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ABSTRACT Virtualization technology has played a pivotal role in consolidating Mixed-Criticality Systems
(MCS) onto a single computing platform. However, not all RISC-V processors present in Commercial
Off-The-Shelf (COTS) platforms feature the so called Hypervisor extension, which poses a significant
challenge in offering hardware virtualization capabilities in existing RISC-V silicon. This paper introduces
HSP-V, a ready-to-run low-level software stack to provide static partitioning on RISC-V COTS platforms
lacking hardware virtualization support. HSP-V leverages the Domain feature of the RISC-V Open Source
Supervisor Binary Interface (OpenSBI) reference implementation to define partitions protected by the
Physical Memory Protection (PMP) unit. Additionally, it provides other capabilities such as interrupt
partitioning, direct interrupt injection, cache partitioning, and platform-level isolation for DMA-capable
devices. The conducted evaluation assesses the impact of HSP-V on different empirical metrics, including
domain boot time, interrupt latency, code size, and execution performance using micro and application
benchmarks (LMBench and MiBench, respectively). HSP-V achieves highly deterministic interrupt latency
with an average execution time of 457 ns (with a standard deviation of only 22 ns), with essentially zero traps
in the Domain execution. In scenarios with cache interference, the HSP-V keeps the performance overhead
as low as 0.39% for the best case scenario. Finally, all work described in this article is publicly available and
open-sourced for the community to further evolve, port, and evaluate HSP-V in other hardware platforms.

INDEX TERMS Mixed-criticality systems, virtualization, static-partitioning, RISC-V, OpenSBI.

I. INTRODUCTION
Cyber-physical systems have evolved significantly in the past
few decades [1], transitioning from single-purpose devices
with limited communications and simple interfaces to power-
and compute-hungry general-purpose systems with multiple
functionalities and complex interactions [2]. To meet the
demands for reduced size, weight, power, and cost (SWaP-
C), there has been a paradigm shift towards the deployment
of mixed-criticality systems (MCS), which integrate and con-
solidate different applicationswith distinct levels of criticality
into a single hardware platform [3], [4], [5]. This approach
requires spatial, temporal, and fault isolation among all
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subsystems, ensuring that subsystems with lower-criticality
do not compromise the timing, functionality, or performance
of the safety-critical ones. Virtualization stands out as the
key enabler technology for consolidating MCSs, focusing
on workload consolidation and isolation between different
computing environments, e.g., operating systems (OSes), on a
single hardware platform.

Hypervisors have been extensively used for virtualization,
providing the ability to efficiently share resources, support
different workloads according to the criticality level of the
applications, and guarantee strong isolation between all
instances. Currently, Hypervisors can span from minimalist
approaches optimized for safety and security, e.g., static
partitioning Hypervisors (SPHs) [6], to more feature-rich
and resource-efficient solutions, such as Xen [7] and
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KVM [8]. SPHs allocate fixed and dedicated resources
to each virtual machine (VM) at design time, including
central processing unit (CPU) cores, memory, devices, and
interrupts [6], [9], [10], [11]. This minimalistic approach,
specially tailored for MCS, guarantees the effective isolation
and allocation of resources, which is mainly possible by
leveraging instruction-set architecture (ISA) virtualization
extensions [10], [12]. Such extensions can already be found in
well-established computer architectures such as Arm (since
Armv7-A [13]), Intel (introduced with Intel VT [14]), and
more recently in RISC-V with the Hypervisor extension
specification [12].

The RISC-V ISA [15] has been gaining traction across a
wide range of computing domains, includingMCS [12], [16],
[17]. In comparison to other architectures, RISC-V is highly
modular, reserving part of the encoding to custom extensions,
enabling highly specialized implementations that can scale
from simple microcontrollers to supercomputers. Regarding
virtualization support, the Hypervisor extension [18], ratified
in Q4 2021, is defined as part of the privileged ISA.
Despite the extension being already supported in QEMU and
several open-source soft-core RISC-V processors deployed
in field-programmable gate array (FPGA) [9], [10], [19],
its support in commercial off-the-shelf (COTS) platforms
remains scarce, where only one silicon-based implementation
(in the form of a test-chip) is known to be available [20],
limiting the widespread utilization of Hypervisors with this
architecture.

Targeting RISC-V hardware platforms lacking hard-
ware virtualization support, this paper presents HSP-V,
a Hypervisor-less static partitioning solution that allows the
deployment of MCS systems in scenarios where using a
Hypervisor is not feasible. HSP-V is based on OpenSBI,1 the
de facto Supervisor Binary Interface (SBI) firmware imple-
mentation for RISC-V. By leveraging the OpenSBI Domain
feature, a system-level partition of underlying hardware
having dedicated memory regions and harts (i.e., hardware
threads, essentially cores in RISC-V lingo), HSP-V can run
at the highest privilege mode, i.e., machine mode (M-mode),
while keeping each partition running at the supervisor/user
modes. Partitioning is achieved using memory isolation
primitives widely available on RISC-V processors, such as
the Physical Memory Protection (PMP). Although OpenSBI
domains already embody the core requirements of a static
partitioning system, some features are still missing, hamper-
ing the fully deployment of the functionalities provided by
an SPH: (i) interrupt partitioning and domain assignment;
(ii) inter-VM interference mitigation; and (iii) platform-level
memory isolation for direct memory access (DMA) devices.2

The main contributions of this article are summarized as
follows:

1OpenSBI: https://github.com/riscv-software-src/opensbi
2OpenSBI support for technologies such as the I/O physical memory

protection (IOPMP) [21] is not yet available, but it is on the project’s
roadmap.

• The introduction of a Hypervisor-less static partitioning
solution based on the OpenSBI reference implementa-
tion, specially designed for RISC-V COTS hardware
platforms that lack the Hypervisor extension;

• Several contributions to the OpenSBI reference imple-
mentation, such as: (i) interrupt partitioning by mediat-
ing the access to the platform-level interrupt controller
(PLIC); (ii) shared cache partitioning; and (iii) assign-
ment of DMA-capable devices to different domains by
using the platform-specific I/O memory protection Unit
(IOMPU);

• A comprehensive evaluation of the HSP-V regarding
code size, boot time and performance overhead, inter-
ference, and interrupt latency.

