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ABSTRACT Model Compression is an actively pursued research field in recent years with the goal of
deploying state-of-the-art deep neural networks. It is targeted to implementations which are based on power
constrained and resource limited devices as the reduced model achieves without significant accuracy loss,
but with effective resource size reduction. The network pruning and the weight quantization techniques
are well-known model compression methods. Our previous work successfully demonstrated significant
reductions regarding the network model size by applying a managed combination of the structured and
unstructured pruning methods. In order to achieve further reduction of the model, this paper introduces new
heuristic methods that employ a weight quantization technique with both structured and unstructured pruning
methods as those keep a given target accuracy. We experimentally demonstrate the performance evaluations
of the proposed method by applying it to the actual state-of-the-art CNN models of VGGNet, ResNet and
DenseNet under well-known CIFAR-10 dataset. In the best case during our experimental outcomes, the
proposed method achieves the reduction of 28 times less model size and 76 times less compression processing
time compared to the brute-force search method.

INDEX TERMS Convolutional neural network, model compression, quantization, structured pruning,
unstructured pruning.

I. INTRODUCTION

Convolutional neural networks (CNNs) have achieved
remarkable success in many cognitive tasks such as computer
vision [1], [2], speech recognition [3], [4] and autonomous
driving [5], [6]. However, in order to achieve higher inference
accuracy, recent state-of-the-art CNN networks tend to
organize a quite deep architecture that consists of many layers
and parameters [7]. These deep CNNs require significant
amount of implementation resources such as computational
power, amount of memory, and electric power for the
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processing platform. Especially, we need to consider those
aspects when we deploy them on IoT environments such as
edge devices where the computing resources are limited.
Recently, to overcome the resource problem, model
compression is an active research area in the last decade. The
extensive works have been proposed to compress large-scale
CNN models with obtaining a required accuracy [8], [9].
Then, the techniques allow us to reduce the implementation
resources and to bring compact implementation. In soft-
ware implementation of a CNN-based inference, calculation
overhead will be reduced by less nodes or channels of a
network model. And in hardware implementation of the
inference, computing resources will be reduced, and we can
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implement it in a compact integrated circuit. The model
compression techniques can be categorized into two major
types: quantization and network pruning. Quantization is
often employed to implement models on hardware such as
Field Programmable Gate Array (FPGA). Quantization is
a technique to compress a model by reducing the number
of bits required to represent parameters such as weights or
activations. On the other hand, the network pruning method
can be also categorized into two methods: unstructured
and structured ones. The unstructured one tries to delete
individual weights or neurons in fully connected layers
while the structured one does entire network structures such
as channels or layers. We combined the unstructured and
the structured methods to reduce network model [10]. The
technique compresses a given CNN model with achieving a
given target inference accuracy. However, we did not care
about the reduction technique focusing on shrinking data type
of weight parameters, which is the quantization. We have
performed consistently our combined method by applying
32bit floating point to weight parameters. If we can reduce
the number of bits for the parameters, we expect to derive
more reduced model. However, the quantization often raises
a problem of significant accuracy degradation. Furthermore,
it is always intuitive to determine the reduction ratio when we
apply the quantization technique by combining the structured
and the unstructured pruning methods. Therefore, there is
no concrete algorithm that promises reducing the network
model size by using three compression techniques above.
This paper proposes a novel heuristic method that combines
quantization, structured and unstructured pruning techniques
to derive a minimal network model as promising the target
accuracy.

The main contributions of this paper are summarized as

follows:

1) First, we found a method for compressing CNN model
by combining three compression techniques; quantiza-
tion, structured and unstructured pruning methods.

2) We developed an algorithm that achieved more
improved compression ratio than our previous
approach in [10] as promising a given target accuracy.

3) We have demonstrated efficiency of our proposed
method according to evaluations with six state-of-
the-art CNN models and validated efficiency of our
proposed algorithm.

4) Finally, our proposed algorithm significantly shrinks
computational time for finding minimal compressed
model, comparing to the case of the brute-force-search
method.

The rest of this paper is organized as follows. The next
section introduces background and state-of-the-art model
compression techniques. The section will also explain our
previous work. Section III will describe our proposed
heuristic method based on examples. Section IV will show
experimental evaluations by applying our proposed method
to actual CNN models. Finally, we will conclude the paper
and describe our future plans.

VOLUME 12, 2024

Before quantization,
implemented in 32bit precision.

32 64 96 128

-

After quantization,
implemented in 8bit precision.

’ ’
L d
Vi 4 ’ -

8162432

Compressed to 1/4 of original model size.

FIGURE 1. Integer quantization example. According to 8bit precision
representation for weights, the model size of 32bit can be reduced to 1/4
of its original size.

