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ABSTRACT Physiological signals obtained from electroencephalography (EEG), electromyography
(EMG), and electrocardiography (ECG) provide valuable clinical information but pose challenges for anal-
ysis due to their high-dimensional nature. Traditional machine learning techniques, relying on hand-crafted
features from fixed analysis windows, can lead to the loss of discriminative information. Recent studies have
demonstrated the effectiveness of deep convolutional neural networks (CNNs) for robust automated feature
learning from raw physiological signals. However, standard CNN architectures require two-dimensional
image data as input. This has motivated research into innovative signal-to-image (STI) transformation
techniques to convert one-dimensional time series into images preserving spectral, spatial, and temporal
characteristics. This paper reviews recent advances in strategies for physiological signal-to-image conversion
and their applications using CNNs for automated processing tasks. A systematic analysis of EEG, EMG, and
ECG signal transformation and CNN-based analysis techniques spanning diverse applications, including
brain-computer interfaces, seizure detection, motor control, sleep stage classification, arrhythmia detection,
andmore, are presented. Key insights are synthesized regarding the relativemerits of different transformation
approaches, CNNmodel architectures, training procedures, and benchmark performance. Current challenges
and promising research directions at the intersection of deep learning and physiological signal processing
are discussed. This review aims to catalyze continued innovations in effective end-to-end systems for
clinically relevant information extraction from multidimensional physiological data using convolutional
neural networks by providing a comprehensive overview of state-of-the-art techniques.

INDEX TERMS Biomedical signal analysis, convolutional neural networks, deep learning, machine
learning, physiological signals, signal-to-image conversion.

I. INTRODUCTION
Physiological signals obtained from electroencephalography
(EEG), electromyography (EMG), and electrocardiography
(ECG) provide valuable insights into various aspects of
human health and function. Accurate signal analysis is the
keystone uponwhich our understanding of human physiology

The associate editor coordinating the review of this manuscript and
approving it for publication was Henry Hess.

enables us to unravel intricate narratives inscribed in these
physiological signals. However, the analysis of these signals
poses significant challenges due to their multidimensional
nature comprising spatial, spectral, and temporal informa-
tion and are often contaminated with noise and artifacts
from various sources like powerline interference, motion arti-
facts, baseline wander, electrode movement, etc. which must
be filtered, denoised and pre-processed. For multichannel
data (e.g., multi-lead ECG and high-density EEG/EMG),

66726


 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024

https://orcid.org/0000-0003-0890-0735
https://orcid.org/0009-0003-0004-7140
https://orcid.org/0009-0002-7856-4677
https://orcid.org/0009-0009-1667-7183
https://orcid.org/0000-0001-6656-4333


K. E. C. Vidyasagar et al.: STI Conversion and CNNs for Physiological Signal Processing: A Review

TABLE 1. List of acronyms.

encoding spatial relationships is important, which cannot be
captured in 1D feature vectors [1]. Signals acquired at high
sampling rates yield sizable datasets that can strain compu-
tational resources, often requiring dimensionality reduction
before deploying machine learning models. Hand-crafting
feature representations from complex morphology of phys-
iological signals is challenging. Manually designed features
could be sub-optimal or omit useful discriminative informa-
tion [2]. The spectral information and morphology of these
physiological signals dynamically vary over time. In appli-
cations where real-time processing is essential, dealing with
non-stationarity signal becomes critical. Delayed or outdated
information due to non-stationarity can impact the effective-
ness of real-time monitoring and decision-making [3], [4].
This necessitates specialized time-frequency (TF) analysis
instead of static frequency analysis. Innovative strategies
like signal-to-image conversion coupled with deep learning
models like Convolutional Neural Networks (CNNs) that can
automatically learn robust features from 2D representations
of raw physiological data can be used to work around these
constraints.

Raw signals can be converted directly to images, bypassing
manual preprocessing. The preprocessing and feature extrac-
tion process in biomedical time series signals is complex,
involving various features from different domains like spatial,
temporal, and frequency. Unlike traditional approaches that
necessitate laborious manual extraction of optimal features
from complex time series data, CNNs autonomously learn
crucial features directly from raw data [5], [6].

Analysis of full image representations prevents potential
loss of discriminative information with pre-selected 1D fea-
tures [7]. Large physiological datasets also become more
tractable as images. Additionally, visual inspection of gen-
erated 2D representations provides intuitiveness. Several
innovative signal-to-image (STI) transformation techniques
have been proposed to address these challenges. These
include TF representations such as scalograms, recurrence
plots, spectrograms [3], [8], [9], [10], [11] and spatial fea-
ture representations such as azimuthal equidistant projection
(AEP) [12] and common special patterns (CSP) [13], [14],

[15]. The resulting 2D images can capture spectral, spa-
tial, and temporal characteristics depending on the method,
providing CNN models with richer information for feature
learning. CNNs can then automatically learn hierarchical
features from 2D visualizations of raw data, overcoming
hand-crafted feature engineering. CNNs have shown remark-
able performance on various signal-processing tasks [16],
[17], [18], [19]. The convolutional kernels in 2D CNNs
are especially suited for extracting spatial patterns and rela-
tionships from 2D imagery, which is valuable for encoded
multi-channel physiological data. Minimal preprocessing is
required since CNNs have the ability to learn from raw, visu-
alized signals in an end-to-end manner [20]. The flowchart in
Figure 1 offers a technical overview of signal acquisition-to-
classification. 2DCNNs have achieved state-of-the-art results
on various physiological classification tasks like arrhythmia
detection [21], [22], seizure detection [23] and motor decod-
ing [24] when applied to transformed signal images. Recent
trends depicted in Figure 2 underscore the escalating uti-
lization of CNN methods for autonomously acquiring robust
features from raw physiological signals.

This Review Paper synthesizes key insights from the
literature regarding the relative merits of different signal
transformations, CNN architectures, and training procedures
for EEG, EMG, and ECG signal processing. By providing
a holistic overview of various methods and comparing their
results based on metrics like accuracy and average accuracy,
where accuracy represents the classification performance for
a specific case, while average accuracy computes the mean
classification performance by averaging the accuracies across
multiple cases or conditions, this paper aims to catalyze
continued innovations in the design of effective end-to-end
systems for extracting clinically relevant information from
multidimensional physiological data.

