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ABSTRACT There is a growing demand for low-power network devices; therefore, enabling technologies
for the Internet of Things (IoT) is significantly important. This paper proposed resource allocation by
maximizing the harvested energy to substantially improve Energy Efficiency (EE) and regulate transmission
power for the scheduled IoT devices. Energy Harvesting (EH) is a viable technology that enables long-term
and self-sustainable operations for IoT devices. The Simultaneous Wireless Information and Power Transfer
(SWIPT) has been proposed as a promising solution for maximizing EE while ensuring the quality of service
of all IoT devices, where the ultra-low power devices harvest energy in Power Splitting (PS) mode. This
paper applied the proposed Optimal Transmit Power and PS Ratio (OTPR) algorithm to maximize the EE
for SWIPT based on the partial derivative of Lagrange dual decomposition methods. The algorithm jointly
optimized the allocation of the channel, PS, and power control to solve the distributed non-convex and
NP-hardness caused by co-channel interference. A novel training was proposed for Deep Neural Network
(DNN) algorithms chain rules to minimize the loss function based on updating the parameters of the weights
hidden layer and convergence training to achieve near-optimal performance and minimize unneeded label
data. The simulation results showed that the DNN training for the chain rule provided a near-optimal
performance EE with the shortest training time. This observation indicated that decreasing the loss function
at every training optimizes the co-channel conditions for IoT devices by assigning the EH requirement to
meet the minimum harvesting need.

INDEX TERMS Internet of Things, energy efficiency, power splitting, deep neural network, energy
harvesting.

I. INTRODUCTION
Recent developments in information technology have
increased the number of wireless devices used for interaction
and communication connected to the Internet of Things
(IoT) devices. The development of 500 billion smart wireless
devices is expected in future IoT applications [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Yeon-Ho Chung .

Two main issues are the power consumption and the short
battery life of cellular connectivity for IoT [2]. With renew-
able energy sources, Energy Harvesting (EH) technology has
gained significant interest in the IoT. As more devices share
the same wireless resources, mutual interference reduction
and energy-efficient Resource Allocation (RA) in EH are
investigated for a fully sustainable cooperative IoT network.
The RA in EH radio and other EH systems has been a hot
area of study from the perspective of green communica-
tion. Modern wireless networks must use RA strategies to
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decrease the computing complexity of the power control for
large interference channels and energy arriving at unexpected
times. Much research has been devoted to the RA domain
in EH and the battery life for wireless devices to minimize
the cost and maximize Energy Efficiency (EE) performance.
IoT devices’ size and space restrictions significantly affect
the battery life, and replacing batteries is expensive and can
adversely impact the environment [3], [4]. The wireless EH
technology is a versatile technique that can provide stable
and sustained energy and a prolonged lifetime of energy-
constrained networks; thus, it has attracted massive attention
for IoT applications. For efficient IoT devices, Simultane-
ous Wireless Information and Power Transfer (SWIPT) is
emerging as a promising technique that enables the contin-
uous operation of low-power and data-hungry networks to
support the sustainable operation of IoT devices. The SWIPT
uses Radio Frequency (RF) signals to achieve dual functions
of Information Decoding (ID) and EH [5]. Achieving an
energy-sustainable IoT via SWIPT depends on Power Split-
ting (PS), which coordinates the EH circuits and information
processes from RF signals to power the IoT device’s require-
ment to be effectively handled [6]. Moreover, the SWIPT in
a multi-antenna Transmitter (TX) has a significant potential
to restore depleted energy continuously.

Amajor challenge of EH in IoT is that the harvested energy
may be unpredictable and varying due to the stochastic nature
of energy sources in the environment. Consequently, the IoT
will consume additional energy for mobile and IoT devices
with a limited battery capacity. EH can extend the lifetime of
energy-constrained wireless devices from external renewable
sources such as solar, wind, light, heat, and RF; thus, the EH
offers a potential energy solution for IoT applications [2], [7].

A. RELATED WORK
Several emerging Beyond Fifth Generation (B5G) technolo-
gies have been deployed recently to improve further the
EE transmission of an EH-enabled IoT network supported
by SWIPT to assist a fully sustainable network. Channel
assignment and Power Allocation (PA) have been proposed to
improve the transmission power connected to the same chan-
nel to guarantee Quality of Service (QoS) to IoT devices [8].
The authors in [9] examined RF-EH and Non-Orthogonal
Multiple Access (NOMA)-based information transmission
with interference signals for the IoT that frequently caused
a loss of system rate. In addition, the research maintained
interference minimization and a sufficient energy supply for
reliable and successful communications between devices.
The interference can be an additional power source for
RF-based EH to charge IoT devices to minimize the power
control for wide interference channels. However, the authors
in [10] studied the K-user interference channel with EH
constraints and the Deep Neural Networks (DNN)-based RA
method to maximize the sum rate. The DNN is acknowledged
as a potent deep-learning paradigm for resolving a wide range

