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ABSTRACT The widespread use of visual surveillance in public areas puts individual privacy at stake
while also increasing resource usage (energy, bandwidth, and computation). Neuromorphic vision sensors
(or event cameras) are considered viable solutions for privacy issues; since event cameras only capture
scene dynamics, they do not capture detailed RGB images of individuals. However, recent deep learning
architectures have enabled the reconstruction of high-fidelity images from event sensor data that could reveal
individual identity information. As a result, it reintroduces privacy risks for event-based vision applications.
In this work, we focus on protecting the identity of individuals from such image reconstruction attacks by
anonymizing event data. To achieve this, we present an end-to-end network architecture jointly optimized
for the twofold objective of preserving privacy and performing a downstream computer vision task. The
proposed network learns to scramble events, thereby degrading the quality of images that potential intruders
could reconstruct. We demonstrate the application of our framework in two challenging computer vision
tasks: person re-identification (ReId) and human pose estimation (HPE). To this end, we also present and
evaluate the first event-based person ReId dataset, Event-ReId.We validate the privacy-preserving efficacy of
our approach against possible privacy attacks through extensive experiments: for person ReId, we utilize the
real event-based Event-ReId dataset and synthetic event data simulated from the SoftBio dataset; for HPE,
we use a publicly available event-based dataset DHP19. The results of both tasks show that anonymizing
event data effectively protects private information with minimal impact on the subsequent task performance.

INDEX TERMS Neuromorphic vision, event camera, event anonymization, privacy-preserving, person
re-identification, human pose estimation.

I. INTRODUCTION
Intelligent surveillance systems used for security and mon-
itoring are installed in both personal spaces (e.g., home
surveillance) and public urban areas (including hospitals,
banks, shopping malls, airports, and streets). While these
always-connected vision sensors are useful, they bring up
several concerns: 1) ethical debates over balancing safety
and security needs against individual privacy rights; 2) the
risk of unauthorized access to sensory data, which could
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compromise user privacy; 3) the high resource demands of
extensive sensor networks, such as energy, bandwidth, and
computing power. A notable advancement in this field is
the adoption of neuromorphic vision sensors, also known as
event cameras. These sensors differ from conventional RGB
cameras because they capture only brightness changes in the
scene, not detailed visual images of people, thus offering
a degree of privacy by design. Additionally, their ultra-low
resource usage makes them highly suitable for continuous
operation. Finally, their high dynamic range allows them to
function effectively in various lighting conditions, including
those that are typically challenging. Similar to conventional
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RGB cameras, event cameras are capable of performing a
range of vision tasks. These include object recognition [1],
human pose estimation [2], [3], detection and tracking [4],
[5], [6], and person re-identification (ReId) [7].

Event cameras output asynchronous events triggered with
ultra-low latency when the brightness changes at the pixel
level surpass a given threshold. The nature of the event stream
is asynchronous; therefore, it does not create conventional
images. Instead, it generates a data stream composed of
activated pixel positions ( i.e., (u, v) coordinates) and
their polarity at a given timestamp. These event streams
were considered privacy-preserving [7] due to their lack
of capturing detailed visual information that would enable
the recognition of individual characteristics, such as faces,
by either humans or algorithms. However, event streams
encode the entire visual signal in highly compressed form
and could, in principle, be decompressed to retrieve a
high-quality video stream. Recently, deep neural network-
based event-to-image conversion models [8], [9], [10],
[11] have demonstrated impressive abilities in recovering
gray-scale images from event streams, posing a potential
risk to the privacy aspect of event-based vision applications.
As illustrated in Figure 1(a), event-to-image [8] model
reconstruct a detailed image that reveals personal identity
information; consequently, this implies that event cameras
can no longer be deemed inherently privacy-preserving.

To counteract privacy attacks (event-to-image) on event
data, Du et al. [12] recently introduced a manually designed
encryption framework to counteract privacy attacks on
event data. This method uses spatial chaotic mapping
to scramble event positions and invert their polarities.
Consequently, the spatial information in the encrypted event
stream becomes distorted due to the 2D position scrambling,
and event-to-image conversion techniques are ineffective
in producing high-quality images. However, the limitation
of this encryption approach is the incompatibility with the
direct execution of downstream computer vision tasks. The
encrypted event stream primarily prevents privacy attacks
during transmission or storage, requiring decryption prior to
any practical application.

In this work, we introduce a learning-based privacy-
preserving strategy known as event-stream anonymization.
This approach aims to prevent event-to-image methods
from converting event data to high-quality images that may
contain privacy information (refer to Figure 1 (b)) while
still facilitating the execution of downstream tasks, such as
person ReId and human pose estimation (HPE). The event
anonymization approach focuses explicitly on degrading the
quality of images that a privacy attacker might reconstruct
(i.e., event-to-image module [8]) while jointly optimizing a
downstream task (e.g., ReId, HPE) through an end-to-end
manner.

In general, a privacy-preserving model should preserve
key visual privacy information, including identity (such as
faces), gender, race, color, etc [13], [14]. However, the
definition of privacy information for a privacy-preserving

model may differ based on its application. In principle, the
main objective of our privacy-preserving model within the
event-based vision system is to prevent image reconstruction
attacks and anonymize personal identity information. In other
words, the proposed framework ensures that individuals
remain unrecognizable in the resultant gray-scale images
even if an attacker attempts to reconstruct images from an
anonymized event stream. An example scenario involves
an attacker using a person’s name and photo and aiming
to identify that person by maliciously accessing the event
camera network with the intent of reconstructing image data.
The proposed anonymization framework averts this privacy
invasion yet still enables downstream tasks of ReId and
HPE by the surveillance system. For instance, the two tasks,
anonymization and ReId, seem to have contrasting objectives.
This represents the actual challenge of our work. In any case,
the person ReId only aims to associate images of a person in
the event camera network, whereas anonymization is about
protecting a person’s identity or other biometric traits.

The primary goal is to achieve privacy-preserving person
ReId and HPE in event-based vision; thus, we evaluate
the performance of event anonymization on downstream
tasks of ReId and HPE along with measuring its ability
to protect privacy. The event anonymization framework’s
potential in privacy protection is tested in two ways:
(i) first, the robustness against image reconstruction attack
(event-to-image) is measured by the (poor) quality of the
reconstructed gray-scale images; (ii) second, anonymizing
identity information is assessed by verifying that person
identification through classic full-body or face recognition
is hardly possible using reconstructed images. Moreover, the
extraction of gender attributes from reconstructed gray-scale
images is regarded as sensitive private information. We also
quantify whether the attacker could attempt to determine
an individual’s gender (male or female) from reconstructed
images. Finally, the most effective privacy protection is
assured when no adversary can learn or recover the privacy
information by attacking the privacy-preservingmodel. Thus,
we test event anonymization robustness to inversion attack,
where an attacker attempts to reverse the anonymization
(see Figure 1 (d)). In another scenario, if the attacker
retrains the image reconstructionmodule to infer high-quality
images from the anonymized data, this threat is known
as adversarial learning. The proposed approach effectively
anonymizes the event stream with minimal impact on
person ReId performance accuracy, as shown by compre-
hensive tests on simulated event data and real event-based
person ReId dataset, Event-ReId. Similarly, the proposed
approach also achieves analogous results for human pose
estimation.