A. PHYSIOLOGICAL SIGNALS
Biomedical signals encompass diverse physiological data
and play a pivotal role in understanding human health and
function. These signals provide valuable insights into the
complex workings of the human body and are extensively
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FIGURE 1. Basic CNN framework utilized in physiological signal processing.

used in medical diagnosis, treatment, and research. Among
the various types of biomedical signals, electroencephalo-
gram (EEG), electromyogram (EMG), and electrocardiogram
(ECG) are of particular significance due to their ability to
capture crucial information related to the brain, muscles, and
heart, respectively.

Electroencephalography (EEG) is a non-invasive neu-
roimaging technique that records electrical activity generated
by the brain. It measures the voltage fluctuations resulting
from ionic current flowing within the neurons of the brain.
EEG is widely used in neuroscience and clinical applications
to study brain function and cognitive processes and diag-
nose neurological disorders. EEG signals are complex and
dynamic, comprising spatial, spectral, and temporal patterns,
which present challenges in their analysis [25].

Electromyography (EMG), on the other hand, focuses on
the electrical activity produced by muscles. EMG signals
are acquired by placing electrodes on the skin surface or
directly within the muscles to measure the electrical potential
generated during muscle contractions. EMG is utilized in var-
ious applications, including understanding motor control [26]
diagnosing neuromuscular disorders [27], and developing
assistive technologies such as prosthetic control and gesture
recognition systems [28].

Electrocardiography (ECG) is a fundamental tool in cardi-
ology, and it is used to record the electrical activity of the heart
over time. It measures the depolarization and repolarization
of the cardiac muscle, providing critical information about
heart rate, rhythm, and overall cardiac health. ECG is essen-
tial for diagnosing andmonitoring arrhythmias [29], ischemic
heart disease [30], and other cardiac abnormalities.
Despite the invaluable information in EEG, EMG, and

ECG signals, their analysis poses significant challenges.
Traditional machine learning techniques often rely on hand-
crafted features extracted from fixed analysis windows,

which may not fully capture the rich and discriminative
patterns present in these multidimensional signals. However,
deep learning methods, particularly CNNs, have emerged as
a promising approach for automatically learning informative
representations from raw physiological data in recent years.

B. CONVOLUTIONAL NEURAL NETWORKS (CNN)
Convolutional neural networks (CNNs) are a specialized class
of artificial neural networks that have proven highly effective
for processing physiological signal data transformed into
images or spectra [6]. The unique architecture of CNNs is
designed to take advantage of the 2D structure of such con-
verted signals to automatically learn local spatial features and
patterns through convolutional filters.

A core building block of CNNs is the convolutional layer
(Conv layer), where filters (small matrix of weights) are
convolved across the input image to produce feature maps
that encode local motifs in the data. By stacking multiple
Conv layers, the network can extract hierarchical feature
representations, capturing higher-level concepts derived from
lower-level features [31], [32], [33].

CNNs also incorporate pooling layers, typically max
pooling, that down sample the feature maps to reduce com-
putational requirements and enable the network to capture
translational invariances. Pooling enhances robustness to
small shifts in the input data [34], [35].

Later layers in the CNN architecture are often fully con-
nected layers that integrate spatial information and perform
high-level reasoning required for classification or regression
tasks [36], [37], [38]. The network is trained via backpropa-
gation to iteratively optimize the filter weights to minimize a
loss function [39].
Various CNN architectures have been devised for phys-

iological signal processing, differing in depth, filter sizes,
strides, and other hyperparameters. Popular models based on
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FIGURE 2. Recent trends in the number of published papers (according to
PubMed).

transfer learning, pre-trained on large image datasets include
AlexNet, VGGNet, ResNet, and Inception. Transfer learning
is commonly employed to leverage these models for new
tasks with limited training data, avoid overfitting, and reduce
processing complexity [40]. Key advantages of CNNs for
STI conversion approaches include automatic feature learn-
ing, reduced manual preprocessing, and extraction of spatial
relationships from multi-channel or multi-lead physiological
recordings. Limitations include large dataset requirements
and long training times for deeper models [41].

1) HYBRID CNN MODELS
Hybrid models, combining CNNs with other architectures,
have become powerful tools in diverse domains, including
physiological signal processing. Thesemodels exploit CNNs’
strengths in capturing spatial features from signal data along-
side specialized modules to address specific challenges or
temporal dependencies.

One notable hybrid model is CNN-SVM, merging CNNs’
feature extraction with SVMs’ discriminative power for
classification tasks. By leveraging CNNs to learn relevant
features and feeding them into an SVM classifier, CNN-
SVM achieves robust performance in disease diagnosis and
anomaly detection [42].
Another promising approach is the CNN-LSTM model,

which combines CNNs with LSTM networks to handle
sequential data. With LSTM layers integrated after con-
volutional layers, CNN-LSTM effectively captures tem-
poral dependencies within physiological signal sequences,
enabling tasks such as forecasting and event detection [43].

Recent advancements have introduced CNN-ViT mod-
els, integrating CNNs with Vision Transformer architectures.
Unlike traditional CNNs, ViTs use self-attention mecha-
nisms to capture global relationships, making them suitable
for tasks requiring long-range dependencies and context
understanding. By merging CNNs’ spatial feature extraction
with ViTs’ global contextual information, CNN-ViT models
exhibit enhanced performance in multi-modal physiological
signal analysis and cross-domain learning. [44]

C. SIGNAL TO IMAGE TRANSFORMATION TECHNIQUES
In signal processing for physiological data, various transfor-
mative techniques have emerged as powerful tools to convert

time-domain signals into image representations, enabling
effective feature engineering for CNNs [45]. Although 1D
feature extraction methods like time and frequency domain
analysis are essential for understanding signal characteris-
tics, they have inherent limitations. Time domain techniques,
while effective at capturing statistical properties, often strug-
gle to represent intricate signal details [8], [46], [47].
Meanwhile, the frequency domain enables spectral content
analysis but lacks time localization, statistical features, aver-
aging effects, and the ability to capture transients. To address
more comprehensive representation, 2D feature extraction
methods become crucial [48].
In this section, we present an overview of key feature

representation methods. These include Short-Time Fourier
Transform (STFT), Continuous Wavelet Transform (CWT),
Fast Fourier Transform (FFT), Welch’s Method, Discrete
Wavelet Transform (DWT), Empirical Mode Decomposition
(EMD), Reshaping, and Power Spectral Density (PSD).

