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ABSTRACT With the advancement of facial recognition technology, concerns over facial privacy breaches
owing to data leaks and external attacks have been escalating. Existing de-identification methods face
challenges with compatibility with facial recognition models and difficulties in verifying de-identified
images. To address these issues, this study introduces a novel framework that combines face verification-
enabled de-identification techniques with face-swapping methods, tailored for video surveillance
environments. This framework employs StyleGAN, Pixel2Style2Pixel (PSP), HopSkipJumpAttack (HSJA),
and FaceNet512 to achieve face verification-capable de-identification, and uses the dlib library for face
swapping. Experimental results demonstrate that this method maintains high face recognition performance
(98.37%) across various facial recognition models while achieving effective de-identification. Additionally,
human tests have validated its sufficient de-identification capabilities, and image quality assessments have
shown its excellence across various metrics. Moreover, real-time de-identification feasibility was evaluated
using Nvidia Jetson AGX Xavier, achieving a processing speed of up to 9.68 fps. These results mark a
significant advancement in demonstrating the practicality of high-quality de-identification techniques and
facial privacy protection in the field of video surveillance.

INDEX TERMS Face de-identification, face privacy, face verification, face verifiable de-identification,
privacy protection, StyleGAN.

I. INTRODUCTION reliability of facial recognition technology, threatening user

Facial recognition technology, powered by advancements
in artificial intelligence and big data, plays a crucial role
in various fields, including security, personalized services,
and constructing social safety networks [1], [2]. This
technology is extensively used for personal identification
and verification, leading to the collection of massive facial
data. However, this data collection and usage pose serious
concerns, such as privacy infringement. Particularly, privacy
breaches due to data leaks or external attacks diminish the
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safety and rights.

To address these issues, conventional face de-identification
techniques have been developed [3]. These techniques focus
on obscuring identifiable features of individuals through
methods like noise addition, image blurring, JPEG compres-
sion, and pixelation. However, these methods have limitations
when combined with facial recognition technology and often
fail to eliminate recognizability completely. Furthermore,
de-identified video information can be easily identified as
such, limiting its use as training data or for other secondary
purposes. Moreover, these techniques are vulnerable to
removal and restoration technologies like denoising [4], [5],
[6] or inpainting [7], a limitation noted in related research.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
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FIGURE 1. Example of de-identification using our proposed method compared to other de-identification techniques. Rows 2-5 illustrate conventional
image manipulation methods for de-identification, whereas rows 6 and 7 demonstrate Al-based de-identification techniques.

These challenges suggest the need for new approaches in
advancing face de-identification technology.

The evolution of deep learning technologies has opened
new possibilities in this field [8], [9], [10], [11], [12],
[13], [14], [15]. Deep learning-based facial de-identification
methods are evolving with a focus on making faces recogniz-
able to humans without anonymizing them or making them
undetectable to facial recognition models. These approaches
have the utility of protecting the privacy of individuals while
maintaining the utility of facial recognition technology. Deep
learning-based face de-identification methods have evolved
to focus either on merely anonymizing facial features or on
ensuring that, while humans can recognize the person, facial
recognition models cannot. These approaches safeguard
individual privacy while preserving the utility of facial
recognition technologies. However, such de-identification
techniques modify facial characteristics without consider-
ing the unique features and distinctiveness of individu-
als. Therefore, this approach impedes the possibility of
re-identification and compromises the applicability of these
modified facial images for various tasks, including enhanced
facial recognition, emotional analysis, and other biometric-
based applications, thereby undermining the broader utility
and effectiveness of facial analysis technologies.

Furthermore, de-identification in real-time video envi-
ronments is crucial. Videos show various changes such as
facial expressions, head movements, and varying lighting
conditions over time, which increase the complexity of
applying facial recognition technology effectively in real-
time scenarios. Accurately identifying and de-identifying
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an individual in environments with multiple people is
significantly challenging. Effective de-identification in such
environments must protect individual privacy while meeting
the needs of real-time video processing. These challenges
underscore the need for new approaches in the development
of facial de-identification technology in video environments.

This study proposes a framework that elevates facial
de-identification to a new dimension. This framework utilizes
StyleGAN [16], Pixel2Style2Pixel (PSP) encoder [17],
and HopSkipJumpAttack (HSJA) [18] to de-identify faces
while enabling artificial intelligence(AI) models to uniquely
identify individuals. It overcomes the limitations of existing
facial de-identification techniques, offering an effective way
to protect privacy and maintain the usefulness of facial
recognition technology. By using this framework, we can
enhance the reusability of facial data and open up various
application possibilities for facial recognition technology,
presenting a natural appearance, as shown in Fig. 1. This
approach could significantly impact the future development
of facial recognition technology and efforts to protect privacy.

We evaluated the framework in edge computing envi-
ronments using lightweight devices, specifically focusing
on real-time video processing with the Nvidia Jetson
AGX Xavier [19] to demonstrate its effectiveness in
real-world applications. This evaluation shows that facial
de-identification technology is useful in digital evaluation
and it can be applied in diverse real-world applications.