of issues with IoT and wireless network systems. DNN has
opened up a wide range of intriguing applications in wire-
less communications due to its accuracy in estimating high
nonlinear functions at minimal complexity. Interestingly, this
rapid expansion of IoT creates its own set of sustainability
issues, mostly because of the higher maintenance require-
ments and energy requirements for both charging IoT devices
and processing and storing vast amounts of IoT data in data
and computing centers. Maintaining the high QoS in EH
systems is challenging due to the unpredictable nature of
RE quality, which hinders the effective energy conservation
for IoT. The DNN-DRL method accurately determines the
optimal strategy for forecasting RE. Enhancing IoT device
processing, the method extends the system state to antici-
pated experiences for each time slot based on the anticipated
amount of RE to store extra energy during times of abundance
and use it during increased demand. This proposed method
could reduce computational complexity based on controls of
the transmit power and PS ratio and decrease the training
failures induced by the conventional deep learning method.
However, authors in [11] obtained the optimal transmit power
in distributed antenna system-based SWIPT, which can be a
sustainable solution for EE maximization in ultra-low power
devices that harvest energy in PS. To reduce the computa-
tional time and increase the performance evaluation for the
RF-EH IoT system, the authors in [11] suggested an approach
based on the Lagrangian multiplier method that improved
the convergence rate to discover the ideal solution without
iterative computation. The EH, PS, and transmit power lim-
itations examined the algorithm. IoT devices may now use
energy more efficiently because of recent developments in
EH technology, such as enhanced solar EH and new RF EH
techniques. Performance is maintained while energy reduc-
tions are facilitated by advanced power management such as
voltage a frequency scaling dynamically. Because automa-
tion streamlines processes, can focus on energy management
solutions. DNN-based solutions are crucial to maximizing
EH, optimizing energy consumption, and promoting preven-
tive maintenance all of which help the sustainability of the
IoT. Decentralized DNN systems enable cooperative training
amongst IoT devices while reducing transmission overhead
and ensuring data privacy. The dynamics of the harvested
energy must be handled by resolving concerns for EH-based
wireless communication systems [12]. Developing the rate
energy performance ofMultiple Input Single Output (MISO)-
SWIPT systems based on making a good trade-off between
received power for EH and data transmission is crucial for
improving the transmission efficiency and EH efficiency [13].
The minimization of TX power needs to satisfy QoS and
EH requirements, and optimization of TX precoding and PS
operation depends on the need of RXs to complete ID and
EH [14]. Increasing the lifetime of the RF-EH IoT system
with QoS requirements is important to optimize the mini-
mum harvested energy among RXs, depending on achieving
an optimal TX precoding and designing the IoT PS [15].
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Moreover, the global optimal TX precoding and RX-PS
operation are involved in realistic nonlinear RF-EH mod-
eling in SWIPT systems; they are still unknown for
energy-sustainable multiuser MISO in IoT [16]. Due to the
non-convexity created due to large interference channels,
the authors [16] proposed an RA method based on deep
learning that sought to maximize EE for SWIPT using
PS mode with EH. Many works have aimed to enhance
energy-sustainable IoT by proposing DNN learning for
SWIPT to optimize transmit-harvest-powered interference
channels to solve the non-convex optimization problem and
maximize the energy-efficient RA in IoT devices [17], [18],
[19], [20], [21]. The authors in [19] and [21] presented RA
based on supervised learning on a DNN to approximate the
Weighted Minimal Mean Square Error (WMMSE), a suit-
able method of PA for the interference channel. It has been
demonstrated that the DNN can converge the behavior of
the WMMSE method to achieve a data rate with less com-
puting complexity. Authors in [20] suggested a dual-mode-
SWIPT with intelligent splitting based on DNN learning.
The duty-cycling method was developed for self-powering
based on the nonlinear EH model to maximize a feasible
rate under the resource limitation and adjust the intelligent
splitting method, offering low energy in IoT applications.
In addition, the authors in [17] studied the RA techniques
for harvesting energy to establish an EE that considered sub-
channel allocation, power control, and time allocation. The
authors in [17] proposed reinforcement learning-based RA to
improve the EE of an EH-enable IoT network supported by
SWIPT. It is important to achieve low energy and improve
the training efficiency and stability for every training epoch
from the output layer to the hidden layer. Therefore, loss
functions are computed for the weights of the hidden layer
and updated by the optimizer of lower-order moments for
the Adam algorithm through two gradient-based optimiza-
tions [22] and the stochastic gradient descent algorithm [23].
The chain rule is applied during the differentiation process.

The procedure is carried out continuously until the loss func-
tion reaches a certain point [18], [24], [25], [26]. The authors
in [24] studied the intelligent frequency, energy RA, and time
RA for the EH-NOMA IoT systems to minimize the average
number of packet losses for primary and secondary users.
Due to the non-convexity of the optimization problem in [24],
the authors proposed a deep deterministic policy gradient
to improve the training efficiency and stability. This work
was the first to investigate the DNN-based RA in MISO-
SWIPT-IoT networks for EH. Therefore, we considered the
MISO-SWIPT systems employed the PS approach to harvest
energy for IoT devices to maximize EE. An advantage of
DNN is that access to large labeled datasets is not required
because labeling gets more complicated with increasing data
volume. We chose the DNN technique to specify an exact
weight and bias term in layers with extensive training to
address non-channel interference and manage power control
of transmitters to harvest energy with limited battery life.

It depended on the SWIPT system to use EH to prolong
the battery life of IoT devices based on finding an opti-
mal solution for PA by applying the partial derivative of
Lagrange Dual Decomposition (LDD) and Karush-Kuhn-
Tucker (KKT) conditions. Updating the transmission power,
PS ratio, and non-convex problems is time-consuming and
does not ensure optimal achievement. Therefore, this work
improved the network’s life cycle and achieved the optimal
RA to approximate the optimal PA. In addition, the ultra-low
power devices harvesting energy in PS depended on avoid-
ing training failure based on applying the chain’s rules for
DNNs training. This research proposed a novel training for
DNN algorithms by applying Gradient Descent (GD) with
chain rules to minimize the loss function based on updating
the parameters of the weights hidden layer and convergence
training to achieve near-optimal performance and minimize
unneeded label data. The chain rule is applied during the
differentiation process and prevents the training failure (fixed
DNN) based on the weight in a hidden layer on the partial
derivative of the input vectors. This work improved the net-
work’s life cycle and achieved the optimal RA to approximate
the optimal PA, which depends on avoiding training failure
based on applying the chain’s rules for DNN training.

B. MOTIVATION AND CONTRIBUTIONS
The new approaches addressed the energy sustainability
of IoT systems comprising increased EE with low EH.
This research investigates how the transmit-harvest response
in MISO-SWIPT-IoT systems is affected by co-channel
interference. Transmission of data signals by transmitters,
information decoding, EH by receivers via power splitting,
and response to transmitters are all part of it. Enhancing IoT
device transmission power and EE is the goal. Concerning
power is convex power Pk and rate Rk is concave. The
DNN was trained to compute the optimal approach with a
smaller loss function and enable real-time updates for the
association rule. Using an optimal iterative technique, we first
create suboptimal solutions. We then present an effective
framework for DNNs and a novel training approach that
blends supervised and unsupervised training. By using the
chain rule for the GD algorithm, this method seeks to avoid
training failure. Through repeated weight updates in hidden
layers, the GD algorithm finds the best weights for every neu-
ral network parameter. The network can determine whether
weight adjustments are required to improve output accuracy
and reduce loss by adjusting key neuron parameters through
the use of the chain rule. The contributions of this paper are
as follows:
• It proposes an EH for the taken-into-consideration

MISO-SWIPT-IoT system to maximize the minimal har-
vested energy among IoT while meeting QoS requirements.
Every IoT device was assumed to have PS that supported
EH and maintained a QoS requirement. We studied the joint
design of TX power needed to satisfy QoS and EH require-
ments. In addition, we investigated the optimization of TX