II. BACKGROUND
A. PARTITIONING TECHNOLOGIES
Partitioning technologies, such as TEEs and SPHs, play a
pivotal role in modern computing systems. While a TEE
provides a secure and isolated environment for sensitive
operations and data with high levels of confidentiality
and integrity, virtualization can be leveraged for workload
consolidation and isolation between different computing
environments on a single hardware platform.

1) TRUSTED EXECUTION ENVIRONMENTS (TEES)
A TEE involves splitting the system into two distinct
worlds [22], i.e., a non-secure world mainly used for
rich-OS support and applications, and a secure world that is
commonly responsible for executing critical functionalities
such as data encryption, fingerprint authentication, monetary
transaction services, etc. Such secure services usually execute
under a trusted application (TA) supported by a trusted OS.
The main goal is to ensure that applications running in the
secure world are protected and isolated from any interaction
by any other component present in the system. Examples
of TEE implementations include Intel SGX [23] and Arm
TrustZone [24]. Intel SGXprovides hardware-assisted trusted
execution, creating secure enclaves to protect application
code and data from any access from other software com-
ponent, even those with root privileges. Similarly, Arm
TrustZone offers hardware-based access control by enabling
a processor to run in two isolated execution environments,
i.e., the secure and non-secure world. TrustZone is widely
used in mobile devices and ARM-based servers [25], hosting
secure kernels such as Trustonic,3 Qualcomm’s QSEE,4

and Linaro’s OP-TEE,5 ensuring the protection of security-
critical data, and facilitating the deployment of various TAs
with distinct functionalities.

3Trustonic:https://www.trustonic.com/
4Qualcomm: https://www.qualcomm.com/products/snap-dragon/security
5OP-TEE: https://github.com/OP-TEE/
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2) STATIC PARTITIONING HYPERVISORS (SPHS)
Modern SPHs include Jailhouse [26], Xen Dom0-less [27],
and Bao [10]. They all follow a minimalist implementation,
on the order of a few thousand Source Lines of Code (SLoC),
and they mainly perform the partitioning and assignment
(with no sharing) of platform hardware resources, such as
CPU, memory, devices, and interrupts, among the existing
VMs. Since each virtual CPU (vCPU) is pinned to a
single physical CPU, SPHs do not include a scheduler as
part of the Hypervisor internals, achieving reduced size
and complexity. All these features are mainly possible by
leveraging dedicated ISA virtualization extensions [10], [12].
For instance, Arm’s hardware virtualization provides a new
higher privilege mode for the Hypervisor, offering support
for interrupt virtualization, I/O memory management unit
(IOMMU) that securely allows VMs to directly control
DMA-capable devices [21], [28], [29], and the two-stage
memory address translation. Nonetheless, this latter may
represent a potential challenge to the security and real-time
requirements of MCS.

Besides logical space and temporal isolation, MCS-
oriented Hypervisors must also take into account the shared
micro-architectural resources present in complex memory
hierarchies of modern multi-core platforms, e.g., last-
level caches (LLC), interconnects, and memory controllers,
as critical subsystems can be sensitive to the timing variations
resulting from contention on such components [30], [31],
[32]. To mitigate inter-core interference at the Hypervisor
level [33], several techniques have been proposed by the
real-time research community, such as cache coloring [34],
[35], [36], DRAM bank coloring [37], memory throttling
[35], [38], [39], and I/O regulation [40], [41].

B. RISC-V
RISC-V is an open-standard ISA created as a research project
in 2010 at the University of California, Berkeley [15], and
currently managed by the non-profit RISC-V International.
With a highly permissive license that allows for both open and
proprietary implementations, its highly flexible and modular
design enables different features, e.g., floating point, atomic
and vector instructions, etc., to be added as extensions on
top of the base integer instruction set (both on 32-bit and
64-bit instructions). Within the scope of this article, there are
some key components that, working together, are essential
to provide a flexible and secure computing environment that
allows the deployment of the HSP-V architecture.

1) RISC-V PRIVILEGED MODES
The RISC-V privileged architecture specification [18]
defines three base privilege modes (from higher to lower
privilege): Machine mode (M-mode), Supervisor mode (S-
mode), and User mode (U-mode). The only mandatory
privileged level is the M-mode, commonly intended for
hosting the firmware and that operates only with physical
addresses, i.e., without virtual address translation. The

TABLE 1. RISC-V Linux-capable platforms without the Hypervisor
extension.

S-mode and the U-mode are used to run OSes and appli-
cations, respectively. Typically, microcontrollers implement
only the U-mode, while application class processors also
implement the S-mode, which provides support for virtual
memory and enables the execution of Unix-like OSes.
In addition to these privileged levels, the privileged spec
defines the Hypervisor extension, which introduces the
concept of supervisor virtualization mode by adding two
orthogonal, but less privileged, modes: the Virtual-Supervisor
(VS) and the Virtual-User (VU). Furthermore, the S-mode
is extended with Hypervisor functionalities such as control
over two-stage translation and renamed Hypervisor-extended
Supervisor mode (HS-mode) [12], [42].

While QEMU and several open-source soft-core RISC-V
processors deployed in FPGA already support the Hypervisor
extension, its adoption in COTS platforms is currently
limited [20]. Table 1 summarizes the landscape of widely
used linux-capable RISC-V COTS platforms that lack the
Hypervisor extension. Nonetheless, several security features
are still supported, e.g., PMP, MMU, IOMPU (available
in the PolarFire SoC Icicle Kit for protecting DMA-
capable devices), Way-Locking (available in the PolarFire
SoC Icicle Kit, in the Sifive Hifive Unleashed and in
the Sifive Unmatched for cache partitioning) and others.
For the interrupt controller, they all implement PLIC,
which provides no interrupt partitioning or virtualization
support.