This study marks a significant advancement in the fields of
data protection and privacy-preserving technologies, offering
the following key contributions:
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e Verifiable De-identification Techniques: We introduce
verifiable de-identification techniques, a first in offer-
ing a balanced approach between privacy protection
and data utility. This innovation facilitates compliance
with privacy laws and enhances the value of data,
pioneering new pathways in sensitive information
management.

e Development of a Framework for Real-World Applica-
tion: Our study results in a comprehensive framework
designed for real-world implementation. It surpasses
digital-level research by proving effective in real
business and technical environments, highlighting
its practical utility beyond theoretical or laboratory
settings.

e Comprehensive Experimental Validation of Perfor-
mance: Through extensive experiments, we validate
the performance of our techniques in verification,
de-identification, quality, and efficiency on edge
devices. These tests confirm the theoretical and
practical efficacy of our approaches in diverse sce-
narios, demonstrating their broad applicability and
adaptability.

Through these contributions, our paper pioneers a new
frontier in privacy-preserving technology, offering practical
strategies for achieving a balance between data protection
and utility. Furthermore, by providing new directions and
challenges for future researchers, this work is poised to
spur continuous innovation in the field. The remainder
of this paper is organized as follows. First, the related
works are presented. Thereafter, the proposed framework
is presented. Third, the experimental settings and results
are presented. Fourth, the discussions are presented, which
are then followed by the conclusions and future works
recommendations.

Il. RELATED WORKS

A. IMAGE MANIPULATION TECHNIQUES FOR FACE
DE-IDENTIFICATION

Conventional face de-identification techniques [20], [21],
[22], [23] encompass various image manipulation strategies,
including blurring, noise addition, JPEG compression, and
pixelation. Blurring [20] is a straightforward yet effective
method that obscures details of an image to hinder personal
identification. This approach often employs various filters,
such as Gaussian blur, to reduce distinct facial features.
Although it is effective in preventing identification and
retaining usability for specific tasks like object detection or
demographic analysis, excessive blurring can diminish the
utility of the original image.

Noise addition [21] involves introducing random pixel
values into the original image, thereby impairing the accuracy
of identification algorithms. A common method within this
category is Gaussian Noise addition, which adds random
pixel values following a Gaussian distribution to the original
image. This technique subtly alters pixel values, blurring
distinguishable facial patterns. The intensity of the noise
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can be adjusted to balance de-identification with the image’s
suitability for intended purposes. However, excessive noise
can render the image inappropriate for certain applications.
JPEG compression [22], primarily used for reducing image
file size, inadvertently aids in de-identification by losing
facial feature details during the compression process. Given
its lossy compression nature, JPEG is particularly beneficial
for large datasets where data storage and bandwidth are
critical. The level of compression can be modulated to strike
a balance between de-identification and image clarity. Pixe-
lation [23] reduces image resolution by transforming details
into larger pixel blocks. This technique effectively obscures
facial features, offering a quick and simple application;
however, the degree of pixelation necessary for effective
de-identification can significantly reduce the image’s utility
for other purposes.

These conventional face de-identification techniques
enable rapid and straightforward de-identification, effectively
obscuring faces in tasks not focused on facial recognition,
such as pedestrian detection, thereby protecting individ-
ual privacy [24]. However, their ease of application for
anonymity and the consequent masking of facial features
limits their applicability in facial recognition technology [25].

B. AI-BASED TECHNIQUES FOR FACE DE-IDENTIFICATION
The advancement of Generative Adversarial Networks
(GAN) [26] has significantly impacted the field of face de-
identification. The progression of GAN technology [27],
[28], [29], known for its ability to generate highly realistic
images, has played a crucial role in the evolution of
face de-identification techniques. These technologies have
become imperative tools for privacy protection, and Al-based
approaches have marked significant developments in this
domain. Recent research focus on striking a balance between
privacy protection and the utility of data, introducing various
methodologies.

Wu et al. [10] proposed Privacy-Protective-GAN (PP-
GAN), a novel GAN framework that removes identifiable
facial features while maintaining structural similarity. PP-
GAN employs verifier and regulator modules to effectively
eliminate identifiable information while preserving the utility
of images. Liu et al. [8] proposed A3GAN, a method where
face de-identification is approached as an attribute-based
editing process. A3GAN removes identifiable information
and injects controllable facial attributes, overcoming the lack
of flexibility in existing methods and providing natural-
looking de-identification results.

Gafni et al. [9] explored a method for de-identifying
faces in real-time video streams. This approach uses an
adversarial autoencoder network [30] architecture to mini-
mize identifiable information while generating natural image
sequences. Cai et al. [11] proposed the disguise algorithm,
which removes identifiable information and substitutes it
with a pseudo-identity while preserving utility attributes. This
method uniquely maintains useful attributes while effectively
eliminating identifiable information.
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S. Park et al.: Verifiable Facial De-Identification in Video Surveillance

IEEE Access

FIGURE 2. Stages of the face swapping method (FSM). The lower images are the source, whereas the upper images are the destination.

Du et al. [12] proposed the GARP-Face framework,
which preserves gender, age, and race information while
eliminating facial identifiers. This method leverages the
active appearance model to generate de-identified faces.
Chatzikyriakidis et al. [13] proposed the use of adversarial
examples to minimize identifiable facial features with
minimal distortion. Their P-FGVM method operates in the
spatial domain of images to generate de-identified faces that
maintain visual quality while being unidentifiable.

