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ABSTRACT The complexity of the environment limits the accuracy of the traditional Adaptive Monte Carlo
Localization(AMCL) algorithm, which also suffers from high computational effort and particle degradation
due to laser model limitations. To address these issues, an optimized AMCL algorithm with a bounding box
is proposed. The AMCL algorithm is first parameterized and initialized to the particle swarm. During the
particle iteration process, collision detection is performed on the bounding box. If a collision occurs, the
particle filter is not updated and its particle weight is set to 1. If there is no collision, the particle filter is
updated normally and the particle weight is set to 0. Then, the particles are resampled and updated based
on the measurement data and motion model. After experimental verification, this method’s self-localization
trajectory is closer to the actual path, and the measurement error fluctuation is smaller. The RVIZ simulation
experiments revealed that the overall positioning time was optimized by 18.25% compared to the original
AMCL, and by 9.28% compared to the improved AMCL. The optimization algorithm effectively improved
the positioning accuracy and robustness of the system.

INDEX TERMS Adaptive monte carlo localization, bounding box, collision algorithm, particle filter, self-
localization.

I. INTRODUCTION
Indoor positioning technology for mobile robots is a crucial
aspect of robot research. To achieve accurate control of
a robot, its autonomous positioning ability cannot be
ignored [1]. Currently, there are three main methods to
improve the positioning accuracy of mobile robots: multi-
sensor fusion positioning technology, equipping them with
state-of-the-art sensors or signal receivers, and optimizing
and improving positioning algorithms. Multi-sensor fusion
positioning technology is a promising trend in navigation and
positioning. However, this method faces a common issue of
signal switching not being smooth, with the increase of the
complexity of the mobile environment and the difficulty of
the task [2], [3], particularly near transition points with large
signal fluctuations during indoor and outdoor continuous
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operation, which can affect positioning accuracy [4], [5],
[6]. Equipping the robot with state-of-the-art signal receivers
or precisely calibrated sensors can reduce sensor errors and
improve localization accuracy. However, this upgrade comes
at an increased cost and may not be applicable to theoretical
research in the laboratory stage. This can be achieved by
implementing advanced positioning algorithms or optimizing
existing ones to better handle uncertainty, resulting in
improved accuracy and reduced input costs. Additionally,
this approach can increase the feasibility and success rate of
the study. Furthermore, this study investigates the potential
for enhancing the accuracy and dynamic obstacle avoidance
of mobile robot positioning through the optimization and
improvement of the Adaptive Monte Carlo Localization
(AMCL) algorithm.

The monte Carlo localization (MCL) algorithm is a
particle filtering algorithm commonly used for localization.
It can overcome all localization subproblems except robot
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abduction [7]. However, it suffers from high computational
complexity and imprecise localization accuracy [8]. The
AMCL algorithm is an optimization and improvement of
the MCL algorithm. It achieves better localization accuracy
and robustness by sampling a series of assumptions about
the current position of the robot, and then evaluating and
updating these assumptions to estimate the robot’s position.
Despite its widespread use in autonomous navigation and
localization applications of mobile robots, the traditional
AMCL localization algorithm has some drawbacks. The
AMCL algorithm requires a significant number of particle
sampling and updating operations, resulting in high com-
putational complexity. Inaccurate estimation of the initial
position; can hinder efficient particle updating, leading to
localization errors. Additionally, long-term motion can cause
particle degradation and cumulative errors in sensor data,
resulting in inaccurate weight distribution of particles. After
identifying these limitations, it is important to optimize and
improve them based on the specific situation in practical
applications. This will enhance the positioning accuracy of
mobile robots; and has significant research value.