2) PHYSICAL MEMORY PROTECTION (PMP)
TheRISC-V provides amemory protectionmechanism called
PMP [18] that is capable of limiting supervisor and user (and
optionally machine) mode accesses to the physical memory
address space. For this reason, when virtual memory is
present (enabled by the MMU), and a translation is needed,
the PMP takes only effect after the memory translation.
PMP is controlled from M-mode, allowing the definition
of a whitelist for address space regions, each with different
access rights (i.e., read, write, and execute) by configuring
a set of Control and Status Registers (CSRs). Depending
on the implementation, the PMP unit can use either 16 or
64 CSRs, thus limiting the maximum number of currently
accessible memory regions. An access to a memory address
not included in the whitelisted memory regions, or that
violates its permissions, will cause an access fault and
subsequent trap the system execution to M-mode.
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3) INTERRUPTS AND PLIC
The RISC-V architecture includes three main classes of inter-
rupts: (i) software interrupts, comparable to inter-processor
interrupt (IPI); (ii) timer-based interrupts; and (iii) external
interrupts. While software- and timer-based interrupts are
considered local interrupts and managed by per-hart interrupt
controllers, such as the Core-local Interrupt (CLINT6)
or the Core-local Interrupt Controller (CLIC7), external
interrupts are platform-wide and shared among all harts. The
platform-level interrupt controller (PLIC8) is responsible for
routing and multiplexing peripheral interrupts to all harts
in the system, depending on how it is configured through
an MMIO interface. The PLIC is able to multiplex up to
1023 distinct external interrupts to one or more hart contexts,
i.e., a combination of a hart and its associated privilege level.
As only M- and S-mode can receive interrupts, the PLIC
typically has two contexts per-hart.

There are twomainMMIO regions in the PLIC: (i) a global
configuration region; and (ii) a per-context region for defining
the harts priority mask and handling interrupts. Although the
PLIC has been the standard interrupt controller for RISC-V
since its inception, the new Advanced Interrupt Architecture
(AIA)9 [43] is now the reference interrupt controller that
will supersede the PLIC. The AIA controller includes a
redesigned PLIC, called the advanced PLIC (APLIC), which
despite including the very same functionalities, it does not
provide backward compatibility, i.e., systems or applications
designed to work with the original PLIC are not compatible
with the APLIC. Despite the emergence of AIA, current
Linux-capable RISC-V COTS platforms still rely on the
PLIC, as seen in Table 1.

C. OPENSBI
The RISC-V non-ISA SBI specification aims at provid-
ing an abstraction over low-level, implementation-defined,
and platform-level components and mechanisms to ease
the implementation and porting of supervisory software.
It defines a number of run-time services meant to be provided
by M-mode firmware, such as hart-state management, IPI-
issuing, TLB invalidation, and shootdown. The OpenSBI
project is an open-source reference implementation of the
RISC-V SBI designed to be highly modular and easily
adaptable to a wide range of RISC-V platforms, supporting
different ISA extensions and non-ISA components. It can
be directly used as the run-time firmware (or as a library
included in external firmware or bootloaders), supporting the
handling of misaligned memory accesses and the emulation
at M-mode of extensions that are not implemented (e.g.,
Legacy and IPI Extension [44]), required by supervisor or
user software.

6CLINT: https://github.com/pulp-platform/clint
7CLIC: https://github.com/riscv/riscv-fast-interrupt
8PLIC: https://github.com/riscv/riscv-plic-spec
9AIA:https://github.com/riscv/riscv-aia

FIGURE 1. GPOS and RTOS configuration with vanilla OpenSBI.

The OpenSBI Domain system, is capable of partitioning
the underlying hardware by assigning dedicated memory
regions to one or more harts. Besides partitioning harts and
memory/MMIO regions, OpenSBI also restricts the effect of
the services it provides to the invoking domain’s harts. For
example, it will deny requests to send IPIs to harts which
are part of other calling hart’s domain. Figure 1 depicts an
example OpenSBI domain system configuration comprising
two domain instances running in S-mode: (i) one with a
Unix-like OS with its applications running in U-mode; and
(ii) the other with an RTOS configuration (FreeRTOS).

The initial boot stages are responsible for loading both
OpenSBI’s and the domains’ images to the main memory,
being the configuration passed in the form of a Device
Tree (DT) node following a custom binding. If this node
is not present, OpenSBI assumes a single ‘‘root’’ domain
containing all harts, devices, and memory (excluding its
own memory). Next, the OpenSBI domain instances are
created with their harts and memory regions with respective
access permissions, followed by some sanity checks to
avoid any user misconfiguration such as domains’ memory
overlapping. Finally, it assigns each memory to its domains
through the PMP entry setup and jumps to a pre-configured
address in the domain’s boot hart. The other domain’s harts
may be later woken up via the hart power-state management
service.

D. CHALLENGES OF STATIC PARTITIONING WITHOUT
VIRTUALIZATION EXTENSIONS ON RISC-V COTS
Designing a static partitioning solution without relying on
virtualization extensions is not directly possible on current
available RISC-VCOTS platforms. Despite OpenSBI already
implementing the core functionalities towards the goal
of static partitioning with the domains system, the most
important challenges still need to be addressed:

• Interrupt partitioning by mediating a domain’s
access to the PLIC: Some PLIC registers include the
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FIGURE 2. HSP-V architecture overview for the Microchip’s PolarFire SoC
FPGA Icicle kit.

configuration of multiple interrupts and contexts, with a
few registers being shared between both domains. The
shared PLIC address space across domains, as depicted
in Figure 1, highlights the challenge of preventing
one domain from interfering with the interrupts of
adjacent domains. Additionally, it is critical to provide
mechanisms to allow the execution of OSes with
unmodified PLIC drivers (e.g., with trap-and-emulate).

• Assignment of DMA-capable devices to different
domains via the IOMPU: It is mandatory to provide
memory isolation at the system-level, i.e., including
DMA devices in isolated domains.

• Shared cache partitioning: It is necessary to deploy
mechanisms to mitigate inter-hart interference, namely
contention for shared cache lines.

