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ABSTRACT Supervised deep learning methods have produced state-of-the-art results with large labeled
datasets. However, accessing large labeled datasets is difficult in medical image analysis because of a
shortage of medical experts, expensive annotations, and privacy constraints in the healthcare domain. Self-
supervised learning is a branch of machine learning that exploits unlabeled data to encourage network
weights toward a valid latent representation of the data during a so-called pretext task. The features learned
by the model while solving pretext tasks are transferred to a downstream task where limited annotations are
available. In this work, we propose PatchLoc, a novel pretext task whose objective is to find the location
of a given patch from an image as a source of supervision. We validated the effectiveness of PatchLoc
on a downstream segmentation task using three different medical datasets. PatchLoc yields substantial
improvements compared to U-Net trained from scratch and other pretext task-based approaches in a low
data regime.

INDEX TERMS Medical imaging, pretext tasks, self-supervised learning, limited annotations.

I. INTRODUCTION
Supervised deep learning methods have achieved state-of-
the-art results in medical image segmentation tasks [1],
[2], [3], [4], [5]. However, the success of supervised deep
learning methods is heavily dependent on the availability of
large amounts of labeled data. Medical expertise is generally
required to annotate regions of interest in medical images.
As a result, creating new large labeled datasets is an expensive
process. Moreover, such labeling is time-consuming and
does not represent the best use of already scarce medical
resources [6].

Various methods have been proposed to address the
problem of scarcity of labeled datasets in themedical domain.
One of the proposed solutions is transfer learning, which
is a well-studied method in machine learning that allows
us to re-utilize features learned by a neural network from
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a previous task to improve the performance of the new
target task [7]. In practice, models pre-trained on a large
labeled dataset (e.g. ImageNet [8]) are fine-tuned on a smaller
labeled dataset originating from the specific application of
interest. Although there have been some encouraging results
of transfer learning in medical image analysis [9], [10], this
strategy has certain drawbacks. Medical images (CT scans
andMagnetic Resonance Imaging) fundamentally differ from
natural images. In the medical imaging context, CT scans
represent intensity values using Hounsfield Units (HU) and
use single-channel images to store these values [11]. Natural
images consist of three separate channels to store the intensity
values of an image’s red, green, and blue components.
To address this problem, researchers from IBM [12] pre-
trained an image classification network on a grayscale
ImageNet dataset and fine-tuned this pre-trained model for
an X-ray disease classification task. While, the authors
reported an increase in X-ray disease classificationAUC from
0.7498 to 0.7706, recent studies [13], [14] have shown that
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FIGURE 1. Medical image (center with green outline) and 8 examples of
scaled patches used by PatchLoc (with red outline).

pre-training a model on a medical dataset can achieve better
results compared to natural images. However, a significant
amount of effort is needed to annotate large medical datasets.
A further issue with the use of ImageNet for pre-training,
is high-level features acquired by models are biased toward
the original datasets. Due to these reasons, transfer learning
from ImageNet pre-trained models to the medical datasets is
a sub-optimal solution.

To circumvent the reliance of supervised learning algo-
rithms on large amounts of annotated data, self-supervised
learning was introduced. This approach involves automati-
cally deriving labels from the data, allowing models to be
trained, at least to some extent, without the requirement for
manual data labeling. There are two steps in the pipeline of
self-supervised learning. The first step is to pre-train a model
to solve a pretext task using an unlabeled dataset. These
pretext tasks are carefully designed so that target labels are
automatically generated by applying appropriate geometric
transformations on images. By solving a pretext task, the
network is forced to learn efficient representations. This
representation is then used in the second step to initialize a
model on the main downstream task of image classification
or segmentation. Transferring the features acquired during the
pretext task to new target tasks with limited labeled data is
advantageous because it reduces the issues of dataset bias and
distribution shift since the pretext tasks and downstream tasks
are trained on comparable data sets.

Numerous pretext task techniques have been suggested to
advance the field of self-supervised learning in the domains
of natural images [15], [16], [17], [18], [19], [20] and
self-supervised learning methods have been used in a wide
range of applications [21], [22], [23], [24], [25], [26], [27].
A common theme in the majority of these initiatives is that
the use of the pretext results is limited to use on downstream
tasks using the same dataset. So, pre-training a model on
a pretext task using natural images is generally only used
for downstream tasks on natural images. Similarly, training

models to process CT scans would require a CT scan dataset
for the pretext task. Being able to increase the dataset size
used in such pretext tasks with natural images to learn
a good representation is advantageous in medical imaging
applications where the limited size of the dataset is generally
of significant concern.