1) TIME DOMAIN FEATURE EXTRACTION TECHNIQUE
Time domain feature extraction represents one of the foun-
dational methods in signal analysis. It offers simplicity and
computational efficiency advantages, making it suitable for
real-time applications. However, its reliance on statistical and
morphological features can be limiting when dealing with
complex signals or artifacts, necessitating more advanced
techniques such as frequency domain analysis or mathemat-
ical transformations to capture intricate details accurately.
Statistical methods like zero-crossing and autoregression
were widely employed to extract important features from the
biomedical signals [49].

2) FREQUENCY DOMAIN FEATURE EXTRACTION
TECHNIQUES
Frequency domain analysis provides valuable insights into
signal characteristics and aids in feature extraction, offering
distinct advantages when preparing physiological data for
classification using CNNs. It uncovers spectral information,
aids in noise reduction, detects periodic patterns and extracts
complex features that enrich the input data. Additionally,
it enables hardware optimization, enhances visualization,
and facilitates the identification of sharp transitions, collec-
tively enhancing CNN’s performance in classifying intricate
physiological signals compared to time domain methods.
In biomedical signal analysis, the Fourier Transform is the
most often utilized transformation [50], [51].

a: FAST FOURIER TRANSFORM (FFT)
FFT is an algorithm that efficiently implements the Discrete
Fourier Transform (DFT) to obtain frequency information.
The spectral information computed via FFT can be reshaped
into amatrix and represented as a grayscale image.When pro-
viding physiological signals as input for CNNs, it is critical
to consider specific constraints associated with approaches
such as DFT/FFT, which frequently do not incorporate all
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TABLE 2. Inclusion and exclusion criteria.

time-domain samples when implementing their mathematical
operations. This omission could lead to the loss of critical
information in the signal. Furthermore, because its founda-
tional functions (sine and cosine) lack the ability to reliably
capture non-stationary aspects of complex biomedical data,
DFT/FFT fails to give the level of temporal detail required
for analyzing non-stationary physiological signals [52].
DFT computation transforms any finite signal, represented

by N samples (x0, x1, x2, . . . , xN−1), into frequency domain
samples. Each DFT coefficient (Xk) encapsulates both the
amplitude and phase information of its corresponding signal
component (xn) at a specific discrete frequency (k).

FFT =

n−1∑
n=0

xne−j2πkn/N

b: POWER SPECTRAL DENSITY (PSD)
Power spectral density estimation is a non-parametric anal-
ysis method that indicates the strength of variations as a
function of frequency. PSD for multiple-channel signals can
be computed using techniques like the periodogram, which
utilizes the FFT, among other methods.

PSD = |FFT (x (t))|2 [53]

c: WELCH’S METHOD
Welch’s method is a prevalent technique in spectral density
estimation that offers improved approaches to the traditional
periodogram method for estimating spectral density parame-
ters in the frequency domain [54].
Welch’s method averages periodograms of overlapping

windowed signals to obtain a power spectral density (PSD)
estimate. The PSD matrix can be scaled to grayscale pixel
intensities to produce an image.

The signal xi(m) is segmented into K overlapped seg-
ments of size N with an overlap parameter D. Utilizing
Welch’s method, a modified periodogram is computed using
Fast Fourier Transform with a windowing function w (m)
to mitigate signal discontinuities, and the Power Spec-
tral Density P (f ) is obtained by averaging the resulting

periodograms [55].

xi (m) = xi (m+ iD) , where m = 0, . . . .N − 1

and i = 0, . . . .K − 1

P (f ) =
1
K

K=1∑
i=0

1
NU

∣∣∣∣∣
N−1∑
m=0

w (m) · xi (m) · e−j2π fm
∣∣∣∣∣
2

U =
1
N

N−1∑
m=0

(ω (m))2

While spectral estimation techniques are known for their
resistance to noise and quantization effects, they have
limitations when accurately estimating the densities of instan-
taneous frequency components. This is due to their finite win-
dowed approach, which may not capture the non-stationarity
of biomedical signals accurately. Instead, they provide a
smoothed representation of frequency content within each
window, which can obscure the fine details of instantaneous
frequency changes.

Thus, frequency-domain methods like the DFT/FFT are
not well-suited for capturing instantaneous frequency infor-
mation in non-stationary signals. Additionally, spectral esti-
mation techniques, such as Welch’s method, may introduce
an averaging effect, making them less effective in analyzing
dynamic features. These limitations can hinder the accu-
rate analysis of complex, time-varying physiological signals,
emphasizing the need for complementary methods like joint
TF techniques [56].

3) JOINT TIME-FREQUENCY DOMAIN FEATURE EXTRACTION
TECHNIQUES
Time-frequency domain techniques transform one-
dimensional time series data into two-dimensional image
representations, simultaneously incorporating time local-
ization information, statistical characteristics, and spectral
features. TF analysis combines elements of both time domain
and frequency domain representations allowing for the simul-
taneous examination of how a signal’s frequency content
changes over time. This combined representation enhances
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our ability to capture intricate details within non-stationary
biomedical signals. This transformation is quite advanta-
geous when inputting data into CNNs. These localized 2D
images can help CNNs learn to recognize complex charac-
teristics that would not be visible using traditional time or
frequency domain methods. This conversion to 2D images
gives a visual representation of the data that aids CNNs in
identifying patterns and structures.

Widely employed methods, such as STFT and Wavelet
Transform, are indispensable for analyzing non-stationary
signals, where traditional time and frequency domain
methods fall short [57]. These approaches enable us to
capture subtle signal characteristics often concealed in over-
lapping regions of multiple signal components. STFT, for
instance, provides a local analysis framework by employ-
ing a moving-time window, but its fixed window width
presents resolution challenges. On the other hand, Wavelet
Transform offers a unique approach with varying window
widths and the ability to sparsely represent data. Methods
like Wavelet Packet Transform (WPT) have been developed
to enhance feature extraction and signal analysis, enabling
effective handling of non-stationary biomedical signals with
various applications in signal processing, classification, and
denoising.

a: SHORT-TIME FOURIER TRANSFORM (STFT)
STFT is a crucial technique to study the TF properties of sig-
nals. It entails applying a signal to a fixed-length time-frame,
and calculating its FFT inside each of these windows. This
imposes a compromise between time and frequency resolu-
tions. It enables the analysis of the frequency content of brief
time intervals. Longer windows provide greater frequency
localization but inferior time localization, whereas shorter
windows offer better time localization but inferior frequency
localization [58]. In order to analyze non-stationary signals,
STFT divides the signal into frames and uses a moving-time
window for analysis. The magnitude of the STFT is used to
create a spectrogram image.