Hukkelas et al. [14] presented a method using GAN to
de-identify faces in images while preserving the original data
distribution. This study employs progressive growth learning
techniques and a U-net architecture to create high-quality
de-identified facial images. Finally, Maximov et al. [15]
introduced a novel method, CIAGAN, for protecting data
privacy in images and videos. CIAGAN removes identifiable
characteristics while preserving essential features, producing
high-quality images suitable for facial and body recognition.

These studies explore various aspects of face de-
identification technologies, enhancing personal information
protection and maintaining data utility while promoting
technological advancements. However, these technologies
diverge from the focus of our research, which explores the
potential for verifiable de-identification. We aim to entirely
remove the possibility of personal identification while still
allowing for the re-identification of original identities under
certain conditions.

Ill. VERIFIABLE FACIAL DE-IDENTIFICATION

FRAMEWORK

A. StyleGAN-BASED FACE VERIFIABLE

DE-IDENTIFICATION

1) StyleGAN

StyleGAN [16] represents an advanced GAN-based model

[26], [27], [28], [29] capable of generating a diverse array

of images. The architecture of this model has 18 layers, each

utilizing a style vector W of size 1 x 512 to generate images.

StyleGAN modulates features such as the shape of eyes, nose,

mouth, and the overall facial structure through this vector.
The initial four layers predominantly focus on generating

the basic shape of the face, whereas the subsequent four layers
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contribute to the precise positioning of the eyes, nose, and
mouth. The final ten layers adjust detailed features like hair
color and skin tone. Furthermore, the model incorporates
random noise during the generation process to enhance the
resolution and detail of the images.

2) Pixel2Style2Pixel

The PSP encoder [17] functions as an encoder for StyleGAN,
extracting style vectors from input facial images for use in
StyleGAN'’s generator. Unlike the conventional approach of
simply replicating a 1 x 512 size vector, PSP independently
extracts W vectors of size 18 x 512 for each layer. This
allows for more refined style adjustments, demonstrating
superior performance compared to other encoders applicable
to the original StyleGAN. The facial images generated using
PSP closely resemble the original images, and manipulation
of the W vector enables the generation of facial images in
desired shapes and forms as per user preference.

3) HopSkipJumpAttack

HSJA [18] is a method of decision-based attack, involving
the modification of input images to query target classification
models. HSJA induces misclassification by generating altered
images that, while visually distinct, retain the original
classification result. Unlike other attack methods that use
gradient calculations via backpropagation, this approach
employs random adjustments in the transformation process.
HSJA is effective even in black-box situations where access
to the internal parameters of the target model is not feasible.
Compared to contemporary related attack techniques, HSJA
has the advantage of closely approximating the target image
with fewer input iterations.

B. FSM

1) YOLOvS

YOLOVS [31], the latest iteration in the You Only Look
Once (YOLO) series, represents a significant advancement
in the field of real-time object detection. This model excels
particularly in accurately detecting multiple and overlap-
ping objects in complex environments while providing the
essential rapid frame processing speed required for real-time
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FIGURE 3. A diagram of our overall framework.

applications. Additionally, it demonstrates robustness in
various lighting conditions, object sizes, and occlusions,
thereby extending its applicability in real-world scenarios.
The technological enhancements of YOLOvS8 have a pro-
found impact on diverse areas such as autonomous vehicles
and public safety surveillance systems, offering the potential
to significantly improve safety and efficiency in these
domains.

2) FSM

The FSM, as shown in Fig. 2, employs the YOLOvVS for
extracting bounding boxes and utilizes the dlib library [32] for
detecting 68 facial landmarks. Additionally, to maintain the
size and perspective of the face, the Delaunay triangulation
method [33] is applied for triangulation. To adjust the color
of the source image with that of the destination image, the
seamlessClone function from the OpenCV library [34] is
used.

The FSM process follows the following steps:
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(a) Square bounding boxes for both face images are
extracted using the YOLO.

The dlib library is employed to detect 68 facial
landmarks in both the source and destination images.
Triangulation is performed on the 68 facial landmarks
using the Delaunay triangulation method.

Triangles are extracted and transformed from the
source image to match the triangles in the destination
image, ensuring they maintain the same size and
perspective. Subsequently, these transformed triangles
are linked together to reconstruct the face.

The face in the destination image is replaced with the
reconstructed face.

Post-processing techniques, such as seamlessClone, are
applied to adjust the color of the source image to match
that of the destination image.

(b)
©
(d)

)

Through these steps, FSM effectively swaps faces between
two images, maintaining the size and perspective of the faces
while adjusting colors to achieve a natural-looking result.
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FIGURE 4. Example of human test questions. Row 1: unmasked question
example. Row 2: masked question example. Column 1 shows the given
examples; column 2 features the same individuals in a different frame;
column 3 presents images on which our de-identification technology has
been applied; columns 4-6 contain images deemed similar to the
examples by FaceNet512.

C. OVERALL FRAMEWORK

This study proposes a framework for facial verifiable
de-identification suitable for both video and real-time appli-
cations, as depicted in Fig. 3. The framework requires two
types of images for de-identification: the source image of
the individual to be de-identified, Xyyyrce, and a randomly
generated facial image using StyleGAN, Xi,g.r. Through the
PSP encoder, style vectors that contain the facial features of
Xsource and Xigrger, W;r and WtJr respectively, are produced.
These style vectors are aligned with the 18 layers of the
StyleGAN’s generator, each having dimensions of 18 x 512.