In this work, we aim to bridge these gaps by introducing
PatchLoc, an innovative pretext task of patch localization
that leverages large unlabeled datasets for the pre-training
of neural networks to address the challenges of scarce label
datasets. As shown in Figure 1, PatchLoc extracts a patch
from the given image and scales this patch to the size of the
original image. The objective of the pretext task is to locate
this patch correctly within the original image. To solve this
task, a network requires an understanding of objects present
in the image and patch. As the patch is a zoomed version of a
part of the image, the model also learns multi-scale mapping
from patch to image. The contributions of this paper are as
follows:

1) We propose ‘‘PatchLoc’’, a novel pretext task, which
focuses on determining the location of a given patch
from a whole image. This helps the network learn
local features from a patch and global features from a
complete image.

2) We successfully adopt this pre-training technique in
the medical domain by training a network on CT
images and we evaluate the benefits of PatchLoc using
a downstream segmentation task on three distinct CT
datasets.

3) We compare the results obtained with our pretext task
to those achieved with no pre-training and pre-training
with other pretext tasks. Our experimental findings
show that using our suggested strategy in settings
with minimal labeled data significantly improves
downstream segmentation accuracy when compared to
scenarios with no pre-training and alternative pretext
tasks.

4) Finally, we also show that adding unlabeled grayscale
natural images in pre-training improves the perfor-
mance on the downstream task.

The rest of this paper is structured as follows: Section II
offers a concise overview of prior research on pretext tasks
designed for natural and medical images. Section III provides
a detailed explanation of the proposed patch localization
method. Section IV introduces the datasets used in the
study and outlines the experimental settings. We analyze the
models’ performance across the three datasets in Section V.
Lastly, Section VI summarizes the conclusions drawn from
this work and discusses possible directions for further study.

II. PRIOR ART
A. PRETEXT TASKS IN NATURAL IMAGES
Inspired by the idea of context prediction [28] in natural
language processing, Doersch et al. [15] developed one of the
early works in patch-based pretext tasks for natural images.
The objective of this task was to learn visual representations
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of data by correctly identifying the position of neighboring
patches with respect to the central patch.

Noroozi and Favaro [18] show that predicting relative
patch location tasks can be ambiguous when two non-central
tiles have similar patterns and further argue that solving
a jigsaw puzzle task that focuses on all tiles together
leads to learning better representation. PatchLoc focuses on
determining the location of a given patch from a whole
image, helping to learn local features from a patch and global
features from a complete image. Secondly, the ambiguity of
predicting two non-central tiles having similar patterns in
RPL is overcome by PatchLoc because it is easier to find the
location of a patch from a whole image. Another pretext task
aims to learn visual representations by predicting colors from
its grayscale images [16]. This pretext task is not appropriate
for CT datasets as CT contains only grayscale images.

Gidaris et al. [17] proposed a rotation prediction pretext
task to learn semantic features from unlabeled natural images.
In this task, a network is trained to predict one of four possible
angles of rotation applied to an input image. This pretext
task assumes that objects in the natural images are captured
from canonical viewpoints. Therefore, to predict the rotations
the network should understand the orientations of different
objects in the image. However, medical image datasets do
not characteristically contain a large number of distinctive
objects or shapes to get maximum benefits from this method.