The fixed window width of STFT allows for faster pro-
cessing compared to other TF analysis methods. STFT is
computationally efficient and can provide results quickly,
making it a preference for real-time applications involving
biomedical signals [59].

STFT can be either narrowband or wideband, depending
on the windowing function selected. The uncertainty princi-
ple prevents it from producing an accurate Time-frequency
representation and makes it easier to identify frequency inter-
vals present during particular time intervals. However, its set
window width restricts the extent to which it can capture
all non-stationary properties, making it appropriate for uni-
modal, univariate signals with little noise and few complex
components [52].

STFT {x (t)} = X (τ, ω) =

∫
∞

−∞

x (t) · ω (t − τ) e−jwtdt

where ω(t) is the analysis window and τ is a short time
interval.

b: DISCRETE WAVELET TRANSFORM (DWT)
The wavelet transform has two primary variations, depend-
ing on whether orthogonal or non-orthogonal wavelets are
employed as basis functions. The DWT is particularly note-
worthy, as it decomposes signals into functions that are
orthogonal with respect to both translation and scaling. This
key feature has led to its extensive application in tasks such
as denoising, signal processing, and data compression [60].

It excels at capturing transient features from non-stationary
signals and provides a sparse representation that reduces
noise interference. While it can effectively characterize
both high- and low-frequency components, some significant
downsides must be considered, including the lack of a stan-
dardized technique and the risk of information loss during
inappropriate decomposition [61].

y (n) =

N
2j∑
k=1

aj (k) φj,k (n)+

j∑
j=1

N
2j∑
k=1

dj (k) ψj,k (n)

aj =
[
y (n) , ϕj,k (n)

]
dj =

[
y (n) ,9 j,k (n)

]
φj,k (n) andψj,k (n) represent the scaling and wavelet func-

tions. J signifies the wavelet decomposition series, and N
is the total number of coefficients. The approximate coeffi-
cient part is aj (k), and the detailed coefficient part is dj (k),
expressed in the equation.

c: CONTINUOUS WAVELET TRANSFORM (CWT)
In CWT, the signal is multiplied with wavelet functions
localized in both time and frequency, yielding wavelet coef-
ficients that represent TF information. These coefficients can
be arranged into a representation known as a scalogram that
provides a visual representation of the way in which the
frequency content of the signal changes over time, making
it an instrumental approach for TF analysis. CWT utilizes
non-orthogonal wavelets to offer variable resolution, poten-
tially enhancing input representations for CNN models in
biomedical applications [62].

W(a,b) [y (t)] =
1

√
a

∫
∞

−∞

y (t) φ∗

(
t − b
a

)
dt

The CWT is a linear transformation to the time-domain signal
y(t) stated above. Where ϕ(t−b/a) represents a basis wavelet
function ϕ(t) that has been scaled and shifted. The scaling
parameter a>0, controls the function’s spread, while b rep-
resents the time shift parameter or the time instant indicating
the moment for signal analysis.

The CWT holds significant advantages in signal analysis
and differentiates itself by accounting for negative frequen-
cies, a feature absents in the FFT, resulting in superior
frequency resolution. CWT’s adaptable window width excels
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in capturing the nuances of non-stationary signals. Addi-
tionally, it offers flexible TF localization tailored to specific
needs. CWT breaks down signals into manageable wavelet
components, enabling in-depth analysis and potential signal
dilation and compression. Nevertheless, its highly correlated
output valuesmay impact signal classification accuracy, espe-
cially at higher frequencies than the STFT [49], [63].

Despite the fact that CWT stands out as an excellent
method for converting signals to images, it’s essential to
recognize that CWT can demand relatively substantial com-
putational resources when dealing with intricate signals,
particularly in large-scale or real-time signal processing
scenarios. Nonetheless, CWT excels in converting signals
to images, effectively capturing intricate details in signals
characterized by non-stationary or varying frequency con-
tent [59].

d: RECURRENCE PLOT
A recurrence plot is a 2D representation of the recurrence of
states in a dynamic system. It was originally proposed by [64].
It is a graphical technique to visualize and analyze recurring
patterns and non-stationarity in time series data [65].

Rm.εii,j = 2
(
εi − ∥x⃗i − x⃗j∥

)
, x⃗i ∈ Rm, i, j = 1 . . . ..N

where, Ri,j is the recurrence matrix, with i and j being time
indices. Xi and Xj are reconstructed phase space vectors at
times i and j. ||. || is a norm, usually the Euclidean norm.
ε is a threshold distance. 2 is the Heaviside step function:
2(x) = 0 if x < 0, and 1 otherwise.

When dealing with a signal that exhibits specific recur-
rent patterns or long-term dependencies, RPs may be more
effective at capturing these features. On the other hand, if the
signal components manifest as transient events with varying
frequencies, CWT can be more effective at capturing such
patterns.

4) DECOMPOSITION AND SPARSE DOMAIN FEATURE
EXTRACTION
In contrast to all the previous methods, Decomposition and
Sparse Domain Feature extraction techniques offer distinct
advantages, providing a more localized and interpretable
approach to feature extraction.

a: EMPIRICAL MODE DECOMPOSITION (EMD)
EMD decomposes a time series signal into a set of oscillatory
components called Intrinsic Mode Functions (IMFs). Each
IMF represents a specific oscillatory mode or component
present in the original time series [66]. EMD was extended
to its multivariate version, known as Multivariate EMD
(MEMD), which is capable of deconstructing multi-channel
signals to overcome the mode-mixing in the IMFs, particu-
larly while analyzing signals with closely spaced frequencies
and measurement noise [67].

These IMFs are one-dimensional signals, not images, but
can be transformed by applying mathematical operations

such as DE and Hilbert transform to extract features that
can be further stacked to input a 2D CNN. EMD excels at
separating complex signals into their constituent components
or modes, making it easier to isolate and analyze specific
features within a signal. Additionally, it is robust to noise,
reduces dimensionality, and offers customization options for
different signal types and applications [68].

X (t) =

N∑
i=1

Ii (t)+ RN (t)

where N is the total number of IMFs, RN (t) is the residue
signal and Ii (t) is the ith order IMF.

5) RESHAPING
Reshaping refers to reorganizing the 1D time series signal
into a 2D matrix by dividing time samples into rows and
channels into columns. This generates an image representing
multidimensional spatial-temporal information and simpli-
fies the complex computing procedure [69].