This paper is the extension of our earlier work [15], which
demonstrates the preliminary results of the proposed method
for person ReId task only by utilizing a relatively small
event-based ReId dataset. In contrast to the [15], this work
not only focuses on a downstream task of person ReId but also
investigates a human pose estimation task as well; we perform
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FIGURE 1. Converting an event stream into a high-quality gray-scale image, i.e., Event-to-Image [8], is regarded as a Privacy Attack, which
could reveal an individual’s personal identity information. (a). In response, we have developed a novel network architecture for Event
Anonymization (b) to counteract such privacy threats by scrambling the event stream. This scrambling ensures that reconstruction quality
degrades while the effectiveness of the event-based applications, e.g., person ReId or human pose estimation (c), remains unaffected.
Furthermore, we explore the scenario of an Inversion Attack (d), where an adversary might try to reverse our anonymization process to
reconstruct a high-quality image (e).

the following new analysis, bringing in new contributions to
the relevant domains.

• We extend the event anonymization approach to another
computer vision application, such as human pose
estimation (HPE). Integrating the event anonymization
framework into HPE tasks ensures maintaining indi-
vidual privacy in applications like activity recognition,
where pose data is crucial but should not contain
personal identity information. We implement the same
pipeline of event anonymization [15] but with different
downstream applications of HPE.

• While the initial experiments on the small event-based
ReId dataset yielded promising results, evaluating the
event-based person ReId approach on a larger dataset is
essential. Hence, we captured additional data for event-
ReId, increasing the number of identities from 33 IDs
to 60 IDs, and we named the extended version of the
dataset Event-ReId-v2. With this newly acquired, larger
dataset, we repeated all the experiments from [15] and
reported the updated results.

• We analyze the privacy aspects of the event anonymiza-
tion model against a wider range of potential privacy
threats. This includes gender classification and adversar-
ial learning attacks, in addition to those explored in [15].

II. RELATED WORK
This section first reviews the current available real and
synthetic event-based datasets. Then, presents a review

of the recent privacy-preserving approaches in standard
(RGB) and event-based vision sensors. Finally, we discussed
reviews of the privacy-preserving person ReId approaches
and event-based person ReId and HPE methods.

A. EVENT CAMERA DATASETS
Due to the relatively new vision-sensing technology, only a
few event-based datasets that are captured with an event cam-
era are available. Among these, human pose estimation [2]
dataset, action recognition [16], [17], [18] dataset, face
expression recognition [19] dataset, and car recognition [20],
[21] datasets. To address the limited availability of event
data, researchers have alternatively suggested the generation
of semi-synthetic and synthetic event-based datasets. This
initiative aims to stimulate new research utilizing event
cameras for various tasks, as highlighted in Rebecq et al.
work [22].

Semi-synthetic datasets such as those in [23] and [24]
convert standard video into event data. For instance,
[23] transforms VOT2015 and UFC50 video datasets into
Dynamic Vision Sensor (DVS) data by recording them from
a 60 Hz LCD monitor using a DVS camera. Similarly,
[24] creates event-based versions of MNIST and Caltech101
by displaying their frames on a screen and capturing the
data with an event camera mounted on a pan-tilt motor.
Moreover, generating event-based synthetic datasets can be
facilitated using event camera simulators [22], [25], [26].
These simulators are software tools designed to emulate the
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functionality of physical event cameras, generating synthetic
event data that can be used for research and development
purposes.

B. PRIVACY-PRESERVING IN STANDARD (RGB) VISION
Several techniques have been formulated to address privacy
protection challenges in standard RGB cameras. These
approaches [14], [27], [28], [29], [30] fall into two categories:
software and hardware level defense against privacy attacks.
Software-level protection methods [14], [29] use various
computer vision algorithms to modify the representation of
images post-acquisition. These methods utilize adversarial
training to develop encodings that protect privacy, discarding
sensitive visual information in image data but maintaining
key features necessary for inference tasks and protecting
against adversarial attacks. Conversely, the hardware-level
protection framework operates directly on the vision sensor,
adding an extra layer of security by eliminating sensitive
data at the point of image capture. Most recent methods
primarily focus on adjusting the distortion parameters of a
virtual lens through adversarial training. This technique aims
to obscure human identity information while still capturing
the vital visual data needed for computer vision tasks,
as discussed in studies [27], [28], [30]. Actual lenses can
then be produced based on the parameters learned in this
process.

Besides, in the current literature, privacy-preserving meth-
ods in [31], [32], [33], and [34] illustrate that federated
learning offers an alternative approach for integrating privacy
in computer vision systems. These methods underscore
that federated learning ensures privacy by training models
on-device with local data, only sharing model improvements
rather than the data itself, thereby significantly reducing
privacy risks associated with central data storage and
processing.

C. PRIVACY-PRESERVING IN EVENT-BASED VISION
Event cameras are often considered privacy-preserving [7],
[35] because they inherently eliminate detailed visual private
data such as face details. However, their event stream
compactly encodes the entire visual signal. Recent studies
have shown that it is possible to uncompress this data
and retrieve a standard (gray-scale) visual representation.
This decompression has been achieved using different
methods, such as patch-based dictionaries [36], variational
models [37], or deep learning-based techniques [8], [9], [10],
[11]. These methods of converting event data to images
suggest that event cameras might not be reliably privacy-
protective anymore, as attackers could train models to breach
the anonymity they offer.

Du et al. [12] explore the privacy aspects of event cam-
eras, analyzing potential threats such as the reconstruction
of gray-scale images and privacy-related classifications.
In addition, Du et al. [12] introduced a manually designed
encryption framework that uses spatial chaotic mapping to

scramble event positions and invert their polarity; as a result,
event-to-image methods failed to recover images. Neverthe-
less, this framework is primarily effective for protecting the
event stream during transmission and storage. The visual data
within the event stream becomes distorted due to the 2D
position scrambling; therefore, computer vision tasks (e.g.,
detection, tracking, personReId, human pose estimation, etc.)
can not be performed using these encrypted streams and must
be decrypted before being utilized.