Il. BACKGROUNDS AND DEFINITIONS

A. COMPRESSION TECHNIQUES FOR CNN NETWORK
MODELS

Network pruning and quantization techniques are known as
common and effective approaches for model compression
techniques. The network pruning techniques reduce the
size of CNN models by eliminating redundant network
components. According to part of the network component
to be removed, the techniques can be categorized into two
types: structured and unstructured. The structured pruning
technique tries to remove available components by scanning
the entire network such as channels or filters based on a
predetermined criterion. The approach reduces the model
size while maintaining the overall structure of the network.
On the other hand, the unstructured one does individual
weights or connections in the network by focusing on less
important weights or connections based on a certain criteria
or a given threshold of the pruning ratio. The structured and
the unstructured pruning techniques are respectively known
as network slimming proposed by Liu et al. [11], and deep
compression that the weight pruning method is used [12]. The
former one identifies redundant channels in convolutional
layers of a network and prunes them. The latter one reduces
the weights under a specified threshold of the pruning ratio.
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On the other hand, quantization represents weight parame-
ters and activations in low-precision data types like 8bit inte-
ger (widely represented as int 8) instead of a wide range of
floating point such as float32/64. The reduction of the number
of bits brings less memory requirement and also causes less
energy consumption without modifying the structure of the
network itself. The literature [13] reported resource impact
of limited precision regarding 16bit floating point on deep
learning. We can also find advantages especially in hardware
implementation from survey literature [14]. Figure 1 shows
a typical example of reducing the number of bits in weight
parameters by applying the quantization technique. It shows
a 75% reduction of the total resources in bits while the type
of weights is changed from 32bit floating point expression to
8bit integer.

The quantization techniques are categorized to floating-
point-based and integer-based techniques. Settle et al. [15]
introduced a low-precision floating-point quantization
method. Through applying 16bit or 8bit floating-point
quantization, the network can be reduced to 50% or even
25%. However, as multiply-accumulators (MACs) based on
floating-point need much more hardware resources than the
ones based on integer, the authors show the effectiveness
on some slim CNNs only such as GoogleNet [16] and
MobileNet [17]. He [18] proposed a neural network for
image classification based on 8bit integer quantization
to reduce the model size. The network model improved
response time of inference process. Recently, many effective
automated quantization techniques have been proposed
due to rapid development of reinforcement learning [19].
Elthakeb et al. [20] proposed ReLeQ framework for
automating determination of quantization levels regarding
different network components (channels, layers etc.) through
deep reinforcement learning technique. Wang et al. [21]
employed HAQ (Hardware Aware Quantization) method that
leverages the reinforcement learning to simulate the target
hardware architecture. It also automatically determines an
“optimal”” mixed-precision configuration by considering the
hardware-specific constraints such as memory size limitation
and computational capability. The techniques based on the
reinforcement learning achieves good compression ratio by
dynamically adapting and determining optimal quantization
strategies. However, it needs numerous iterations and
adjustments for deriving compressed model. And the
computational requirements can be substantial due to
increasing compressing time and demanding significant
computational resources for the reduction process.

B. MODEL COMPRESSION USING STRUCTURED AND
UNSTRUCTURED PRUNING TECHNIQUES

Our previous work [10] effectively reduced network model
size by combining the network slimming and the deep
compression as keeping a given target inference accuracy.
In order to control the balance between the target accuracy
and the reduced model size, we employed a margin
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TABLE 1. Comparisons of reduction ratios when five models are
compressed by two execution orders (NS—DC and DC— NS), where 90%
target accuracy is specified.

Model NS—DC DC—NS
VGG-19 92.31% 90%
ResNet-110 68.75% 67.74%
DenseNet-40 78.72% 77.78%
DenseNet-121 94.12% 92.86%
DenseNet-202 96.30% 95.65%

calculation to adjust the reduction ratio of these pruning
methods. We experimentally determined execution orders of
those pruning methods. Applying five well-known CNNs,
we investigated orders of NS— DC (this means the network
slimming is first invoked and the deep compression is done
later) and DC— NS (this means vice versa) under a condition
of 90% target accuracy. The reduction ratios (i.e. calculated
by (1-compressed network size/original network size)) are
shown in Table 1. The sequence of NS—DC consistently
achieved a better reduction ratio than the one of DC—NS.
Remarkably, for large network models (VGG-19, DenseNet-
121, and DenseNet-202), both sequences achieved reduction
ratios of more than 90%. Therefore, we confirmed that
the sequence of NS—DC performed better than the one
of DC—NS. Especially for the DenseNet-202, NS—DC
achieved 96.30%. Even when smaller models that are not
larger than SMB (ResNet-110 and DenseNet-40) are applied,
NS—DC slightly degrades than DC—NS. Thus, we have
heuristically chosen NS—DC as a suitable execution order
between two pruning methods.