Ximage = reshape(Xsignal, [N channels,Nsamples])

II. CNN AND SIGNAL-TO-IMAGE CONVERSION IN EEG
APPLICATION DOMAINS
Electroencephalography (EEG) is a pivotal tool in neu-
roscience, with applications ranging from Brain-Computer
Interfaces (BCIs) to commercial domains. Traditionally, EEG
analysis relied on machine learning for neural classification
and neuroimaging. Recent advances, including the prolifer-
ation of EEG datasets and the rise of Convolutional Neural
Networks (CNNs), mark a new era. 2D CNNs play a central
role, offering sophistication and automatic, context-rich EEG
signal classification. They capture intricate EEG patterns,
revealing nuances in brain functionality. Signal-to-image
conversion is equally crucial, transforming raw EEG data
into structured 2D representations, enabling deeper insight
and bridging the gap between complex neural data and prac-
tical applications. This integration redefines EEG analysis,
making it more accessible and less dependent on specialized
expertise [70].

Figure 3 outlines the datasets used in the EEG analy-
sis. Among these are well-established public datasets such
as DEAP, SEED, and BCIC. Others represent 40%, while
smaller datasets contribute to the remaining 27%.

A. SEIZURE DETECTION
Seizures are abnormal and sudden bursts of electrical activity
in the brain, which can result in various symptoms and behav-
iors. EEG signals provide valuable insights into the patterns
of electrical activity in the brain and are a crucial tool for diag-
nosing and managing seizure disorders. Seizure EEG signals
are commonly categorized into interictal, preictal, and ictal
phases. An interictal signal is the EEG data recorded between
seizures, representing baseline brain activity. In contrast, the
preictal signal is the EEG data recorded immediately before
a seizure, leading up to its onset. The ictal signal is the EEG
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data recorded during an active seizure event, capturing the
seizure dynamics. The ictal signals can be further categorized
as focal and non-focal EEG signals, where Focal (Partial)
Seizure EEG Signals originate in a specific brain region,
with localized abnormal activity in EEG, and Non-Focal
(Generalized) Seizure EEG signals involve widespread and
symmetric activity, affecting both hemispheres from the start,
which help in diagnosing focal and non-focal epilepsy in
patients [71], [72].

CNN has been found to be ideal for image-based clas-
sification due to its self-feature learning capability and
excellent classification results on multi-class classification
problems [6]. CNNs are being widely used for the appli-
cation of seizure detection and prediction with various STI
conversion techniques proposed in recent studies [73]. Ref-
erence [74] accomplished the conversion of a time domain
EEG signal to an image by extracting EEG signal features
such as correlation coefficient, STFT (spectrogram), and
mutual information. The image representations of the EEG
waveform were used to train AlexNet, resulting in better
performance with 99.33% accuracy using STFT compared
to statistical transforms such as correlation and mutual infor-
mation. Reference [75] also employed STFT on EEG signals
to generate 3-channel RGB spectrogram images, which were
subsequently utilized as input for a 3-layer CNN architecture
for classifying normal, preictal, and seizure states, achieving
an accuracy of 98.22%. Another study that uses STFT to
represent epileptic EEG signals as 2D spectrograms is [73],
in which the spectrograms from 19 channels of EEG were
stacked to form a single input image. This image was passed
through 10 pre-trained CNNs for transfer learning-based
feature extraction. The extracted image features were then
classified into 8 groups representing seizure types using a
support vector machine (SVM) classifier. The study reported
the highest classification accuracy of 88.3% when using
image features from the Inception-V3 network, classified
by the SVM model. With 48 layers, Inception-V3 is one
of the deepest models evaluated in the study. The increased
depth enables learning more complex feature representations
needed to distinguish different seizure types.

STFT is a commonly used method for representing sig-
nals as images. However, its fixed resolution can limit
its effectiveness in representing biomedical signals with
non-stationary or varying frequency content. In contrast,
CWT offers variable resolution, making it a potentially bet-
ter choice for providing improved input representations to
CNN models in biomedical applications. For instance, in
[76], the authors compared STFT spectrograms and CWT
scalograms for EEG signal classification in seizure detec-
tion and found that CWT scalograms outperformed STFT.
Their study proposed five classifiers, and the fine-tuned
VGG16 model with CWT STI conversion demonstrated
superior performance with an accuracy of 99.21% com-
pared to 98.94% by STFT. Similarly, in [77], CWT was
employed for binary to five class classification of seizure
EEG signals, using a 2-layer CNN classifier, and yielded

successful results, including an accuracy of 99.5% for Nor-
mal/Seizure classification, 98.5% for epileptogenic/seizure
classification, and 99.0% and 93.6% accuracy for three-
class eyes-open/hippocampus/seizure and five-class eyes-
open/eyes-closed/ epileptogenic/hippocampus/seizure classi-
fications, respectively. On the other hand, [78] introduced a
Multi-Channel Vision Transformer (MViT), a transformative
deep learning architecture designed for seizure prediction
using EEG data. Operating on multiple channels simulta-
neously, MViT leveraged datasets such as CHB-MIT Scalp
EEG, Kaggle/AES Invasive EEG, and Kaggle/Melbourne
University Invasive EEG, demonstrating superior perfor-
mance compared to state-of-the-art methods. The model
incorporated an efficient CWT-based pre-processing step,
converting EEG signals into scalograms. With preictal and
interictal EEG activities as output classes, MViT aims to pre-
dict seizures. Across diverse EEG datasets, MViT showcases
outstanding results, achieving a notable 99.8% sensitivity,
99.7% specificity, and 99.8% accuracy on the CHB-MIT
Scalp EEG dataset. Furthermore, on theKaggle/AES Invasive
EEG dataset, the model attained 90.28% sensitivity with
AUC values of 0.940 and 0.885 on public and private test
sets, respectively. Similarly, on the Kaggle/Melbourne Uni-
versity Invasive EEG dataset, MViT achieved a sensitivity of
91.15% and a notable AUC of 0.924. The proposed MViT
method has the capability to precisely and promptly pre-
dict upcoming seizure onsets, offering patients the chance
to promptly administer fast-acting medications and imple-
ment safety measures in times of heightened susceptibility to
seizures. These findings highlight the advantages of CWT in
transforming biomedical signals into image representations
for CNN-based classification tasks.