III. HSP-V IMPLEMENTATION
HSP-V is a static partitioning solution for RISC-V COTS
platforms based on the OpenSBI implementation that defines
partitions leveraging the RISC-V PMP. HSP-V provides other
key features such as interrupt partitioning, direct interrupt
injection, cache partitioning, and platform-level isolation
for DMA-capable devices. Figure 2 depicts the high-level
architecture of the HSP-V targeting theMicrochip’s PolarFire
SoC FPGA Icicle Kit [45], previously introduced in Table 1.
HSP-V uses the custom IOMPU to provide the I/O memory
isolation features, and the available way-locking mechanism
for cache partitioning.

A. OPENSBI DOMAIN CONFIGURATION ENHANCEMENTS
Domain configuration is done by adding an opensbi-domains
node under the chosen node to the platform’s hardware
description DT file. Listing 1 includes the settings for the
configuration illustrated in Figure 3, which is composed of
two bare-metal application domains, each statically pinned to
a single CPU and to a single device. The custom binding for
this node includes two types of subnodes: memory regions
and domain instances. A memory region node essentially
defines a base address (base) and a size (order) which
may refer to actual memory size or MMIO regions, while
a domain instance defines a domain’s configuration with
four important properties: (i) possible-harts, (ii) regions,
(iii) possible-devices, and (iv) cache-partitions, which are

FIGURE 3. HSP-V system configured for two domains and their respective
memory access permissions.

detailed below. Other domain instance node properties
include (i) the boot-hart, (ii) the next-mode (next privileged
level), and (iii) the next-addr (entry point address) for the
domain.10

possible-harts: this property contains the pointer handle
(phandle) for each hart assigned to the domain. In this
specific configuration, Domain1 is assigned to cpu1 and
has total access (read, write, and execute permissions)
to its application memory region (Dom1MainMem), while
Domain2 is assigned to cpu3 and has total access to its distinct
application memory region (Dom2MainMem).

regions: this property defines the physical address space
carvings assigned to the domain with an array of tuples,
each containing a phandle to the memory region node, plus
a bitmap for the assigned permissions (read, write, execute).

possible-devices: this property contains an array of phandle
to devices assigned to that domain instance. This property
was added to the vanilla OpenSBI configuration since a
domain instance lacks device interrupt details and DMA-
capable device’s information. In the default configuration,
to assign a device to a domain instance, it was necessary to
create a dedicated memory region for that device. However,
this information can be directly retrieved from the device
node reg property. Thus, in the new configuration, the
domain instantiation is able to retrieve the memory region
for the device and its associated interrupts (assigning them
to the partition as discussed in Section III-B), and to
identify DMA-capable devices and their respective IOMPU
ID (as discussed in Section III-D). This optimized device
MMIO region assignment mechanism is able to streamline
and simplify the configuration of domains, reducing the
possibility of user misconfigurations.

10Vanilla OpenSBI Domain configuration: https://github.com/riscv-
software-src/opensbi/blob/master/docs/domain_support.md
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Listing 1. HSP-V configuration for the system configuration depicted in
Figure 2 and Figure 3.

cache-partitions: This property represents a bitmap for the
cache partitions assigned to a given domain, independently
of the method used to partition the cache. For this specific
configuration, the cache partitioning is done through domains
by assigning four cache ways to Domain1 (cache-partitions
property with 0x0F), and different four cache ways for
Domain2 ( cache-partitions property with 0xF0).

B. INTERRUPT PARTITIONING
When devices are assigned to domains, these must access the
PLIC to configure and handle respective device’s interrupts.
However, concurrent and unsynchronized accesses to PLIC
registers might result in unpredictable behaviour for the
involved domains. Even if different domains cooperate
to perform such accesses, this would still be a major
security/safety threat/attack vector, as a malicious domain
could intentionally interfere and tamper with other domains’
interrupts. To prevent this, we implemented a partitioning
mechanism for the PLIC into OpenSBI. The approach is
based on the principle that (as explained in Section II-B) PLIC
context MMIO regions are specific to a given hart, while
the global configuration regions must be shared among all
domains.

The implemented mechanism starts by verifying if no
PLIC MMIO regions are defined in the regions properties,
followed by configuring the PMP to allow domain access
to its harts supervisor context MMIO region. As for the
global configuration register, and for a realistic number of
device interrupts and due to the limited number of PMP
CSRs, it would be impossible to configure the PMP to grant

access to the registers which pertain only to those interrupts.
Furthermore, some registers configure multiple interrupts
simultaneously on a per-bit basis - thus protection granularity
cannot be enforced by the PMP. In light of these arguments,
to protect and mediate access to this critical PLIC region
(memory regions represented with color red in Figure 3, i.e.,
the Priority, Pending and Enable PLIC regions), the proposed
mechanism uses the classical trap-and-emulate technique.

Since the RISC-V access control faults generate precise
exceptions, when a domain tries to access the global PLIC
region it traps to M-mode. OpenSBI uses the exception
information CSRs (e.g., mcause, mtval, mepc) to read the
fault instruction and decode the access to retrieve key
information such as the access type (load or store), the
destination/source register, and the access width. Since the
exception program counter (mepc) carries information about
the virtual address, it is required to set the mstatus.MPRV
bit to read the instruction. When this bit is enabled, M-mode
memory accesses are executed as if they were coming from
the privilege level that generated the trap. Hence, when the
domain has virtual memory enabled, the access is subject to
address translation using the domain’s page tables.

For the accessed address available throughmtval, if virtual
memory is enabled, it is necessary to perform a manual
page-table walk to retrieve the actual physical address. Then,
if this accessed physical address is indeed part of the critical
PLIC region, the OpenSBI uses the PLIC emulation support.
Based on the target address, the type of PLIC register
being accessed is decoded. This access is then passthrough
(or ignored) based on the accessing domain contexts and
assigned interrupts. At the end of this process, the execution
returns to the previous execution context and resumes from
its last instruction. Nonetheless, trap-and-emulating this
PLIC region will only result in significant overheads when
configuring interrupts. These MMIO registers are not on the
critical path for the interrupt handling, as they are typically
only accessed during domain’s initialization. The interrupts
are still delivered directly to S-mode, and the PLIC registers
touched during interrupt handling are directly accessible to
domains without any traps.