Recently, contrastive learning-based models [19], [20],
[29], [30], [31] have achieved state-of-the-art performance
on natural images [8]. In contrastive learning, the objective
is to minimize the distance between positive pairs (different
views of the same image) and maximize the distance between
negative pairs (different images) in the hidden latent space
using the contrastive loss function [32], [33]. The selection
of positive and negative pairs plays a vital role in the
success of contrastive learning models. A batch should
contain a large number of negatives to avoid the mode
collapse problem; the situation in which all inputs map to
the single trivial solution. SimCLR [20] uses batch sizes
of up to 8192, utilizing 128 TPU cores to achieve state-of-
the-art performance. SwAV [31] also uses a batch size of
4096 distributed across 64 GPUs. Therefore, the computa-
tional cost to train these models is very high compared to that
of their standard supervised counterparts. Data augmentation
is another crucial factor in designing pretext tasks based
on a contrastive learning framework. The augmentations
applied for natural images may not be appropriate for
medical image datasets because of the following reasons:
1) The difference between normal and abnormal conditions
in medical images is defined by inspecting a small number
of pixels. Therefore, two views from the same image should
contain the region that defines abnormality. Using random
crop and blurring may obscure the important ROI from an
augmented image. 2) Color jittering and random grayscale
cannot apply to already grayscale medical images. Therefore,
the direct application of these methods for medical image
analysis is a major challenge due to the high computing

power and the need for careful selection of negative
pairs.

B. PRETEXT TASKS IN MEDICAL IMAGES
Several pretext tasks have been proposed specifically for
the medical domain that exploit the intrinsic properties
of medical images. Jamaludin et al. [21] define a pretext
task using contrastive loss to distinguish vertebral bodies
of different patients and then use a classification loss to
predict disc degeneration after 10 years. Whilst the authors
reported a gain from 74.5% to 76% in classification accuracy,
this approach is useful only when multiple scans of the
same patients are available. In a pretext task proposed by
Zhang et al. [34], two slices are randomly chosen from a
CT volume, and the network is trained to determine the
correct order of selected slices. The pre-trained model is fine-
tuned on the downstream task of body parts recognition in
CT and MR images. In the analysis of various pretext tasks
for medical images, Tajbakhsh et al. [23] used colorization
as a pretext task for skin cancer segmentation. However,
the gain provided by the pretext task is smaller than that
obtained from an ImageNet pre-trained model. The majority
of these proposed techniques are constrained to the particular
downstream task because of the assumptions upon which
these pretext tasks are designed.

Sowrirajan et al. [24] used the MoCo [29] framework
to pre-train the MoCo-CXR model on chest X-ray images
and then used the pre-trained model for the classification
of abnormalities from X-rays. The authors used pre-trained
weights from ImageNet to initialize before pre-training
MoCo-CXR. Chaitanya et al. [35] attempted to utilize
contrastive learning for medical images by dividing the 3D
volume into different partitions and identifying the slices’
corresponding partitions in various volumes as positive
pairs, and those of different partitions as negative pairs.
However, the difference between the slices at the end
of one partition and the starting slices of the adjacent
partition is small. Therefore, Zeng et al. [36] proposed
Positional Contrastive Learning for Volumetric Medical
Image Segmentation. Whilst results reported in the latter two
papers were good, the methods proposed by Chaitanya et al.
and Zeng et al. require 3D datasets (CT or MRI) to construct
a pretext task. Another work of Chaitanya et al. [37] used
pseudo-labels and contrastive learning framework using
self-training strategy and Wang et al. [38] used multi-task
learning with a student-teacher model for medical image
segmentation. Zhou et al. [39] proposed model genesis which
employs a variety of self-supervised techniques, all of which
are defined as an image restoration task, to generate the self-
supervision signal. This approach uses an encoder-decoder
architecture to restore the original image from the perturbed
image to learn information about the appearance, context, and
texture. Zhang et al. [40] utilized Multimodality from the
medical datasets and proposed contrastive domain-sharing
generative adversarial networks. Although these methods
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FIGURE 2. Example question used in embedded figure test (EFT) adopted
from [41]. In this test, the participant’s task is to search for obscured
simple geometrical shapes (right) in a more complex color diagram (left).

achieved promising results, pixel-based pretext tasks are
computationally very expensive.

C. PatchLoc ADVANTAGES
The disadvantages of existing methods as discussed in the
previous sections, can be summarized as follows: 1) various
pretext tasks are not suitable for medical images due to
the absence of distinctive geometries in medical images;
2) most pretext tasks require the use of the same dataset
for pretext task and downstream task; 3) many pretext tasks,
such as those using contrastive loss and pixel-bases tasks,
are computationally expensive. Our method is particularly
suited to medical data and learns global-level features from
images and local-level features from patches while solving
pretext tasks. Moreover, the proposed method does not
make any assumptions about the dataset and it leverages
medical images as well as natural images in pre-training to
learn representations from data in a computationally efficient
way. Finally, Our approach is simple to implement and it
eliminates the need for large batch sizes and the meticulous
selection of negative pairs, which are essential requirements
in contrastive learning frameworks.