70602 VOLUME 12, 2024



S. Alzahrani et al.: Empowering Energy-Sustainable IoT Devices

FIGURE 1. System model for SWIPT where the EH receivers are close to the sink node for EE reception.

precoding and PS ratio depending on whether RXs were
needed to complete ID and EH.
• It provides new insight into the impact of the EH require-

ment on the RA efficiency for the interference channel.
Existing approaches often rely on static rule-based opti-
mization strategies, which may not adapt well to maximize
the minimal harvested energy by providing new insight
into the impact of the EH requirement on the RA efficiency
for the interference channel. To address this limitation, the
proposed algorithm jointly can explore the Optimize the
Transmit Power and PS Ratios (OTPR) to RF EH ξk by
improving the EE with ultra-low power devices EH in PS
mode. It also minimizes the total energy consumption under
the minimal harvested power Emin and optimal PS ratio from
TX to RXk for IoT devices.
• It ensures strong duality of the non-convex and Non-

deterministic Polynomial (NP)-hard problems for the global
optimizing power without loss gain for all RXk. We studied
the EE optimization problem using the partial derivative of
LDD and KKT conditions to optimize the channel allocation
jointly, optimal PS ratio, and power control.
• Some existing approaches prioritize EE at the expense of

model accuracy by resolving the increased time. To overcome
this limitation, the DNNs are proposed to increase the output
accuracy and reduce the loss in terms of optimal jointly
optimizing PA Pk and IoT PS ratios to RF EH ξk regression
against channel gains. Training DNN algorithms with chain
rules often involves tuning a large number of hyperparam-
eters, which can be time-consuming and computationally
expensive. One potential strategy to address this limitation
is by applying the GD of forward neural networks (FNN)

to accelerate the learning process, and an estimate of the
gradient in each iteration increases the accuracy of the output,
reduces the loss, and reduces the complexity of the conven-
tional iterative scheme.It was achieved by designing weight
parameters to increase the learning rate and decrease the inter-
ference based on updated weight , and bias of the DNN.
The DNN for chain rule is proposed to adjust the weights
to convergence training and achieve near-optimal perfor-
mance by minimizing unneeded labeled data to avoid failure
training.
• From extensive simulations of the performance com-

parisons of the DNN with the OTPR under various system
parameters, the DNN algorithms chain rules provided a
near-optimal performance EE with less computation time
than the OTPR. In particular, it is demonstrated that the
proposed DNN achieves performances comparable to those
of an Exhaustive Search (ES) but with the shortest training
time.

II. SYSTEM MODEL
This study presents the IoT system using a MISO SWIPT
with the adopted channel as shown. A multi-antenna TX
was responsible for transmitting information and power to
low-power and data-hungry EH PS RXs. The IoT sys-
tem under consideration consisted of K single-antenna IoTs
denoted by RXk ∀k ∈ K = [1, 2, . . . , K], and the
sink node was called the TX. Every Rx was considered
wireless-powered to guarantee the individual minimumEH in
K-link interference channels, allow the harvest of a particular
amount of energy, and improve RF-received signal transport
for the IoT device by using the PS technique as shown in
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Fig. 1 [27]. The channel between N-antenna TX and the
single-antenna RXk was denoted as k ∈

N×1
∀k ∈ K.

It was necessary to secure the line of sight to harvest enough
energy from the RF signals; therefore, the channel power
gain,

∣∣ k
∣∣2, was an independent identically-distributed Rician

random variable with a mean of Ek . Moreover, the noise
in the RF signal and the noise power of an antenna in an
EH receiver depended on the ambient environment and the
antenna’s loss resistance. The RXk could not harvest energy
from these noises because the far-field RF power was insuffi-
cient to achieve the sensitivity level required for RF EH [28].
The baseband and antenna noise powers at the IoT device
were denoted by n21 and n22, represented as n21 ∼ N

(
0, σ 2

1

)
and n22 ∼ N

(
0, σ 2

2

)
, respectively. It was assumed that the

IoT device was equipped with a PS policy to exploit the
SWIPT function. The channel gain was constant during one
coherence interval and varied independently in subsequent
intervals [29], [30], [31]. The received RF signal k ∈

of RXk, can be written as:

k = kZk +
∑

j∈K\{k} jZj + n, (1)

whereZk ∈ ∀k ∈ K represents the data symbol transmitted
by TX and intended for RXk, and n represents RF signal
noise referring to complex additive white Gaussian noise with
variance σ 2

n . The PS scheme [28], [32] allowed the network
to split and utilize the RF EH for the RXk RF signals at
a time shown in (1). When a PS RXk operated in the EH
mode, the EH from TX was written as Ek = ϑPk

∣∣ k
∣∣2.

The ϑ and Pk denote the EH efficiency factor used at every
K RXs and the transmit power of the TX, respectively. The
channel power gain was modeled as ψk =

∣∣ k
∣∣2d−αk , where

d and α represent a long-distance transmission between TX
and RXk for data and the path loss exponent, respectively.
When the time switching received RXk working in the infor-
mation decoding mode, the maximum rate from TX was
rk = log2

(
1+ Pk

∣∣ k
∣∣2/σ 2

1

)
. The is the transmis-

sion bandwidth. However, the received signal for every RXk
divided the time for receiving signals from TX in the PS
into two streams: (i) the RF signals to the EH with different
power levels as ξk ∈ [0, 1] for k ∈ K, and (ii) the slot’s
remaining time used for transmitting the information data
decoding (1− ξk ).

Ek = ϑ(1− ξk )
∑

j∈K\{k}
Pkψk . (2)

TheQoS of the received RF for the information data decod-
ing receiver, Rk , is given by

Rk = log2

(
1+

ξkPk
∣∣ k
∣∣2

σ 2
1 + σ

2
2

)

= log2

(
1+

ξk

σ 2
1 + σ

2
2

∑
j∈K\{k}

Pkψk

)
. (3)

The data rate of the Tx must fulfill RTx
k > R1 to satisfy

QoS requirements for a TX, where R1 represents the rate

threshold of each TX. In addition, to decode RXk success-
fully, the information rate of RXk must meet RRx

k > R2,
where R0 represents the threshold rates for all RXk . Every
RXk was considered wirelessly powered and required har-
vesting a particular amount of energy from the RXk signal
using a PS. The PS accomplished superior trade-offs between
the information rate and the amount of RF energy conveyed.