Before feeding the style vectors into the StyleGAN model,
a de-identification adjustment variable, A € [0, 1], is defined
to ascertain the optimal level of de-identification. A serves
as the blending ratio between elements of each style vector,
limited to a decimal value within the O to 1 range. The
dimension of A matches that of the style vectors, at 18 x 512.
The equation for merging W, and W, using the established
A is as follows:

Wh ==X x W+ Ax W, (1

As A gets closer to 0, the StyleGAN model generates a
facial image more resembling X;,,ce, and as A\ approaches 1,
it produces an image more akin to Xy.¢.,. Thus, by iteratively
updating A to achieve the optimal value, a facial image
that is both sufficiently de-identified and capable of facial
verification can be generated.

To optimize the de-identification adjustment variable A
for its intended purpose, the HSJA is utilized to challenge
the facial verification model. A starts with the initial value
of Asource = [[0,0,...]...], which can generate a facial
image with the features of Xyousce, and aims for Aygrger =
[[1,1,...]...]. The optimization process of J, illustrated in
Fig. 5, involves three repeating phases. The lower part of the
Fig. 5, divided by a boundary, indicates the region where
the facial verification model recognizes the input image as
the user, whereas the upper part represents the class area of
Xtarget-

The process begins with A moving from A, towards
Atarger Via binary search. The basis of this search is whether
the facial verification is successful for the produced Xy,
indicated as true or false. This step helps locate the
boundary where the facial verification model recognizes
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FIGURE 5. Illustration of the HSJA, detailing its three key stages. This
figure aids in understanding the boundary search and image generation
processes critical to our study.

Xmix as the user. Subsequently, A undergoes several random
perturbations, and the resulting X, is repeatedly queried
against the facial verification model. Blue arrows represent
scenarios where the perturbed A and the consequent facial
image X,,;, are included in the verification area, whereas red
arrows indicate scenarios where they are not verified.

Based on these query results, a directional vector towards
the area capable of facial verification is formed. Finally, this
directional vector is applied to adjust A\. These three steps
are repeated several times, gradually bringing A closer to
the all-ones Ayyger. The algorithm for A optimization can be
expressed as follows:

Algorithm 1 Parameter Update Algorithm
N < the predefined number of steps
fori=1toN do

A\« Asoun:e‘zl’)\tmgel
if f (W) # f(W;") then
)\target <~ A
else
Asource <= A
end if
end for

The last iteration includes a binary search to bring \ as
near as possible to \ge;. This optimized method allows for
the creation of the ultimate de-identified facial image, Xj;y,
that still enables verification.

The facial image Xy, which is both optimally
de-identified and verifiable, is subsequently stored in the
System. In the facial verification process, X,s plays a vital
role. When a camera captures an individual, the YOLO model
is employed to extract the face from the image, which is then
compared with the stored Xj,;; images for verification. This
verification process is performed by feeding the extracted
image and the stored image into the face verification model,
and then measuring the cosine distance of the resulting image
to determine if the cosine distance is below a threshold. The
equation for cosine distance (cos(f)) is as follows:

cos(0) A-B )

lAll2 1Bll2
If the person captured by the camera matches an image in the
system, the FSM activates. The system replaces the real-time
captured face with the Xj,;; image, thereby safeguarding
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Target 10 9

FIGURE 6. Image examples according to the iterations of our technique.

the privacy of the verificated user while simultaneously
confirming their identity.

IV. EXPERIMENTAL SETTINGS AND RESULTS

A. EXPERIMENTAL SETTINGS

To conduct experiments in face verifiable de-identification,
we utilized a StyleGAN pretrained on the FFHQ dataset [35],
complemented by PSP as the encoder. In the target facial
verification model, FaceNet512 [36] was utilized, and for the
facial recognition model, the yolov8n model pre-trained on
the Wider Face Dataset [37] was employed. Additionally, the
number of iterations for the proposed method was set to 10 for
the experiments.

To evaluate our experiments, we utilized the Labeled
Faces in the Wild(LFW) dataset [38], [39]. Additionally,
a webcam connected to a Jetson AGX Xavier was also
employed. This setup was crucial to assess the effectiveness
of the technology in real-world scenarios. To benchmark our
proposed de-identification method, we applied conventional
de-identification techniques such as blurring, noise addition,
JPEG compression(JPEG Comp.), and pixelation to the LFW
dataset. Gaussian Blur was applied for blurring, with the
kernel size set to 15 by 15. Gaussian noise was used for noise
addition, maintaining a mean of 0 and setting the standard
deviation o = 0.07. For JPEG compression, the JPEG quality
was set to 1%; for pixelation, the pixel size was set to 8 by
8 for the experiments.