Although the CWT stands out as an advantageous method
for converting signals to images due to its variable res-
olution, effectively capturing fine details in signals with
non-stationary or varying frequency content, it is worth
noting that CWT’s computational intensity may pose chal-
lenges in large-scale or real-time signal processing tasks.
Therefore, STI conversion using DWT is another common
approach. In another study by [79], the authors proposed
using DWT to decompose seizure EEG signals into vari-
ous frequency bands. They applied the DWT-transformed
images as input to a 2-layer CNN, successfully classifying
EEG signals into focal vs. non-focal categories, as well as
distinguishing among three classes: Healthy, InterIctal, Ictal
signals with accuracies of 99.70% and 98.89%, respectively.
In [80], PSD analysis was utilized to generate 1D PSD
curves for each EEG channel, which were subsequently inte-
grated over frequency bands to form 1D arrays of aggregated
PSD values. These arrays were then combined channel-wise
into a 2D array representing the Power Spectral Density
Energy Diagrams (PSDEDs). These PSDEDs were applied to
pre-trained DCNN models (Inception-ResNet-v2, Inception-
v3, and ResNet152), fine-tuned for feature extraction with
Online Hard Example Mining (OHEM) loss function. The
method successfully distinguished four epileptic states:
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TABLE 3. A summary of Signal-to-image transformations and CNNs in Seizure detection applications.
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interictal, preictal I, preictal II, and seizure, with an accuracy
of 92.6%.

References [13] and [81] particularly focus on seizure
prediction by distinguishing between interictal and preictal
EEG signals. In [13], the authors proposed Common spatial
patterns (CSP), a spatial filtering technique commonly used
for feature extraction inmotor imagery-based brain-computer
interfaces for STI conversion. The EEG signal was decom-
posed using wavelet packet decomposition into 8 frequency
sub-bands. Then CSP was applied to each frequency sub-
band and original signal to maximize the variance between
classes. The resulting feature matrix was fed to a shallow
2-layer CNN designed to distinguish between interictal and
preictal seizure EEG and attained an accuracy of 90% and
sensitivity of 92.2%. Reference [81] utilizes the Directed
Transfer Function (DTF), a method known for analyzing the
directed flow of information between different brain regions
in EEG data by quantifying the causal relationships between
different brain regions, providing insights into brain network
interactions. This study applied DTF to extract connectiv-
ity features between intracranial EEG channels and creates
2D channel-frequency maps of DTF features, which serve
as input for a 6-layer CNN; the model successfully classi-
fies preictal and interictal seizure EEG with a sensitivity of
90.8%. While DTF is valuable for investigating the connec-
tivity patterns in the brain and CSP is effective in classifying
motor imagery tasks, further study is required to assess the
direct applicability of these techniques for STI conversion of
seizure EEG signal.

Patch embedding is another unique approach in ViT-based
methods, converting and mapping one-dimensional signals
into grid-like structures resembling images, enabling ViTs
to leverage self-attention for capturing dependencies. Refer-
ence [82] used a CHB-MIT dataset comprising 844 hours of
pediatric scalp EEG signals, including 182 seizure events.
Additionally, the AES dataset involves 627.7 hours of
intracranial EEG recordings with 48 seizure events from
dogs and patients, with varied electrode configurations and
sampling frequencies. The HViT takes raw EEG segments
as input, representing them as a 3D matrix with dimen-
sions T×N, where T is 5 seconds, and N is the number
of electrodes. The patch embedding module enhances local
feature perception by concatenating features from large and
small convolutions with different kernels. The resulting
feature maps are then processed by the C2T (CNN-to-
Transformer) module, which includes a lite bottleneck block
and a transformer module with a separable multi-headed
self-attention mechanism. The HViT-DUL (Hybrid Visual
Transformer-Data Uncertainty Learning) demonstrates supe-
rior performance compared to all baseline models, achieving
an AUC of 0.937 ± 0.004 and 0.889 ± 0.004, sensitivity of
87.9 ± 2.2% and 78.9 ± 5.3%, and FPR of 0.056 ± 0.006/h
and 0.049 ± 0.008/h in CHB-MIT and AES (American
Epilepsy Society) datasets, respectively. Notably, HViT-DUL
significantly reduces FPR and enhances AUC compared to
ViT, with a notable boost of 4.2% (0.899→0.937) and 6.7%

(0.833→0.889) on CHB-MIT and AES datasets. While in
[83], the CHB-MIT scalp EEG dataset, containing recordings
from 24 pediatric patients with intractable seizure disorders,
was utilized. 18 channels across all patients were selected,
and the multi-channel EEG signals were segmented into
overlapping segments of varying lengths, with a 25% over-
lap. Each segment is represented as a 2D matrix, where the
dimensions are the number of channels and sequence length,
and further formed into a 3D matrix with a new dimension
representing the number of ictal or interictal segments. This
3D matrix serves as the input to the proposed Lightweight
Convolution Transformer (LCT), which incorporated a con-
volution tokenizer instead of patches and attention-based
pooling instead of a classification token. This enabled the
framework to learn spatial and temporal correlated informa-
tion simultaneously from multi-channel EEG signals. This
capability helps identify high- and low-frequency features
in ictal and interictal periods. The proposed LCT model
achieved an accuracy of 96.31% on seizure detection in
the cross-patient case at 0.5-second segment length. Addi-
tionally, the performance metrics showed that the inclusion
of convolutional layers and attention-based pooling in the
model enhances the performance and reduces the number
of Transformer encoder layers, significantly reducing the
computational complexity. Similarly, [84] explores defini-
tions of preictal and interictal states in the CHB-MIT Scalp
EEGDatabase, evaluating 30 and 60 minutes before seizures.
The interictal state spans 4 hours after the last seizure and
4 hours before the next, with a 5-minute pre-seizure win-
dow for timely alerts. Two EEG sample sizes, 5-second
and 20-second with a 5-second overlap, were tested for
DL architectures. Sequential signals from multiple channels
were mapped to be interpreted as 2D images. The TMC-ViT
model used a CNN at the input for embeddings, reduc-
ing the input matrix to 21 × 21 dimensions compatible
with 16 × 16 images and employing 3 × 3 patches. The
CNN had 16, 32, 64, and 64 filters of dimensions 1 × 20,
1 × 20, 1 × 10, and 3 × 3, followed by batch normaliza-
tion and max-pooling layers. While learnable embeddings
handled position encoding, convolutional networks managed
token embedding. With 4 attention heads and 8 Transformer
layers, the model concluded with dense layers of dimensions
2,048 and 1,024. TMC-ViT demonstrated superior perfor-
mance with the highest accuracy (95.73%), AUC (97.55%),
and sensitivity (96.46%) when compared to other models
like MLP (75.02 ± 11.87), CNN+Bi-LSTM (92.07 ± 7.09),
CNN (95.59 ± 4.36), and TMC-T (93.74 ± 5.45) in terms
of accuracy. Additionally, it exhibited the lowest standard
deviation across patients for these metrics, showcasing the
model’s robustness in learning EEG signal nuances from
diverse seizures and patients.