C. CACHE PARTITIONING
In the realm of MCS, to comply with security and real-time
requirements, minimizing deviations in the execution time is
crucial for maintaining a deterministic behavior. However,
contention at inter-hart (therefore at inter-domain) memory
hierarchy could result in significant and unpredictable
execution time, i.e., at shared micro-architectural resources.
Specifically, regarding shared LLC, a given domain executing
a memory intensive workload might inadvertently evict the
cache lines of a critical domain, incurring in high memory
access latency and low memory bandwidth, and potentially
resulting in missing the execution deadlines. In a worse
case, a malicious domain might intentionally evict such
lines to perform Denial-of-Service attacks (DoS) [46], [47]
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or even apply cache-side timing channel techniques (e.g.,
Prime+Probe [48], [49]) to retrieve information on the victim
domain’s data or execution flow.

The Microchip’s Polarfire SoC features a Physically-
Index/Physically-Tagged (PIPT) 2 MB shared and a unified
L2 LLC following a 16-way set-associative topology [45].
Besides allowing the use of carve-outs directly as scratchpad
memories, with essentially constant access times, it also
provides a mechanism to lock cache ways with a per-
master granularity, where each hart has two masters, i.e.,
one for the instruction cache and another for the data cache.
A cache controller interface provides a WayMask register
for each master, where each bit in the mask corresponds
to one of the cache ways [45]. When a bit is clear in a
master’s mask, it indicates that this specific way cannot be
evicted by that master. Nonetheless, this mechanism does
not provide any logical isolation, as a hart can still read its
masked ways. For the isolation requirements, the PMP unit
is always needed. Thus, this locking mechanism is used to
partition the LLC among the multiple domains according to
the cache-partitions property of the domain’s DT binding,
i.e., a bitmap representation of the assigned cache partitions to
that domain. Given the way-locking mechanism available in
theMicrochip’s Polarfire SoC, each of the 16 least-significant
bits in the cache-partitions property represents eviction rights
over one of the cache ways.

At initialization time, and for each domain, the WayMask
registers are set for the assigned harts instruction and data
caches with the value of cache-partitions. The exception is
the case when cache-partitions is not set in the domain’s
configuration. Hence, it is assumed that all cache ways
are assigned to all domain’s harts and consequently shared
among them. Despite the advantages of including the
WayMask register in the cache controller interface, regarding
the DMA devices it essentially groups the different DMA
channels into a single WayMask master. As a result, it is not
possible to achieve a fully partitioned cache for certain device
assignment combinations, i.e., locking ways for a specific
DMA channel will also lock the sameways for other channels
allocated to adjacent domains.

D. DMA PROTECTION
Unmediated access to the main memory by a domain’s
non-CPU bus master (i.e., a DMA-capable device) can
result in data corruption (and thus the state and/or sen-
sitive information) of other domains. To avoid this, the
Microchip’s Polarfire SoC includes a built-in IOMPU for
each of these masters, including Ethernet, eMMC, and
USB peripherals [45]. The IOMPU configuration registers
essentially follow the same structure as the PMP CSRs.
However, the number of regions for each IOMPU device
varies from 2 to 16, e.g., 4 configuration entries for the MMC
master block and 8 entries for Ethernet master blocks. As a
result, since a domain is a set of harts and memories and each
hart supports a maximum of 16 regions (i.e., 16 PMP entries),

TABLE 2. SLoC and binary size (bytes).

the number of regions for a given block master might be less
than the number of regions assigned to its domain. With that
in mind, the HSP-V approach configures the memory regions
of these masters accordingly to the domains that will leverage
the device. If there are still not enough registers to configure
the domain’s region, a fault is triggered and the system is
fully halted before starting any domain. At runtime, in case a
peripheral tries to access a region not present in its IOMPU
regions, an interrupt is issued to OpenSBI, which acts by
halting all harts belonging to a device’s domain.

IV. EVALUATION
The evaluation of the HSP-V was conducted on a Microchip
PolarFire SoC Icicle Kit board [45], which features a SiFive
E51 platform management hart, a quad-core U54 application
cluster with per-core 32 MB L1 data and instruction caches,
and a 2 MB shared L2 cache. The performed tests include
HSP-V code size, boot overhead, execution performance and
inter-domain interference, and interrupt latency.

A. CODE SIZE
This work extends the OpenSBI v1.0, adding significant
features provided by HSP-V while maintaining the original
code structure. Table 2 presents the SLoC and the final
binary size of subsystem for both the vanilla OpenSBI and
HSP-V, retrieved with the compiler optimizations set to -O2.
The HSP-V adds about 1656 SLoC to the 16265 SLoC of
the vanilla OpenSBI, which corresponds to an increase of
around 10%. Most of the additional SLoC are in (i) the
utils directory, specifically, in the DT parsing logic; (ii)
the platform-dependent code with the driver implementation
for applying the cache partitioning and the IOMPU register
setup; and (iii) the sbi core that was enhanced with the PLIC
trap-and-emulation code. On the other hand, the final binary
file with the features added by the HSP-V is around 298 MB,
which corresponds to an additional 8 MB (mostly on the
.text section) to the original OpenSBI binary file (290 MB).
Despite not completely negligible, the modifications required
by the HSP-V dot not significantly impact the system’s
Trusted Code Base (TCB).

B. BOOT OVERHEAD
This evaluation consists in measuring the total boot time of a
configuration with two single-hart domains that follows the
boot sequence illustrated by Figure 4. Domain (i) consists of
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FIGURE 4. Boot sequence for a configuration with two domains under the
same platform.

TABLE 3. Boot time (ms) of vanilla OpenSBI and HSP-V.

a FreeRTOS configuration with a binary size of 57MB, while
Domain (ii) includes a Linux-based system with an image
size 104 MB. The measurements include the total boot time
(label: OpenSBI init) of both the HSP-V with the enhanced
version of the OpenSBI, and the vanilla OpenSBI, as well as
the boot execution time (labelsFreeRTOS boot time and Linux
boot time) of each domain, both represented by red arrows.
Additionally, it was measured the execution time of the trap-
and-emulation (label T&E) mechanism, which corresponds
to the PLIC accesses for interrupt partitioning after setting
up the domains, as well as the influence of enabling the
cache partitioning feature. To carry out these measures (in
clock cycles) the rdcycle pseudo-instruction was used, and
the collected results are summarized in the Table 3.