In this study, various quantitative metrics such as L2 dis-
tance, Frechet Inception Distance (FID) [40], Structural Sim-
ilarity Index Measure (SSIM) [41], and Blind/Referenceless
Image Spatial Quality Evaluator (BRISQUE) [42] were
employed to assess the quality of de-identified images.
The L2 distance is utilized for measuring the similarity
between two images. This method considers images as multi-
dimensional vectors, using the intensity or color values of
each pixel as elements of the vector, to calculate the distance
between the two images. A smaller value indicates greater
similarity between the images. FID calculates the distance
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between the distributions of generated and original images
using the Inception V3 network [43], with lower values
indicating greater similarity to the original images. SSIM,
a method for assessing similarity between two images, com-
pares their structural characteristics, considering factors such
as brightness, contrast, and structure. Higher SSIM values
indicate greater structural similarity. BRISQUE is a method
for evaluating the quality of an image without reference
images. This approach analyzes the natural statistical charac-
teristics of an image through the BRISQUE model, detecting
degradation in quality caused by compression or loss. A lower
BRISQUE score indicates a higher quality and more natural
image. These diverse measurement methods contributed to a
multi-faceted analysis of the quality of de-identified images,
systematically enhancing our understanding of the impact of
the de-identification process on image quality.

To quantitatively measure the degree of de-identify in
de-identified images, a human test of 30 questions was
conducted with 20 participants. Each question presented
an original image and required the participants to identify
the person in the image from five options. These options
included one different frame of the same person from the
original image, three images evaluated as similar through
FaceNet512, and one image de-identified using the technique
proposed in this study. To analyze the impact of non-facial
elements on person identification, 15 of the 30 questions used
images with the facial area masked, whereas the remaining
15 included images with the person’s hair style, clothing,
and background. Examples of such designed human tests are
shown in Fig. 4.

To evaluate the verification performance of de-identified
images, we utilized FaceNet512 as the target facial verifica-
tion model. Additionally, to assess the transferability of the
proposed technique, ArcFace [44], Dlib [32], and VGG-Face
[36] were employed. The verification process involved
inputting two facial images into the trained models, extracting
vectors, and then calculating the cosine distance between
these vectors. A value below a certain threshold indicated the
same individual, whereas a higher value indicated different
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TABLE 1. Result of average distance and verification rate based on
verification models and de-identification methods. (The variable ¢

TABLE 2. Result of human test.

represents the threshold). Selection Rate Unmasked | Masked | All
Same Person Selection Rate 83.67% 75.33% | 79.75%
Model Method Avg.Distance | Verified(%) Other Person Selection Rate 8.00% 22.67% | 15.33%
FaceNet512 | Blur (15 by 15) 0.549 29.59% De-identified Person Selection Rate 8.33% 2.00% | 5.17%
(t = 0.30) | JPEG Comp. (quality=1%) 0.576 48.98%
Noise (o = 0.07) 0.229 88.78%
Pixel (8 by 8) 0.999 0.00% . .
DeepPrivacy 0.668 0.00% The evaluation results reveal that our methodology exhib-
CIAGAN 0.855 0.00% ited superior verification performance compared to the
Foce g;lur: ((1150 ]‘:;e‘l);) g.g{z) 9f§g (;7" conventional and GAN-based de-identification techniques.
. A ‘0 . . g .

(t = 0.68) | JPEG Comp. (quality=1%) 0.838 15.31% Notably, our approach achieved a remarkable verification rate
Noise (o = 0.07) 0.567 69.39% of 98.37% with FaceNet512, demonstrating consistent trends
E‘:;l)f(,fisz’ci) 5’2(1)2 702'283; with verification rates of 99.35% and 99.02% across other
CIAGAN 0.774 18.36% models, as illustrated in Table 1. Notably, similar verification
Ours (10 step) 0.290 99.35% rates were observed for ArcFace, Dlib, and VGG-Face model,

Dlib | Blur (15 by 15) 0.152 56.12% indicating a high degree of transferability across various

(t = 0.07) | JPEG Comp. (quality=1%) 0.389 58.16% Jcating £ £ y
Noise (o = 0.07) 0.137 86.73% verification models. . o
Pixel (8 by 8) 0.991 0.00% Through these evaluations, our de-identification technol-
DeepPrivacy 0.053 83.67% ogy has convincingly demonstrated its ability to maintain
CIAGAN 0.071 47.95% N o . . . Jo
Ours (10 step) 0.027 99.02% high verification rates and exhibit exceptional transferability

VGG-Face | Blur (15 by 15) 0.411 67.35% across different verification models. This suggests that our

(t = 0.40) | JPEG Comp. (quality=1%) 0.489 64.29% technology can be effectively applied in real-world scenarios,
Noise (o = 0.07) 0.213 89.80% . . ith di ifi .

Pixel (8 by 8) 0.995 0.00% even 1n environments with diverse verification systems.
DeepPrivacy 0.303 87.75%

CIAGAN 0.425 41.83%

Ours (10 step) 0.125 99.35% 2) DE-IDENTIFICATION PERFORMANCE

individuals. The default thresholds for each model were
0.30 for FaceNet512, 0.68 for ArcFace, 0.07 for Dlib, and
0.40 for VGG-Face [45], [46], [47].

To quantitatively evaluate the processing speed of the
proposed de-identification method, an experimental setup
based on the Nvidia Jetson AGX Xavier was established.
This evaluation utilized a webcam and was conducted with
two different resolution settings: 1280 x 720 and 640 x 480.
Furthermore, we measured the FPS in various power modes
of the Nvidia Jetson AGX Xavier MAXN, 10W, 15W, 30W)
to assess the efficiency of de-identification processing speed
under each setting.