However, we still have more chance to reduce the network
model size with respect to the weight parameters by applying
the quantization technique. This raises another problem of the
order among two pruning techniques and the quantization.
Although the number of bits in a weight parameter can be
reduced statically, it is not clear how the quantization affects
the inference accuracy of the reduced network before/after
individual pruning techniques.

C. DISCUSSION
The combination of structured and unstructured pruning
techniques can achieve a better compression ratio in the order
of NS— DC than the one when each technique is individually
applied to a network model. The quantization can be another
possible method for further compression with the pruning
methods. We expect that the model size can be reduced by
combining the integer quantization with the pruning methods.
Here, we need to consider the best timing to apply the
integer quantization that maps floating point parameters to
integer-based ones regarding the representation of weights
in a model. For instance, if the integer quantization is
applied before the pruning methods, the subsequent model
compression process is performed based on integer. This lets
us concern significant accuracy loss from the beginning of
the sequence. If the quantization is performed between the
network slimming (in short, NS) and the deep compression
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FIGURE 2. Three possible sequences among NS, DC and the integer
quantization where the order of NS—DC is preserved.

(in short DC), it can affect to the pruning performance
of DC, and the impact of the reduction on the fully
connected layers cannot be predicted. If the quantization
is applied after the pruning methods, it can cause a sharp
drop of inference accuracy because the precision of weight
parameters degrades. Thus, these three methods influence
each other. Our main aim in this paper is to find the
best sequence order of the methods and the best reduction
control with a given target accuracy. Thus, in this paper,
we will propose a method that heuristically and automatically
finds the best order among the network slimming, the deep
compression, and the integer quantization methods.

Ill. HEURISTIC COMPRESSION METHOD FOR CNN
MODEL APPLYING INTEGER QUANTIZATION

A. STRATEGY FOR SIZE REDUCTION USING
QUANTIZATION AND PRUNING METHODS

Since we have confirmed that NS— DC is the best execution
order regarding the pruning techniques, there are three
possible combination patterns with the integer quantization
as illustrated in Figure 2. The “Pattern 1” in the figure
begins from the quantization right before NS— DC sequence.
It first reduces the model size by shrinking the number of bits
of weight parameters and tries the subsequent compression
steps. In the sequence, the network slimming reduces
convolutional layers and then, deep compression reduces
redundant weight parameters. The “Pattern 2 performs
the quantization between NS and DC. Beginning with the
network slimming, the sequence can preserve initial network
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FIGURE 3. The flowchart of the proposed method.

architecture and maintains a given target accuracy. However,
it can limit the deep compression to remove more parameters.
And then, it can result accuracy drop for inference due
to the potential reduced precision by the quantization.
Finally, the “Pattern 3 performs the quantization after
NS—DC. Our prior research concluded that the sequence
employing NS—DC achieved the best compression ratio.
Applying the integer quantization after this sequence offers
additional compression trial. However, the improvements can
be limited. After the deep compression removes unimportant
weight parameters, the sequence invokes the quantization.
This would bring a significant accuracy loss.

According to the available patterns mentioned above,
we apply the following outline for our combined compression
method. In order to find a reduced minimal model that
satisfies a given target accuracy, a sequence invokes the first
compression method as increasing the compression ratio.
At every compression ratio, it checks inference accuracy of
the given model. The compression ratio is a percentage given
to NS or DC. It is called pruned rate for NS and compress
rate for DC in the literatures [11] and [12] respectively. The
pruned rate specifies a reduction percentage of channels to
be removed from a given model. Similarly, the compress
rate specifies a reduction percentage of weight parameters.
Once the best compression ratio is found in the current
compression method, the compressed model is passed to the
subsequent method for the further compression. Here, in the
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FIGURE 4. An example of the margin calculation with multiple iterations for finding a minimal compressed model.

case of the integer quantization method, the compression
ratio is equivalent to the number of bits reduced in a weight
parameter. The sequence increases every bit while checking
inference accuracy. We apply 32bits as the initial number of
bits. In the explanation below, we consider the compression
ratio defined by (32 — the_number_of _reduced _bits)/32 x
100. And then, the sequence will find a minimal number of
bits that still meets the target accuracy.

