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ABSTRACT Load-shedding is vital for managing electrical power shortages and avoiding grid collapse.
However, excessive electricity demand poses an imminent threat to the overall stability of power grid
system (PGS) and its ability to run safely and reliably. Load-shedding strategies can be complicated and
inadequate to manage electrical power system efficiently. The study proposed a data-driven load-shedding
time series classification (TSC) technique employing a heterogeneous ensemble super learner (eSL) to
categorize load-shedding based on contributing features. The model investigated challenges with binary
classification while using a multidimensional time series for South Africa’s hourly load-shedding stages in
MW collected from PGS data. Considering that load-shedding is planned and predicted based on contributing
features, we use these features as strong indicators to classify expected outcomes for load-shedding or
no load-shedding. Validation tests for the suggested technique included the precision recall curve, the
confusion matrix, the class likelihood ratio, the Brier skill scores and critical difference factor (CDF).
Logistic regression (LR) produced the highest CDF average score, while support vector classifier (SVC)
had the highest balanced precision (90.694%). The recursive feature elimination (RFE) model exhibited the
most significant true negative and true positive counts, at 50.59% and 40.84%, respectively, and the highest
proportion of valid classifications.

INDEX TERMS Ensemble, super learner, recursive feature elimination, time series classification.
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I. INTRODUCTION

Electrical power is generated through a complex network of
renewable and fossil fuel sources, leading to uncertainty in
electricity supply to meet demand [1]. In the event of limited
electricity production sources, electricity demand results in
interruptions of the supply due to load-shedding. Excessive
load-shedding from decreasing generating sources can lead to
catastrophic grid system collapse [2], [3]. Various approaches
based on machine learning (ML) have been investigated to
balance electricity demand and generation. However, as the
number of ML models that address load supply disruption
continues to grow, there are limitations in the categorization
task related to the disruption of the electric load supply
based on developing characteristics. South Africa, like many
developing countries in Africa, faces power shortages and
irregular electricity supply. A load-shedding strategy by the
South African energy agency ESKOM is in place to help with
supply shortages, with daily load-shedding events varying
from “‘stage 1 (about 1,000 MW) to “‘stages 8" (around
8,000 MW) [4].

Predictive ML techniques can help with systematic and
effective load-shedding management [5]. ML algorithms are
powerful in extracting insight from data, often performed
with learners for a covariate task, predictive function,
or causal impact [6]. Adopting Industry 4.0 is a complemen-
tary scientific approach that focuses on data analysis, com-
putational intelligence, and the identification of indicators
for decision-making. In this study, ML predictive classifiers
identify discrete class labels using stacked heterogeneous
aggregated learners, leading to an insightful classification.
Feature engineering is indispensable in the ML pipeline,
as it optimizes computation, improves performance, and
limits noise or irrelevant features [7]. Recent studies have
explored binary wrapper, grey wolf optimization, particle
swarm optimization, stability criteria, wrapper-based feature
selection, adaptive teaching and learning for feature selection
optimization, and its application in electricity optimization,
dimensionality reduction, and numerosity reduction [8], [9],
[10], [11], [12], [13].

A promising ML approach for load-shedding is the
ensemble approach. The ensemble technique aggregates
the knowledge of weak learners. The ensemble technique
results in higher convergence, robustness to outliers, and
optimal regularization compared to a single predictor [6].
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To validate, aggregating learners from numerous options
requires consistent sampling, as it is improbable to find in
advance the most appropriate combination for a specific
task [6]. The ensemble super learner is a proven technique [6],
[14], [15]. The eSL is a data-adaptive approach with proven
use cases and confirms significance in maximum likelihood
estimates. The aggregation of learners evolved from the
stacked generalization model [16]. Further experimentation
demonstrates the capability of stacking predictors for meta-
learning [6], [14], [15], [17], [18], [19], [20], [21], [22], [23],
[24], with variations extending eSL functions for a specific
set of tasks. eSL solves some of the bottlenecks common with
individual models, such as an expectation space that is overly
large for the quantity of available training data, an analytical
challenge that guarantees a global optimum, and an individual
model that lacks a well-defined approximation for model
distribution outcomes. This study focuses on stacked eSL
for load-shedding task [6], [17]. Details of the schema are
established in section II.

The study explores the classification of electrical load
supply interruptions using a stacked heterogeneous learner.
It extends the weighted information gain measure by com-
bining heterogeneous techniques in base learner classifiers.
The following are the key contributions of this paper:

1) Identify biclass electricity load-shedding, which is
strongly associated with a meta-learner classification
technique based on layered eSL. The load-shedding
method was determined using ESKOM data. The best
load-shedding option was determined through hourly
categorization of contributing ESKOM features data.

2) The load-shedding contributing indicator for the meta-
learners’ load-shedding classification from feature rep-
resentation in this research takes into account the base
learner from the stacked heterogeneous ML learner
aggregate using the logistic regression approach. The
time-dependent class of load-shedding indicates that it
can ensure the steady functioning of significant load
distribution action.

3) The ESKOM PGS emergency load-shedding TSC task
offers a guided tool to improve load-shedding decision-
making and overall PGS efficiency when necessary.
Load-shedding is a response to high power demand
or low generation. Severe load-shedding can result in
revenue losses and poor industrial output. The goal is
to avoid or reduce load-shedding sufficiently so that the
PGS can be deployed optimally.

The rest of the paper is organized as follows: Section II
emphasizes associated concepts, techniques and discusses
super learner modeling and prediction. Section III describes
and discusses the result. Finally, Section IV concludes the

paper.

Il. RELATED THEORIES AND METHODS

A. BASE LEARNER

In the construction of eSL model, we used logistic regression,
decision tree classifier, support vector classifier, extreme
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gradient boosting classifier, k-nearest neighbors classifier,
AdaBoost classifier, bagging classifier, random forest clas-
sifier, and extremely randomized trees classifiers as base
learners and logistic regression for the meta-learner. The
process starts at the root node in logistic regression and
continues through all base models. This approach assesses
the model with k-fold cross-validation. An array is formed by
stacking out-of-fold forecasts. Each base model is adapted to
the training dataset, and the resulting estimate is kept for the
meta-analysis.