Contrary to other approaches, our method employs a
learning-based, end-to-end strategy for privacy preservation,
which scrambles event streams in a way that causes image
reconstruction techniques to yield degraded images. Despite
this, themethod preserves the essential information to execute
computer vision tasks on these scrambled events. To evaluate
the fidelity of the event anonymization framework, we set
our privacy-preservingmodel for two diverse and challenging
computer vision tasks: person re-identification (ReId) and
human pose estimation (HPE).

D. EVENT-BASED PERSON RE-IDENTIFICATION
Extensive research has been conducted on the person ReId
problem in standard RGB camera networks, and with deep-
learning-based ReId approaches [38], [39] rapidly enhancing
performance. While the majority of ReId systems are
designed for traditional RGB cameras, various approaches
have been developed for multi-modal person ReId. These
include techniques like cross-modal RGB-infrared [40], [41]
and systems utilizing RGB-D cameras [42], [43].

Presently, ReId poses significant privacy challenges, mak-
ing the protection of individuals’ privacy a critical issue [44],
especially considering the General Data Protection Regula-
tion (EU GDPR). Only a few methods [44], [45], [46] tackle
privacy issues specific to person ReId. Dietlmeier et al. [45]
applied face blurring techniques to anonymize personal
identities and implement the person ReId task. On the
other hand, Dou et al. [44] developed a privacy-preserving
approach called person identity shift (PIS), which effectively
conceals the absolute identity of individuals in images
while maintaining the association between image pairs.
Additionally, Zhao et al. [46] introduced a cloud-based,
privacy-preserving solution for person ReId. The framework
enables cloud servers to execute ReId processes on encrypted
data, subsequently delivering the final ReId results in an
unencrypted format (in plain text).

A major drawback of all these methods is their failure
to guarantee end-to-end privacy protection within the ReId
system. The risk of unauthorized access to surveillance cam-
eras remains a substantial privacy concern. Ahmad et al. [7]
introduced a novel event-based person ReId system to tackle
this issue. Event cameras, which record changes in a scene
without producing traditional RGB images, offer a different
approach. Ahmad et al. [7] demonstrated that event frames
primarily provide edge and texture information, potentially
useful for ReId purposes. However, as previously discussed,
event-based data can still reveal personal traits by employing
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deep learning methods [8], [10], [11] that can generate high-
quality gray-scale images from event streams, eventually
compromising privacy.

E. EVENT-BASED HUMAN POSE ESTIMATION
Human pose estimation (HPE) is considered a fundamental
problem in computer vision due to a broad range of appli-
cations (e.g., motion analysis, healthcare, sports, augmented
reality (AR), virtual reality (VR), autonomous driving,
human-computer interaction, etc.) [47], [48], [49]. The HPE
task has been exhaustively studied in traditional (RGB) vision
sensors, and deep learning approaches have already produced
significant advancements and impressive results [47], [50],
[51], [52]. The current HPE techniques rely on standard
RGB images without taking privacy into account. However,
Hinojosa et al. [27] developed a privacy-preserving HPE by
designing an optical lens using deep optics that hides personal
information while enabling HPE. Besides, HPE has several
real-time applications where low-latency pose prediction is
a key feature, including gaming, accident detection, and
real-time movement feedback in rehabilitation treatment.
Therefore, considering the advantages of event-camera over
traditional cameras, several state-of-the-art methods [2],
[3], [53], [54] have been proposed to solve 2D/3D human
pose estimation in event-based vision. Calabrese et al. [2]
accumulate event-stream into frames to predict 2D poses
frommultiple views and then, through triangulation, estimate
3D pose. Scarpellini et al. [3] predict 3D pose from a single
camera view with spatiotemporal voxel grids as an input
instead of event frames.

III. EVENT-REID: A NEW DATASET AND BENCHMARK
Initially, we aim to build a privacy-preserving person ReId
system using an event-cameras network. Yet, the research
community lacks a dataset captured with real event cameras,
which are also appropriate for benchmarking person ReId
methods. Hence, regardless of the advantages of event
cameras in a surveillance application, research has been held
back by the absence of event data, and so far, only simulated
experiments have been deployed [7]. To solve this problem
and to facilitate new research on this topic, we captured
the event-based person ReId dataset named Event-ReId-
v2 (extended/second version of the previous Event-ReId
dataset [15]).
The current Event-ReId-v2 dataset comprises 60 identities

walking across a disjoint field of view of four event cameras
integrated through a surveillance network. The cameras are
installed at various positions and angles of tilt, and each
one is paired with an RGB camera in a stable stereo setup.
This arrangement ensures they capture approximately the
same scene and are synchronized using the network clock,
see Figure 2. Each RGB camera captures data at a frame
rate of 33 FPS with a resolution of 640 × 480 pixels,
resulting in around 27K images. On average, each camera
records 120 frames per person. The resolution of the event
cameras matches that of the RGB cameras, and the duration

TABLE 1. Event-based dataset size comparison.

of recording for each stream is approximately ≈4 sec, the
same for both sensors, lasting around 4 seconds. Additionally,
within the 60 identities captured, 9 subjects are wearing
face masks. A total of 57 subjects appear in all four camera
pairs, while the rest are seen in three camera views. The
dataset encompasses a range of variations, including changes
in lighting, poses, and viewpoints. We manually annotate the
person and face bounding boxes on both event and RGB
streams; the event ground truth bounding box is synchronized
with RGB bounding boxes.

Our proposed dataset demonstrates a favorable size relative
to existing event-based datasets, notably in the domain
of activity recognition n-HAR [16] and DailyAction-DVS
[17], and human pose estimation dataset DHP19 [2] (see
comparisons in Table 1).

Note: The latest version of event-based person ReId
dataset Event-ReId-v2 can be downloaded from here
https://doi.org/10.5281/zenodo.10398002

IV. PROPOSED METHOD
The proposed pipeline is composed of three primary com-
ponents: the event anonymization block, which removes
privacy-related information from the event stream; the event-
to-image reconstruction block that acts as a privacy attacker;
and the downstream block, which executes downstream com-
puter vision-related tasks (such as person ReId and human
pose estimation) on the anonymized event stream. In the
following section, we begin by detailing the representation of
input events to the network and then explain each module in-
depth, detailing their implementation and functionalities for
preserving privacy and downstream tasks. We conclude this
section with an overview of the joint optimization method.

A. INPUT EVENT REPRESENTATION
An event camera generates an asynchronous stream of events
that encodes the timestamp, location, and polarity of bright-
ness changes (indicating an increase or decrease in intensity)
[55]. Each event solely provides limited information about
the appearance of the scene. Asynchronous event data are
often transformed into grid-like formats, such as event frames
or 2D histograms [56], time surface 2D maps [20], and
voxel grids [57]. This preprocessing step aids in both the
visualization of the data and the extraction of valuable
information, making it compatible with standard frame-based
methods, for example, deep convolutional neural networks
(CNNs) [20], [56], [57].