III. METHODS
The motivation for our PatchLoc method comes from the
Embedded Figures Test (EFT). The EFT was introduced
by Gottschaldt (1926 [42], 1929 [43]) as a useful tool
for evaluating a person’s capacity to distinguish a figure
from its surroundings. Later, Herman Witkin designed a
more complex version of EFT [44] and used it to study
field-dependent and field-independent cognitive styles [45].
A typical example question from EFT is shown in Figure 2.
In this embedded figure test, the participant is shown the com-
plex figure (left) for 15 seconds after which it is withdrawn.
Then a simple shape (right) is displayed for 10 seconds. The
complex figure is then again presented to participants with
the objective of locating the simple figure in it. The EFT has
applications in many areas, including psychology, education,
and even certain occupational examinations, and has been
important in understanding cognitive styles.

Inspired by EFT, we propose a novel pretext task to learn
generic latent representations with application in medical
images. We define a pretext task similar to the question in

TABLE 1. Class index used in categorical cross-entropy loss function to
pre-train a network using our patch localization method.

Embedded Figures Test (EFT). Instead of drawing a simple
shape and embedding it into a complex figure, we extract
a smaller patch from the image and train a neural network
to determine its size and position in the original image. The
patch is obtained as a random crop of a predefined size from
a particular image scaled to the size of the original image
(Figure 3). We use a Siamese-like architecture to solve the
patch localization problem. Siamese networks were first used
to verify signatures [46]. Later they became a popular choice
in many applications [47] because of their ability to process
two images/signals and compare/contrast between them using
the appropriate loss function. They consist of two identical
branches that share weight parameters and are connected at
the end to calculate the similarity between the two different
inputs. In our work, the image and patch are propagated
through a Siamese network to extract features of the image
and patch. The correct location of the patch is identified
using the categorical loss function. Finally, the pre-trained
encoder is used as the encoder in a U-Net model which is
trained further using labeled data on the downstream task of
segmentation. Figure 4 illustrates the entire workflow of our
approach.

A. EXTRACTION OF PATCHES
Firstly, all images are resized to a dimension of 512 ×

512 pixels, and then a random patch is extracted from an
image. Next, an image and a patch both are resized to a
uniform size of 256 × 256 pixels and provided as input
to the network to maintain consistency. The location of the
patch embedded within an image and its size are chosen from
a pool of 34 potential configurations as shown in Table 1.
In Table 1, Xstart and Ystart define a starting coordinate of an
image from where a square patch is extracted. There is a total
of nine possible locations from where a square patch of size
256 × 256 can be extracted. To improve the discriminative
power of the task, two adjacent patches have 50% overlap
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FIGURE 3. Example patch (Ip) extraction illustrated for a natural image
(I1) and a medical image (I2).

between them. Furthermore, the height and width of the
patch are reduced to 1/3rd of the original image and this
creates an additional 25 locations from where a patch can be
extracted.

B. NETWORK DETAILS
We adopted the U-Net [1] based encoder as a feature
extractor, as U-Net is one of the most successful architectures
for segmentation in the medical domain [35], [36], [48], [49].

1) PRETEXT TASK
As depicted in Figure 5, we employ a Siamese neural
network architecture to process the image denoted as I and
its corresponding patch, referred to as Ip. Both branches of
the Siamese encoder have the same weights. Our encoder
consists of six convolution blocks starting from Conv1 to
Conv6. Each convolution block has two 3 × 3 convolutions
followed by ReLU activation units. In the initial five
convolution blocks (Conv1 to Conv5), the first convolution
operation is performed with a stride of 2 and the second
convolutionwith a stride of 1. Stride 2 is used to reduce spatial
dimension by half without using maxpooling. In the Conv6
block, both 3×3 convolutions have a stride of 1. The number
of feature maps doubles from Conv1 to Conv4 and remains
the same until Conv6. We use instance normalization [50]
after every convolution operation. Residual connections are
employed [51] for faster training. The output of Conv6
feature maps from both branches are combined and further
processed through the fully connected layers. To classify the
patch according to its position and size outlined in Table 1,
we employ a classifier with a softmax activation.