1) LOGISTIC REGRESSION

The logistic regression (LR) technique applies a linear
sequence of input data for binary classification tasks.
LR possesses a suite of theoretical foundations with
significant predictive accuracy in widely competitive domain
classification tasks [25]. In LR, the independent variable X
as (xp,...,x,) defines the dependent variable Y as a logit
fit multiple linear regression. LR requires a functional form
P(Y|X) for the probability of Y = 1 for predictor variables
X. In the following notation from [26], (1) and (2) expresses
the LR as:

1
PY=1|X)= ; 1
( 1% 1+ exp (wo + Xy wiXi) M
Py = 0| x) = — P o+ 2 wi) )

1+exp (wo+ 21 wiXi)’

where wy is the coefficient intercept and coefficients weight
for observations wi, ..., w, is selected from a maximizing
conditional likelihood. Equation (2) originates from (1),
as the sum of the two probabilities should be one. LR is a
probabilistic function applied to the negative categorization
power and frequency change rates with very high correction
performance [27].

2) DECISION TREE CLASSIFIER

Decision tree classifier (DTC) is a non-parametric technique
based on a rule-defining scheme for target labels from feature
inferencing. DTC has a modest implementation scheme but
may result in overfitting. There are many variants of the
DTC from well-known models such as chi-square automatic
interaction detector (CHAID) [28], Iterative Dichotomize
(ID3), Quinlan iteration (C4.5 and C5.0) [29], classification
and regression trees (CART) [30]. Gini loss and entropy are
significant tuning parameters in a classification task. The
Gini estimates the value of a split, log loss, or entropy is
the information gain. Equations (3) to (6) define the left
split, right split, Gini, and entropy. The technique to create
a decision tree begins with a random training sample from
the training dataset. A decision tree consists of split and
tree nodes. Each node s is a looping procedure and starts
by randomly choosing sample variables from all available
variables. The root node is built and assigned the sample data.
The choice of the optimal split feature and threshold is based
on the Gini or entropy criterion by dividing the node into
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two child nodes and moving to the associated subsets. The
p represents the percentage of samples attributed to class i.

x €lc(s) & x5 <0 (s), 3)
X €rc(s) & xps) > 0(s), )
n
Gini index :G(E) = 1 — > _p?, 5)
i=1
; 14
entropy :H (E) = — Zpilogp,-. (6)
i=1

In an input space, the tree formulation [31] is built
repeatedly. Every branch node is a branch (split) node. Branch
makes a divide decision and sends the data sample x to either
the left child node Ic(s) or the right child node rc(s). When
employing axis-aligned split options, the split rule is based
on a single split feature f(s) and a threshold value 6(s). If the
value of x feature f(s) is less than a threshold 8(s), it is routed
to the left child node. Otherwise, it is directed to the right
child node. All leaf nodes are in the branches. Leaf node /
store votes for the classes y/ = (¥, ..., ), where n is the
number of classes. The CART decision tree was adopted in
the experimentation for the ESKOM data classification.

3) SUPPORT VECTOR CLASSIFIER

SVC maps input sequences to a high-dimensional space. SVC
is a classifier capable of handling non-linear tasks. SVC
is implemented with a hyperplane as decision boundaries.
The outermost boundary defines the hyperplane [32]. SVC
is a type of kernel support vector machine (SVM) for the
classification task. For further information, see [33].

The kernel approach improves SVM by allowing kernel
functions to solve optimization issues in a high-dimensional
space. When utilizing SVM, training data is mapped into
a new feature space using a kernel function. Then, SVM
creates a considerable margin difference between training
sets in the new feature space. Given the assigned series
(x1,¥1,...,%n, yn), x indicates the variables that constitute
the covariates and y € {—1, 1} is the reaction, the value of the
weight vector is ¢. SVM uses a kernel function « as defined
in (7) to (9).

f@) =" pikc(xi, x) +b, )
i=1
> bidjk(xi )+ D pi.and ®)
i,j=1 i=1
yif ) > 1 — p;, 9)

pi represents the percentage of incorrect categorization of
xi, and « is the penalty parameter for miss classification.The
optimal hyperplane is a function of ¢ > 0 and bias b. f(x) is
the function and translates the training vectors x into a higher
dimensional space. Using the function f(x), SVM computes
a linear hyperplane that distinguishes the training data into a
higher dimensional space. SVC has been applied in energy
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fault detection based on active power variants [34] and in
large-scale image recognition problems [35], [36].

4) EXTREME GRADIENT BOOSTING CLASSIFIER

Chen and Guestrin [37] proposed an extension of gradient
boosting called extreme gradient boosting (XGB) to include
an objective function for scalable tree boost. XGB is a
function of functions. The objective function includes the
regularization term and the training loss. In (10) to (12),

=3 fe=f""+he, A0

Obj® = z]’_’:l[@, ) +Z;:1a @) (11)
1

a(f) =87+ 3> u (12)

Given the predictive function f; (x;) at the time step ¢, fl.(t)
and fi(t_l) represent optimized functions at consecutive time
steps ¢ and r — 1. To avoid overfitting while maintaining
computational performance, (11) assesses the quality of the
model. Chen and Guestrin [37] study express the objective
functions Obj") allow for a mix of regularization and
predictive terms, as well as parallel execution during training.
¢ is the loss function for estimating the distance between the
y; and y;, o is the regularization function represented in (12),
§ is the minimal loss required to divide the leaf node further,
o is the regularization parameter, t is the number of leaves
in the tree, and w is the branch score vectors. XGB, which
has been widely used to solve a number of ML problems and
made outstanding performance in many domains including
mitigation schemes for accurate attack detection and efficient
network resource utilization [38], remaining useful life of
transformer insulation paper [39], fault diagnosis of diesel
engine [40], and radar emitter classification [41].