Our network takes a voxel grid, denoted as Zhu, as its
input, following the approach proposed in [57]. A voxel grid
is essentially a three-dimensional space-time histogram of
events created by dividing the time domain into discrete
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FIGURE 2. Event-ReId dataset samples: RGB and event cameras views of all four sensors.

intervals, with each voxel corresponding to a specific pixel
and time period. Spatiotemporal coordinates, xp, yp, tp, lie on
a voxel grid such that xp ∈ {1, 2, . . . ,W }, yp ∈ {1, 2, . . . ,H},
and tp ∈ {t0, t0 + 1t, . . . , t0 + B1t}, where t0 is the initial
timestamp, 1t is the temporal bin size, and B is the number
of temporal bins and W, H are the event camera width and
height, respectively. We adopt the voxel grid representation
for three key reasons: i) to ensure that the model is entirely
differentiable; ii) because the event-to-image methods in our
proposed model also depend on a voxel grid format; iii) a
voxel grid effectively preserves the temporal information
present in event streams.

B. NETWORKS AND MODULES
Event-Stream Anonymization Block: In our framework,
as shown in Figure 3(a)), the anonymization network
modifies the event streams. This modification is crucial to
prevent image reconstruction techniques from transforming
events into gray-scale images that could disclose sensitive
information, such as facial features. Concurrently, this
module is designed to sustain essential spatial information
necessary for the effective execution of downstream tasks,
e.g., person ReId and human pose estimation (HPE).
The anonymization network incorporate a convolutional
autoencoder [58] Ean which processes a raw event-voxel
Xe ∈ RB×W×H and output anonymized event-voxel X̂e ∈

RB×W×H .The adoption of an autoencoder-like architecture is
primarily based on the requirement that this module should
be capable of duplicating the event stream in a worst-case
scenario, ensuring that the downstream task can be carried
out. The autoencoder architecture comprises 4 convolutional
layers, each equipped with a filter size of 3 and a stride
of 1.

Image Reconstruction Block: The image reconstruction
module (Figure 3(b)) consists of a pre-trained E2VID
network [8] that is a recurrent neural network that recon-
structs high-quality gray-scale images from the stream of
events. In this block, any event-to-image method, e.g.,
[9], [10], [11], can be integrated as a privacy attacker.
E2VID translates a continuous stream of events into a
sequence of images. To achieve this, the incoming stream
of events is partitioned into sequential (non-overlapping)
spatiotemporal windows, each containing a fixed number of
events. Similarly, we also used a fixed number of events
(Sec IV-A) for the reconstructionmoduleErec. The voxel-grid
X̂e is processed by Erec to reconstruct the target gray-scale
image.We thus encourage degradation in the recovered image
to prevent identity information leakage. Note that the weights
of this module are not updated during training.
Downstream Task Block
(i) Event-based Person ReId: Person ReId methods

usually aim to learn a vector representation, usually a feature
embedding from a CNN, of images to perform retrieval and
recover images belonging to the same person Id. In our
case, ReId is performed on event-stream data instead of the
standard RGB signals.

We employ a ResNet-50 [59] pre-trained on ImageNet
as the backbone for feature embedding (Figure 3(c) top).
Unlike the event-based ReId in [7], which utilizes event-
frames, our ReId module Ereid takes anonymized event-
voxels X̂e ∈ RB×W×H as input. We modify the original
ResNet architecture to accommodate the B input channels of
the voxel-grid representation and compute a 256-D feature
embedding for ReId. The ReId model uses classification loss
(cross-entropy) and triplet loss for all experiments and is
jointly trained with the anonymization network.
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FIGURE 3. The complete pipeline of the proposed method. a) The Event Anonymization network processes raw event data (in voxel-grid
form) and produces an anonymized event. A structure loss is applied to ensure the anonymization network maintains the structural
information in the output anonymized voxel grid. b) The Image Reconstruction block (utilizing the pre-trained E2VID model [8]) acts as a
privacy attack and tries to recover a gray-scale image. The anonymization network is designed to maximize reconstruction loss, thereby
protecting personal identity information. c) The Person ReId backbone is trained on the anonymized event data, with the anonymization
network in an end-to-end manner.

(ii) Event-based Human Pose Estimation: Deep learning-
based pose estimation frameworks learn to predict body
keypoint coordinates from input images. These approaches
either directly regress the body keypoint coordinates or, via
heatmap regression, estimate heatmaps that are produced
by adding Gaussian kernels to each joint’s position in the
ground-truth [48], [60].

We design our HPE module (Figure 3(c) bottom) based
on [3] and [61] approaches that combine heatmap and
coordinate regression by applying soft-argmax operator on
the 2D predicted heatmap to extract the normalized joints
coordinates. We utilize the same backbone we use for person
ReId with the same settings, except we remove ResNet-50
[59] layers after the second residual block following [3].
We process the anonymized event-voxel X̂e ∈ RB×W×H with
our HPE module Ehpe, first predict 2D heatmap Ĥi for each
joint and then apply soft-argmax to get normalized joints
coordinates Ĵi = (x̂i, ŷi):

Ĥi = Ehpe(Ean(Xe)). (1)

Ĵi = soft.argmax(Ĥi). (2)

The HPE module Ehpe is jointly trained to predict the
2D heatmaps along with the normalized body keypoint

positions; as a result, we estimate 2D human pose. For 3D
pose estimation, we first estimate the 2D pose for each
camera view through our trained model, and then we apply
triangulation [2] to reconstruct the 3D position.

C. END-TO-END TRAINING
Our ultimate goal is to learn the parameters of anonymization
network Ean such that: i) event-to-image techniques cannot
recover intensity image from Ean output that can disclose
private visual information; ii) downstream task achieves the
best performance or at least does not experience a significant
drop compared to using a non-anonymized event stream. The
three modules are combined as shown in Figure 3 so that the
output of Ean (anonymized stream) is the input of Erec and
Edt at once. We jointly train all the Ean and Edt modules
in an end-to-end manner; each loss is described in detail
below.
Ean has the aim of neutralizing the reconstruction

attack; thus, ultimately, it must be trained with the
objective of degrading the quality of the reconstructed
images Irec:

Irec = Erec(Ean(Xe)). (3)
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To evaluate the quality of the reconstructed image Irec in
comparison to the ground-truth image Igt , we employ the
structural similarity index (SSIM) [62].

SSIM [58], [62] is a metric used to measure the similarity
between two images. It is based on the perception that
the human visual system is highly adapted for extracting
structural information from a visual scene. Thus, SSIM con-
siders changes in texture, luminance, and contrast rather than
just analyzing the pixel-by-pixel differences like traditional
metrics such as Mean Squared Error (MSE) or Peak Signal-
to-Noise Ratio (PSNR).