Here, we have to consider the optional treatment for
specifying a compression ratio after a method in a sequence.
When a compression method has been performed by the best
ratio, the subsequent method may not have any availability
for further compression. To avoid this situation, we introduce
margin calculation as shown by the dotted boxes in Figure 3
when a sequence switches from a compression method to
another. The margin calculation restores the minimal model
derived from a step in a given compression ratio before.
Assume M; is a compression method of the integer quan-
tization, the network slimming and the deep compression
where 0 < i < 2. Each M; tries to compress a model as
maintaining a given target accuracy by repeating M; with
increasing the compression ratio ratio;. At every iteration of
J» M; stores the model m; if the accuracy is more than or
equal to a target accuracy acc_target. When the accuracy
becomes less than acc_target, the model m;_1 is chosen as the
minimal model. Here, note that my is passed to the subsequent
method M;;, which is derived from a compression ratio
ratioj_y — init_margin;11. The init_margin;y is given as
parameters for M, to control the margin calculation, where
0 < i < 1. This operation maintains compression
availability for the subsequent compression method because
the compression ratio is restored to the previous margin
percentage. The sequence additionally iterates the margin
calculation with decrementing margin_offset;+; from the
margin value. Figure 4 illustrates an example of the
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margin calculation and how M; passes the model my to
the subsequent compression method M. The figure also
illustrates examples of accuracy changes observed in each
execution during this procedure. First, the sequence iterates
My by applying the initial model until the accuracy reaches
beneath the given target accuracy (dotted red line). The
iteration is performed by increasing the compression ratio
with a ratio offset ratio_offsety. When the accuracy reaches
beneath the target accuracy, we store the compressed model
mj_1 (yellow square) as a minimal model at j-th iteration.
Before passing this compressed model to My, the sequence
applies a margin calculation applying an initial margin
init_margin| and passes the stored model my, that is derived
from the compression ratio of ratioj_; — init_margin; to
the subsequent compression method M;. The model (blue
square) can be further compressed by M. We can find
a minimal model when the accuracy falls beneath the
target accuracy. Here, the margin is increased by the
margin offset margin_offset;. Again, the model derived from
My is restored, and the iteration to reduce the model is
performed. The figure shows the iterations related to the
margin calculation during three margin values. The sequence
repeats the margin calculation while the margin is positive
value. After the iteration of the margin calculation breaks,
M selects a minimal model from the multiple reduced
models stored at every margin calculation. The subsequent
compression method M, performs also the same as the
margin calculation as M. Finally, the initial CNN model is
compressed to a minimal model size that maintains a given
target inference accuracy.

As considering the combinations of the integer quanti-
zation, the network slimming and the deep compression
with obtaining the order NS—DC, we have three available
sequences for deriving a minimal model: IQ—NS—DC,
NS—IQ—DC and NS—DC—IQ. In the following sections,
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let us investigate the best sequence for deriving an effective
minimal model with a given target inference accuracy.

B. DETAILED STEPS FOR SEQUENCES DERIVING MINIMAL
CNN MODEL
Now, let us summarize the compression flow of the proposed
method in Algorithm 1. Each of My, M1, and M, represents
one of IQ, NS and DC. The given target accuracy for inference
is acc_target in the algorithm. The algorithm first receives
the pre-trained model from the input parameter init_model.
Additionally, initial compression ratios (init_ratio_i where
0 < i < 2) are given by the input parameters. In the
case of 1Q, the ratio refers to the number of bits to be
reduced. For the other methods, it can be set to zero (i.e.
no compression). Regarding NS, the ratio is equivalent to
the pruned ratio as defined in the literature [11], which
is a percentage of channels in a given model reduced by
the method. Regarding DC, the one is equivalent to the
compress rate as defined in the literature [12]. It is also a
percentage of weight parameters in a given model reduced
by the method. Here, note that the ratios of three methods
affect to the corresponding parts of a given model. A model
derived from one of the methods is reduced to mostly
ratio %. However, the inference accuracy after the reduction
is not predictable. At performing every method by the
function M;(model, ratio), the accuracy must be confirmed
if it satisfies the given target accuracy acc_target or not.
The ratio is decreased by ratio_offset; that is an offset of
the compression ratios for the next iteration. For the integer
quantization method, the offset represents the number of bits.
The compression trial of the first method My is performed
(lines 3-7) until the inference accuracy acc becomes lower
than the target accuracy by checking it at every compression
iteration with updating the compression ratio ratio_0 (line 4).
Here, the ratioy derived after the iteration of line 3-7 is the
minimal compressed model by M. But, the ratio is restored
by reducing ratio_offseto because the ratio in the previous
iteration results an actual minimal model. By using the ratio,
the minimal model is derived from the iteration (line 12)
and set it to the model used in the next method (line 13).
Then, the margin calculation is performed. First, an initial
margin is set (line 8). Here, the unit of the margin is as
well as the initial ratio parameter. The ratiog is restored
by decreasing the margin value (line 22), and the model is
updated (line 17) according to the ratio. With applying M; to
the reduced model resulted from M, the method reduces the
model size as increasing the ratio; (line 15-19). Similar to the
case of My, the minimal model is derived by M. The model
size is compared with the min_model that was derived from
the previous margin iteration (line 20-21). When all margin
offsets are investigated, the min_model is passed to the next
method M;. The iterations regarding M, are equivalent to
the ones of M as applying the similar margin calculation.
Finally, the minimal model is found (line 40).