5) K-NEAREST NEIGHBORS CLASSIFIER

K-nearest neighbor classifier (kNNC) is a non-parametric
classification technique widely applicable in classification
tasks [42]. The number of kKNNC neighbors are identified,
where k,, is significant. KNNC uses a vector set as the center
of a circle, its circumference being determined by the variable
ky. k, denotes the number of neighbors within the radius
of the circle. A definitive value of k, would be preferable
if the input data contained outliers. In (13), following [43]
notations, v; denotes a collection of data samples, whereas
(vj, 0j) denotes a combination of the data vector and label
(0j € [1,C]) and C specifies the variable set’s optimum
categories in the dataset. The KNNC technique is then applied
to categorize a new vector 77, KNNC is estimated in (13) as

argmin(dist)(v;, HVj =1,...,n. (13)
j

argmin defines the set of j values that result in the

J
minimal likelihood value with the distance measure disz(.).
There are three distance matrices applied in the kNNC.
Equations (14) to (16) represent the Euclidean (distgy.),
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Manhattan (distya,), and Minkowski (distys,) distances,
notable for the KNNC techniques widely used for ML tasks.

diy,x)= [(n > (xi—y)), (14)
i=1
d(y, x) =D Ixi = il, (15)
i=1
dy,x) = (i =y, (16)

i=1
where d(y,x) is the neighbor distance dist(.) as distgyc,
distyran, or distygin, for two vectors x and y given length n. p is
the integer power order between two points. The Minkowski
distance is transformed into Euclidean distance when p is
1 and the Manhattan distance when p is 2.

6) ADABOOST CLASSIFIER

AdaBoost classifier (ADC), which stands for adaptive
boosting, is an ensemble learning technique used in ML
for problems associated with regression and classification.
In 1995, Yoav Freund and Robert Shapire invented the
AdaBoost algorithm [44]. The ADC’s primary principle is
to iteratively train a weak classifier on a training dataset,
with each subsequent classifier assigning more weight to
the misclassified data points. Combining the weak classifiers
used for training with the weights assigned to the models
based on their accuracy results in the final ADC model. The
model with the lowest accuracy is given a lower weight and
the weakest model with the best accuracy is given the highest.

7) BAGGING CLASSIFIER

Bootstrap aggregator, commonly called bagging, is an ML
ensemble meta-technique established to increase the stability
and accuracy of ML algorithms. Bagging is a technique
introduced by Breiman in 1996 [45]. Bagging is employed for
ML classification and regression, which reduces variation and
helps prevent overfitting. Usually, a decision tree is another
practical use case for bagging. A specific instance of the
model averaging approach is bagging.

8) RANDOM FOREST CLASSIFIER

Random forest (RF) combines tree predictors in which the
values of a random vector sampled independently and with
the same distribution for all trees in the forest are used to
predict the values of each tree [46]. The RF classifier meta
estimator predicts accurately while handling overfitting via
sub-sampling dataset with averaging.

9) EXTREMELY RANDOMIZED TREES CLASSIFIER

An extremely randomized trees classifier (ERTC), or a
highly randomized tree classifier, varies from a decision
tree in techniques and construction but is similar to the
RF. ERTC is an extreme technique with fully randomized
tree inferencing from different constructions [47]. ERTC
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implements a meta-estimator with a randomized node split
from all the data. ERTCs are characterized by low variance
and faster node splits.

B. META-LEARNER

The meta-learner combines the base predictors into a stacked
weighted model with assigned weights for an optimal
combined super learner prediction [6], [15]. The meta-
learner, also known as the aggregator, is the next level
following the base learner. The meta-learner collects base
model forecasts into meta characteristics. The learning
process combines these assumptions to provide the final
forecast. The meta-learner undergoes training using the
validation dataset’s forecast results as well as the model’s
predictions. The meta-learner’s purpose is to determine the
optimum approach from the weighted rules in order to reduce
errors during prediction.

C. ENSEMBLE SUPER LEARNER

The eSL is a mixture of two layers. The first layer is the base
learners, and the second layer is the meta-learner, creating an
ensemble of learners’ prediction algorithms. Heterogeneous
prediction models with given weights result in the optimal
aggregation for a prediction function [15]. The weights of
the candidate learners are calculated using a ten-fold cross-
validation to minimize the loss function. The eSL method
transforms a training dataset into a prediction dataset with
k-fold partitions.

According to Latha et al. [17], the super learner approach
was reliable for compressive value forecasting in high-
performance concrete. In another study, Lee et al. [14]
executed heterogeneous combinations to predict the geno-
toxic description for different Multi-Walled Carbon Nano
Tubes. Casas and Vanerio [20] used the super learner for
data analysis strategy to detect traffic anomalies. In another
study, imbalanced datasets classification task showed better
performance results with a super learner [22]. In [23],
an empirical study for vehicle-type traffic surveillance
classification provided compelling results with the super
learner.

In this study, the meta-learner is a LR and extended base
learner. Obj; = (X;, Y;),i = 1,2,3,...,n is the objective
function to estimate the LR vyo(X) = E(Y|X), where X(X €
x) and Y are the input parameters and the result of interest,
respectively. The outcome of the regression is described
as the minimization of the predicted loss E[¢(Obj, ¥)] and
expressed in (17),

Yo(X) = argminE[.(0bj, ¥)]1, (17)

where the loss function is ¢. x is the input from the
ESKOM dataset and » is the total number of observations.
Each k-fold validation and training set are indicated as
Viiv=1,2,3,...,k)and T, (v =1,2,3,..., k). Assume
‘ifj(j = 1,2,3,...,J) is a collection of J base learners
derived from standard approaches. In the vth fold, each
base model, \ifj, is fitted using 7, and the results in the
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associated set are produced in (18). Each base learner’s
forecasts are organized in layers to form a prediction matrix
zZ = \ilj,Tv(VU). Equation (19) establishes a collection of
weighted sets of possible base learners, annotated using a
weight vector ¢. In (20), The following phase determines the
weight vector ¢ and avoids cross-validated errors between the
overall acceptable weight vector sets as well as for the ground
truth result Y. The final eSL \i/SL(X ) in (21), is created by
combining the ideal weight vector qg with \ilj(X ) using m(z|¢p).

Ui, (Vo), =1,2,3,...,J), (18)

J J
m@Ele) =D ¢, (V). D =1, (19)
j=1 j=1

¢ = argngnl; (Y; — m(zil$))*, (20)

A~ J A A

Wer () = >~ §b;(0). 1)
j=1

D. FEATURE ENGINEERING WITH CONFORMITY

We performed noise estimation on the ESKOM data to
enhance feature selection. A case for distribution overlap
and label issues was examined. For conformity, a random
selection of characteristics was made based on the available
filter, wrapper, embedded, and hybrid techniques [48].
A higher number of features may lead to model overfitting
and considerably more computationally demanding. To limit
the overhead and computational cost and simplify the
complexity of the model, we considered feature filters
from available grounded techniques. Again, the expensive
overhead for the stacked eSL was considered for practicality
and experimentation.