SSIM(Irec,Igt ) =
(2µIrecµIgt + C1)(2σIrecIgt + C2)

(µ2
Irec + µ2

Igt + C1)(σ 2
Irec + σ 2

Igt + C2)
(4)

where:
• Irec and Igt are reconstructed and ground truth images,
respectively, being compared.

• µIrec and µIgt are the average pixel values of images Irec
and Igt , respectively.

• σ 2
Irec and σ 2

Igt are the variances of Irec and Igt .
• σIrecIgt is the covariance of Irec and Igt .
• C1 and C2 are constants that stabilize the division with
a weak denominator.

Our objective is to degrade the quality of the recovered
image; thus, we use the SSIM function, which is bounded by
ranges from 0 to 1. A value close to 0 in this range signifies
a lower similarity between the two images being compared.
Reconstruction Loss: Hence, during training, the Lrec loss

is maximized to ensure that the images reconstructed by the
attacker differ significantly from the real ones.

Lrec = 1 − SSIM (Irec, Igt ). (5)

Structural Loss: Additionally, since our anonymization
model transforms the raw event voxel, that might lead to
the loss of useful visual information within the event voxel,
which could significantly reduce the efficacy of downstream
tasks. To maintain the structural similarity between Xe and
X̂e, that is crucial for downstream tasks; we calculate the
structural loss as follows:

Lstruct = 1 − SSIM (X̂e,Xe), (6)

in this case, the Lstruct is minimized to preserve structure
information in output anonymized event voxel-grid.
Downstream Task Loss: Since we are performing two dif-

ferent downstream tasks; therefore, we trained our proposed
network separately for each task with the objective functions
Lreiddt and Lhpedt for ReId and HPE respectively.
ReId Loss: To implement person ReId, we adopt softmax

loss for classification and triplet loss for metric learning,
two commonly used loss functions in several deep ReId
approaches [39], [63]. The person ReId task is considered
a multi-class classification problem for basic discrimination
learning [39]; therefore, each pedestrian is treated as a
different class and uses their IDs as a classification label to

train the deep neural network. Hence, classification (or cross-
entropy) loss is alternatively called identity loss:

Lid = −

N∑
i=1

qi log(pi) (7)

where N is the number of sample identity categories or
classes, qi represents the ground truth probability (1 for the
correct class and 0 for all other classes), and pi is the predicted
probability for class i.

In addition, triplet loss is one of the most popular depths
metric losses in person ReId [63] that further improves
the discriminative property by increasing the inter-class
discrepancy while decreasing intra-class distinctness:

Ltriplet = max
(
Dap − Dan + α, 0

)
(8)

whereDap is the distance between the anchor and the positive
sample in the embedded space, Dan denotes the distance
between the anchor and the negative sample in the embedded
space, and α denotes the margin between the two distances.
We use identities labeled information from training data

and apply cross-entropy loss as identity loss Lid to the output
feature vector Ereid (X̂e) and also triplet loss Ltriplet . As a
result, the final ReId loss function can be formulated as:

Lreiddt = Lid (Qid , (Ereid (X̂e))) + Ltriplet (Ereid (X̂e)) (9)

where Qid is the ids label for person ReId.
HPE Loss: During HPE training, the loss is cal-

culated between the predicted heatmap and synthetic
ground-truth heatmap (generated through 2D spherical Gaus-
sian mean-centered on the ground-truth body key points).
Typically, we can train the HPE network by minimizing MSE
loss between the output heatmap and target heatmap [48];
however, Jensen-Shannon divergence (JSD) based loss com-
bined with a geometrical loss between predicted joints and
ground-truth has proven to be effective [3], [61]. Similarly,
we apply JSD between predicted H and ground truth Ĥ
heatmaps (equation 5) and also geometric loss between
predicted joints and ground truths joints.

DJS(H ||Ĥ ) =
1
2
DKL(H ||Ĥ ) +

1
2
DKL(Ĥ ||H ) (10)

The final HPE loss is a combination of the DJS and
geometric loss (Lgeometric = ||Ĵ − J ||2):

Lhpedt = ||Ĵ − J ||2 + DJS(H ||Ĥ ) (11)

Hence, our training approach simultaneously incorporates
event-stream anonymization and downstream tasks during the
training phase, and the total cost function can be expressed as
follows:

LTotal = αLstruct + βLrec + γLdt . (12)
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V. EXPERIMENTAL DETAILS AND EVALUATION
In this section, we show the potential of our proposed
model as a method of privacy-preserving in the event-
based vision for two computer vision tasks, such as person
ReId and pose estimation with anonymized event voxel-
grid inputs. In Section V-A, we explained the evalua-
tion metrics for privacy-preserving and downstream tasks.
Then, from Section V-B to V-E, we presented event-based
privacy-preserving person ReId and HPE and their results
in detail. We additionally evaluate the efficacy of the
events anonymization network against three possible privacy
attacks, gender prediction, inversion attack, and adversar-
ial learning, explained in Sections V-F, V-G, and V-H,
respectively.

A. EVALUATION METHODS
In order to evaluate the effectiveness of our complete model
in both image reconstruction and mitigating possible privacy
invasions, we must consider the trade-off between accom-
plishing downstream computer vision tasks (like person ReId
and HPE) and maintaining privacy. Our approach involves
first passing the raw event stream through the anonymization
network during the inference stage to generate anonymized
event data. We then evaluate the downstream task and
privacy-preserving performance using the anonymized
data.
Downstream Task (ReId & HPE) Evaluation: Our main

goal is to perform computer vision tasks (e.g., person ReId
andHPE) with anonymized event data without compromising
performance accuracy. Thus, we train our downstream task
backbone on anonymized and raw events separately and then
compare their performance. We report the rank accuracy and
mean average precision for real and simulated data for the
person ReId task. While for HPE, we compute 2D and 3D
Mean Per-Joint Precision Error (MPJPE).
Privacy-Preserving Evaluation: Consider the case in

which the attacker can access the anonymized event data
and tries to disclose the person’s identity by employing
image reconstruction, e.g., E2VID [8]. To experimentally test
the robustness of our event stream anonymization approach
against the reconstruction attack, we measure the image
quality using the structural similarity index (SSIM) and peak-
signal-to-noise ratio (PSNR). Low values of SSIM and PSNR
suggest low image quality, which is what we expect to achieve
if anonymization is successful. We compute the average
SSIM and PSNR for all images in test sets of the real and
simulated datasets.