Regarding the initialization time without the cache lock,
the vanilla OpenSBI takes on average 80.134 ms to complete,
while the OpenSBI with the HSP-V requires 112.051 ms
to finish the initialization, corresponding to a boot time
overhead of around 40%. With the cache locking mechanism
enabled, these values further increase to 80.202 ms for the
vanilla OpenSBI, and 112.102 ms for the HSP-V. For the total
boot time without cache locking, the HSP-V requires around
154.517 ms for booting the FreeRTOS, and 8375.438 ms
for booting the Linux system. These values, when compared
to the native versions of both domains, correspond to an
overhead of nearly 63% and 24%, respectively. This is mainly
due to the trap-and-emulating operations required by the
HSP-V for configuring the PLIC MMIO regions, which are
not required in the vanilla OpenSBI.

C. PERFORMANCE OVERHEAD AND INTERFERENCE
To assess the performance overhead and the inter-hart/inter-
domain interference, it was used the MiBench embedded

benchmark suite’s automotive subset, a reference benchmark
widely used in the evaluation of MCS [6], [10], [12], and
the LMbench [50], a suite of portable micro-benchmarks
designed to measure various aspects of a computing system’s
performance.

1) MIBENCH
This benchmark suite consist of six different tests that
execute in a single-hart Linux-based domain, containing
four memory-intensive algorithms susceptible to interference
caused by the LLC and memory contention, such as qsort,
susan corners, and susan edges. The interference between
harts/domains is introduced by a bare-metal application that
runs on other three harts and executes a memory-intensive
workload that continuously performs sequential writes to
a 1.5 MB array with a stride equal to the cache line size
(64 bytes). Each benchmark executed for four different
system configurations: (i) hosted execution (solo), (ii) solo
with cache locking enable (solo-lock), (iii) hosted execution
under interference from multiple domains (interf), and (iv)
interf with cache locking enable (interf-lock). For the tests
including the cache locking mechanism, four cache ways
(512 MB) were allocated to the bare-metal application, and
eight cache ways (1 MB) to the Linux-based domain. The
last four remaining cache ways (512 MB) are reserved to be
used as scratchpad memory by OpenSBI. Figure 5 depicts
the performance results using the solo configuration as the
baseline, where each bar represents the average execution
time of 1000 samples.

By enabling the cache partitioning (solo-lock), the overall
performance decreases when compared with the solo con-
figuration, which can be explained by the decreasing of the
amount of available cache memory that is allocated to each
domain. When stressing the system with interference (interf)
caused by the bare-metal application running on the three
remaining harts, the performance starts decreasing, especially
in the memory-intensive benchmarks, i.e., the qsort small
takes around 95.50 ms to complete (+50%), the susan
corners small requires around 20.82 ms (+79.73%), and the
susan edges small takes nearly 22.80 ms (+71.27%) to finish.
With the interf-lock configuration, the cache partitioning
mechanism mitigates the effect of this interference, which
reduces the execution time of the previously mentioned
memory-intensive benchmarks, i.e., the qsort small takes now
around 78.90 ms to complete (+25.72%), the susan corners
small requires now around 15.16 ms (+30.87%), and the
susan edges small takes nearly 16.89 ms (+26.86%) to finish.
Overall, the benchmarks handling smaller data sets (-small)
are more susceptible to cache interference than the large
versions.

2) LMBENCH
This benchmark suite targets UNIX systems and aims at mea-
suring various aspects of a computer system’s performance,
such as memory latency and bandwidth, context switching,
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FIGURE 5. MiBench automotive benchmark suite performance results.

FIGURE 6. LMbench automotive benchmark suite performance results.

file system operations, and inter-process communication,
among others. This evaluation only uses the bw_mem
benchmark, which was used to evaluate memory operations
bandwidth for different block sizes, i.e., 512 KB, 1 MB,
and 1.5 MB, executed for the same system configurations
as MiBench, i.e., for solo, solo-lock, interf, and interf-lock.
The interference was caused by the same bare-metal (for
interf configurations), and the cache locking mechanism
followed the same way allocation as for MiBench, i.e.,
four cache ways to the bare-metal application and eight
cache ways to the Linux-based domain. Figure 6 depicts
the performance results using the solo configuration as the
baseline, where each bar represents an average memory
bandwidth in megabytes per second (MB/s) of 100 samples.
For each sample, the micro-benchmark was configured
with 10 warm-ups and 1000 repetitions (–W 10 –N 1000),
encompassing 100000 samples (per bar).

LMBench results reinforce the same conclusions as
MiBench, with the behaviour of solo, solo-lock, interf

and interf-lock configurations following the same pattern.
Nevertheless, the results show that the relative performance
of the system decreases with the increase of the workload
(except for the copy operations). For the copy operations (cp),
the relative performance degradation can be explained by the
workload being equal (512 KB) or higher (1 and 1.5 MB)
than the available LLC cache for each domain. As the cp
operation uses two buffers (the source and destination buffers
are cacheable), the size of necessary memory doubles (e.g.,
the workload of cp is two times the size of wr), making it
the most memory-intensive micro-benchmark. For 512 MB
workload, the memory bandwidth rates are 606 MB/s in
cp, 390 MB/s in fcp, and 471 MB/s in bcopy; for 1 MB
workload the memory bandwidth rates are 233 MB/s in cp,
191 MB/s in fcp, and 208 MB/s in bcopy; and for 1.5 MB
workload the memory bandwidth rates are 144 MB/s in cp,
127 MB/s in fcp, and 135 MB/s in bcopy. Other experiments
were performed with bigger memory workloads (ranging
from 256 KB to 2 MB). However, the achieved results
followed the same pattern.