We adopt a categorical cross-entropy loss function to
pre-train the model on our patch localization task:

Lpretext (Ip,c, Îp,c) = −
1
M

M∑
c=1

Ip,c log(Îp,c) (1)

where M is the number of samples in the mini-batch. Ip,c
denotes true class c of that patch according to Table 1. Îp,c
is the soft-max probability predicted by the model for the cth

class.

2) DOWNSTREAM TASK
For the segmentation task, we use a Residual U-Net imple-
mented as shown in Figure 6. It is an encoder-decoder archi-
tecture with skip connections between the encoding layers
and corresponding decoding layers. The details of the encoder
are already discussed in the previous section. The decoder
uses strided transpose convolution to up-sample the data from
the previous layers. Each block in the decoding path has a
transpose convolution followed by concatenation from the
encoding block and then a 3 × 3 convolution operation to
reduce the output feature maps. Unlike the original U-Net
implementations, these down or up-sampling operations are
implemented at the beginning of each block.

To train the network on the downstream task, we use a
loss function based on the Dice Similarity Coefficient (DSC),
also known as the Sørensen-Dice coefficient [52]. The DSC
is a metric to measure the similarity or overlap between
two sets. In the segmentation task, the predicted output is
the segmentation mask and it is compared against ground
truth. The DSC is widely used in medical image analysis to
quantitatively evaluate the performance of different models
on the segmentation task by measuring the degree of overlap
between the predicted regions and the ground truth [2], [4].
The DSC is defined as:

DSC(Rp,Rg) =
2

∣∣Rp ∩ Rg
∣∣∣∣Rp∣∣ +

∣∣Rg∣∣ (2)

where Rp denotes the predicted segmentation mask and Rg
denotes the ground truth for a particular class. The DSC
ranges from 0 to 1, where a higher value indicates a greater
degree of similarity between the predicted segmentation map
and ground truth or more accurate segmentation results. The
downstream loss function is, therefore, given as:

Ldownstream(Rp,Rg) = 1 − DSC(Rp,Rg) (3)

IV. EXPERIMENTAL SETUP
To investigate the effect of pre-training a model using
our patch localization pretext task, we use the features
learned by the pre-trained encoder to initialize the U-Net
encoder on the segmentation task. The decoder of U-Net is
randomly initialized. Following that, we train U-Net on the
segmentation task on three different datasets using different
fractions of labeled training data.
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FIGURE 4. Conceptual diagram of our self-supervised patch localization method.

FIGURE 5. The Siamese network architecture to predict the location of the patch from the original image.

A. PRETEXT TASK DATASET
We have used 110k images from the COCO dataset [53]
without using labels. These images have been converted into a
single-channel grayscale image. Additionally, we have added
37k CT scan images from the pancreas dataset, resulting
in a total of 147k images. The CT images have undergone
preprocessing steps outlined in Section IV-C. Finally, the CT
images were normalized to [0,255] to ensure that both natural

images and CT images have the same range of grayscale
values, so they can be processed and analyzed together
effectively.

B. DOWNSTREAM TASK DATASETS AND SPLITS
We use three CT scan datasets from the MICCAI’18 medical
segmentation decathlon challenge [54] to investigate the
benefits of our proposed method. Examples of the CT scan
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FIGURE 6. U-Net with residual connections and transpose convolution for up-sampling.

FIGURE 7. Sample CT scans and corresponding ground truth (GT) for pancreas, spleen, and lung cancer dataset.

images and corresponding ground truth segmentation masks
are shown in Figure 7.

1) PANCREAS DATASET
The pancreas dataset consists of CT scans of 281 subjects
suffering from pancreatic cancer. Segmentationmasks consist
of three different classes: background, pancreas, and tumor.
In the segmentation mask (Figure 7(b)), black denotes
the background, the pancreas class is shown in gray,
and the tumor is shown in white. We randomly selected
240 samples for training, reserving the remaining 41 samples
for validation. A total of 40k images were extracted from
these 240 volumes equivalent to 100% of the data size for
training. Following that, we split this training dataset into
five different data splits: 5%(∼2k), 10%(∼4k), 25%(∼10k),
50% (∼20k). We created 5 folds for each of these data splits.
Finally, we reported validation scores on 41 samples which
corresponds to 4.2k images. It is important to note that our
validation set is larger than the 10% split.