In recent years, there have been advancements in the
research on improving AMCL-based algorithms both domes-
tically and internationally. Hanten et al. introduced an
effective and resilient localization method that is suitable for
large-scale indoor environments [9]. In 2011, Zapata et al.
proposed an improved Monte Carlo localization algorithm
that uses adaptive samples. This reduces the burden of
online computation by adopting pre-cache technology and
is more efficient than the traditional AMCL localization
algorithm [10]. Wang et al. also proposed an improved
AMCL robot localization method; that utilizes the method
of alternating resampling and KLD sampling in the sampling
part, enhancing the filtering efficiency [11]. FENG et al. Also
contributed to this field. The authors propose an optimized
AMCL algorithm that enhances stability and robustness
of the system while improving localization accuracy. They
achieve this by adding scan matching and discrete Fourier
transform [12]. Additionally, Wang et al. introduce the idea
of DNA cross mutation in genetics into the particle iteration
process of AMCL, and propose an adaptive Monte Carlo
localization method based on the improvement of genetic
algorithm [13]. Although these studies provide reference
and direction for further optimization and improvement of
the AMCL algorithm, there are still significant fluctuations
in positioning errors. Particle depletion results in degraded
pose tracking performance and other issues. Therefore, this
study explores a new method to enhance the positioning
accuracy through particle iterative optimization of the AMCL
algorithm.

To enhance the AMCL localization algorithm, this study
proposes an improved method based on the collision
algorithm. The bounding box idea is introduced into the
particle iteration process of AMCL, and a collision detection
process is added to detect and constrain particle motion.
This process affects the efficiency of particle filter update

and resampling, ultimately improving localization accuracy.
Section II outlines the fundamental principles of the MCL
and AMCL localization algorithms. In section III, the AMCL
localization algorithm is combined with the bounding box
concept. Section IV presents the simulation verification
and result analysis conducted under the MATLAB and
ROS simulation environment to confirm the feasibility and
optimization of the improved algorithm. Section V provides
a summary of the paper and discusses the limitations of
the experiment. It also outlines potential areas for future
optimization.

II. AMCL LOCALIZATION ALGORITHM
A. MCL ALGORITHM
Monte Carlo localization algorithm is an algorithm based on
particle filtering algorithm, which is widely used to estimate
the pose of a mobile robot in a known environment [14], [15].
It represents bel (xt ) as a collection of n particles.

bel (xt) = p (xt|z1:t, u1:t) (1)

where bel (xt ) is the posterior probability distribution of
state xt ;z1:t denotes all sensor data up to time step t;
and u1:t denotes the control data.The model will generate a
measurement probability p (zt |x

[n]
t ) for each particle x[n]t .The

formula for the weights of the particles is as follows:

W [n]
t = p(zt |x

[n]
t )W [n]

t−1 (2)

The weight W [n]
t is the weight of the nth particle,which

represents the integral of the measurement probability over
time and satisfies a normalization condition:

∑n
i=1W

[i]
t = 1.

Thus,the posterior reliability of robot pose xt can be roughly
expressed as:

bel(xt ) ≈

∑n

i=1
W [i]
t δ(xt − x[i]t ) (3)

where δ represents the sample estimated probability.
MCL represents the posterior via a set of weighted

particles, however, the MCL algorithm does not solve the
robot abduction problem, and localization fails as soon as
the positional changes are discontinuous. To improve the
localization accuracy, a large number of particles need to be
added, which slows down the localization convergence.

B. AMCL ALGORITHM
The AMCL is a common technique for mobile robot
localization problem [16], and its visual interpretation is
shown below.

FIGURE 1. MCL and AMCL visual explanation.
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In Fig.1, the (a) process represents the sampling pro-
cess,where the red circles indicate the particles distributed on
the map with respect to bel (xt−1); the (b) process represents
the weighted weighing stage,where the larger green circles
indicate the larger particle mass,and vice versa; the (c)
process represents theMCL resampling process for a constant
number of particles N; and the (d) process represents the
AMCL resampling process for a varying number of particles
N. Continuing with this recursion, the particles are eventually
concentrated around the actual location of the robot.

The principle of AMCL algorithm is to improve MCL by
adaptively adjusting the number of particle samples, which
determines whether the robot is abducted or not based on
the long term estimation weight ωslow and the short term
estimation weight ωfast , and if ωfast is inferior to ωslow,
the robot recovers its relocation from abduction by adding
random particles in the resampling, the expression is:{

ωslow = ωslow + αslow(ωavg − ωslow)
ωfast = ωfast + αfast (ωavg − ωfast )

(4)

where ωavg denotes the average weight of all particles,and
the parameters αslow and αfast are the attenuation rates of
the exponential filters averaged over the long-term and short-
term estimates, respectively (0 ≤ αslow ≤ αfast ). The basic
flow of the AMCL localization algorithm is shown in the
following figure.