B. EXPERIMENTAL RESULTS

The comparison of visual between the proposed de-
identification method and other methods is shown in Fig. 1.
Visual representations of de-identification techniques for
each step is presented in Fig. 6.

1) FACE VERIFICATION PERFORMANCE

To evaluate the verification performance of the proposed
method, we conducted assessments to measure the extent
to which original faces and faces processed through various
de-identification techniques can be verified. The primary
evaluation was conducted using the prominent target model,
FaceNet512, as the benchmark, with additional assessments
conducted using ArcFace, Dlib, and VGG-Face models to
evaluate transferability. Detailed results of these evaluations
are summarized in Table 1.
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We conducted a human test on 20 individuals with
30 questions to evaluate the performance of the proposed
de-identification method. The results are summarized in
Table 2. Out of all the questions, the de-identified individuals
were selected in 5.17% of the cases, whereas the same or
different individuals were chosen in 94.83% of the cases.
Notably, there was a 15.33% rate of misidentification, where
participants incorrectly recognized different individuals. This
phenomenon is attributed to the selection of alternatives with
high similarity scores obtained through FaceNet512, leading
to mistaken identity.

This research analyzed the impact of a masked state
on identification accuracy during person recognition. The
analysis revealed that identification accuracy is lower in a
masked state compared to an unmasked state, suggesting
that elements other than the face, such as background,
hairstyle, and clothing, play a significant role in identifying
individual characteristics. Furthermore, the study focused on
validating the effectiveness of de-identification techniques.
In the unmasked state, de-identified individuals were selected
in only 8.33% of cases, indicating that correct identification
was possible in many cases (83.67%). This demonstrates the
considerable effectiveness of de-identification technology.

Conversely, in the masked state, the selection of
de-identified individuals considerably decreased to 2.00%.
This suggests that the impact of de-identification technology
is enhanced when identification factors are concentrated
primarily on the face. The research particularly emphasized
the de-identification of the facial region, and as the results
indicate, this effectively removed identifying features of
the face. Overall, de-identified individuals were selected in
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FIGURE 7. Visual comparison of image quality and face verification rates, synthesizing results from Tables 1 and 3. The top-left corner indicates the best
outcomes for FID, BRISQUE, and L2 Distance, whereas the top-right indicates best outcome for SSIM.

5.17% of cases across the entire study group, irrespective
of masking. These results imply that de-identification
technology plays a vital role in facial privacy protection.

3) IMAGE QUALITY PERFORMANCE

To quantitatively assess the image quality of the proposed
de-identification method, we compared it with various
de-identification techniques. The results, including mea-
surements of FID, SSIM, BRISQUE, and L2 distance,
are summarized in Table 3. FID, SSIM, and L2 distance
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were calculated by comparing the original images with
their de-identified counterparts, whereas BRISQUE, which
does not require a reference image, was measured by
inputting the de-identified images into the BRISQUE model.
Our de-identification method demonstrated superior quality
across all metrics, suggesting that it effectively maintains the
distribution and structural similarity of the original images
while achieving natural de-identification.

The comparison of image quality and verification perfor-
mance between the proposed de-identification method and
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TABLE 3. Results of image quality performance.

Method FID| | SSIM? | BRISQUE] | L2 Distance
Blur (15 by 15) 50.157 | 0.912 40.36 14.757
JPEG Comp.

(quality=1%) 67.145| 0.899 37.30 16.760
Noise (o = 0.07) | 117.847 | 0.848 36.34 29.616
Pixel (8 by 8) 73.837 | 0.853 37.14 25.927
DeepPrivacy 18.200 | 0.901 41.11 21.958
CIAGAN 81.237| 0.340 47.46 111.281
Ours (10 step) 14.53 | 0.958 33.44 13.295

TABLE 4. Results of real-time performance (FPS).

Resolution | Number of people | MAXN | 30W | 15W | 10W
640 x 480 9.680 | 5.905 | 5.534 | 4.923
7.308 | 4.095 | 3.825 | 3.481
5.936 | 3.255 | 3.339 | 2.559
6.509 | 3.555 | 2.946 | 3.060
4.038 | 2.185|2.292 | 2.158
3.595(2.120 | 1.927 | 1.634

1280 x 640

LN =W N =

other methods is shown in Fig. 7. Our method consistently
outperformed others for FID, SSIM, BRISQUE, and L2 dis-
tance. Specifically, a lower FID indicates statistical similarity
to the original images, positively impacting face verification
performance. A higher SSIM suggests the preservation of
structural quality, which correlates with higher verification
performance. Our method, particularly in the Ours (10
step) variant, successfully preserves structural details while
optimizing recognizability. Lower BRISQUE scores indicate
better image quality, consistent with higher verification
performance. The low L2 distance in Ours (10 step) signifies
the generation of images closely resembling the originals,
preserving features crucial for face recognition. These results
indicate that the proposed method can maximize face
verification performance while maintaining the visual and
statistical quality of the images.

Blur (15 by 15) and JPEG Compression (quality = 1%),
while maintaining structural similarity as evidenced by their
SSIM and L2 distance scores, recorded high values in FID
and BRISQUE, indicating an overall degradation in image
quality. However, face recognition verification performance
did not entirely degrade across all models, suggesting some
robustness of face recognition algorithms to certain types of
distortion.