1) ALL USABLE FEATURES

All ESKOM feature variables, without redundant variables,
excluding manual load reduction (MLR), interruptible load
sheds (ILS), and excluding (Excl ILS), time stamps, and
residual forecast before national lockdown, were used in the
feature selection process. Details of the ESKOM features can
be obtained from the ESKOM data portal.

2) OLS BACKWARD ELIMINATION (BE)

The ordinary least square (OLS) elimination progresses com-
putational competence for feature selection [49]. BE is a type
of filter technique that considers the central characteristics of
the features. BE is computationally less expensive for high
dimensional data than the hybrid or wrapper techniques.

3) HYBRID VARIANCE THRESHOLD, SELECT K-BEST, AND
XGB (VT_KBEST)

The hybrid combines the strength of multiple filtering and
embedded selection techniques. The initial filter reduces
features with a low variance threshold. It is assumed
that high-variance features are ideal features compared to
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low-variance features. Further filtering with SelectKBest [50]
reduces variables from all features, and gradient boosting
reduces the dimension for optimal feature selection. The main
advantage of the hybrid technique is the combination of the
strength of different selection techniques [50], [S1], [52].

4) LASSOCV EMBEDDED METHOD (CVE)

The least absolute shrinkage and selection operator (LASSO)
is aregularization involving penalizing model parameters and
avoiding over-fitting [53]. Features are eliminated subject
to the sum of the absolute value of the coefficients and
reduced to zero. LASSOCV incorporates cross-validation
(CV) [52] folds, further improving the selection process.
LASSO is a computationally expensive embedded feature
selection technique for feature elimination.

5) RECURSIVE FEATURE ELIMINATION (RFE)

RFE removes features using attributes with assigned weights.
The least valuable features are recursively pruned from the list
for the desired list [54]. RFE is a wrapper feature selection
technique and is computationally expensive, employing
greedy search and a more significant number of datasets or
features, but the accuracy is reliable. RFE base and RFE Opt
were considered for experimentation. RFE base is the first
level filtering, and RFE Opt further reduced the RFE base
feature list.

6) PARTICLE SWARM OPTIMIZATION (PSO)

Kennedy and Eberhart proposed particle swarm optimization
(PSO) in 1995 [8]. PSO is best utilized to determine the
highest or lowest value of a function specified in a multilayer
vector space. PSO has the potential to determine the highest
or lowest value of a function specified in a multilayer
vector space. The PSO algorithm will return the minimum-
producing parameter.

E. LABEL CURATION

ESKOM MLR, ILS, and Excl ILS features are continuous
variable representations. The discretization process involves
aggregating these sets of variables into logical binary
bins. Given the task a categorical problem. Discarding
the granularity of the data results in a significant loss of
unconsolidated information. The inflection point is suitable
for the electrical load interruption task, which is indicated
as load-shedding and no shedding. Applying [13], the set of
classes Y is produced by using a training set made up of n
signals with the values x(i), ..., x(; in the input space X,
which is p-dimensional. The ESKOM MLR, ILS, and Excl
ILS were aggregated for electricity power interruption and
labeled for x(1y to x(, is for ESKOM load-shedding or no
shedding categories. The ESKOM feature space X excludes
the label variables.

F. EVALUATION INDICATORS

1) BALANCED ACCURACY

Balanced accuracy is a performance estimate for imbalanced
datasets by computing the recall average obtained from
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a specific class [55]. In (22), the true positive (TP) is
the positive instance, which the identified categorization
models accurately; true negative (TN) negative instance
categorization as shown by the classification model, false
positive (FP) is the negative instance that is classified
incorrectly in the positive class, and false negative (FN) are
positive instances that are incorrectly classified in a negative
class [56].
TP N

1
= , 22
2(TP+FN+TN+FP) @2)

balanced-accuracy =

2) CONFUSION MATRIX

The confusion matrix is derived from the classification
assessment and a combination of metrics [57], [58]. The
confusion matrix illustrates the number of correct classifi-
cations on the sloping side of the matrix. In (23) and (24),
metrics precision (sensitivity: P;), also known as TPggte,
is the amount of TP over the number of TPs added to the
number of FP. Recall (specificity: R,) described as true
negative rate TNgys.. The recall and precision standard metric
for a particular performance estimate is described as the
harmonic mean (F'lscore): See (25) [56]. All metrics have
various benefits and drawbacks and are considered differently
in balanced and imbalanced datasets. Hence, it is critical
to consider the class distribution of the dataset to choose
appropriate metrics for meaningful performance evaluations.

TP @3
"7 (TP +FP)’
TP 4
"7 (TP +FN)’
2% P, %R
F1iscore = M (25)
(Pr+Ry)

3) AREA UNDER THE CURVE OF A PRECISION-RECALL
CURVE

The area under the curve of a Precision-Recall curve
(PR-AUC) is an illustration of the performance of the ML
model with precision (specificity) and recall (sensitivity).
PR-AUC is tractable for imbalanced classes, and the plot is
more accurate compared to receiver operating characteristic
(ROC) curves [58]. PR-AUC is a criss-cross plot that is less
velvety and convex than the ROC curve. A typical issue with
PR-AUC lies in the interpretability between points on the
PR curve, resulting in numerical integration under the curve
complex [56]. Again, PR-AUC algorithms that optimize the
area under the ROC curve are not guaranteed to optimize the
area under the PR curve [59].