2) SPLEEN DATASET
The spleen dataset is composed of 41 studies, which we
divided into 32 for training and 9 for validation. The training
data was further partitioned into five different subsets by
the number of studies and images they contain as follows:
(1) 2 studies (400 images), (2) 6 studies (1.2k images),
(3) 11 studies (2.3k images), (4) 17 studies (3.9k images), and
(5) the complete training set, consisting of 6800 images.

3) LUNG CANCER DATASET
This dataset includes 63 CT scans of patients with non-small
cell lung cancer. As shown in Figure 7(f), detecting lung

cancer from a CT scan image is a difficult problem compared
to segmentation of the pancreas and spleen. We randomly
chose 50 samples for the training dataset. The remaining
13 samples, which amount to 3.4k images, were retained
for validation purposes. From the training dataset, a total of
13k images were extracted. Segmentation of lung cancer was
the most challenging task among the three tasks used in our
experiments due to the very small size of the cancer nodule.
We created only three smaller data splits from the training
dataset with 1.2k, 2.3k images, and 4.7k images because
reducing the dataset size can lead to a significantly lower
segmentation score and the model may start overfitting. It is
important to note that the validation data is not used in the
pre-training of pretext tasks.

C. PREPROCESSING
The in-plane resolution of these datasets varied from 0.6 ×

0.6 mm to 0.97 × 0.97 mm and through-plane resolution
varied from 0.7 mm to 7.5 mm. We have used the bi-linear
and nearest-neighbor interpolation methods to re-sample 2D
image slices and segmentation masks from 3D volumes. All
images were re-sampled to the fixed resolution of 0.8 ×

0.8 mm. For the pancreas dataset, the CT scan images
were clipped to a range of [−96.0, 215.0] HU values as
outlined in [4]. Subsequently, all images were normalized
using a mean value of 77.99 HU and a standard deviation
of 75.40 HU. In the case of spleen CT images, clipping
was performed within the range of [−41, 176] HU. These
images were then normalized by subtracting the mean value
of 99.29 HU and dividing by the standard deviation of 39.47.
Lung CT images were clipped to a range of [−1024, 325] HU,
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followed by adding the mean value of 158.58 and dividing
by the standard deviation of 324.70 HU. All images and
segmentation masks were resized to 256 × 256 pixels.

D. DATA AUGMENTATION
For both the pretext and downstream task, a data augmen-
tation pipeline is used. In our pipeline, we employ a range
of techniques to enhance input data variability using the
Monai [55] framework, consisting of the following steps:

1) Intensity scaling: we scale initial intensity values from
[0, 255] to [−1, 1] to speed up convergence.

2) We randomly rotate patches by an angle θ ranging
from −10◦ to 10◦.

3) Gaussian noise is applied to the data with a mean
of 0.5 and a standard deviation of 0.5 to enhance the
model’s generalizability.

4) Coarse dropout is applied by creating 5 holes of
10 × 10 dimensions in the input data. This dropout
technique helps to learn spatial invariance, making it
more robust to missing or occluded regions.

5) Gaussian smoothing is applied with a sigma that
ranges between 0.25 and 1.2.

6) Shift intensity: finally, we include intensity variation
by randomly adjusting pixel values within ± 0.2 of its
original value, allowing the model to learn to handle
differences in brightness and contrast.

These probabilistic augmentations are added to the data
augmentation pipeline with probability p varies from
0.1 to 0.3.

E. TRAINING DETAILS
1) PRETEXT TASK
We have employed a PyTorch-based implementation for the
pre-training of the Siamese model using both natural images
and medical image datasets. The pretext model was trained
over 150 epochs using a batch size of 512 on an NVIDIA
A100 40GB GPU. To ensure a smooth start to the training
process we used a warm-up of 5 epochs. We adopted the
Layer-wise Adaptive Rate Scaling (LARS) [56] optimizer
with a base learning rate of 0.1 and the weight decay was
set to 1e-05. We reduced the learning rate by half at 50, 90,
and 120 epochs. The network was trained until the validation
loss reached convergence (requiring a total training duration
of 10 hours).