FIGURE 2. Basic steps of the AMCL algorithm.

The traditional AMCL localization algorithm is highly
adaptive to particles, but its position estimation accuracy is
not optimized. Therefore, how to improve it to increase the
positioning accuracy in terrains prone to positioning failures
and apply the optimized AMCL to mobile robotic systems is
the next research focus of this paper [17], [18].

III. GIMPROVEMENT OF AMCL BASED ON BOUNDING
BOX
A. BOUNDING BOX IDEA
The bounding box algorithm is a technique used to solve
the optimal wrap-around space of a discrete set of points.
It is widely used in collision detection, real-time obstacle
avoidance, and other functions. The basic idea is to replace
complex geometric objects with slightly larger geometric
objects with simple characteristics [19]. The most common
bounding box algorithms are AABB(axis-aligned bound-
ing box), bounding sphere, OBB(oriented bounding box),
FDH(fixed directions hulls).

FIGURE 3. (a) AABB; (b) OBB; (c) bounding sphere.

Figure 3 presents a simple bounding box model. The
black area represents an irregular object. The red line in
the figure represents AABB, which has a simple construction
and requires less storage space. The purple line in the figure
representsOBB, which has better tightness. Finally, the green
line in the figure represents the bounding sphere.

This is an example of the OBB bounding box, which
demonstrates the basic principle of the algorithm [20]. OBB
refers to the smallest cuboid that contains the detected objects
in any direction with respect to the coordinate axis, and its
direction is arbitrary [21]. To calculate the OBB bounding
box, find the center point of the rectangle formed by the
given points and solve for it using the covariance matrix.
The covariance matrix represents the correlation of the points
when combined together. It measures the extent to which each
dimension deviates from its mean. Use the following formula
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to calculate the covariance:

cov(x,y) =

∑n
i=1 (xi − x̄) (yi − ȳ)

n− 1
(5)

And satisfies the relation.

cov(x,y) = cov(y,x) (6)

The covariance matrix can be calculated by applying the
above equation.

C =

cov(x, x) cov(x, y) cov(x, z)
cov(y, x) cov(y, y) cov(y, z)
cov(z, x) cov(z, y) cov(z, z)

(7)

Upon calculating the covariance matrix, the eigenvectors
and eigenvalues are obtained by diagonalizing thematrix. The
eigenvectors are then utilized to derive the coordinate axes of
the OBB. Based on the known points, the center coordinates
of the OBB coordinate axes, as well as the length and width
of the rectangle, can be derived. Finally, the OBB bounding
box can be determined.

B. IMPROVED AMCL ALGORITHM
To enhance location accuracy and efficiency, we introduce
the bounding box concept of collision algorithm into the
particle iteration process of AMCL, resulting in an improved
adaptive Monte Carlo localization method. Please refer to the
following figure for a detailed procedure.

FIGURE 4. Flowchart of improved AMCL localization algorithm based on
the idea of bounding box.

Figure 4 shows the process used in this study. Firstly,
the AMCL localization algorithm is parameterized and the

particle swarm is initialized. Then, a bounding box is created
for the positional pose where the real particles are located.
The box is rectangular and centered on the real position of
the particles, with the geometric centers of all the particle
swarms also located inside the box. Collision detection is then
performed on the moving particles. The specific collision
detection process will be elaborated in the next section. Here,
the box is used to detect whether the real particles collide with
other random particles (obstacles) or not.