4) BRIER SCORE LOSS AND BRIER SKILL SCORE

The Brier score loss estimates the probabilistic accuracy of
forecasts. The use case for Brier score loss is when there is an
occurrence of an event or no occurrence. In a binary task, the
best Brier score loss value is 0, and the worst achievable score
is 1. Hence, a lower Brier score loss shows a more accurate
prediction. Brier skill score compares two Brier score losses
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by comparing the benchmark and innovative models. The
Brier Sill Score is an important metric used to uncover the
goodness of fit from a Brier score loss model across all
probabilistic predicted on the holdout set. The Brier score is
estimated in (26) as:

N
Sp=1/nY Gy (26)
(=1

where Sp is the Brier score, N is the number of
observations, y; and y; are the predicted and experimental
values, respectively. In (27),

SSp = (Sp — SN)/SB, 27)

where SSp is the Brier skill score, Sy is the Brier score
loss of the new model, and Sg is the Brier score loss for
the benchmark model. The Brier skill score focuses on the
relative metric lacking in Brier score loss. A negative score
shows a weaker model than the base model, 0 implies equality
and a positive value means the performance of the new model
is superior to the experimental model.

5) CLASS LIKELIHOOD RATIO

The class likelihood ratio is a statistical test to evaluate the
optimal fit from statistical models. The class likelihood ratio
is a famous test used in energy classification studies [60].
The Class likelihood ratio is a valuable metric for computing
the positive and negative likelihood ratios. The metric is
class invariant and ideal for class imbalance. There are two
possible likelihood ratios for the predictive power of binary
classification tasks (the positive LR+ and negative LR-
likelihood ratios). A positive odds ratio was considered in the
holdout test experiment. In (28), the positive likelihood ratio
of (LR+) is the ratio of P, sensitivity by the difference of R,
specificity from one.

LR+ (28)

-

(1 =Ry’
6) CRITICAL DIFFERENCE DIAGRAMS
Another intriguing tool for displaying retrospective test
statistics is the critical difference diagram. The results within
every component are first rated in a block design scenario,
and the average rank for the entire result for each treatment
is plotted along the x-axis. Groups of treatments that do
not show statistically significant differences are then given
a crossbar. Solid bars represent groupings in which there
is little to no variance between classifiers. Difference tests
were performed using paired Wilcoxon signed rank tests with
Holm correction [61].

Ill. STACKED HETEROGENEOUS ENSEMBLE SUPER
LEARNER

In completing the stacked eSL for the classification task
defined for ESKOM electricity load interruption, we followed
the recommended guidelines in [6]. However, the proposed
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stacked eSL model architecture is tailored to the character-
istics of the data and the predictive tasks. The preliminary
analysis of the ESKOM data follows a feature filtering
technique by considering collaborating features to train a
stacked eSL model. These attributes illustrate each projected
pair with all other predicted pairings, using a grading of
feature techniques (including filter, wrapper, embedded,
and feature nature-inspired optimization feature filtering
techniques). The choice for feature filtering was arbitrarily
but stratified within the fundamentals required for ML model
performance. The stacked eSL model is comprised of base
and meta learners.

A. EXPERIMENTAL WORKFLOW

We model the ESKOM data with nine base learners in line
with general practices and researcher heuristics. The aim is to
classify load interruption (load-shedding) and no interruption
(no shedding). The positive class is the load-shedding, and the
negative class is no-shedding. TP is the number of predicted
incidences of load-shedding that are load interruptions, 7N is
the number of predicted no-shedding that are non-interrupt
incidences, FP is the number of no-shedding incorrectly
classified as load interruptions, and FN is the number of
load-shedding incorrectly classified as no interruption.

The implementation of eSL required a library of base
learners and a metal learner. The proposed stacked eSL,
which includes manual MLR, ILS, and Excl ILS from the
ESKOM dataset, was suitable for classifying electric load-
shedding. The implementation pipeline began with cross-
validation [52] to distribute the ESKOM data into k-fold
subsets using stratified 10-fold cross-validation. Python
packages, including sci-kit-learn [62], xgboost [37], swarm
optimization [63], NumPy [64], and pandas [65], were
required to preprocess and develop models (see stage 2 in
Fig. 1).

The workflow consists of three subsystems. The first stage
illustrates the historical processes of ESKOM that involve
electricity generation, interruption, data acquisition, and
distribution. We include supply interrupt as specified for the
present study pipeline subsystem. The second stage acquired
ESKOM data and established feature engineering through
the implementation process for cleaning, normalization,
discretization of labels, and techniques for feature filtering.
In the third pipeline, the scaled features passed from the
second subsystem implement cross-validation, with ten folds.
The base models’ predictions were passed into the final
meta-learner for the stacked eSL.

B. HYPERPARAMETER OPTIMIZATION AND
PERFORMANCE MEASURES

Each base learner utilizes several hyperparameters that need
to be configured before the learning process can begin. They
are adjustable and can directly effect how well the model
trains, therefore carefully consideration was required in the
selection process to achieve the most significant results. The
hyperparameters of the eSL model are given in Table 1.
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To control the source of randomness, a uniform random state
was set across all models in the base learners and meta-learner
models.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. ESKOM DATA DESCRIPTION

We collected hourly electricity data from the South
African ESKOM domestic utility company. ESKOM hourly
electricity dataset is available on a shareable website:
https://www.eskom.co.za/dataportal. Hourly dataset logs
from ESKOM operations for electrical power generation,
demand, and supply interruptions comprise the features and
labels for experimentation. The aggregate sum from supply
interruptions makes up the class label, and the features are the
residual electricity demand and generation from fossil fuel
and renewable sources. The hourly data for the experiment
span from April 1, 2019, 12:00:00 AM to May 19, 2023,
11:00:00 PM. The total logged period was 36,040 hours,
equivalent to 4 years, 1 month, and 19 days. An equal ratio of
train-test split determined in-sample and out-of-sample sets.

The ESKOM data description for the features excluded
label ILS, MLR, and Excl ILS discretized as Total interrup-
tion of supply (IOS). All remaining variables were considered
as features for filtering. ILS Usage is the predetermined
load interrupt without notice from ESKOM National Control
Center, MLR are isolated restrictions on electric load usage,
and Excl ILS are other categories of load restriction separate
from MLR and ILS. Another feature removed was ““Original
Res Forecast before COVID-19 Lockdown™. The latter is the
change from the national lockdown.

The ESKOM data portal provides electricity statistics.
In Table 2, Std is the standard deviation, while min and max
are the minimum and highest values, respectively. The lower,
median, and higher quartiles are respectively 25%, 50%, and
75%.