2) DOWNSTREAM TASK
The downstream segmentation model was trained with a
batch size of 64 over 300 epochs using an NVIDIA A100
40GB GPU. We used the Adam optimizer [57] with learning
rate 1e-4; weight decay 1e-5; and default beta values (β1 =

0.9, β2 = 0.999). The data augmentations specified in
section IV-D were again used. As discussed previously,
the Dice loss function (3), was used to train the model
on the downstream task. For the pancreas and spleen datasets,
the Dice loss was calculated by considering the background
class. However, the Dice loss function was employed for

FIGURE 8. Comparison of our method with randomly initialized encoder
and other pretext task-based methods: relative patch location (RPL),
rotation prediction network (RotNet) within a standard deviation.

TABLE 2. Transfer learning on spleen and lung cancer dataset. Rotnet,
RPL and PatchLoc methods are pre-trained using COCO and pancreas CT
datasets.

the lung cancer dataset without considering the background,
based on the observation that the ratio of lung cancer
(positive) to the background (negative) was very small. The
models’ performance on the validation dataset was monitored
during training, and the epoch where the model yielded
the best performance on the validation set was reported.
No post-processing was applied.

F. EVALUATION
The Dice score (2), was used for the evaluation of the
downstream tasks by considering the foreground class. The
spleen and lung datasets each contain a single foreground
class, while the pancreas dataset comprises two classes:
pancreas and tumor. As a result, for the pancreas dataset, the
mean DSC was computed for the pancreas and tumor classes.

V. RESULTS AND DISCUSSION
We evaluated our results by comparing them with the
performance of an encoder initialized with random weights
and an encoder pre-trained using the rotation prediction
task [17] and the relative patch location pretext task [15].
We implemented these tasks to process grayscale natural
images and medical images.
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TABLE 3. Statistical t-test results. Positive differences indicate that the PatchLoc dice score is higher than other comparing methods and p-value ≤ 0.05
indicates that the results are statistically significant.

FIGURE 9. Visual segmentation outcomes for the Spleen dataset are illustrated. The initial row signifies a 5% data split, followed by rows
indicating 10%, 25%, and 50% data splits sequentially.

Rotation prediction is originally proposed by
Gidaris et al. as a simple yet effective pretext task for natural
images. In this task, an input image is rotated by four
angles (0, 90, 180, or 270 degrees) before propagating to
the network, and the network is trained to predict the correct
rotation. This four-class classification problem is solved by
using the categorical cross-entropy.

In Relative patch location [15] task, a network is trained
to predict the relative location between a central patch
and a second patch chosen at random from one of its
eight neighboring locations, which are sequentially numbered
from 1 to 8. The Siamese network is used to process two

patches and the categorical cross-entropy is used as a loss
function.

Figure 8 shows the segmentation results from the pancreas
dataset. The model pre-trained using our patch localization
task outperformed the randomly initializedmodel with a good
margin at small label fractions (5% and 10%). When only 5%
data is available for training, ourmethod achieves amean dice
score of 0.4512 which is higher by 7.81% than the model
trained with random weights. Furthermore, in the case of
5% labeled data, our approach yields notable improvements
when compared to a network pre-trained on predicting
relative patch location (mean dice score: 0.4116) and rotation
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FIGURE 10. Visual segmentation outcomes for the Lung dataset are illustrated. The initial row signifies a 5% data split, followed by rows
indicating 10%, 25%, and 50% data splits sequentially.

prediction task (mean dice score: 0.4283). We believe that
our pretext task is difficult compared to the relative patch
location task because it consists of patches with multiple
scales and more patches than the RPL task. However, we are
providing a complete image as opposed to the center patch
(RPL) and it helps to map features from a complete image
andmulti-scaled patch information in the hidden latent space.
Also, it is important to note the initialization produced by
our methods is more robust than RPL and Rotnet because the
standard deviation is smaller for our approach as compared
to the rest of the approaches. Finally, the benefits produced
by the pretext task-based approaches become negligible for
large-label datasets.