III. PROBLEM FORMULATION
This study aimed tomaximize the EE ultra-low power devices
EH in PS mode by determining a combined EH to IoT device
and optimal PS ratio from TX to RXk . The power consump-
tion Pconv in conventional wireless communication can be
written as:

Pconv = γ
∑

j∈K\{k}
Pk + Pc, (4)

where γ and Pc are the power amplifier drain efficiency and
circuit power consumption at the EH, respectively. Utiliz-
ing the PA optimization problem guarantees minimum EH
requirements at RXk and ultimate allowable transmit power at
TX. The application utility functions can guarantee optimum
performance from TX to RXk that outperform conventional
schedulers. The total RF power for each RXk that can be
used by an EH-enable IoT network supported by SWIPT is
as follows:

Ptotal = γ
∑

j∈K\{k}
Pk + Pc − ϑ(1− ξk )

∑
j∈K\{k}

Pkψk .

(5)

The joint design of TX precoding and IoT PS ratios for
SWIPT networks improves by jointly optimizing PA Pk and
IoT PS ratios to RF EH ξk to maximize EE. The problem is
quasi-concave for Pk and ξk in massive connectivity for EE
optimization criterion:

4 =

log2

(
1+ ξk

σ 21+σ
2
2

∑
j∈K\{k} Pkψk

)
γ
∑

j∈K\{k} Pk + Pc − ϑ(1− ξk )
∑

j∈K\{k} Pkψk
.

(6)

The goal was to maximize the EE (6) in non-convex and
decreasing functions for RF signals to the EH with different
power levels ξk . Concerning Pk and ξk , we compute the
second-order condition of the total power of (5) and the infor-
mation transmission rate of (3). Ptotal is convex with respect
to Pk and Rk is concave, as shown by equations (7) and (8).
The efficient conventional successive convex function in (6)
was obtained using the second-order derivatives of Pk and ξk
[29], [33]:

∂2Rk

∂2Pk
= −

ξ2k
∑

j∈K\{k} ψ
2
k

ln 2 ∗
(
σ 2
1 + σ

2
2 + ξk

∑
j∈K\{k} Pkψk

)2 < 0 ,

(7)
∂2Rk

∂2ξk
= −

∑
j∈K\{k} P

2
kψ

2
k

ln 2 ∗
(
σ 2
1 + σ

2
2 + ξk

∑
j∈K\{k} Pkψk

)2 < 0 .

(8)
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From (7) and (8), the EH is an affine function that is
positive in the denominator with Pk . Consequently, the EE is
a quasi-concave function. Our goal was to minimize the total
energy consumption by maximizing the minimum harvested
power Emin. The problem of EE maximization can be written
as follows:

max
0≤Pk,0≤ξk≤1

4 , (9)

s.t. Ek (Pk , ξk ) > Emin, (9a)

0 < Pk≤p
max
k , (9b)

Pk ≥ 0, (9c)

0 < ξk < 1, (9d)

where Emin and pmaxk represent the EH requirement at
RXk and the maximum allowable transmit power at Tx,
respectively. Constraint Emin in (9a) should meet the mini-
mum EH requirement. The constraint in (9b) represents the
maximal available power, which limits the transmit power
and PS ratios to the Tx and RXk , respectively. The constraint
in (9c) represents the ranges of wireless transmission power.
The problem in (9d) sets the range of the PS constraint ξk
between 0 and 1.

IV. PROBLEM SOLUTION
A. OPTIMAL ITERATIVE ALGORITHM
Given that the optimization problem (9) is non-convex
because of the co-channel interference and NP-hardness [34],
optimizing power and good channel without loss gain for all
RXk are proposed based on applying a joint conventional
OTPR algorithm solution to maximize EE. The EE subject
to constraints (9)–(9d) is difficult to derive, so the Lagrange
function of problem (9)–(9d), can be written as

L (Pk , ξk , µ, ν, λ, δ )

=

log2

(
1+ ξk

σ 21+σ
2
2

∑
j∈K\{k} Pkψk

)
γ
∑

j∈K\{k} Pk + Pc − ϑ(1− ξk )
∑

j∈K\{k} Pkψk

+ µk (Ek−Emin)+
∑

j∈K\{k}
νk
(
pmaxk − Pk

)
+

∑
j∈K\{k}

λkPk + δk (1− ξk) , (10)

where µ, ν, λ, δ are the Lagrangian multipliers related to
constraints for (9)–(9d), respectively. The EE obtained by
partial derivative of LDD and KKT conditions to obtain the
global solution of (9)–(9d) for the EE maximization problem
given in (10). To simplest the equation we suppose = ln 2∗(
σ 2
1 + σ

2
2 + ξ

∗
k
∑

j∈K\{k} P
∗
kψk

)(
γ
∑

j∈K\{k} P
∗
k + Pc − ϑ(1− ξ

∗
k )
∑

j∈K\{k} P
∗
kψk

)
, and

=

(
γ
∑

j∈K\{k} P
∗
k + Pc − ϑ

(
1− ξ∗k

)∑
j∈K\{k} P

∗
kψk

)
.

The optimal Pk and ξk can be derived by solving ∂L
∂Pk
= 0 as

in (11)–(14), shown at the bottom of the page.
From the quadratic formula, EE is a nonlinear problem,

so we assign a partial derivative equal to zero from (11)
and (12) to get the optimal power as shown at the bottom and
upper of the page. The optimal values for KKT conditions
P∗k , ξ

∗
k , µ

∗
k , ν

∗
k , λ

∗
k , δ

∗
k , must meet the following equations

for all values of k:

∂L

∂Pk
= tk − ν

∗
k + λ

∗
k , (15)

∂L

∂ξk
= k − µ

∗
kϑ
∑

j∈K\{k}
P∗kψk − δ

∗
k , (16)

µ∗k (Ek−Emin) = 0, (17)

ν∗k
(
pmaxk − Pk

)
= 0, (18)

λ∗kP
∗
k = 0, (19)

δ∗k
(
1− ξ∗k

)
= 0, (20)

µ∗k , ν
∗
k , λ

∗
k , δ
∗
k ≥ 0. (21)

From (15)–(21), the transmit power and EH should satisfy
KKT conditions for the balancing looseness, λ∗k ̸= 0 if
P∗k ̸= pmaxk . For the non-convex problem and guaranteed
strong duality, the optimizing power without loss gain for all
RXk can be observed as ψ1 > ψ2 > . . . > ψk . Due to
the different channel gains ψk for all RXk , the tk from (13)