The bounding box is the process of aligning the real
position of particles with the existing map, and this study
adopts the AABB bounding box, the AABB is a smallest
hexahedron that contains a given object, whose important
characteristic is that each face of the rectangle corresponding
to the bounding box is parallel to the plane of a certain
coordinate axis, based on which, only six values are needed
to determine the AABB bounding box [22], which represent
the minimum and maximum values of the bounding box on
each coordinate axis, i.e., xmin, xmax , ymin, ymax , zmin, and
zmax . In other words,both the real position of the particle
and its surrounding similar random particles must satisfy the
following conditions.

xmin ≤ x ≤ xmax
ymin ≤ y ≤ ymax
zmin ≤ z ≤ zmax

(8)

In addition, the six parameters representing the AABB
bounding boxes can be categorized into the following two
groups. {

Pmin = [xmin, ymin, zmin]
Pmax = [xmax , ymax , zmax]

(9)

wherePmin is the set ofminimumvalues of 3 axis coordinates;
Pmax is the set of maximum values of 3 axis coordinates,
based on which we can get the coordinates of the geometric
center of the AABB bounding box, i.e., the real orientation of
the particle. The formula is as follows.

C = (Pmin + Pmax)/2 (10)

The bounding box is introduced into the particle iteration
process of AMCL, The initial state diagram of random
particles is shown in the following figure, in this study,
it is assumed that the actual location of the particle under
investigation is known, where the red dots represent the
actual positions of the particles, the subsequent position of
the robot’s movement is analogous to the initial position; the
black dots represent all 500 random particles, and the yellow
dots represent the geometric center points of all the particles.

As illustrated in the accompanying figure, both the actual
position of the particle and the geometric center of the
random particle are within the bounding box. The actual
position of the particle is a fixed coordinate(50,42). The
subsequent particle motion and collision detection is based
on the bounding box. The subsequent section will concentrate
on the particle collision detection process, which represents
the most crucial aspect of this study.
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FIGURE 5. Random particle initial state diagram.

C. ADD COLLISION DETECTION PROCESS
Collision detection is a crucial technique used in many
robotic applications, including motion planning, trajectory
optimization, and simulation. It determines whether a robot
has collided with an obstacle [23]. By adding a collision
detection process to the AMCL algorithm, the robot can
detect its surrounding environment while performing real-
time localization to determine if it has collided with an
obstacle.

After initializing the particles and creating the bounding
box, a collision detection process is added for the moving
random particles. Collision detection involves calculating the
bounding parameters of the box and the coordinates of the
random particles. It is assumed that the center coordinates of
the box are (xa, ya), and the coordinates of the real particles
are (xa, ya). The width and height of the box are wa and ha,
respectively. And set the center coordinates of the random
particles as (xp, yp), so as to compute the bounding parameters
of the box. 

lefta = xa − wa/2
righta = xa + wa/2
topa = ya + ha/2
bottoma = ya − ha/2

(11)

Then determine whether the random particle collides with
the bounding box, if lefta ≤ xp ≤ righta and bottoma ≤

yp ≤ topa, the random particle collides with the bounding
box, otherwise, no collision occurs. During the movement of
the bounding box, if the random particle collides with the
bounding box, then choose not to update the AMCL filter
in order to avoid incorporating the wrong measurement data
into the filter and set its particle weight to 1, which indicates
that the position is credible if the random particle does not
collide with the bounding box, then update the AMCL filter
normally and set its particle weight to 0, which indicates that
the position is not credible. After completing the collision
detection, continue to resample and update the particles based
on the measurement data and motion model.

By introducing collision detection of the bounding box,
the AMCL particle iteration remains close to the true

position. This reduces the computational amount of the
AMCL algorithm; and improves the efficiency of subsequent
particle weight calculation and resampling. As a result, the
localization accuracy and stability are improved.

The specific step-by-step process of the improved AMCL
proposed in this study is as follows:

1. Parameterization: The parameters to be defined include
the total number of particles N, process noise Q,measurement
noise R, random particle population P, particle weights W,
and any other relevant parameters. It is important to note that
the observed state of the initial system is the true bitmap
superimposed on Gaussian noise.

2. Initialize the swarm and create a wraparound box for
the real positions of the particles: N randomly distributed
particles on the map are generated to form an initial random
particle population P, and their distances from the measured
positions and initial weights are found. Then the enclosing
box is created at the real particles, as detailed in Section III-B.