We also examined the impact of transferring the features
discovered through the pretext task on two additional CT
datasets: 1) spleen and 2) lung cancer dataset, to illustrate
the generalizability of our method by demonstrating the
consistency across different datasets. Mean dice scores are
reported in Table 2. Similar to the pancreas dataset, PatchLoc
significantly enhances segmentation results on the spleen and
lung cancer datasets, particularly in situations where there is a
shortage of labeled data. Furthermore, our approach performs
better than RPL, rotation prediction, and randomly initialized
models in most cases.

The visual results for the spleen, lung, and pancreas dataset
are shown in Figure 9, 10, and 11 respectively with each
figure containing a matrix of images. The rows of these
matrices of images represent a 5%, 10%, 25%, and 50% data

split respectively. As the proportion of labeled data increases,
the segmentation quality is enhanced. Whilst Figure 9 and 10
show that PatchLoc results in good segmentation on the
spleen and lung dataset respectively, Figure 11 shows
that results for the pancreas dataset demonstrate room
for improvement in all tested methods. The segmentation
problem in the pancreas dataset The performance on the
pancreas dataset is limited because it involves addressing
a multiclass segmentation challenge, characterized by high
class imbalance, particularly for the tumor class. However,
our results are better than one of the state-of-the-art methods
nnUnet [4] which reported a mean dice score of 0.5619 for
2D network.

TABLE 3 quantifies the performance differences between
Patchloc and the other methods using a statistical t-test.
Particularly in the low data regime, PatchLoc provides a
statistically significant gain over other initialization strategies
with p-value ≤ 0.05. Available compute resources and data
limit the number of train-test splits for use in the t-tests.
As a result, statistical significance cannot be shown for
all individual datasets, as indicated in table 3 by p-values
exceeding 0.05. For this reason, we also performed the
t-test by combining the mean dice score for each data split
across three datasets. These results, shown under ‘Combined
datasets’, show that our PatchLoc method outperforms
comparator methods with statistically significant results.
Even though RPL resembles PatchLoc closely, PatchLoc
performs better than RPL. As shown in table 2, the mean dice
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FIGURE 11. Visual segmentation outcomes for the Pancreas dataset are illustrated. The initial row signifies a 5% data split, followed by
rows indicating 10%, 25%, and 50% data splits sequentially.

TABLE 4. Effect of using non-medical images in pre-training. pre-training
a model using grayscale natural images and medical images improves
results.

score for PatchLoc is higher than RPL in all cases and in most
of the cases the results are statistically significant.

Finally, we investigated whether using grayscale natural
images for pre-training a network helps to learn generic
features as compared to using only CT scan images for pretext
tasks. In this experiment, we focussed on only a limited data
setting because, for the large data region, all initialization
schemes have achieved comparative performance. Table 4
shows the mean DSC on the pancreas dataset using a
5% data split. Leveraging grayscale natural images along
with CT images in pre-training helped to learn better
feature representation using our task as compared to RPL
and Rotnet. Rotnet, particularly, struggles when the data
exhibits a mesh-like structure, and training it solely on CT
scan images is suboptimal. These self-supervised tasks can
easily overfit to data. This provides a potentially promising

pathway for creating a pretext task that makes use of both
real-world natural images andmedical data to enhance feature
representation.

One of the limitations of PatchLoc and other pretext tasks
is that it trains only the encoder and the decoder is randomly
initialized.Moreover, when the segmentationmodel is trained
on a relatively larger labeled dataset, the original features
learned by the pretext task change to a great extent. This
leads to a decline in performance gain. This finding is
consistent with [23], [24], and [35] which also found greater
performance increases for models trained on smaller label
fractions but with diminishing gains when trained on larger
label fractions.

VI. CONCLUSION
We propose PatchLoc, a novel pretext task of patch
localization and we adopt it for tumor segmentation in
medical images. Specifically, we investigate the effectiveness
of our proposed approach across three public CT datasets.
The results from our experiments indicate that employing
PatchLoc in scenarios with limited labeled data leads to
a substantial improvement in segmentation accuracy as
compared to training from scratch, or using other pretext
tasks. Furthermore, we demonstrate that adding natural
images in the pre-training of our patch localization task offers
additional gains as compared to training only on medical
images. Future research could involve applying this strategy
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to 3D data, where a 3D pre-trained model can be trained
directly utilizing pretext tasks [49], [58].
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