We can expect the reduction performance of the algorithm
depends on the parameters of init_ratio;, ratio_offset;,
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Algorithm 1 Model Compression Flow of Proposed Method

Input: init_model: initial model, init_ratio;: initial
reduction ratios, init_margin;: initial margin values,
acc_target: target accuracy, ratio_offset;: reduction ratio
offsets, margin_offset;: margin offsets, where 0 <i < 2.
Output: final_model: a minimal model after the
sequence.
. ratio; < init_ratio;
. model < init_model
do > Begin compression process for M
: prev_ratio < ratiog
: (acc, model) < Moy(model, ratiog)
. ratiog <— ratiog + ratio_offsety
: while acc > acc_target
. margin <— init_margini
. ratiog <— prev_ratio
. repeat
. ratioy < ratiog — margin > Margin calculation for M
: (acc, model) =My(init_model, ratiog)
> Compression Method switches to M
13: min_model < model
14: min_ratio < 100 or B
15: do > Accuracy check
16: (prev_model, prev_ratio) < (model, ratioy)
17: (acc, model) <—M\(model, ratioy)
18: ratio| < ratio] + ratio_offset
19: while acc > acc_target
20: {min_model, min_ratio} <
21:  min({min_model, min_ratio}, {prev_model, prev_ratio})
22: margin <— margin — margin_offset|
23: until margin < 0
24: margin <— init_marginy
25: ratioy <— prev_ratio
26: repeat
27: ratio] < ratioy — margin > Margin calculation for M>
28: (acc, model) =M (init_model, ratio)
> Compression Method switches to M
29: min_model < model
30: min_ratio < 100 or B
31: do > Accuracy check
32: (prev_model, prev_ratio) < (model, ratios)
33: (acc, model) <—My(model, ratioy)
34: ratioy < ratiop + ratio_offset>
35: while acc > acc_target
36: {min_model, min_ratio} <
37:  min({min_model, min_ratio}, {prev_model, prev_ratio})
38: margin <— margin — margin_offset,
39: until margin < 0
40: final_model <— min_model
41: return final_model

—_ =
N o= O

init_margin; and margin_offset;. These should be decided
heuristically. We can apply simply O to init_ratio;. However,
we need to choose the init_margin; carefully because it
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affects to reduction availability of given model for the
subsequent compression methods. This is a heuristic issue
that we need knowledge from experimental evaluation. Let us
discuss it in the evaluation section later. On the other hand,
ratio_offset; and margin_offset; bring computing overheads
because those are granularity parameters of investigations
for deriving a minimal model. To know how the overhead is
expected, let us consider the complexity of our algorithm.

C. COMPLEXITY CONSIDERATIONS
Before we consider complexities of three sequences of
IQ, NS and DC, let us consider a general complexity of
Algorithm 1. The total elapsed time is defined by
2
Elapsed_time = ZElapsed_time(M,-).

i=0
Assume Ry (i) is the full percentage of reduction ratio
regarding M; (i.e. 100 for NS and DC, or B for 1Q). The
compression iteration for My is expressed in the following
equation;

ko—1

Elapsed_time(My) = Z Ty,
j=0

Ryi1(0) — init_ratiog

= Ty X ko = Tty * ratio_offsety

where Ty, is the average elapsed time of each iteration in
My during the iteration, and kg is the number of iterations in
the worst case. The minimal model should be derived by the
smaller number of iterations than ky. The elapsed times of
M and M; include the margin calculation. The equations for
both methods are the same. The elapsed time of M; (i = 1, 2)
is expressed as follows;

Elapsed_time(M;)

mp—1 ki—1
= Z {TMi—l =+ Z TM[}
n=0 j=0

=m; X {TM[_| + ki x TM,-}
init_margin; {T . Ry (i) — init_ratio;
o il ratio_offset;

. X TM,}
margin_offset;

where Ty, is the average elapsed time of each iteration in
M; during the iteration, k; is the number of iterations in the
worst case, and m; is the number of iterations of the margin
calculation.