D. INTERRUPT LATENCY
To measure the interrupt latency, a crafted minimal
bare-metal benchmark application leverages an external timer
peripheral configured in decrement mode with a 10 ms auto-
reload period, to both trigger the interrupts and measure their
respective delay. All measurements were taken with cold L1
caches, which, between each measurement, are invalidated
with the ifence instruction and the data flushed by reading the
content of a dummy array with the size of the cache. Figure 7
depicts the results in the form of 5000 samples histogram
for two configurations: (i) the interrupt latency of the vanilla
OpenSBI without PLIC partitioning (Figure 7a); and (ii)
the interrupt latency in the HSP-V with PLIC partitioning
(Figure 7b). The obtained results show that the HSP-V do not
impact the interrupt latency, displaying a standard deviation
of only 22 ns, with an average execution time of 457 ns.
Such results correlate with what was previously explained
in Section III-B, showing that the PLIC partitioning only
causes traps to OpenSBI on interrupt configuration and not
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TABLE 4. Comparison between HSP-V and similar systems: tindicates the feature is present, and dotherwise.

FIGURE 7. Interrupt latency overhead.

on interrupt handling, as external interrupts continue to be
directly delegated to the S-mode in the mideleg CSR.

V. HSP-V IN PERSPECTIVE WITH RELATED WORK
This section provides an overview of existing RISC-V
static partitioning systems, such as Bao [10], Jailhouse
[26], XtratuM [51], Dom0-less (Xen) [27], Multizone [30],
Keystone [52], and VOSySmonitoRV [16], putting them in
perspective with the HSP-V solution. Table 4 highlights their
differences considering the following features: (i) hardware
virtualization support; (ii) the partition technology adopted,
i.e., TEEs, Hypervisors, or other approaches exploring
hardware RISC-V security primitives to statically isolate
resources across several environments; (iii) the security
design features; (iv) and the software license.

A. HYPERVISOR TECHNOLOGIES
The most prominent open-source SPHs supporting (or
working towards support) the RISC-V architecture (thanks to
soft-core implementations such as Rocket [12], CVA6 [42],

and NOEL-V [53], deployed in FPGA) are Bao [10],
Jailhouse [26], Xen (Dom0-less) [27], and XtratuM [51].
Their static partitioning design defines CPU and IO memory
accesses among all existing VMs. It adopts a 1-1 mapping
of virtual to physical CPUs, with no need for a scheduler
to mediate CPU allocation and ensure deterministic per-
formance for each VM. Memory resources are statically
assigned to VMs using two-stage address translation, where
the second stage efficiently remaps each guest’s physical
memory to the corresponding Hypervisor’s physical mem-
ory.

Considering Bao, the CPU and IO memory operate on
a pass-through-only basis, i.e., with the IOMMU mediating
DMA-related operations and MMU remapping the CPU
accesses from each VM, resulting in no Hypervisor inter-
vention for the VM execution. Bao explores an interference
mitigation technique based on cache-coloring and supports
PLIC partitioning through the deployment of a virtualization
extension to the PLIC specification. In addition to all these
features, Bao requires a TCB size of less than 10 K of
SLoC. Regarding the Jailhouse, the current project’s roadmap
aims to include the IOMMU for direct device assignment to
guests [9]. In terms of memory core management, Jailhouse
uses the MMU second stage for page table walks, aiming
to eliminate the Hypervisor intervention. However, it does
not support PLIC partitioning, forcing the Hypervisor to
apply trap and emulation mechanisms in all accesses to
PLIC. Despite having access to the interrupt controller, the
Hypervisor must manually inject interrupts into VMs, which
heavily affects interrupt latency and real-time guarantees.
Lastly, it deploys a cache-coloring mechanism for interfer-
ence mitigation, and the TCB is as low as 10 K SLoC.

The XtratuM Hypervisor [51] implements a partitioning
architecture based on the ARINC 653 standard, currently
benefiting from MMU and IOMMU to perform spatial
partitioning and a cyclic scheduling policy for temporal
partitioning. Nonetheless, the latter may increase the fre-
quency of translations, increasing the pressure on TLB and,
consequently, introducing overheads due to TLB invalidation
during context switches. Regarding the microarchitecture
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partitioning, it introduces the Safe Statistics Unit (SafeSU),
tackling inter-core interference and mitigating contention on
shared buses. Regarding the Xen Dom0-less [27], despite
supporting Arm-based architectures, its deployment for
RISC-V-based cores is still underway, and only scarce
information is available at the moment of the writing of this
article.

B. TEE SOLUTIONS
Multizone [30] and Keystone [52] are among the most
well-known TEE solutions currently supporting RISC-V.
The commercially-available Multizone [30] operates on a
two-operation mode infrastructure, encompassing M- and U-
mode, and enables the execution of multiple isolated zones.
Regarding the security design, it leverages a configuration file
to specify read, write, and execute memory access control
policies, and to map other physical resources such as I/O
devices and their interrupts to each zone. PMP guarantee the
core memory protection, while I/O protection, specifically
the DMA accesses are controlled via software. Additionally,
to offer seamless support for unmodified binaries and fully
isolate the interrupt handling process between zones, it relies
on the trap and emulation technique. Lastly, it features a
formally verifiable code base implemented in assembly code
with a small TCB size.

Regarding the Keystone [52] framework, it is an
open-source project dedicated to build customizable TEEs
based on RISC-V. The Keystone security design involves
a secure monitor executing in M-mode, leveraging PMP
for CPU memory protection. Additionally, it can benefit
from various RISC-V implementations to enhance security
in IO operations, i.e., non-standard IOPMP. The frame-
work implements a cache partitioning mechanism based
on real platform specifications, effectively minimizing
micro-architectural interference through a way-locking
technique. Notwithstanding, it’s important to highlight that
Keystone, unlike some counterparts, delegates interrupts
to M-Mode, not providing enclaves with the capability to
receive their interrupts.

C. OTHER STATIC PARTITIONING SOLUTIONS
Among the RISC-V static partition solutions that do not
make use of virtualization extensions, VOSySmonitoRV [16]
emerges as the system most closely comparable to HSP-V.
VOSySmonitoRV operates at M-Mode, with a design tailored
for MCS. The isolation is performed by assigning MMIO
devices and CPUs to different partitions and offering memory
access isolation via PMP and MMU. At the time of this
writing, no information is available regarding PLIC, interrupt
partitioning and micro-architecture mitigation mechanisms.