Noise (0 = 0.07) recorded very high FID values
and relatively lower quality in SSIM and L2 distance
compared to other methods. However, it showed relatively
lower BRISQUE scores. These results suggest that while
structural similarity is not preserved with added noise,
some non-structural quality can be preserved. The face
verification performance varied across models but generally
indicated high verification performance, suggesting that face
verification models can be robust to a certain level of noise.

Pixel (8 by 8) showed generally low performance across
all quality metrics, particularly indicating very low face
verification performance. This suggests that face recognition
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FIGURE 8. Real-time performance graph in FPS across different power
modes (10 W, 15 W, 30 W, MAXN) for two resolutions (640 x 480, 1280 x
640) with varying numbers of people (1 to 3) in the scene.

models struggle to extract necessary information from
pixelated images.

DeepPrivacy and CIAGAN, designed to disrupt original
face recognition systems, unexpectedly showed high verifi-
cation performance in face recognition models, except for
FaceNet512. For quality, DeepPrivacy demonstrated consid-
erably high quality, except in BRISQUE, and considerable
verification performance, except for FaceNet512. CIAGAN,
while showing lower performance in all quality metrics,
showed considerable verification performance, albeit lower
than that for DeepPrivacy.

4) REAL-TIME PERFORMANCE

In this study, the performance of the proposed method was
evaluated using the Nvidia Jetson AGX Xavier. The FPS was
measured according to the number of people, resolution, and
power mode, and the results are summarized in Table 4. The
visualization of these results according to power mode and
FPS is shown in Fig. 8.

At the MAXN power mode and a resolution of 640 X
480 for a single target, the FPS was approximately 10, which
corresponds to the minimum FPS threshold where continuous
motion starts to be recognized. As for different power modes,
increasing from 10 W to 15 W resulted in an average 6%
increase in FPS at a resolution of 1280 x 640, and 18% at
640 x 480. Increasing from 15 W to 30 W showed an increase
of approximately 7% and 4%, respectively; however, the
change was not a relatively large. In contrast, when switching
from 30 W to MAXN mode, there was a significant increase
of 44% in FPS at 1280 x 640 and 75% at 640 x 480.

When switching from the lowest power mode, 10 W,
to the highest mode, MAXN, there was an increase of
approximately 107% at 1280 x 640 and approximately 113%
at 640 x 480, nearly doubling the performance. The change
in FPS with an increase in the number of people showed a
decrease of approximately 29% and 32% for 1280 x 640 and
640 x 480 resolutions, respectively, when increasing from
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FIGURE 9. Impact of loop step increases on verification accuracy and distance metrics(Green line: major axis of the Y-axis. Blue line: minor axis of

the Y-axis).

one to two people, and a decrease of 20% and 14% when
increasing from two to three people.

This evaluation precisely measured the performance
changes of the proposed de-identification technology on edge
devices according to various variables such as resolution,
power mode, and the number of subjects. Particularly, it was
confirmed that the best frame rate was achieved when
performing the transformation for a single subject at a
resolution of 640 x 480. These results provide important
guidelines for performance optimization when applying
de-identification technology on edge devices. Additionally,
they contribute to demonstrating the practical applicability of
this technology in various operating environments.

5) ABLATION STUDY

Here, the impact of the framework’s components on the
overall performance was systematically analyzed. In the
first experiment, the framework’s performance and distance
changes were measured by adjusting the number of loop steps
during the processing phase. As depicted in Fig. 9, while
the verification accuracy remained stable, the cosine distance
gradually increased with the number of steps. Although there
was a sharp increase in cosine distance at the initial stages, the
change became negligible beyond a certain number of steps.
This suggests that additional repetitions might decrease the
framework’s efficiency.

In the second experiment, the seamlessClone feature used
during the face swap process was removed to analyze its
effects. By excluding this feature, the impacts on verification
performance and image quality were assessed. As indicated in
Table 5, the cosine distance measured after the seamlessClone
process was consistently lower compared to before its
application across all verification models. These results
demonstrate that seamlessClone processing aligns with the
objectives of face verifiable de-identification proposed in
this study. Further analysis of the image quality metrics in
Table 5 showed that while the BRISQUE metric remained
largely unchanged, improvements were noted in the FID,
SSIM, and L2 distance metrics. Consequently, removing the
seamlessClone feature resulted in a significant increase in
cosine distance and a decrease in visual quality.
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TABLE 5. Comparative analysis of verification performance with and
without seamlessClone.

Measurment Metric Without | With
Cosine distance | Facenet512 0.281 0.212
ArcFace 0.395 0.290
Dlib 0.035 0.027
VGG-Face 0.163 0.125
Image quality FID 35.06 14.53
SSIM 0.938 0.958
BRISQUE 33.32 33.44
L2 Distance | 22.01 13.29

Through these experiments, this study was able to clearly
identify the contributions of each component, providing cru-
cial information for future system performance optimization.
The findings offer guidance on understanding the importance
of specific features and adjusting them as necessary to
efficiently improve the system.