In addition, we also validate that our proposed identity
anonymization framework completely removes information
that can be used to identify the persons. Therefore, we also
formulate the privacy attack as an image retrieval and face
verification task.
(i) Image Retrieval:We consider that an attacker has access

to the event-based privacy-preserving surveillance camera
network and holds a query image of a target to identify. The
query image is either captured with a standard RGB camera

Qrgb or a gray-scale image Qnoprivacy reconstructed from an
event stream without the protection of the privacy module.
Then, the attacker determines whether this person exists in
the gallery setGprivacy that contains degraded images by using
the query image to retrieve the correct target identity.

Higher retrieval performance indicates a lower privacy-
preserving effect: Ean performance is evaluated based on
the rank accuracy or mean average precision metrics. For
this experiment, we employ the state-of-the-art person ReId
model BOT [64] to evaluate image retrieval and use the test
sets of real and simulated datasets.
(ii) Face Recognition: In this experiment, we assume a

similar scenario, where the attacker holds a face image
(RGB or reconstructed gray-scale image) and tries to disclose
identity information by matching it with a degraded face
image. We use the pre-trained face recognition model
ArcFace [65] to measure the resilience of our system to this
privacy attack. We measure face recognition performance in
terms of the area under the curve (AUC) of the ROC curve.

B. PERSON REID EXPERIMENTAL SETUP AND DATASETS
Datasets:We test our proposed event-anonymization method
for the person ReId task using synthetic event data and the
real event data presented in Section III. Synthetic event data
is generated from the video-based person ReId SoftBio [66]
dataset using the open-source event simulator [26]. The
SoftBio dataset comprises 152 identities and 64,472 frames
collected with eight surveillance cameras. The dataset is
recorded in an uncontrolled environment, and each identity
may only appear in a subset of cameras, which collect
data under very different viewpoints, with drastic changes
in illumination and background. In addition, we benchmark
our approach on the Event ReId-v2 dataset described in
Sec. III.
Person ReId Evaluation Metrics: To evaluate the effi-

cacy of person ReId, we used both cumulative matching
characteristics (CMC) and mean average precision (mAP).
The adoption of CMC and mAP has become predominant
in the domain because a single evaluation metric is often
insufficient to assess the overall effectiveness of the person
ReId. CMC-k, or Rank-k matching accuracy, quantitatively
assesses the probability of a correct match being present
within the top-k retrieved results. This metric demonstrates
precision in scenarios where each query is associated with
a single ground truth, focusing exclusively on the first
match in the evaluation process. On the other hand, the
mAP metric evaluates average retrieval performance when
dealing with multiple ground truths. In the field of ReId
assessment, mAP successfully handles cases in which two
systems perform identically in identifying the initial ground
truth but differ in their capacity to recover further difficult
matches.
Experimantal Setup: We generate simulated event data

from SoftBio, splitting 152 identities randomly, with 76 IDs
for training and another 76 IDs for testing. In the case of real
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FIGURE 4. Image retrieval evaluation on Event-ReId dataset (left) and SoftBio dataset (right), following query-gallery setting, blue:
query[rgb], gallery[no privacy], orange: query[no privacy], gallery[privacy], green: query[rgb], gallery[privacy].

data for Event-ReId-v2, out of 60 identities, we randomly
choose 45 IDs for training and the remaining 15 IDs for
testing.

We choose the time duration for the spatiotemporal voxel
grid T≈40ms for synthetic event data and T≈30ms for
real event data to be synchronized with the corresponding
RGB frames. We set the size of temporal bin B = 5 for
the event voxel grid, Following [8], and during training,
our model resized the event voxel grid to 5 × 392×192.
We use a batch size of 32 and train the model with a base
learning rate of 0.001 for 60 epochs. We set momentum µ =

0.9 and the weight decay to 5× 10−4. In equation 4 we set
α = γ=1 and β = −1. The implementation is based on
PyTorch.

C. PERSON ReId RESULTS
Privacy-preserving performance: We present the image
retrieval performance score for the real dataset Event-ReId
and similarly for the simulated event data of SoftBio in
Figure 4. The testing approaches ‘‘Qrgb ⇔ Gprivacy’’
and ‘‘Qno−privacy ⇔ Gprivacy’’ measure the retrieval
score on the anonymized (privacy-preserving) image gallery
using original RGB and recovered gray-scale query images
respectively. For comparison, the testing approach ‘‘Qrgb ⇔

Gno−privacy’’ measures the image retrieval score on original
gallery images. The tested retrieval model BoT [64] did
not perform well on our anonymized images, and for both
datasets, the retrieval score is random.

Regarding the face recognition performance, Figure 5
shows the ROC curves for each testing approach: RGB
measures the face verification score on original RGB face
images; No Privacy measure face verification score between
RGB and gray-scale face images recovered from original
events;Privacymeasure face verification score between RGB
and gray-scale images recovered from anonymized events.
The area under the curve (AUC) scores in Figure 5 for RGB
is 0.748, and No Privacy is 0.699 while for Privacy images
it is 0.517. This suggests that the ArcFace model performs
poorly on the images reconstructed from the anonymized
event stream as the AUC=0.517, which is close to the random
performance (AUC=0.50).

FIGURE 5. Face recognition accuracy using Arcface [65] model.

TABLE 2. Recovered image quality: SSIM and PSNR values.

Additionally, Table 2 presents image qualitymeasurements
using SSIM and PSNR. The results show that lower SSIM
and PSNR scores are associated with degraded images.
Considering the performance score of all three tests, image
retrieval, face recognition, and image quality assessment,
it is evident that our event anonymization network effectively
preserves the anonymity of individual identity information.
Person ReId Performance: The rank accuracy and mean

average precision score of person ReId utilizing anonymized
event data for both real Event-ReId and SoftBio [66]
datasets are presented in Figure 6. The results show that
the anonymization model does not affect the person ReId
performance. At the same time, shifting from No Privacy
to Privacy-preserving the rank-1 accuracy and mAP drop is
5.5% and 5.2%, respectively for Event-ReId data. Similarly,
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FIGURE 6. Person ReId performance using raw event blue and anonymized event orange, Event-ReId-v2 dataset (left), and SoftBio
dataset (right).

TABLE 3. Person ReId performance between Event-ReId-v1 and
Event-ReId-v2 dataset.

for SoftBio data, the drop in rank-1 is 3.8%, and for mAP is
2.1%.
Comparison With Event-ReId-v1: We also compared

person ReId performance score with the previous version of
the ReId dataset, Event-ReId-v1 [15], which is a relatively
small dataset. Table 3 shows an increase of 13.5% in rank-
1 accuracy and 11.3% in mAP using the Event-ReId-v2
dataset. This implies that providing more training data person
ReId performance could further enhance.
Comparison With Baselines: Since this work investigates

privacy-preserving person ReId for the first time, there is
no other method for direct comparison. We benchmark our
approach against event encryption (partial scrambling and
partial discarding) methods [12] to check their effect on
privacy-preserving. To perform event encryption, we use
partial (75%) encryption for both the scrambling and
discarding algorithms, as complete encryption distorts the
entire visual information in the event data, which can not
be utilized for downstream tasks. Table 4 reports SSIM and
PSNR image quality metrics, R1reid : Rank1 accuracy of
person ReId, and R1retr : Rank1 accuracy of image retrieval
on reconstructed images, using proposed Event ReId dataset.
Our proposed event anonymization method outperforms the
event encryption technique.