∂L

∂Pk
=
ξ∗k ψk

−

log2

(
1+

ξ∗k
σ 21+σ

2
2

∑
j∈K\{k} P

∗
kψk

)(
γ − ϑ

(
1− ξ∗k

)∑
j∈K\{k} ψk

)
2 + ϑψk

(
1− ξ∗k

)
µ∗k − ν

∗
k + λ

∗
k , (11)

∂L

∂ξk
=

1
+

ϑ log2

(
1+ ξk

σ 21+σ
2
2

∑
j∈K\{k} P

∗
kψk

)
2 ×

∑
j∈K\{k}

P∗kψk − ϑµ∗k −
∑

j∈K\{k}
P∗kψk − δ

∗
k , (12)

tk =
ξ∗k ψk

−

log2

(
1+

ξ∗k
σ 21+σ

2
2

∑
j∈K\{k} P

∗
kψk

)(
γ − ϑ

(
1− ξ∗k

)∑
j∈K\{k} ψk

)
2 + µ∗kϑ

(
1− ξ∗k

)
ψk , (13)

k =

 1
+

ϑ log2

(
1+ ξk

σ 21+σ
2
2

∑
j∈K\{k} P

∗
kψk

)
2

∑j∈K\{k}
P∗kψk . (14)
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changes with respect to ψk . The IoT device must also detect
how the channels’ properties differ over time and space to
select a good channel. If tk < 0, the multiplier λ∗k > 0, and
the optimal solution can be obtained as P∗k = 0 according
to the looseness (19). However, if tk > 0, the optimal
solution can be obtained when P∗k ̸= pmaxk , according to (18)
and (21). For tk = 0, the optimal P∗k TX precoding for
information data decoding (i.e., no EH) can be obtained as
(pmaxk − Pk ) and ν∗k = λ∗k = 0 according to looseness
in (15). The optimal PA for all RXk can be expressed as
Pk = {p

max
1 , pmax2 , . . . , pmaxk−1, Z∗k , 0, . . . ., 0 , 0}. The EE

is maximized by the obtaining optimal PA, given as P∗k =

min
(
max

(
0, Z∗k

)
,pmaxk

)
with a feasible region {0 ,Z∗k}. The

EE increases as the PS ratio rises, the least EH is determined
from the constraint (17), and the best PS ratio is given as

ξ∗k = 1−
Emin

ϑ
∑

j∈K\{k} P
∗
kψk

. (22)

Using the best PAP∗k , the EEmaximization problem can be
solved by applying the Lambert function-based closed-form
to achieve near-optimal EE in (24).

4 =

ln
(

P∗kψk(
σ 21+σ

2
2

) + qk
)

P∗k + Pc − Emin
, (23)

where

qk = 1−
Emin

ϑ
(
σ 2
1 + σ

2
2

) + ∑j∈K\{k} P
max
k ψk(

σ 2
1 + σ

2
2

) .

Z∗k =

(
σ 2
1 + σ

2
2

)
ψk

e

ω


ψk (Pc−Emin−qk )
(σ21+σ

2
2 )

e

+1
−qk

if
ψk(

σ 2
1 + σ

2
2

) (Pc − Emin)− qk ≥ −1 , (24)

where ω and eω represent the complex number and the
exponential function [35]. The ω is the multivalued func-
tion, the inverse of (f (ω) = ωeω). It should be noted that
the long computation time increases exponentially with N
and K, and the complexity becomes O(N 2K) [36]. The pro-
posed algorithm for the Lagrangian multiplier method and
KKT conditions assumed that the Pk and EH are executed
individually at different times to guarantee convergence of
the Lambert function to achieve a near-optimal EE. There-
fore, the transmit power Pk = 0 when the time slot
for k ∈ K is allocated to EH. With the computational
enabled by the proposed algorithm, a sufficiently small step
size is required to update each transmit power and EH
ratio. However, this update for transmitting power and EH
ratio increases the required time considerably. Therefore,
the proposed algorithm’s solutions do not guarantee optimal
achievement, and non-convex problems are challenging. As a
naive method for obtaining the optimal solution, we con-
sider an ES to find the best solution for high training time.
Many iterative strategies, including the genetic algorithm and

simulated annealing, are available in the literature to find
the best non-convex programming solution in addition to the
ES approach. However, algorithm I take long to converge,
making them unsuitable for real-time processing networks.
to overcome these difficulties the neural networks training
reduced the complexity of the conventional iterative scheme,
as shown in the following section.

Algorithm 1 OTPR Algorithm for Updating a Transmit
Power and Maximization EE
1. Input: Channel power gain as ψ1 > ψ2 > . . . . >

ψk , Pk , ξk , 4 = 0.
2. Output: P∗k , ξ

∗
k , ∀k;

3. Solve the optimization problem in (9) to obtain Pk, and
ξk ∀k , to get the P∗k , and ξ

∗
k ;

4. While(k < K)
5. k = k + 1
6. Compute tk , and k
7. If (P∗k = pmaxk ) then
8. Update the Lagrangian multiplier method

and KKT conditions by (15)-(21), and P∗k =

min
(
max

(
0, Z∗k

)
,pmaxk

)
9. Else
10. Set P∗k = 0
11. End if
12. End while
13. Compute the PS ratio ξ∗k according (22) and obtain

near-optimal EE.

B. NEURAL NETWORKS-BASED DEEP LEARNING
DNN-based learning in RA aims to maximize the efficiency
of the B5G system. In this article, improving the network
life cycle and achieving the optimal RA for approximating
the optimal value of Pk and ξk depended on solving the
optimization problem (9). It was important to create appro-
priate models for using neural network training for quick and
accurate RA in terms of the regression of optimal Pk and
ξk against channel gains. The input vector was specified as
∈ RK2

×1 given to the network through the input layer K2.

K(k−1) =
∣∣ k
∣∣2, ∀ k ∈ K. (25)

The emphasis was on FNNs with fully connected layers
for RA. The input layer contained K2 neurons that passed
information to the hidden layer (L), which had Nl neurons
as shown in Fig. 2. The number of hidden layers L = 4 with
Nl = 96 neurons in every hidden layer. The output layers
(NL+1) neurons extracted the (NL+1)−dimensional output.
Let Xl−1 represent the input to the l− th layer of the network
as l−1. The outputXl( ) of neuron in layer l was determined
as l = 1, . . . , L+ 1 and = 1, . . . ,Nl :

Xl ( ) = −

∫
,l

(
,l
)
, ,l = ,lXl−1 + ,l, (26)

where ,l ∈ RNl−1 and ,l ∈ R are the weight matrix
and bias term in layer l, respectively. The final output was
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FIGURE 2. Scheme of feedforward DNN with fully connected layers.

obtained by applying the activation function−
∫
,l to ,l in the

hidden layers using the rectified linear unit ReLU
(

,l
)
=

max(0, ,l), which denotes a sigmoid function as:(
,l
)
=

1

1+ e− ,l
. (27)

The sigmoid function is employed as the gate control
mechanism in a particular kind of Recurrent Neural Network
(RNN) to manage information flow. To be more precise,
the input gate, forget gate, and output gate of units use the
sigmoid function to determinewhich data to accept andwhich
to reject.