B. MOTOR IMAGERY DECODING
Motor imagery is a cognitive process in which an individ-
ual envisions performing a specific motor action without
overt movement. Decoding motor imagery offers a unique
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TABLE 4. A summary of signal-to-image transformations and CNNs in motor imagery decoding applications.

window into understanding the underlying neural mecha-
nisms involved in action planning, execution, and control.
By harnessing physiological signals such as EEG and
coupling them with advanced deep-learning architectures,

researchers have endeavored to unravel the intricate rela-
tionship between mental representations of movement and
corresponding brain activity patterns. In that regard, meth-
ods like STFT and CWT offer nuanced spectral-temporal
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analysis, accommodating complex EEG patterns effectively,
hence remaining more adaptable and scalable [85]. [86] con-
verted Raw motor EEG signals to TF images using STFT,
alpha (8-13 Hz), and beta (16-32Hz) frequency bands are
extracted from the full spectrums, as these show discrimina-
tive patterns for different MI tasks. These spectral extracts
were stacked and used for fine-tuning an ImageNet pre-
trained VGG-16 CNN. The model attained 74.2% accuracy
in classifying left vs. right-hand motor imagery tasks. Refer-
ence [87] used amplitude-perturbation data augmentation that
includes the STFT algorithm to extract the spectral images of
EEG recordings aided by a channel projection mixed-scale
CNN (CP-MixedNet), which consists of three blocks: the pri-
mary spatial and temporal representation learning block, the
mixed-scale convolutional block for capturing mixed-scale
temporal information, and the classification block for classi-
fying EEG tasks. The approach sought to enhance decoding
accuracy by capturing spatial dependencies and information
at various temporal scales. The framework was tested on two
public EEG datasets. The BCI Competition IV 2a dataset,
with four output classes (left hand, right hand, feet, tongue
movements), achieved 74.6% accuracy. The High Gamma
dataset, featuring four classes (left hand, right hand, feet,
rest), yielded an accuracy of 93.7%.

While both STFT and CWT are commonly used for
STI conversion of motor EEG, CWT offers distinct
stationarity [59], multi-resolution analysis capturing diverse
frequency bands, and flexibility in wavelet selection, making
it a solid choice for dynamic neural signals such as motor
EEG advantages like TF localization, adaptability to non-
signals with complex characteristics. The superiority of CWT
over STFT was investigated by [61]. The paper contrasts
CWT scalograms and STFT spectrograms as 2D input repre-
sentations for a Fine-TunedAlexNet comprising 5 layers. The
proposed CNN was tested on IV-A of BCI Competition-III
with 2 classes (right hand, right foot), utilizing CWT scalo-
grams as input, outperformed STFT, achieving an accuracy
of 99.35% compared to STFT’s 98.7%.

Reference [88] employed CWT and the Clough-Tocher
(CT) interpolation algorithm for multidimensional MI-EEG
imaging. Each electrode’s time-frequency matrices were gen-
erated using the CWT. The feature matrices were interpolated
to align with their corresponding coordinates, resulting in a
Wavelet transform-based multidimensional image (WTMI)
for which an MLMSFFCNN (multilevel and multiscale fea-
ture fusion CNN) was specifically designed, achieving a
notable performance with an accuracy of 92.95% on the BCI
Competition IV 2a dataset containing 4 classes (left hand,
right hand, feet, tonguemovements) and even higher accuracy
of 97.03% on the BCI Competition IV 2b dataset containing
2 classes (left-hand, right-hand movement).

Among the assortment of wavelet functions used in the
CWT framework, the Morlet Wavelet (MW) emerges as a
standout as it offers a well-balanced combination of oscilla-
tory frequency representation and time-domain localization,
making it particularly advantageous for capturing dynamic

signal patterns such as motor-related EEG signals making
MW a popular choice for representing intricate temporal and
spectral features in signals, especially when preparing input
representations for CNNs. However, The MW might not be
as effective when dealing with signals without clear oscil-
latory patterns. Additionally, choosing the wavelet’s central
frequency and scale could impact the result, requiring careful
parameter tuning [94]. The applicability ofMWCWT for STI
transformation is investigated by [43] and [89].

In the research by [89], the EEG signal undergoes a trans-
formation into an image using scout EEG source imaging
(ESI) methodology. This methodology involves selecting a
region of interest (ROI) within the motor cortex, which is
divided into ten scouts. From the time series of these scouts,
features are extracted using an MW CWT technique. The
resultant TF maps for each scout are then employed as image
inputs for a custom 6-layered CNN. Remarkably, scout R5
situated in the right motor cortex demonstrated the highest
accuracy of 94.5% in classifying 4 classes, namely Left
fist/right fist/both fists/ both feet on the Physionet database,
with an average across ten subjects [43] also used CWT
with MW, converting the signals into 2D images to input to
CNN. Various CNN configurations were proposed, encom-
passing a customized two-block CNN combined with LSTM,
ResNet50with LSTM, and Inception V3with LSTM.Among
these, the latter demonstrated the most optimal performance,
which was evaluated on BCI Competition IV dataset 2a with
4 classes (Left hand, right hand, both feet and tongue move-
ments) achieving an accuracy of 92% [90] proposed a new
motor EEG classification framework using 10 pre-trained
CNNs like AlexNet, SqueezeNet, ShuffleNet, GoogLeNet,
ResNet, DenseNet, MobileNetV2, InceptionV3, etc. Raw
EEG signals were denoised with MSPCA and converted
to 3D scalograms using CWT and stacking channels. The
CNN models are implemented and fine-tuned via transfer
learning on the scalograms. Comparative experiments use
varying learning rates, optimizers, model sizes, and noisy
vs denoised data. The best performance was obtained by
the ShuffleNet model, coupled with the RMSprop optimizer,
achieving an accuracy of 99.52% for the motor imagery
datasets IV-a (Right hand/Right foot) and IV-b (left hand/right
foot) and 97.77% accuracy for the multiclass mental imagery
dataset V (left hand/right hand/word association) from BCI
Competition III, and 87.69% accuracy for GigaDB dataset.
Meanwhile, the [91] approach combines beamforming and
CWT to generate 2D scalogram representations for each EEG
source signal. These were then stacked into a 3D (time ×