Further, we compare the downstream task (person ReId)
with a baseline Event-driven ReId method (Ed-ReId) [7].
Results in Table 5 illustrate that even after event-stream
anonymization with our proposed network, person ReId
performance is still better than Ed-ReId, although we pay a
reasonable decrease in the score when applying privacy (i.e.,
the anonymization module).
Losses Ablation: We finally analyze the effect of losses

on the downstream task accuracy (Person ReId). In the case
of without privacy, if we remove the event anonymization

TABLE 4. Comparison with other methods on the Event-ReId dataset:
image quality, event-reid, and image retrieval.

TABLE 5. Comparison of person Re-Id performance on Event-ReId
dataset with baseline.

FIGURE 7. Raw event-voxel (left), anonymized event-voxel without Lstruct
loss (middle) and with Lstruct loss (right).

TABLE 6. Ablation on the losses for person ReId accuracy.

module (α=β=0), the Rank1 accuracy is 78.2%, and with
privacy, when we adopt the anonymization model with
image reconstruction loss Lrec (α= 0, β=1) only, Rank1
accuracy significantly decreased to 69.1%. Finally, including
Lstruct loss (α=β=1) (which helps to maintain structural
information while anonymizing the voxel-grid) recovers the
accuracy to 72.7%, still preserving privacy, as detailed in
Table 6 and Figure 7.
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FIGURE 8. Visualization of reconstructed images obtained using raw and anonymized event data.
a) real event dataset Event-ReId; b) simulated event dataset SoftBio.

FIGURE 9. Visualization of reconstructed face images. Top row RGB
original images. The middle row contains recovered images from the raw
event. The bottom row contains recovered images from anonymized
events.

Qualitative Results: We qualitatively compare the recon-
structed images acquired using our approach with the
original images. We show the results on two examples from
each Event-ReId and Softbio data video from the dataset.
Figure 8 displays anonymized images compared to the
original RGB and recovered gray-scale images for reference.
As observed, the image reconstructed from anonymized
events degraded compared to non-privacy images. We also
show the two exemplar face reconstructions from real event
data in Figure 9, showing that the subject face can not be
reconstructed from our anonymized event stream compared
to face reconstruction from the non-privacy event stream.

D. HPE EXPERIMENTAL SETUP AND DATASET
Dataset: We also evaluate our proposed method on human
pose estimation, using event-based human pose dataset

DHP19 [2]. This is the first large-scale Human Pose
Estimation (HPE) dataset captured from event cameras. The
dataset contains 33 movement recordings of 17 subjects of
different sex, age, and size. Each subject is recorded in
a clutter-free indoor environment with four synchronized
cameras having a resolution of 260 × 344 pixels, positioned
at four different angles around the subject. The range of
motions is narrow; most actions, such as leg kicking and
arm abductions, are performed on the spot, except for slow
running and walking. It includes 3D annotation as well as the
camera parameters for the estimation of 2D projections.
HPE Evaluation Metric: We employed the mean per joint

position error (MPJPE) metric for HPE evaluation. MPJPE
is frequently used in HPE and is computed by calculating
the average Euclidean distance between ground truth and
predicted body joints. Moreover, MPJPE can be computed
for both 2D and 3D HPE as:

MPJPE =
1
P

P∑
n=1

∥∥∥hn − ĥn
∥∥∥ (13)

where P represents the number of the body joints, and hn and
ĥn are the ground-truth and predicted (2D or 3D) position of
n-th joint respectively.
Experimental Setup: Following [2], we use 12 subjects for

training and 5 for testing. We set the size of the bin B=5;
however, unlike the spatiotemporal voxel grid in person ReId,
which is integrated using fixed time duration, we choose a
fixed number of events (N = 7.5K) to generate a voxel grid
because the average position of the 3D joint label of the
corresponding event constant-count frame. The deep neural
network input voxel grid size is 5 × 260 × 344. We set the
batch size to 32 and trained the model with a learning rate of
0.0003 for 30 epochs.
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FIGURE 10. Visualisation of reconstructed images obtained using raw
event data (left) and anonymized event data (right) from the DHP19
dataset.

E. HPE RESULTS
Privacy-Preserving Performance: We also verify the pro-
posed event anonymization technique effectiveness on the
pose estimation dataset DHP19 [2] using an image retrieval
test. As the DHP19 dataset is collected for pose estimation,
we can still utilize it for image retrieval experiments
because it is recorded with four event cameras placed
at different angles around a subject performing various
activities. Moreover, there is no corresponding ground
truth RGB images available; DHP19 contains only event
stream data. Therefore, we reconstructed images through
E2VID from raw events to substitute RGB ground truth
(see Figure 10.

We employ the same query-gallery setting of the Sec. C,
‘‘Qno−privacy ⇔ Gprivacy’’ that measures the image
retrieval score on the anonymized (privacy-preserving) image
gallery using recovered gray-scale query images from raw
events. Similarly, for the comparison, the testing approach
‘‘Qno−privacy ⇔ Gno−privacy’’ measures the image retrieval
score on gallery images recovered from raw events. The
retrieval accuracy is random for anonymized images (see
Figure 11); this test also validates that our proposed method
successfully preserves identity information.
Pose Estimation Performance: Table 7 illustrates the

2D test set results, defined as MPJPE (in pixel). Since
event-based pose estimation methods [2] compute 2D predic-
tion error only on front cameras (camera 2 and camera 3) of
the DHP19 dataset. Thus, we compute the prediction error on
cameras 2 and 3 for raw and anonymized voxel-grid. Table 7
shows the difference between the average error in the 2D joint
position of raw and anonymized voxel is less than 1 pixel
(came2: 0.32 and cam 3:0.27). Table 8 reports the 3DMPJPE
score on test subjects. The difference in 3D prediction error
is approximately 5mm between raw and anonymized voxel-
grid. Both 2D and 3D HPE quantitative results and examples
of qualitative results shown in Figure 12 and 13) suggest that

FIGURE 11. Image retrieval evaluation on DHP19 dataset, following
query-gallery setting, blue: query[no privacy], gallery[no privacy], orange:
query[no privacy], gallery[privacy].