V. DISCUSSION

A. DE-IDENTIFICATION RELYING ON TARGET IMAGE

The method addressed in this study leverages the HSJA in the
process of blending the styles of individuals in source images
with those in generated target images. The technique mainly
ensures that while individuals are perceived as different
people by the human eye, they can still be verificated
as the same individual by facial recognition models. This
necessitates a careful combination of the styles of the source
and target individuals within the verifiable boundaries of the
facial recognition model.

However, a limitation revealed in our research is that when
the target and source image individuals are similar, their
styles become alike. Even when our technique is applied,
it does not result in sufficient de-identification to the human
eye. The cosine distance between the individual in the source
image and the target image presented in Fig. 10., measured
using FaceNet512, was relatively low at 0.598. This indicates
that the facial recognition model perceives the source and
target image individuals as quite similar. Analyzing both
the image generated using our proposed method and an
additional image to which the FSM was applied, it was
confirmed that both images are still perceived as the same
individual as in the source image, indicating that sufficient
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(c) (d)

FIGURE 10. (a): source image, (b): target image. (c): image with our
de-identification technique applied to the source image(10 iteration). (d):
face-swapped image from (c) to (a).

de-identification was not achieved. This suggests that when
the styles of the source and target are too similar, they can
still be recognized as the same individual by human visual
perception.

This finding provides important insights for the develop-
ment and application of de-identification technologies. For
verifiable de-identification, it is necessary to develop tech-
niques that consider human visual perception more precisely,
rather than just working within the boundaries of facial
recognition models. Therefore, finding a balance between
human visual perception and the verification boundaries of
facial recognition models is an important task for future
research.

B. PERFORMANCE ANALYTICS ON EDGE DEVICES

To evaluate our technology, we conducted experiments on the
Nvidia Jetson AGX Xavier, an edge device engineered for
Al computing. The performance benchmarks were executed
in MAXN power mode at a resolution of 640 x 480 pixels.
Under these conditions, the highest performance achieved
was 9.680 FPS, recorded when only one person was present
in the frame.

A detailed analysis of frame processing times is sum-
marized in Table 6. The data indicates that the most
time-consuming process is Face Predict, which accounts for
approximately 48.37% of the total processing time. This
step involves detecting faces within the frame and extracting
bounding boxes, requiring significant computational power
owing to the diversity and complexity of human facial fea-
tures. Following closely, the Triangulation and Warp triangles
process consumes 22.02% of the total time. This crucial step
involves mapping and transforming the facial structure from
the source face image to fit that of the destination image,
which demands a high volume of computations.

Other processes such as Face Compare as well as Replace
face and seamlessCloning occupy smaller portions of the
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TABLE 6. Analysis of processing times and percentage shares for
different stages in face de-identification.

Process Time(ms) | Percentage(%)
Frame Process 0.00095 0.98%

Face Predict 0.04692 | 48.37%

Face Compare 0.01322 | 13.63%

Face Landmark 0.00486 | 5.01%
Triangulation and Warp triangles | 0.02136 | 22.02%
Replace face and seamlessCloning | 0.00969 | 9.99%

Total 0.097 100.00%

total time, specifically 13.63% and 9.99%, respectively.
Face Compare is necessary for differentiating between
individuals, entailing the extraction and comparison of face
embeddings. Replace face and seamlessCloning involves
attaching the transformed source face image to the destination
images facial structure followed by seamless cloning for
a natural integration. The least time-consuming steps are
Face Landmark and Frame Process, collectively accounting
for less than 6% of the total time. Face Landmark detects
essential facial landmarks for subsequent processing stages,
whereas Frame Process includes initial frame preparation
tasks such as resizing and color adjustments.

The results of this analysis are instrumental in identifying
processes that are time-intensive and considering strategies
for time reduction. The Face Predict process, taking up a
substantial portion of the total time, is a primary candidate
for performance optimization. It is anticipated that replacing
the facial recognition model with a lightweight model or
quantizing the existing model could reduce the time spent
on this process. Moreover, for the Triangulation and Warp
triangles process, the potential to decrease computation time
through the adoption of GPU acceleration or parallel pro-
cessing, as opposed to the current CPU-centric computation
method, is promising. Such optimizations are expected to
play a critical role in enhancing real-time performance on
edge devices.

VI. CONCLUSION AND FUTURE WORKS

In conclusion, we propose a framework for face-verifiable de-
identification in real-time video surveillance. Utilizing face-
verifiable de-identification techniques and FSM, it maintains
sufficient de-identification from the original source images
while preserving the performance of various face verification
models. By applying this method, potential violations of
facial privacy in scenarios requiring both face verification and
de-identification can be prevented, demonstrating feasibility
for real-time applications.

In future, we will focus on addressing the key limitations
identified in the research. Specifically, we aim to resolve
the issue of insufficient de-identification when the original
and generated images subjects closely resemble each other.
This will be achieved by introducing modifications in the
image generation process for more effective de-identification.
Additionally, improvements in real-time performance will
be pursued through facial recognition model quantization
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and computational optimization. Through these measures,

we

expect to significantly elevate the practicality and

effectiveness of the research. These planned improvements
are expected to significantly augment the practicality and
effectiveness of our framework, paving the way for more
robust and reliable facial privacy protection in an increasingly
digital and surveillance-oriented world.
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