variable lighting but also maintain a low computational
footprint. Exploring methods that enhance robustness in
an efficient manner, such as lightweight architectures with
enhanced generalization capabilities, aligns with our focus on
efficiency in HPE methods.

C. PRIORITIZING PRIVACY IN EFFICIENT HPE METHODS
As HPE technologies become more prevalent, ensuring
privacy in an efficient manner is paramount. This survey
brings forth the importance of designing efficient HPE
systems that incorporate privacy-preserving mechanisms
from the ground up. Developing models that respect user
privacy, while retaining computational efficiency, is a critical
area that aligns with our survey’s emphasis on efficient HPE
methods.

In conclusion, these focal areas represent the critical
avenues for research in efficient monocular HPE using
deep learning. Addressing these challenges is expected to
significantly advance the field and expand the practical
deployment of HPE technologies in various real-world
scenarios.
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