3. Simulation of particle motion: Iterating over the
initialized random particle swarm, the particles constantly
update their velocities and positions by referring to the
individual extremum T and the global extremum O. The
expressions are as follows.{

V (t+1)
i = ωV (t)

i + c1r1(T−x(t)i ) + c2r2(O−x(t)i )

x(t+1)
i = x(t)i + v(t+1)

i
(12)

where V (t+1)
i is the velocity of the particle at the next

moment; x(t+1)
i is the position of the particle at the next

moment;ω is the inertia weight; c1, c2 are the acceleration
constants, which usually take the value of 2; and r1, r2 are the
uniformly distributed random numbers in the interval(0,1).

4. Collision detection for the enclosing box and surround-
ing particles.

5. Classify the particle swarm: classify the random
particles according to the collision detection results, assign
larger weights to the particles that have collided and keep
them, indicating that these random particles are closer to the
real particles and more credible; assign smaller weights to the
particles that have not collided.

x ik ∈

{
CL , wik ≤ WT

CH , wik > WT
(13)

where CL is the set of small weighted particles, CH
is the set of large weighted particles, wk denotes the
normalized weights,and WT is the threshold for particle
weight classification.

6. Resampling and updating of particles after recalculating
weights.

IV. SIMULATION EXPERIMENT VERIFICATION AND
ANALYSIS
A. EXPERIMENTAL ENVIRONMENT
The comparison between the traditional AMCL localization
algorithm and the optimized AMCL localization algorithm
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was conducted using ROSNoetic on Ubuntu 20.04. The robot
model, which is equipped with LIDAR and camera sensors,
is depicted in the figure below. It is a four-wheel differential
steering robot model.

FIGURE 6. Robot global model diagram.

FIGURE 7. Robot model chassis tree diagram.

The robot model is constructed by configuring the
connecting rod and joint parameters. The connecting rod
refers to the rigid part of the robot, which includes the robot
chassis, wheels, LIDAR, camera and other sensors. The joints
serve as connection points between two connecting rods.
Figure 7 shows the design of the connecting rods and joints
for the specific chassis model.

FIGURE 8. Simulation environment map.

The simulation experiment utilized Gazebo software to
simulate the physical and collision characteristics of the
real world. The robot’s movement was controlled through
the keyboard control node. Figure 8 shows the house-like

interior environment created using Gazebo software, which
includes components such as the ground plane, walls, and
stairs. The initial pose of the robot model is fixed in a
specific location within the simulated indoor environment.
Subsequent positioning experiments are conducted based on
this initial configuration. The figure shows the scanning area
of the LIDAR, represented by the blue area. The scanning
angle range is from −3 rad to 3 rad.

B. SIMULATION EXPERIMENT ANALYSIS
To assess the effectiveness of the proposed method in this
paper, we conducted simulation studies using MATLAB
2023a and RVIZ simulation software. We first constructed
a regional environment in MATLAB; and specified the
simulation parameters, which are detailed in Table 1.

TABLE 1. Key parameter settings.

During the simulation process, the initial value of the
particle is set to the real value, and the positioning error
is set to zero. At each new moment, 500 random particles
must undergo one random movement according to the model
without exceeding the region. Subsequently, the predicted,
corrected, resampled, and filtered random particles are
generated by the original AMCL algorithm, the improved
AMCL algorithm, and the improved AMCL algorithm in this
paper, respectively.

Under the conditions of the above simulation environment,
the anti-jamming performance of the traditional AMCL
positioning algorithm, the improved AMCL positioning
algorithm in reference 24 and the optimized AMCL position-
ing algorithm in this paper are studied respectively. Firstly,
the process noise Q= 6 and the measurement noise R= 6 are
set, and then the self-positioning simulation experiments of
random particles are carried out using these three algorithms
respectively [24].
As can be seen from the figure above, the coordinates

of the real position of the particle after 15 movements
are recorded and connected with red thin lines as the real
trajectory of the particle. The coordinates of the measurement
of different algorithm models are recorded and connected
with green thin lines asmeasurement trajectories. Conversely,
the closer the red line is to the green line, the more accurate
the self-positioning trajectory is likely to be. Conversely,
a larger interval indicates a lager error in the algorithmmodel.
As illustrated in (a), there are discernible contrasts between
the two trajectories.(b) is more optimized than (a), and the
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FIGURE 9. Comparison diagram of trajectory simulation: (a) Original
AMCL algorithm; (b) Contrastive AMCL algorithm(The figure references
the 2018 article by Cao et al. for comparison); (c) Improved AMCL
algorithm fused with collision algorithm.