TABLE 7. We report the 2D Mean Per Joint Precision Error (MPJPE,
in pixels) of our proposed HPE method without privacy (raw event voxel)
and with privacy (anonymized event voxel).

TABLE 8. We report the 3D Mean Per Joint Precision Error (MPJPE, in mm)
of our proposed HPE (stereo) method without privacy (raw event voxel)
and with privacy (anonymized event voxel).

TABLE 9. Comparison of 2D MPJPE (pixels) score with baseline methods.

TABLE 10. Comparison of our 3D HPE method (stereo and monocular)
with baseline methods using MPJPE (mm).

the event stream can be anonymized without compromising
the pose estimation accuracy to prevent privacy attacks
(event-to-image-reconstruction).
Comparison With Baseline:We compare 2D and 3D pose

estimation results obtained through our proposed network
with baseline approaches. Table 9 and 10 illustrate a
comparison of the 2D and 3D tests, respectively. For the
2D pose estimation score, we outperformed the DHP19 [2]
method, while our score is comparable to the Mnet [67]
approach. For the 3DHPE, we compute results for both stereo
[2] and monocular [3] methods. Comparison in Table 10
shows our proposed method surpasses [2] in stereo settings.
However, formonocular settings, our HPE performance score
is lower than [3]; the difference is 5.96 MPJPE(mm).
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FIGURE 12. Visualization 2D human body joints estimation results, ground truth in red vs. prediction in
blue: jumping (left), walking (right).

FIGURE 13. Visualization 3D human pose estimation results, ground truth pose in red vs. predicted pose in blue.

F. GENDER PREDICTION
The risk of extracting gender attributes, considered sensitive
private information, poses another potential privacy attack.
An attacker might aim to determine an individual’s gender
(male or female) from reconstructed gray-scale images.
To assess the vulnerability of our system to such attacks,
we analyze whether gender information can be recognized
from the reconstructed images. We define this attack as a
binary classification problem, where the task is for a gender
classifier network to analyze the reconstructed image and
predict the individual’s gender.

For this purpose, we employ a state-of-the-art gender
classification method known as MiVOLO [68]. This network
is trained not only on facial features but also on broader
aspects of a person’s image, such as clothing and body
shape, which could potentially offer additional clues about
the individual’s gender. By utilizing both these types of data,
the classifier aims to provide a more comprehensive and
accurate gender prediction.

We report the person detection and gender classifica-
tion accuracy in Table 11 and 12 for real and synthetic
event datasets, respectively. For the Event-ReId dataset, the
MiVOLO gender classification method detected only 33.3%
of persons and 26.7% identified gender accurately. The

TABLE 11. Person detection and gender classification score using
Event-ReId real data.

TABLE 12. Person detection and gender classification score using SoftBio
synthetic dataset.

performance on the SOftbio dataset was even lower, with
18.4% detection and 6.6% gender classification accuracy.
These outcomes indicate that our framework effectively
conceals gender information in reconstructed images, thereby
significantly enhancing privacy in event-based vision appli-
cations.

G. INVERSION ATTACK
We investigate a scenario where an attacker gains access
to our privacy-preserving event camera and creates a large
dataset comprising both anonymized event data and their
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TABLE 13. SSIM, PSNR, and image retrieval score for recovered image
under inversion attack and adversarial learning using Event-ReId dataset.

FIGURE 14. Face recognition accuracy for adversarial learning attack
using Arcface [65] model.

original counterparts. In this situation, the attacker might
train a network, denoted as Einv, to undo the anonymization
performed by Einv, potentially resulting in the recovery of
high-quality gray-scale images. We refer to this scenario
as an ‘‘inversion attack’’. To assess how well our proposed
framework withstands such privacy breaches, we train an
autoencoder network using the real event dataset in a
manner similar to the training of the Ean network. This
network processes anonymized event streams output by
the pre-trained Ean network and aims to minimize image
reconstruction loss.

The quantitative results, shown in Table 13, measure the
image retrieval and the image quality test (SSIM and PSNR)
scores using these reconstructed images obtained through
an inversion attack. The numbers indicate reconstruction
quality is substantially poor, effectively preserving identity
information. The qualitative results, shown in Figure 15(c)
with two sample images, demonstrate that the reconstruction
process fails to restore the images accurately. Consequently,
the inversion attack is unable to counteract the anonymization
effects of our event-based framework.

H. ADVERSARIAL LEARNING
We also consider a different scenario where an attacker has
access not only to the anonymized events but also to the
corresponding RGB/gray-scale images. In this situation, the
attacker might attempt to retrain the image reconstruction
module to produce high-quality images from the anonymized
event data. This type of potential privacy attack is referred
to as ‘‘adversarial learning.’’ To evaluate the resilience of

FIGURE 15. Reconstructed images from a) raw events, b) anonymized
events, c) output of Inversion Attack, and d) output of Adversarial
Learning.

our anonymization model against such a privacy attack,
we retrained the image reconstruction model Erec while
keeping the rest of the pipeline fixed to determine if it can
effectively extract details from the anonymized event voxels.
For this retraining, we utilize the output anonymized event
voxel from the pre-trained Ean model along with ground-truth
data to retrain the E2VID network [8].

We evaluated the success of this retraining through
various metrics. The SSIM and PSNR scores were used
to assess the reconstructed image quality in Table 13.
Besides, to evaluate privacy-preserving, we compute the
image retrieval accuracy presented in Table 13 and the face
recognition score in Figure 5. Furthermore, qualitative results
shown in Figure 15(d) show the reconstruction efficacy.
These evaluations collectively indicate that the reconstructed
image quality remains significantly low, and the identity
information is still preserved despite the adversarial learning
attempt. That shows the framework effectively protects
sensitive data against adversarial learning.

VI. CONCLUSION
In this work, we address the challenge of privacy in
the context of neuromorphic vision sensors. Despite their
inability to capture detailed RGB images, the potential of
deep learningmodels to reconstruct high-quality images from
event data poses a privacy threat. To cope with this, we have
developed an end-to-end trainable network architecture that
anonymizes event streams, ensuring privacy protection while
maintaining the ability to perform downstream vision tasks.
This network scrambles event data to degrade the quality
of images that could be reconstructed, thus protecting
privacy. We demonstrate how this framework can be set
up for a person ReId and human pose estimation tasks,
proving the framework’s adaptability in various computer
vision applications. We evaluate the proposed framework
on both tasks with synthetic and real event-based datasets.
We additionally propose and make available the first ever
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person ReId neuromorphic dataset in order tomotivate further
progress in the field. Finally, our results on all datasets
show that our approach effectively prevents possible privacy
attacks on event data while executing person ReId and HPE
tasks with a negligible performance impact. Collectively,
this work marks a foundation for deploying ethical and
privacy-aware surveillance technologies.
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