Here, let us consider the worst case of the elapsed
time. When both the margin_offset; and ratio_offset; are 1,
the calculation resolution becomes the highest. Here, the
numbers of iterations for reduction by the methods (i.e.
line 3-6, 13-16 and 27-30 in Algorithm 1) depends on
the effects of the compression methods. Therefore, k; in
the equations above are predictable. Those numbers are
depending on the offsets specified by ratio_offset;. The
numbers of iterations for the margin calculations are similar.
The margin_offset; affects the numbers of iterations. As we
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TABLE 2. The original model size and accuracies of CNN models used in
experiments.

model accuracy Model size
VGG16 93.69% 58.9 MB
VGG19 93.99% 80.34 MB
ResNet-110 94.59% 4.61 MB
ResNet-560 95.47% 34.38 MB
DenseNet-121 95.51% 42.15 MB
DenseNet-201 95.99% 117.24 MB

discussed above, the complexity of our proposed method is
derived as O(k; x m;) where i is 1 or 2, and decided by
max(Tay,, Ti, ).

To evaluate the efficiency of our method, let us compare
the computing overhead with the case when the brute-force
search method is applied to find the minimal model. Assume
the number of weight bits B, the elapsed time is defined as
follows:

Elapsed_time
—B T
o ratio_offsetp * o
100 100

x ——  x ITpc.
ratio_offsetpc

X ———— X

ratio_offsetns
The ratio_offsetyjp.ns,pc) are the offsets to increase the
reduction ratios of IQ, NS and DC respectively. When the
offsets are all 1, the worst case occurs. The equation becomes
below;

Elapsed_time =B x 100 x 100 x T[Q X Tns X Tpc.

Even if we consider the worst case of our method, k; and
m; are 100 respectively. Therefore, the elapsed time depends
on 10000 x M;. It is obvious that the elapsed time of our
proposed method is smaller than the one of the brute-force
search method. Thus, our proposed method can achieve less
elapsed time to find the minimized network model compared
to the brute-force search method. However, the aspect of
the inferred accuracy from the resulted minimal model is
not defined in this section. This issue should be discussed
heuristically using realistic models. The next section will
show the evaluations focusing on the accuracy and the elapsed
time of our method where three sequences of [Q—NS—DC,
NS—IQ—DC and NS—DC—IQ are applied. Moreover, let
us discuss which sequence is the most efficient to find a
minimal model.

IV. EXPERIMENTAL EVALUATION

A. EXPERIMENTAL SETUP

We evaluate compression performances of our proposed
algorithms using various state-of-the-art CNN models, which
are VGGNet [22], ResNet [23] and DenseNet [24]. During
the following experimental analysis, we utilize VGG-16 with
13 convolutional layers and a fully connected layer, and
VGG-19 with 16 convolutional layers and a fully connected
layer. Regarding the ResNet, we apply a 110-layer pre-
activation ResNet with a bottleneck structure, denoted
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TABLE 3. Reduced model sizes and reduction ratios of six CNN models derived from three sequences.

NSﬁ; —1Q—DC;jy,

NS int _>Dcim _>IQ

NSﬁ, —>DCﬂ, —IQ

model baseline 1Q—NS;,; —DCj, | NS,y —1Q—DC;,;
VGG-16 58.9 MB 5.97 MB (90%) 8.34 MB (86%)
VGG-19 80.34 MB 5.90 MB (93%) 8.05 MB (90%)
ResNet-110 4.61 MB 1.08 MB (77 %) 1.30 MB (72%)
ResNet-560 34.38 MB 5.04 MB (86 %) 7.91 MB (77%)
DenseNet-121 42.15 MB 2.13 MB (95%) 3.47 MB (92%)
DenseNet-202 117.24 MB 4.07 MB (97 %) 8.53 MB (93%)

8.28 MB (86%)
7.24 MB (91%)
1.30 MB (72%)
7.31 MB (79%)
2.81 MB (93%)
5.93 MB (95%)

7.52 MB (87%)
9.13 MB (89%)
1.58 MB (66%)
10.5 MB (70%)
7.10 MB (83%)
9.96 MB (92%)

6.65 MB (89%)
7.02 MB (91%)
1.58 MB (66%)
7.36 MB (79%)
3.83 MB (91%)
7.50 MB (94%)

TABLE 4. Minimal model sizes of CNN models derived from the sequence 1Q—NS— DG, individual 1Q, NS, DC and the our previous result of NS—DC.