self-positioning trajectory in (c) is most closely aligned
with the real trajectory. The enhanced algorithm has been
demonstrated to exhibit robust anti-interference capabilities.

Furthermore, the figure below depicts the particle swarm
error and measurement error of the three algorithms. The
particle swarm error is defined as the distance between
the geometric center of all random particles and the actual
particle. The measurement error is defined as the distance
between the particle pose predicted by different algorithm
models and the real pose.

Figure 10 (a) shows the particle swarm error and measure-
ment error of the traditional AMCL positioning algorithm;
(b) The error graph of the improved AMCL algorithm in
reference 24 is shown; (c) The error graph of the AMCL
algorithm optimized in this paper is shown. The blue line
represents particle swarm error. As can be seen from the
figure above, the positioning error of the traditional AMCL
positioning algorithm is about 3.78m when tracking from the
initial position of the real particle to its movement to 5s.
(b) Approximately 0.68m in the figure; (c) Approximately
1.97m in the figure. After 2s of self-positioning, due to
the addition of closed frame and collision detection process
in the optimization algorithm in this paper, the particle
swarm error in figure (c) has some fluctuations, which is a
normal phenomenon. The measurement errors of the three
algorithms are shown by the red line in the figure. (a)
The measurement error of the traditional AMCL positioning
algorithm in the figure is maintained between 0m and 7m,
which fluctuates greatly; (b) The measurement error of the
improved positioning algorithm in the figure is maintained
between 0m and 6m; (c) The measurement error in the
figure is kept between 1m and 5m with small fluctuation and
basically converges to a stable state.

Repeated localization experiments were carried out on the
three algorithms, and the improved algorithm in reference
24 was set as the contrastive group. Each experimental group
was randomly conducted 15 particle iterations, including
15 groups of data, and 15 parallel repeated positioning
experiments were carried out for each experimental group.
Subsequently, the mean value of the 15 groups of data was
calculated to obtain the mean value of particle errors at
different times, as illustrated in the following table.

The three groups of particle measurement error data were
visualized in the simulation software, and the average particle
error graph of the three groups of experiments were obtained,
as shown in the figure below.

As can be seen from the figure above, the optimized
positioning algorithm has the smallest average particle
measurement error. It can be seen that when the bounding
box and collision detection process are introduced for real
particles, the measurement error of the improved algorithm
is smaller and the localization anti-interference ability is
stronger.

The three localization algorithms are simulated in RVIZ
software, and a complete raster map and its path planning
are obtained. The following figure shows the cost map model
in robot model positioning and navigation. (a) The figure
shows the simulation results of traditional AMCL positioning
algorithm; (b) The figure shows the simulation results of the
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FIGURE 10. Comparison diagram of localization error: (a) Original AMCL
algorithm; (b) Contrastive AMCL algorithm(The figure references the
2018 article by Cao et al. for comparison); (c) Improved AMCL algorithm
fused with collision algorithm.

control group; (c) The figure shows the simulation results
optimized in this paper. The white area is the local cost map
display area, the black area represents the expansion radius
of the obstacle, the red area is the radar scanning area of the

TABLE 2. Particle measurement error data of three algorithms.

FIGURE 11. Positioning experiment simulation.

robot model, and the green line represents the final planned
path of the positioning experiment.

TABLE 3. Operational data of three algorithms.