B. EXPLORATORY DATA ANALYSIS

An exploratory data analysis (EDA) was required for elucida-
tion. The probe reveals features distribution and relationships
with the ESKOM total supply interruption. Further analyses
provided more precise intuition for the model’s predictions.
In Fig. 2, the ESKOM load-shedding binary category shows
no interruption of supply (no shedding) and interruption of
supply (load-shedding). The count of ESKOM data indicates
an imbalance in the distribution of class labels (82. 5% no
load shedding and 17. 5% load shedding).

C. FEATURE CONFIGURATION

The ESKOM dataset had 42 features and 36240 observations.
After removing load interruption features (MLR, ILS, and
Excl ILS summed as Total IOS and discretized as a
categorical variable), incomplete observations features (Date
Time Hour Beginning, and Original Res Forecast before
Lockdown. The ESKOM unlabeled feature had 47 not-a-
number (NAN) replaced with zeros for consistency. The
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0 - No Shedding (negative)
1 - Load Shedding (positive)

FIGURE 2. ESKOM load-shedding Binary Category. The frequency of
no-shedding observations is approximately four times the frequency of
load-shedding categorization.

train-test configuration for the train (50%) and test (50%)
remains the same in all models, with variations in the
number of feature selections. In Fig. 3, feature selections for
various configurations are given as All (38), RE_LCV (9),
RFE_base (19), RFE_Opt (5), VT_KBEST (15), PSO (22),
and BE_OLS (15).

All (38) feature variables were not scaled down using
a feature filtering algorithm; all usable variables were
incorporated for the classification model task. The RE_LCV
(9) feature filtering model eliminated 29 variables. The
RE_LCYV (9) tuning parameter resulted in an alpha score of
0.034. The best score was 0.236, and 5-fold cross-validation.
The RFE_Opt (5) selected five features with a score of
0.889128 for the optimum model from the RFE base selection
of 19 features. In BE_OLS (15) with 15 features selected
from the list. The tunable p-value parameter discards p-values
greater than 0.05. The PSO (22) combines the SVC and
particle swarm optimization (PSO) [66] to achieve a subset
accuracy of 0.777 compared to all features’ accuracy of
0.735. VT_KBEST (15) combines variance threshold [51],
SelectKBest [37] and [50] for feature filtering in a pipeline
implementation for optimal feature selection.

For comparison of the ESKOM electricity load interruption
dataset, all seven models were implemented using feature
filtering techniques in combination with stacked eSL using
Google Collaboratory [67]. Google Collaboratory is a virtual
configuration running a Linux operating system with Python
3 programming language and a suite of supported packages.
Hardware acceleration was not required.

V. RESULTS AND ANALYSIS

After optimization of the feature filtering techniques, the
prediction from the stacked eSL meta-model and the com-
petencies of the base models and meta-model were evaluated
in the holdout sets. The classification accuracy was analyzed
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TABLE 1. Hyperparameters of the eSL base learners and meta-learner models.

Model Hyperparameter Objective function
Inverse regularization strength 100
Logistic regression Solver for model optimal fit liblinear
) > Maximum Iteration for convergence 100
Tolerance for stopping criteria 0.0001
Criterion Gini
.. . Minimum number of samples required to split an internal node 2
Decision tree classifier . . .
Minimum number of samples required to be in a leaf node 1
Inverse regularization strength 100
Decision Function one-vs-rest
Support vector classifier kernel radial basis function (RBF)
Degree of the polynomial kernel function 3
Tolerance for stopping criteria 0.0001
Extreme gradient boosting classifier Learning task binary:logistic
Number of neighbors 5
K-nearest neighbors classifier Power parameter Minkowski
Maximum number of leaf node 30
. Weight applied to each classifier 1
AdaBoost classifier The maximum number of estimators at which boosting is terminated 50
The number of features to draw from 1
Bagging classifier The number of samples to draw from 1
The number of features to draw from 10
Criterion Gini
The number of features to consider when looking for the best split Square root
Random forest classifier The number of trees in the forest 10
The minimum number of samples required to be at a leaf node 1
The minimum number of samples required to split an internal node 2
Criterion Gini
The number of features to consider when looking for the best split Square root
Extremely randomized trees classifiers ~ The number of trees in the forest 10
The minimum number of samples required to be at a leaf node 1
The minimum number of samples required to split an internal node 2

Optimized hyperparameter settings for the base learners and meta-learner models.

Number of Feature Selections for eSL Model

est_vr_xsesT_xae [N
est_rre_opt [
est_re_Lcv [N
es_ee_os

0 5 10 15 20 25 30 35 40

FIGURE 3. Number of selected features from South Africa ESKOM data
portal variables.

based on balanced accuracy, confusion matrix, PR_Curve,
Brier skill score, class likelihood ratio, and critical difference
factor.

A. RESULTS

1) BALANCED ACCURACY VS. ACCURACY

In Table 3, Fig. 3, and Fig. 4, balanced accuracy for the
base learner and the meta-learner in six models shows
improved performances. The strengths of individual base
learners complemented feature selections for meta-learners.
In Table 3, the base learner for eSL_RFE_Opt SVC
(90.694%) was the highest score with feature filtering.
Likewise, in eSL_VT_KBEST_XGB, where ADC scored
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highest, eSL_RFE_Opt had the highest score compared to
other base learner models. Across base learners, the ADC
(71.301%) for VT_KBEST_XGB, eSL_RFE_Opt Bagging
classifier (84.368%), DTC (83.084%), ERTC (79.758%),
kNNC (79.166%), LR (88.828%), RF classifier (81.578%),
SVC (90.694%), and XGB Classifier (86.264%) models were
most significant results. Of all nine base learners, the SVC
and XGB classifier models had the two highest balanced
accuracy scores.

In Table 3 and Fig. 5, the accuracy and balanced
accuracy scores for the meta-learners show the scores for
eSL_RFE_Opt and eSL_VT_KBEST above the 91% mark
compared to the other meta-learners. The eSL_RFE_Opt
(91.319% and 91.421%) meta-learner result was highest
for accuracy and balanced accuracy, closely followed by
the eSL_VT_KBEST_XGB (89.936% and 89.817%) and
RFE_BASE (89.953% and 89.834%). The eSL_RE_LCV
(54.726% and 54.210%) meta-learner model had the lowest
score for accuracy and balanced accuracy.