C. TRAINING NEURAL NETWORKS
This study adjusted the parameters ,l and ,l by training
a neural network for the regression of optimal values of Pk
and ξk against channel gains for the FNN to learn the desired
input-output relation. Based on the forwarded node values
of the final output of the hidden layer, the Resource Control

(RC) vector (
→

X ∈ R2K×1 was processed at 2K nodes of the
output layer [37], [38]. For every layer l = 1, . . . ,L + 1,
let the weight vectors l =

[
w1,l, . . .,wNl,l

]
∈ RNl−1×Nl

and bias into vector l = [b1,l, . . ., bNl,l ]
T
∈ RNl×1, where

[b1,l, . . ., bNl,l ]
T means l transpose as:

(
→

X = ( ,L+1XL ( )+ ,L+1). (28)

With this output vector
→

X,
→

P k and
→

ξ k were defined as:

Pk = pmaxXK+k , ξk = Xk for k ∈ [1, . . . . . . ,K].

(29)

The neuron output in (26) can characterize more compli-
cated connections between the channel state and the optimal

RC vector as L + 1 when Nl increases. In addition, the
training data in (26) aimed to minimize the loss between the
channel condition and the optimal RC vector by optimizing
the network l and l for all training.
A novel training strategy that combines supervised and

unsupervised techniques to construct an efficient DNN
framework is proposed to improve the performance evalu-
ation and decrease the computing time in the RF-EH IoT
system. Using iterative algorithm solutions, the DNN model
is first supervised and trained in this manner to approx-
imate the performance of the optimal iterative algorithm.
The optimization problem in (9) was directly applied to the
loss function. Recent advancements in Pk regulation based
on NN [22], [23], [39], where the loss is directly derived
from EE, follow

(
,
)
= −4(pmaxX[1:K], X[K+1:2K]).

To improve EE, we created a new loss function:

(
,
)
=

∑
k∈K kRk(pmax

→

X [1:K],
→

X [K+1:2 K])

pmax
→

X [1:K],
→

X [K+1:2 K]

,

(30)

where k =

∣∣∣ k

∣∣∣2d−αk∑
j∈K\{k}

∣∣∣ k

∣∣∣2d−αk /
ψk∑

j∈K\{k} ψk
represents the

weight parameter. Since the loss function
(
,
)
does

not perform well in interference, we utilized the weight
parameter k to the rate Rk in the loss function to enhance
learning in interference-limited situations. Compared to a
normal loss function without k , including k in the loss
function improved learning performance under interference-
limited circumstances. From (30), the weight parameter k
was designed to increase the learning rate with decreas-
ing interference based on updated and ( ) of the
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DNN. The primary motivation was to utilize the super-
vised learning’s fast convergence training speed to minimize
unneeded label data from unsupervised learning. The P∗k,PS
and IoT PS ratiosto RF EH ξ∗k were used as labeled data
to pre-train DNN and replicate an optimization-based RA
strategy. To reduce the need for labeled data in unsuper-
vised learning, the DNN model then takes advantage of the
quick training convergence of supervised learning. Without
depending on labeled data to determine the best resource
management plan, a carefully constructed loss function is
created to directly approximate the ideal transmit power and
EH ratio from training channel samples. During the training,
the loss function was taken into consideration PS. The mean
square error enabled a simple computation that continuously
adjusted the weights to convergence training and achieved
near-optimal performance byminimizing unneeded label data
as
∑

k∈K
∥∥(P∗k − Pk

)
+ (ξ∗k − ξk )

∥∥2 [10], [40]. An estimate
of (30) was computed as the true gradient using a randomly
selected subset of the entire training data set to reduce the loss
function with each iteration of the gradients. The GD contin-
uously updated the parameters for each

(
,
)
to minimize

the loss function for FNN set as:

new = old − δ
∂
(
,
)

∂
, (31)

new = old − δ
∂
(
,
)

∂
, (32)

where δ represents a learning rate that determines how
quickly and change. The gradients of each node in (26)
determined if each node’s updated weights had changed.
Every time the gradient of each node was calculated, the
estimated gradient (30) was evaluated by updating a new
randomly selected weightfrom (31). Then, (32) was used to
obtain optimal P∗k and IoT PS ratiosto RF EH ξ∗k in place of
the true gradient.The partial derivative in the second terms
of (31) and (32) reached a maximum value, which decreased
until the partial derivative of the loss function had a value
close to zero. The GD depended on a weight initialization
by assigning initial values to the weights in the neural net-
work. The deep learning approach faced difficulty in learning
efficient RA because of the EH requirements for TX-RX.
It occurred due to treating an unprocessed channel gain in
the DNN entries, leading to training failure created from the
highly variable channel gains with various path losses (25).
To avoid the origins of training failures, we applied a chain
rule for GD, shown in the following section.

D. AVOIDING THE TRAINING FAILURE BASED ON THE
CHAIN RULE FOR THE GD ALGORITHM FOR
FNN TRAINING
The proposed GD for FNN was used to accelerate the learn-
ing process and estimate the gradient in each iteration [24],
[25], [26] to preventtraining failure and circumvent the zero
gradient

(
old , old

)
= 0 problems (31). The loss function

gradient was represented using the chain rule of partial deriva-
tives as the product of the gradients of activation functions

−
∫
,l to ,l in the hidden layersin (27) for and . However,

the loss function (31) was terminated due to training failure
in other environments caused by the difficulty of updating
the parameters with zero gradient

(
old , old

)
= 0 when

any EH constraints were violated. By applying the chain rule
for the error gradient of the loss function that considered all
network weights, the training failure was avoided as it used
the partial derivative of neuron, ,l with respect to and neu-
ron Nl ( ) = max (0, ) = max

(
0, sum ( ⊗ Xl−1 +

)
,

which treated negative values as zero. The GD algorithm
operated based on the true gradient estimate for all values of

less than or greater than zero and obtained the derivative
as:

∂

∂ k
max (0, ) =

 0 ≤0
∂ k

∂ k
= 1 > 0.