As can be seen from Figure 12, although the path planned
by the traditional AMCL positioning method is short, it does
not take into account the size of the robot and obstacle
avoidance and other issues, and it is easy to collide with
obstacles in the autonomous navigation, thus causing the
robot to fall into a state of suspension, and repositioning
requires time to generate a new path, resulting in low overall
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positioning efficiency. In the control group, the expansion
radius was added to the obstacle, so that the robot model
maintained a safe distance when turning or approaching the
obstacle, which ensured the safety and fluency of the overall
operation, but increased the length of the path, making the
time consumed too long. By adding the bounding box and
collision detection process, the optimization algorithm in
this paper can detect the distance between the robot and the
obstacle in real time during the operation, realize the dynamic
obstacle avoidance function, and ensure the efficiency and
safety of the operation.

FIGURE 12. Positioning experiment simulation: (a) Original AMCL
algorithm; (b) Contrastive AMCL algorithm (The figure references the
2018 article by Cao et al. for comparison); (c) Improved AMCL algorithm
fused with collision algorithm.

Through data processing, the specific data in Table 3 is
obtained. From the data in the above table, it can be found
that although the original AMCL positioning algorithm has
the shortest path length, it has experienced two collisions
and does not meet the relevant requirements of positioning
and navigation. The path length of the control group was
the longest and the localization efficiency was not high.
Although the path planning length of the optimized algorithm
in this paper is not significantly optimized, only 0.25m
shorter than that of the control group, the overall positioning
time optimization effect is significant, and the efficiency
is increased by 18.25% compared with the original AMCL
positioning algorithm. Compared with the control group,
the efficiency was improved by 9.28%. It can be seen
that the optimized AMCL positioning algorithm proposed
in this paper is feasible and effective in the simulation
model, and also lays a theoretical foundation for further
improving the positioning and navigation efficiency of the
solid robot.

V. CONCLUSION
This paper proposes a global indoor localization method
based on the collision algorithm with improved AMCL. The
traditional AMCL localization algorithm has several issues,
including large computation, degradation of position tracking
performance due to particle depletion, and slow recovery
of localization. The proposed method aims to address these
issues.

1. The idea of bounding box in collision algorithm is
introduced into the particle iteration process of AMCL,
by creating a suitable bounding box for the real position
of particles, and the geometric centers of all the particle
swarms are also located in the bounding box, and the
bounding box will move accordingly with the trajectories of
the real particles in the subsequent random particle movement
process.

2. Collision detection on the motion of random particles,
which is also the core part of this study. By adding the
collision detection algorithm, determine whether the random
particles collide with the bounding box, if the collision
occurs, it means that the random particles are closer to the
position of the real particles, so set their particle weights to 1,
indicating that the position is highly credible; if the collision
does not occur, update the AMCL particle filter normally, and
set their particle weights to 0, indicating that the position is
not to be trusted. After completing the collision detection,
continue to resample and update the particles according to
the measurement data and the motion model, and so on
recursively, the random particles are finally concentrated
around the real particles.

3. The improved AMCL localization algorithm was
simulated and verified. Firstly, simulation experiments were
carried out in MATLAB, and the program was written
through the steps of parameter setting, initializing particle
swarm, creating bounding box, particle movement, collision
detection, resampling, etc. The trajectory and error compari-
son charts were finally obtained, and it can be seen through
the charts that the improved localization algorithm has
feasibility. Then the improved algorithm was verified again
in RVIZ simulation software, firstly, a robot model was built
and an indoor environment was built in gazebo simulation
software, and then indoor localization experiments were
carried out for the three methods respectively. According
to the data analysis, compared with the original AMCL
positioning algorithm, the complete positioning time is
optimized by 18.25%, and the path length is shortened by
0.25m compared with the contrastive AMCL positioning
algorithm. The experiment verifies the optimization of the
improved method.

This paper presents a novel approach to improving the
positioning efficiency and stability of a robotics system. The
algorithm combines the AMCL positioning algorithm with a
collision algorithm, and the experimental results demonstrate
that this integration enhances the overall performance of
the system. Nevertheless, the successful operation of the
improved algorithm in this paper is contingent upon the
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known initial pose of the robot. In the future, further research
will be conducted on the global positioning problem. The
improved, mature algorithm will be transplanted to the solid
robot in order to achieve higher positioning accuracy for the
mobile robot.
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