2) CONFUSION MATRIX

The classification results of stacked eSL models were
assessed with confusion metrics to illustrate error types
in 4 defined categories. In Fig. 6(a) to Fig. 6(g), the
confusion metrics have two rows and two columns for
the no shedding and shedding electricity load using six
filtering stacked eSL models. The correct classification
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TABLE 2. ESKOM data from 2019 to 2022.

Feature Mean Std Min 25% 50% 75 % Max
Residual Forecast 24229.95 2925.757  14319.14  21876.69  24533.93  26274.56 34134.04
RSA Contracted Forecast 25849.55 3240.577  15172.65 22879.23  26581.77  28326.22  35034.35
Dispatchable Generation 23633.41 3019.001  13797.94  21312.51 23661.73  25834.63  33065.91
Residual Demand 24234 2963.839  13797.94  21893.78  24475.66  26291.33  34029.03
RSA Contracted Demand 25865.13 3250.721  14929.99  22942.84  26585.15  28324.57  35004.75
International Exports 1531.001 235.5965 0 1363.387 1514232 1693.292  2375.939
International Imports 1169.106  233.6048 0 1088 1180 1329 1765
Thermal Generation 20838.29  2201.569 13774 19349 20949 22423.61 27807
Nuclear Generation 1279.211 442.6647  -36 911 926 1834 1854
ESKOM Gas Generation 0.287362  7.297938 0O 0 0 0 323
ESKOM OCGT Generation 226.77 453.4027 0O 0 0 231 2120
Hydro Water Generation 202.9025 242.1064 O 0 80 423 610
Pumped Water Generation 546.2026 634.6249 0 0 273 1006 2746
Dispatchable IPP OCGT 101.3225 242.6568 0 0 0 0 1021.874
ESKOM Gas SCO -1.77773 0428777 -4 -2 -2 -2 0
ESKOM OCGT SCO -2.92638 1.827023  -16.53 -4.93 -3 -1.6 0
Hydro Water SCO -6.04E-06  0.000118  -0.004 0 0 0 0
Pumped Water SCO Pumping ~ -725.987 963.0068  -2848 -1696 -29 -14 0
Wind 925.9493  498.7223  19.803 543.488 859.5205  1229.163  3028.065
PV 509.3761 639.6039 0 0 21.783 1086.383  2099.486
CSP 179.4642 1723296 0 0 139.607 337.6583  506.249
Other RE 16.34347 10.08129  0.849 9.308 13.076 18.462 46.997
Total RE 1631.133 903.6248  48.747 892.4368  1491.342  2275.854  5126.079
Wind Installed Capacity 2649.308  539.5236  2079.76 2079.76 2495.02 3163.37 3442.57
PV Installed Capacity 1979.511 313.3653  1474.19 1774.19 2211.09 2212.09 2287.09
CSP Installed Capacity 500 0 500 500 500 500 500
Other RE Installed Capacity 31.01391 12.52072  21.78 21.78 25.58 50.58 50.58
Total RE Installed Capacity 5159.834  831.6381  4075.73 4375.73 5231.69 5926.04 6280.24
Installed ESKOM Capacity 45889.32 1137.501 43691 44926 46329 46800 47520
Total PCLF 4873.936 1672.498  695.777 3639.242 4836 6018 11289.42
Total UCLF 11618.74  2862.557 4670.626 9181.047 11524.04 13921.87 19421.49
Total OCLF 1002.563 593.0825  78.025 547.258 844.875 1371.314  5219.432
Total UCLF+OCLF 12620.81 2757.101 5658 10394 12608 14737.25 21535
Non Comm Sentout 452.7755 306.2853 0 163 443 719 1922
Drakensberg Gen Unit Hours ~ 493.4905 5375243 0 0 445.5 768.25 2506
Palmiet Gen Unit Hours 82.31225 10.5589 21.4 75.8 84.6 90.3 102
Ingula Gen Unit Hours 42.20647 9.22606 9.1 35.7 43.7 49.6 58.7
New(Undefined) 36.73689  9.550602 O 30 37.05 43.71 63.6
Details of terminology abbreviations available on ESKOM data portal glossary page.

TABLE 3. Base learner and meta-learner results from holdout sets.

Learner Models ALL BE_OLS PSO RE_LCV RFE_BASE RFE _Opt VT _KBEST XGB
ADC 64.9 68.128 62.213 52.997 66.488 67.716 71.301
Bagging classifier 55.05 65.221 66.278 54.277 72.542 84.368 79.829
DTC 56.48 69.853 69.058 55.7 61.773 83.084 76.988
ERTC 55.05 57.765 53.881 53.368 63.304 79.758 63.94

Base-Learner  kNNC 58.64 55.214 60.352 52.807 60.638 79.166 61.512
LR 77.53 88.856 87.236 53.561 88.621 88.828 88.705
REF classifier 57.88 59.153 59.937 53.206 59.758 81.578 67.93
SvC 76.62 86.717 81.796 52.765 88.495 90.694 89.169
XGB classifier 78.368  81.312 72.752 55.847 82.153 86.264 84.837
Brier score loss 21.38 10.329 12.714 45.274 10.048 8.579 10.064
class_likelihood_ratios LR+ nan nan 6806.48  5.945 7300.918 nan nan

Meta-Learner PR-AUC Score 89.06 94.713 93.488 69.923 94.853 95.609 94.849
ROC-AUC Score 78.37 89.549 87.136 54.21 89.834 91.319 89.817
Accuracy 78.62 89.671 87.286 54.726 89.953 91.421 89.936
Balanced_Accuracy 78.37 89.549 87.136 54.21 89.834 91.319 89.817

counts were identified in the TN and TP columns. Similarly,
type I and type II error counts were identified in the FN
and FP columns for mistaken classes. The eSL_RFE_Opt
(Fig. 6(f)) model had the highest correct classes with
counts for TN (50.59%) and TP (40.84%) categories. This
was followed by the eSL_VT_KBEST_XGB (Fig. 6(g))
model with counts for TN (50.59%) and TP (39.35%).
The class of interest was within the eSL_RFE_Opt model
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0% was misclassified as load-shedding, and 8.58% was
misclassified as no shedding in the results. Similarly,
in the eSL_RFE_BASE model, 0% was misclassified as
load-shedding, and 10.06% was misclassified as no shed-
ding. The least performing result is the eSL_RE LCV
(Fig. 6(d)) model TN (49.72%) and TP (5.00%) with
lowest misclassified FN (0.86%) and highest misclassified
FP (44.41%).
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FIGURE 4. Model Comparison for the Base Learner given the number of features selections.
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FIGURE 5. Meta-Learner comparison bar plots.