HSP-V stands out from previous solutions in two main
aspects: (i) it is the first to implementing memory IO isolation
relying on an IOMPU platform-specific feature, and (ii) it is
the only solution that performs the partitioning of the native
PLIC without relying on hardware virtualization support.
This is achieved by enabling partitions to directly access

specific PLIC registers without the need for trap-and-emulate
mechanisms, and by allowing direct interrupt injection with
with essentially zero traps in the Domain execution. The
HSP-V implementation requires a higher number of SLoC
when compared to other SPH included in Table 4. However
this is mainly a consequence of building atop the vanilla
OpenSBI code.

VI. DISCUSSION
HSP-V provides SPH features independently of hardware
virtualization primitives. By leveraging a static partitioning
design, HSP-V facilitates the consolidation of different
criticality systems on top of the same hardware platform
while fulfilling the requirements of MCSs in broader areas
such as automotive, industrial control, aerospace, andmedical
fields. For instance, in the automotive field, we can easily
find systems with different Safety Integrity Levels (SILs),
where non-critical Quality Management (QM) and ASIL-A
systems (e.g., infotainment and exterior lighting) coexist with
critical ASIL-D systems (e.g., airbags, anti-lock brakes, and
power steering). Furthermore, by leveraging the basic ISA
security primitives ready-available in all RISC-V platforms
(i.e., PMP), HSP-V can operate across various RISC-V
platforms.

A. TRADE-OFFS BETWEEN HSP-V AND SPHS
Despite both SPHs and HSP-V relying on the same
partitioning principles to consolidate different workloads
onto the same platform, there are trade-offs in terms of
performance overhead, interrupt latency, and scalability.
Regarding performance, SPHs typically leverage 2-stage
address translation, resulting in performance degradation
of up to 7% when using 4KB of pages. Notwithstanding,
SPHs can achieve minimal performance overhead levels
(<1%) by utilizing large contiguous memory regions of 2MB
(i.e., superpages), reducing the TLB misses. However, the
granularity of superpages prevents the use of cache coloring
mechanisms, which is typically used to mitigate interference
in LLCs by up to 40%. In HSP-V, interference mitigation is
obtained through cache-locking mechanisms, which reduce
interferences by up to 50% while avoiding the penalty
of performance degradation imposed by 2-stage address
translation. Regarding interrupt latency, SPHs typically have
a 4x increase in interrupt latency compared to the baseline
despite using interrupt direct injection [6]. In contrast,
HSP-Vmaintains native interrupt latencywithout introducing
overhead during domain runtime execution, thus enhancing
system execution performance and determinism, making it
well-suited for MCSs. Lastly, scalability presents the main
drawback for HSP-V. Its static partitioning design based
on PMP is typically restricted to 16 entries, limiting its
scalability. Workloads (akin VMs) running in partitions
also need to cooperate in the (physical) address space,
due to the lack of virtual memory support, hampering the
use of legacy, pre-compiled binaries. Moreover, the cache
partitioning mechanism is constrained by custom hardware
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support, unlike the flexible coloring approach utilized by
SPHs.

B. HSP-V UTILIZING PMP ACROSS DIVERSE PLATFORMS
The utilization of the PMP unit allows the HSP-V to be
deployed in platforms with custom isolation primitives [25],
or resource-constrained microcontrollers, for the consolida-
tion of critical workloads [54]. The PMP primitive used for
domain isolation can be less scalable and flexible than the
virtual memory infrastructure leveraged by Hypervisors. For
example, the limited number of PMP regions available in
some systems, might not be enough for a specific target
configuration, which is not an issue when using virtual
memory.

C. USING IOMPU AS HSP-V’S IOPMP
HSP-V prevents data corruption from DMA-capable devices
by leveraging the IOMPU platform-specific feature. How-
ever, only Polarfire and Nezha platforms include IO pro-
tection features, i.e., IOMPU and IOMMU, respectively,
as summarized in Table 1. Notwithstanding, as part of future
work, HSP-V could leverage the trap-and-emulate technique
to control DMA-capable devices on platforms which not
include IO protection. Additionally, HSP-V could also be
adapted to support the future IOPMP RISC-V specification.
Currently, the RISC-V community has been working towards
the ratification of a standard named IOPMP [55], which shall
mediate and manage device accesses to memory.

D. FUTURE PROSPECTS OF CACHE PARTITIONING
HSP-V incorporates cache partitioning through platform-
specific features, i.e., the cache-locking mechanism. The
presence of this mechanism extends beyond the Icicle board,
encompassing other platforms such as those equipped with
SiFive Freedom U540 and U740 SoCs. Given its unavail-
ability on some platforms, the RISC-V community has been
working towards establishing a standardized interface for
seamless control over cache partitioning.

VII. CONCLUSION
This work presented and discussed the HSP-V, a Hypervisor-
less static partitioning solution for the consolidation of
MCS on commercially-available COTS RISC-V platforms
lacking Hypervisor extensions. Based on the OpenSBI
project, it enhances the configuration bindings by adding
a interrupt partition mechanism through the mediation of
the platform’s interrupt controller. Furthermore, it includes
a cache partitioning mechanism to split the last-level cache
among Domains by mediating accesses using platform-level
MPUs. For the demonstration and evaluation of HSP-V,
it was used the Microchip PolarFire SoC Icicle Kit board,
a widely-used COTS RISC-V platform. The collected results
show that: (i) due to the latency imposed by the trap-and-
emulation, HSP-V causes some overhead to the boot time; (ii)
the overall performance is not affected by HSP-V; (iii) cache

partitioning is a good approach for reducing the inter-domain
interference; and (iv) the interrupt latency is not affected.

Hereafter, future steps will encompass: (i) the evaluation
of HSP-V on other RISC-V-based COTS platforms; and
(ii) the implementation of system recovery mechanisms on
platforms with IOMPU features. This latter will enhance
the HSP-V design (currently it only halts a domain when a
DMA-access violation is detected) by forwarding the IOMPU
error interrupt to the respective domain, which enables the
possibility for the domain to take the appropriate recovery
measures.
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