(33)

The applied chain rule ∂Nl/∂ determined the derivative
of the inner part of the composite function in the layer l as
l = 1, . . . , L + 1 and = 1, . . . ,Nl . After computing the
loss function for each weight, the GD determined the optimal
weights for all neural networkweights depending on updating
the parameters of the weights hidden layer and convergence
training to achieve near-optimal performance and minimize
unneeded label data. The chain rule adjusted the old and
the old within certain neurons and enabled the network
to identify whether that weight needed to be increased or
decreased to improve the output accuracy and reduce the loss.
The multiplier obtained the derivative of neurons for both
parts in terms of :

∂Nl

∂
=
∂Nl

∂ k

∂ k

∂
=


∂ k

∂
= 0T ≤0

∂ k

∂
= (XL ( ))

T > 0.
(34)

The EH constraints were rarely violated based on a good
training performance in (30) settings where the available
pmax was high. Since the old and new values remained
the same, the node was treated as dead under such circum-
stances. A leaky ReLU kept the GD from dropping to zero,
and its usage depended on overcoming the training failure
from treating unprocessed channels (25). The DNN model
needed to be retrained whenever any training parameter was
altered because all parameters, such as Rk and pmax, were
fixed during training due to the weight, k , lost to the
rate, Rk . To compute the gradients using a chain rule in (26),
we defined the input vector k as:

k =


(
K2

k −
∑

k∈v k
)∑

k∈K k
k ∈ {1, . . . ,K}

pmax 1

K2

∑
k∈K k k ∈ {1, . . . ,K} .

(35)

Utilizing the chain rule for the GD algorithm for FNN
pre-training in conjunction with (35) yields the transmit
power and EH. The main driving force behind this was to
reduce the amount of unnecessary label data from unsuper-
vised learning by making use of supervised learning’s quick
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training convergence. The labeled data used for pre-training
DNN and replicating an optimization-based RA method was
the P∗k,PS and IoT PS ratios to RF EH ξ∗k . In light of con-
sidering unprocessed channels as a means of overcoming
training failure (25). The training was updated by the applied
chain rule in (34) by enhancing learning stability, speed, and
efficiency by determining the weight in a hidden layer on the
partial derivative of the input vectors. The applied chain rule
updated the training and prevented the training failure (fixed
DNN) based on the weight in a hidden layer on the partial
derivative of the input vectors in (34). It was achieved by
increasing learning stability, speed, and efficiency by finding
the best training strategy. The efficiency of the training results
reduced the complexity of the conventional iterative scheme,
as shown in Algorithm 2.

Algorithm 2 Gradient Descent with Chain Rule for DNN
Training Algorithm

1- Set , , δ and S randomly
2- Repeat
3- k ← 0, old ← , old ←

4- Generate
5- Compute X according to (25)

6- new← old − δ
∂
(

,
)

∂

7- new← old − δ
∂
(

,
)

∂
8- Derivative of the innerfor GD by applying the chain rule

in (33) and (34)
9- Compute the input vector k by applying a chain rule
10- k ← k + 1
11- Until

∣∣ ( ,
)
←

(
old , old

)∣∣< S

where S represents the iteration continued
(
,
)
was less

than S =10−4.

V. SIMULATION RESULTS
This section provides numerical results that evaluated the
effectiveness of our proposed DNN based on joint TX pre-
coding and IoT PS designs that incorporated MISO SWIPT
system using simulation parameters Table 1. One computer
node with two 8-core Intel Haswell processors, two Nvidia
K20 Graphical Processing Units (GPUs), and 128 GB of
RAM is used to construct the suggested DNN technique using
Python 3.6.0 and MATLAB.

While not used during testing, GPUs are utilized during
training to shorten training times. The average channel loss
at a unit reference distance d−αk was TX to RXk , and α was
the exponent of path loss. The K RXs and TX were placed
uniformly over a square field and at its center, respectively.
Then, we compared it with the results of the linear EH model
shown in [38] and [41].

A. ENERGY HARVESTING VS NUMBER OF IoT DEVICES
The values of the loss function against the number of iter-
ations for the training learning rate are shown in Fig. 3.

TABLE 1. Simulation parameters.

The effect of the learning rate and total training duration
on the loss function was assessed on the validation data for
the convergence rate in Algorithm 2 regarding the Gaussian
interference channel. The original value of the learning rate
was 0.125. When the learning rate was reduced to 0.01,
the small decay value had a lesser effect than the original
setting, whereas a large decay value had a significant effect.
Therefore, reducing the learning rate decreased the decay
value to less than 0.07 within 1000 iterations. Following
an update, the loss changed nonlinearly and was influenced
by the learning rate. The gradient vanishing problem was
indicated by the training process converging to a higher value
of the loss function for learning rates δ between 0.0010 and
0.0020. The optimization became unstable when the learning
rate exceeded 0.0050. Fig. 4 illustrates the QoS require-
ment against the number of IoT devices. QoS improvements
depended on maximizing the minimum harvested energy
among RXs with the lowest satisfaction rate in (2) and (3) by
satisfying RTx

k > R1 and RRx
k > R2. The QoS satisfaction

of the four techniques grew monotonically as the number of
IoT devices increased because every IoT device’s received
SINR chose a good quality of channel and ensured the desired
arrival rate when pmaxk increased. Our proposed DNN training
algorithm for chain rule had a slightly higher QoS to IoT
devices, offering better performance than the reduced power
and OTPR algorithms. For all interference link distances, the
DNN training for chain rule could also obtain comparable
performance to that of the ES. Additionally, DNN training
outperformed OTPR because it used chain rule approaches to
learn in a dynamic environment, and base stations with higher
transmission power generated more energy for IoT devices to
harvest and satisfy their QoS requirements.

From Fig. 5, the EE declines when the number of IoT
devices increases. However, the EE value curve declined
more steeply for the reduced power [41] and the OTPR
approaches at the increased number of devices due to
increased interference. In addition, the EE enhancement
offered by the larger-than-harvested energy cannot compen-
sate for the EE loss. Moreover, the transmission power and
co-channel assignment must be carefully tuned to correct Pk
and ξk in interference-limited situations to prevent the EE
performance from decreasing. Our proposed DNN training
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FIGURE 3. Learning rate selection for Gaussian interference channel case,
K = 30.