3) PRECISION RECALL CURVE

Fig. 7 (a) to Fig. 7(g) shows the precision-recall curve for
the stacked eSL model capabilities. Plots show that the area
between the precision and recall curves illustrates the model’s
predictive power on the holdout set. As shown in graphs

68260

scaled from O to 1, recall scores are comparatively high in
all models, with higher variance in precision margin for all
models except eSL_RE_LCV. The RFE (Fig. 7(f)) model
produced the most significant area under the curve, followed
by the hybrid eSL_VT_KBEST_XGB (Fig. 7(g)), predicting
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FIGURE 6. (a) to (g) shows the confusion metrics plot.
TABLE 4. Cross-examination of the stacked eSL brier skill score.
Classifier ALL BE_OLS PSO RE_LCV RFE_BASE RFE_OPT VT_KBEST_XGB
ALL 0 0.517 0.405 -1.117 0.53 0.599 0.529
BE_OLS -1.07 0 -3.383  0.027 0.027 0.169 0.026
PSO -0.682  0.188 0 -2.561 0.21 0.325 0.208
RE_LCV 0.528 0.772 0.719 0 0.778 0.811 0.778
RFE_BASE -1.128  -0.028 -0.265  -3.506 0 0.146 -0.002
RFE_OPT -1.492 -0.204 -0.482  -4.277 -0.171 0 -0.173
VT_KBEST_XGB -1.125 -0.026 -0.263  -3.499 0.002 0.148 0

Stacked eSL Brier skill score, lower is better.

eSL_RE_LCV, and eSL_RFE_BASE, LR+ scores were
6806.478, 5.945, and 7300.918. The eSL_RE_LCV class
likelihood is the lowest. The result indicates that the odds
of a holdout set of true positive increases with respect to the
pre-test odds.

an improved agreement between scaled features and stacked
eSL techniques. The eSL._RE_LCV technique is nearly a flat
recall and high precision.

4) CLASS LIKELIHOOD RATIO

In the case of meta-learner, for class_likelihood_ratios
(LR+) the eSL_ALL, eSL_BE_OLS, eSL_RFE_Opt, and
eSL_VT_KBEST_XGB had FP ratio for specificity score
as zero and indicting higher LR+, but for eSL_PSO,

5) BRIER SKILL SCORES
A further examination of the meta-learner with the Brier
score loss in Table 3 and Fig. 5 for eSL_RFE_Opt (8.579%),
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FIGURE 8. lllustrates the base learners’ average result rank.

followed by the eSL_VT_KBEST_XGB (10.064%), and
eSL_RFE_BASE (10.048%) were the lowest scores. Again,
the eSL_RE_LCV had the worst metric loss, 45.274%,
from all compared results. In Table 4, cross-examination of
the Brier skill scores further confirms the gains from the
eS_RFE_Opt proposed configuration.
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-(0.9) LogisticRegression
{0.84) XGBClassifier
{0.78) SVC

6) CRITICAL DIFFERENCE FACTOR

The base plot in Fig. 8 shows that the XGB classifier
model came second only to the LR model, which is
superior to all other models. The least-ranked models were
ETC and kNNC. These are followed in that order by
the RF classifier, ADC, and Bagging classifier models.
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However, there is not enough statistical justification for other
comparisons.

B. DISCUSSION

We evaluated feature filtering for stacked eSL models in
the ESKOM dataset for electricity load interruptions. The
investigation determines the association of variables on super
learner ensemble strategy while estimating performance
metrics from implementation at base and meta-learners.
The stacked eSL profits from the base learners and feature
filtering. In Fig. 5, base learners constitute the input to the
meta-learner but are not a guarantee for the meta-learner’s
optimum accuracy score. Similarly, feature filtering was
crucial for optimal feature selection [68]. The view is well
observed in the experimental results.

The balanced accuracy, PR_Curve, and Brier Score were
essential metrics in the present experiment due to the
imbalanced labels for ESKOM electricity load-shedding and
no shedding. The proposed eSL_RFE and VT_KBEST_GB
classification results show better performance. The
improvement gained by the proposed eSL_RFE and
eSL_VT_KBEST_GB models is demonstrated. Significant
improvements in the PR-AUC score, balance accuracy, Brier
skill score, and confusion metrics are observed after adjusting
feature filtering with eSL_VT_KBEST_GB.

The study’s findings will assist ESKOM in choosing
features most critical to influencing load interruption and help
it plan effective management and technical decisions on load
interruption strategies in the near future.

VI. CONCLUSION

This study provides stacked eSL with feature filtering
for the interruption of the ESKOM electricity load as
TSC tasks. Initially, a suite of feature filtering techniques
was constructed to reduce the number of features for
optimal model performance. Feature filtering includes well-
known filters, such as a wrapper, embedded, and hybrid
techniques. ESKOM electricity load interrupt observations
were discretized into a binary class for no shedding and load-
shedding. We experimented with different feature filtering
techniques and stacked nine base learners from the different
feature filtering methods as input. The base learner’s output
was input for the meta-learner.

We termed the pipeline process stacked eSL. It was
observed that higher accuracy in the base learners may
lead to better performance in the meta-learner but is
subject to optimal feature filtering. The established RFE and
hybridizing models result in the selection of the features most
relevant to predictive performance. Ensuring the efficacy of
these tools is a function of a careful selection of features.
Existing tools offer opportunities for improvement in results,
but these measures show a clear justification of the model’s
configuration beyond accuracy. In addition, we experiment
with 10-fold cross-validation and evaluate with proven
techniques such as PR_Curve, Brier skill scores, and class
likelihood ratio to further determine model performance.
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The study highlights an intricate analysis of hourly
generated data from ESKOM electricity load interruption
from defined variables and accesses critical elements in
electricity interruption from data. Implementing the proposed
TSC model for load-shedding management can lead to
economic benefits.
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