DC

NS—DC

IQ—NS—DC

13.94 MB (76%)
10.2 MB (87%)
3.87 MB (16%)
10.3 MB (70%)
8.72 MB (79%)
15.09 MB (87%)

model baseline 1Q NS
VGG-16 58.9 MB 14.73 MB (75%)
VGG-19 80.34 MB 15.06 MB (81%)
ResNet-110 4.61 MB 1.44 MB (69%)
ResNet-560 34.383 MB 11.6 MB (67%)
DenseNet-121 42.15MB 10.54 MB (75%)
DenseNet-202 117.24 MB 32.97 MB (72%)

7.66 MB (87%)
7.23 MB (91%)
1.46 MB (68%)
6.88 MB (80%)
2.90 MB (93%)
4.69 MB (96%)

6.58 MB (39%)
6.11 MB (92%)
1.44 MB (69%)
6.34 MB (82%)
2.49 MB (94%)
4.32 MB (96%)

5.97 MB (90%)
5.90 MB (93%)
1.08 MB (77%)
5.04 MB (86%)
2.13 MB (95%)
4.07 MB (97 %)

TABLE 5. The margin values after NS (marginys) and DC (marginpc)
dring the sequence IQ—NS— DC is performed.

model marginys marginpc final_model _size|
VGG-16 4 10 5.97 MB
VGG-19 3 25 5.90 MB
ResNet-110 1 27 1.08 MB
ResNet-560 4 12 5.04 MB
DenseNet-121 | 2 27 2.13 MB
DenseNet-202 | 3 8 4.07 MB

TABLE 6. The elapsed times in cases of the sequence 1Q—NS—DC and
the brute-force search method.

model IQ—NS—DC Brute-force search method
Hours(# of checks) | Hours

VGG-16 8.6 (6042) 228

VGG-19 13.5 (7614) 240

ResNet-110 3.5(4723) 266

ResNet-560 22.3 (7004) 1018

DenseNet-121 12 (6923) 896

DenseNet-202 63.7 (7214) 2960

as ResNet-110, and a 560-layer with a deeper network
architecture denoted as ResNet-560. Regarding DenseNet,
we apply two variations: DenseNet-121 (121 layers) and
DenseNet-201 (201 layers). We adopt the network models
with batch normalization layer according to [25] among all
the CNN models. Table 2 provides those model sizes and
inference accuracies derived from the original network mod-
els. Regarding DenseNet-121 (121 layers) and DenseNet-
201 (201 layers), we adopt the network models with batch
normalization layer according to [25] among all the CNN
models. Table 2 provides those model sizes and inference
accuracies derived from the original network models.

We use CIFAR-10 dataset [26] in the experiments. The
dataset consists of 50K 32 x 32 color images in the training
set and 10K images in the testing set. As the baseline
models compared with our method, we show compression
performances that IQ, NS and DC are individually applied
to the same initial network models.

We investigate the compression efficiency based on the
given target accuracy among three sequences; [Q—NS—DC,
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NS—IQ—DC and NS—DC—IQ. We use a common
margin_offset; = 1 among three methods. The init_margin;
are different among three methods. The unit of value depends
on the sequence. In the margin calculation after IQ, the
init_margin is the number of bits to be restored. In the
other cases, the unit is compression ratios of NS or DC.
We apply 50 for init_margin after NS and DC. This can cause
underflow (i.e. less than 0%) of the ratio. When the margin
calculations cause the underflow, the value is rounded up to
0. And we use 20 for the init_margin of 1Q. This value is
intuitively decided from our experiments. This also causes
underflow when the margin calculation results the ratio less
than 0. In this case, the ratio is also rounded up to 0.

We perform the experiments in a GPU-based environment
where an Intel Xeon E5-2698 V4 CPU with 512GB RAM
works with a NVIDIA Tesla V100 with 32GB VRAM via
PCI Express bus. On the CPU, Ubuntu 18.04 Linux operating
system is working. Our proposed algorithm is implemented
using the PyTorch framework [27].

B. PERFORMANCE COMPARISONS AMONG SEQUENCES

First, we perform experiments to find the most effective
combination pattern among three sequences. Table 3 shows
the results when the target accuracy is set to 90% for all
experiments. Regarding the sequences of NS—I1Q—DC and
NS—DC—IQ, we have performed both patterns of DC and
NS based on weight parameters of 32bit integer (shown as
NS;y, DCiyr) and 32bit floating point (shown as NSg,, DCy,).
From the table, the results of the sequence IQ—NS—DC
show that both VGG-16 and VGG-19 achieve reduction ratios
more than 90%. Especially the one of VGG-19 achieves
the ratio of 93%. It is higher than the ratios of the other
sequences. In the case of ResNet models, the sequence
IQ—NS—DC achieves 77% for ResNet-110 and 86%
for ResNet-560. Additionally, the sequence IQ—NS—DC
achieves the best reduction ratio of 72% for ResNet-110
among three sequences while the other sequences do the
ones of 79% for ResNet-560. Focusing on the results from
DenseNet models, we confirmed significant reduction ratios
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based on the sequence IQ—NS—DC, which are 95% for
DenseNet-121 and 97% for DenseNet-202. Thus, we have
confirmed that the sequence brings the best compression ratio
for six CNN models. According to the observations above,
the sequence IQ—NS—DC achieves the best performance.
This means that the integer quantization before the network
slimming derives smaller model size.