FIGURE 4. Quality of service versus the number of IoT devices.

algorithm provided a high EE by applying the chain rule to
update the training, avoided the training failure to decrease
the loss function at every training, and optimized the global
co-channel. Although the ES produced high EE, it was a
time-consuming technique due to the realistic system models
for users and numerous co-channels. The ES improved EE
by about 3.26%, 100.52%, and 123.90% compared to the
DNN training algorithm for the chain rule, reduced power
[41], and the OTPR algorithms, respectively. Fig. 6, shows
increasing the number of IoT devices from 10 to 22 led to
a lower propagation loss for RF power for EH. However,
the TX burden to transmit energy to more RXs increased by
K= 10 RXs, considerably declining the P∗k . The effect of the
nonlinear rectification efficiency ϑ on the optimized har-
vested DC powerEk = ϑP∗k when each RX’s RF EH unit was
the power cast P1110 EVB [42] showed that the RF power
for EH had a decreasing trend that got worse as K became
higher.

From the proposed algorithms, the received RF power
for EH obtained using the proposed DNN training for the
chain rule TX precoding design, the reduced power [41], and
the OTPR of the concatenated channel matrix for all RXs

FIGURE 5. EE versus the number of IoT devices.

FIGURE 6. RF power versus the number of IoT devices.

FIGURE 7. Accuracy versus the number of IoT devices.

displayed a mean 4.2 dBm performance reduction. Moreover,
the EH performed incredibly poorly in terms of EH
performance to maximize the total RF power. Therefore,
it was concluded that the DNN training algorithm for the
chain rule for joint TX precoding and IoT PS design sig-
nificantly improved the existing competitive ES schemes.
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FIGURE 8. EE versus harvesting energy.

However, reduced power [41] and OTPR algorithm TX pre-
coding designs yielded significant energy savings. Fig. 7,
shows the highest achievable accuracy versus the number of
IoT devices. From Fig. 7, the activation function, such as sig-
moid and ReLU, for the DNN training a chain rule provided
higher accuracy than reduced power [41] and OTPR. It was
because a larger training of the ES model had a higher statis-
tical power to achieve higher accuracy and provided the best
RA accuracy in the regression of optimal Pk and ξk against
channel gains. The accuracy for ES was greater than 95%,
higher than the other algorithms. The ES accuracy remained
consistent with the increased number of IoT devices. In con-
trast, the accuracy dropped for the three algorithms due to
their inability to optimize the minimum harvested energy for
large interference power.

B. EE VS EH
Fig. 8, shows the effects of the minimal harvested energy
requirements with the EE. The EE decreased for all schemes.
It was due to the longer time required by each IoT device
for EH to fulfill the rising minimum harvested energy
requirement. Satisfying EH requirements and optimizing TX
precoding and PS operation take a shorter time for ID,
resulting in lower data rates. Furthermore, the DNN train-
ing for chain rule provides a near-optimal performance EE
with less computation time than an ES but with the short-
est training time. In addition, the OTPR provides the same
performance EE for reduced power [41] because the perfor-
mance of the OTPR algorithm adopts the weighted EEs of
individual IoT devices and selects a minimized total energy
consumption under maximizing the minimum harvested
power.

Fig. 9, shows the impact of the performances of the four
algorithms in different system environments in terms of the
data rate and minimum harvested energy Emin. The DNN
could not be trained to effectively approximate the best
solution based on the direct adaptation of the optimization

FIGURE 9. Data rate versus minimum harvested energy.

FIGURE 10. EE versus maximum transmit power.

FIGURE 11. EE versus average PS.

problem (9) to the loss function (
(
,
)
(30). Accord-

ing to (30), enhancing the learning depends on minimizing
the loss function for the interference of the channel and
achieving the optimal RC to obtain a high data rate. The DNN
for the chain rule approaches had comparable performances
to the ES for lowEmin. It was observed that asEmin increased,
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the data rate decreased. It was because more powers must be
assigned to EH IoT devices, with poor channel conditions in
a very deep fade when Emin is high to meet the minimum
harvesting need.

C. EE VS POWER
Fig. 10, shows the performance of EE with maximum trans-
mit power. The maximum transmitted power pmaxk grew for
all algorithms (ES, DNN training for chain rule, reduced
power, and OTPR schemes). The EE increased when the
transmit power values were initially small values. However,
when the transmitting power increased, and Pmax rose to a
maximum of 25 dBm, the energy dissipation increased. The
usage of additionally transmitted power,pmaxk , above 25 dBm,
resulted in a loss of EE due to the significantly increased
energy dissipation rate. The proposed DNN training of the
chain rule-based approach outperformed the reduced power
and OTPR schemes and achieved a performance close to
that of the ES in every environment. The chain rules of
the DNN training approach could efficiently optimize the
problem of the cost function (30) and train the neural net-
work to approximate the best solution. Therefore, the DNN
training algorithm for the chain rule maximizes the EE more
than reduced power and OTPR schemes, according to the
changes in pmaxk and ϑ . From Fig. 11, the minimum harvested
energy requirement has an impact on EE. The EE worsened
when the minimum harvested energy demand increased when
ξk ∈ [0.2 < x < 0.4] for k ∈ K. It occurred because the
RF signals to the harvested energy were unpredictable due
to the stochastic nature of energy sources and extra energy
consumption for devices with different power levels. The
EE increased with the PS ratio when ξk was small. The
DNN training showed near-optimal EE performances for all
algorithm converges by minimizing unneeded label data with
the lower PS ratio value. These observations illustrated the
near optimality of the DNN training for chain rule because
the DNN outcomes were significantly closer to ES than
OTPR.

VI. CONCLUSION
This work proposed RA for the OTPR algorithm to regulate
transmission power to maximize the EE for SWIPT. We also
proposed aDNN training for chain rule algorithm to solve dis-
tributed non-convex and NP-hardness caused by co-channel
interference to reduce the loss and maximize the EE per-
formance. The proposed DNN to avoid training failure was
based on the chain rule for the GD algorithm for FNN training
to increase the output accuracy and reduce the loss. The
DNN training for chain rule optimized the global co-channel
interference in IoT networks. It also provided a near-optimal
performance EE with less computation time than an ES with
the shortest training time. Edge artificial intelligence is imple-
menting machine learning models, such as DNNs, directly on
edge computing nodes or IoT devices instead of depending
exclusively on cloud platforms or centralized servers for data

processing and analysis. The IoT has grown thanks to Edge
Computing (EC) with artificial intelligence-EH technologies,
which enable various IoT devices to be interconnected in
future work to guide IoT EH devices in choosing offloading
rates and EC devices based on predicted energy and battery
levels.
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