Let us compare performances among individual methods,
the outcome from our previous research (i.e. NS—DC)
and IQ—NS—DC. During the experiments, the target
accuracy is defined as 90%. Table 4 shows that the sequence
IQ—NS—DC reduces from 77% to 97% of the baseline
model size. Its reduction ratios show more effective for
larger models. As discussed above, we confirmed that the
proposed method in the sequence 1Q—NS—DC reduces
effectively the sizes of CNN models across various popular
network architectures. It also performs better than individual
compression methods as well as our previous method of the
NS—DC sequence. Thus, we confirmed that the sequence
IQ—NS—DC achieves stable reduction performance for
various CNN models and the reduction performance is robust.

Finally, let us discuss the most crucial pre-defined
parameter in our proposed method, which is init_margin.
It relates to the iterations for the margin calculation. When
the init_margin is configured to a large value, the number
of iterations for the margin calculation increases while the
availability for reducing the model received from the previous
method remains. On the other hand, when init_margin is
small, the subsequent method cannot compress much because
the margin calculation starts from a model adequately
compressed by the previous compression method while the
iteration of the margin calculation is small. We summarized
the margin values after NS and DC in Table 5 when
the sequence 1Q—NS—DC achieves the minimal model
size. Note that the magin values during the iterations are
maintained less than the inif_margin; that we gave as the
initial parameters. Therefore, we need to assign larger values
for init_margin; than the ones when the minimal model size is
derived. The largest margin numbers during the phases of NS
and DC are 4 and 27 respectively. Therefore, in this paper,
we heuristically assigned 20 and 50 to the inif_margins for
NS and DC phases respectively. These adjusted values will
speed up the sequence to reach a minimal model. Based on
the experiments above, the values we have used in this section
can be good references when the proposed method is first
applied to another CNN model.

C. PERFORMANCE EVALUATION REGARDING ELAPSED
TIME

We further analyze the execution times of our proposed
method. Table 6 shows the elapsed times of the sequence
IQ— NS—DC when the given CNN models are applied with
90% target accuracy. The time consists of mainly accuracy
checks by comparing inference accuracies at every reduced
model. The table also shows the numbers of the checks in the
brackets. For the comparison, the table shows elapsed times
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of the brute-force search method discussed in section III-C,
which needs 320K accuracy checks to find a minimal model.
As we can see in the results, we confirmed that our proposed
method significantly reduces the number of accuracy checks
comparing to the 320K times in the case of brute-force search
method. In the case of ResNet-110, our method reduces 99%
of the number of accuracy checks compared to the brute-
force-search method, and thus, results 76x faster processing
time to find a minimal model.

According to the experimental evaluations above, we have
found that IQ—>NS—DC is the best sequence when we
combine the integer quantization to our previous outcome.
The compression performance shows significant achievement
as increasing the given model size. Additionally, the sequence
reduces the computational cost for finding the minimal
model. Thus, we have proved that the sequence provides
a good solution to reduce required computational resources
when the minimal model is implemented on a CNN-based
application.

V. CONCLUSION

This paper proposed a heuristic method for reducing the size
of CNN models based on a combination of integer quanti-
zation, network slimming and deep compression, as a given
target accuracy is maintained in the reduced model. We have
also proposed an algorithm that combines three methods by
using the margin calculation approach. Through experimental
evaluations with six state-of-the-art CNN models, we found
the best sequence was [Q—NS— DC invoked in the proposed
algorithm. We also found the sequence achieves stably a
minimal size by applying our proposed algorithm with a
given target accuracy. Furthermore, our method significantly
reduces the processing time needed for finding a minimal
model compared with the brute-force search method. In our
proposed algorithm, we have some heuristic parameters.
However, even if the values for the parameters are decided
eventually, the proposed algorithm finds a minimal model in
a less processing time than the case we apply the brute-force-
search method for the combination of three compression
methods.

For the future research, we plan to apply our method to
larger and more complex CNN models in order to find a way
that the best values can be assigned to the heuristic parame-
ters. We will also evaluate the resource size of the minimized
model required in hardware implementation such as an
FPGA. Furthermore, we are focusing on effect of our method
to decrease power consumption of not only software-based
but hardware-based implementations of the reduced model
compared to the cases when the original model. We will
evaluate the effect by using GPU for software-based and
FPGA for hardware-based implementations.
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