frequency × source) matrix to retain spatial source loca-
tion relationships for the 3-layer 3D DCNN. This method
achieved an average accuracy of 90.3% for classification
between movement preparation vs rest epochs. This indicates
the model can reliably detect the intention to move from
resting EEG. The approach also attained an average accuracy
of 62.47% for classifying different movement preparation
epochs. Although not high enough for practical use, this
is above chance levels (50%), suggesting real differences
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exist in the EEG during the preparation of different sub-
movements. Meanwhile, [92] explored the application of
ViT models to decode movement preparation from elec-
troencephalography (EEG) signals. It involved 20 healthy
right-handed participants with an average age of 27.9 ±

2.9 years. Ethical approval for the study was obtained from
the Monash University Human Research Ethics Commit-
tee (MUHREC). The EEG signals were transformed into
time-frequency maps using continuous wavelet transform
and converted to RGB images as input for the ViT models.
Three ViT variants were assessed: standard ViT, Residual
ViT (ResViT), and the TWINS model, which combined the
Pyramid Vision Transformer and Spatially Separable Vision
Transformer. Additionally, a ResNet150 model was used for
comparison. Among these approaches, the TWINS model
demonstrated the highest performance, achieving 97.33%
accuracy, 97.32% F1-score, 97.30% recall, and 97.36% pre-
cision in the four-class classification task. The results of
this research illustrate the efficacy of employing a deep
learning methodology utilizing EEG signals in advancing
potential Brain-Machine Interfaces (BMI) for lower limb
rehabilitation.

On the other hand, [93] investigated motor-imagery tasks
using publicly available EEG data from four different
datasets: WEIBO2014, Physionet, BCI 2A (dataset IIA from
BCI competition 4), and BCI 2B (dataset IIB from BCI
competition 4). The training data is divided into Ns segments
and then randomly concatenated to transform the 1D data into
2Dwhile maintaining the original time sequence. In this case,
Ns was configured to be 3. Focused on left-hand and right-
hand tasks, specific datasets were chosen, and continuous
EEG data was divided into 4-second trials for each imagery
task post-onset of mental imagery. The study evaluated
various models, including CNNs, EEGNET, ViT, Spatial
CNN + ViT, Temporal CNN + ViT, and Spatio-Temporal
CNN + ViT (st-CViT). Performance assessment employed
LOSO cross-validation, augmented by nested cross-validation
for unbiased evaluation, especially with distinct subject-
specific samples. The outer loop assessed the model, while
the inner loop fine-tuned hyperparameters. Results showed
that the Spatio-Temporal CNN + ViT model outperformed
alternative models across BCI IV 2a (80.44%), 2b (74.73%),
and Weibo datasets (78.44%), highlighting its potential for
practical implementation in BCI applications.

C. EMOTION RECOGNITION
Emotion detection, an intriguing domain within affective
computing, aims to discern and comprehend human emo-
tional states. Numerous studies have attempted to unravel the
complex connections between emotional states and patterns
of cerebral activity by utilizing the potential of cutting-edge
deep-learning architectures and merging them with EEG
readings involving the analysis of the electrical activity of the
brain. The DEAP dataset [95] is classified into two emotional
states, valence and arousal, which are used to characterize

emotions on a 2D scale. Valence refers to how positive or
negative an emotion is. It ranges from unpleasant to pleasant,
while Arousal refers to the intensity of the emotion and ranges
from inactive (calm/bored) to active (excited/stimulated). The
SEED dataset is classified into three emotional states: posi-
tive, negative, and neutral. It contains EEG and eyemovement
data, allowing for a more comprehensive analysis of emotion.

This section delves into the fundamentals of EEG-based
emotion detection, exploring the transformation of neural
signals into interpretable images and the role of CNNs
in decoding emotions. Furthermore, we will examine key
studies and innovative techniques adopted. One distinct
onset for feature extraction from EEG signals involves PSD
estimation through FFT. The resulting features can be sub-
sequently mapped using various methods and techniques.
Reference [96] introduced a novel method for extracting fea-
tures from EEG signals, encompassing time domain features
such as RAW (original amplitude) and NORM (normal-
ized amplitude), as well as Power Spectral Density (PSD)
features using FFT. This fusion of time and frequency fea-
tures resulted in two combined feature sets: FREQRAW
and FREQNORM. It was observed that the deep CNN
models, particularly CVCNN, achieved the highest perfor-
mance when employing the combined TF features, achieving
88.76% accuracy in Low vs High valence and 85.57% in
Low vs High arousal binary classification tasks for the DEAP
dataset. Similarly, [97] also used FFT to extract PSD features;
the feature vectors computed from average power within
each frequency band across EEG channels are subsequently
mapped onto a 2D grid through Azimuthal-Equidistant Pro-
jection (AEP). The proposed combined CNN (to extract
spatial features) and LSTM (to capture temporal variations)
model achieved an accuracy of 90.62% for valence, 86.13%
for arousal, 88.48% for dominance, and 86.23% for liking
on the DEAP dataset. Meanwhile, [98] applied independent
component analysis (ICA) to decompose EEG signals into
distinct components and remove EOG and EMGcomponents.
They introduced offset variables following a Gaussian dis-
tribution for each EEG channel to address biased electrode
coordinates and projected 3D coordinates to 2D using AEP to
generate images representing energy distribution. After EEG
feature extraction, the Clough-Tocher interpolation scheme
estimates discrete energy. The GECNN (Graph-Embedded
CNN) aims to extract both local CNN features and global
functional features from EEG-based images. Local features
were acquired via trunk and attention branches, while the
global features were extracted using dynamic graph filter-
ing. These extracted features are then fused together for
emotion recognition. The proposed GECNN achieved com-
mendable results on various datasets: On the SEED dataset
(3 classes - positive, neutral, negative), subject-dependent
accuracy reached 92.93%, subject-independent accuracy was
82.46%, with higher accuracy than PSD using differential
entropy (DE) features. On the SDEA dataset (3 classes -
neutral, funny, angry), subject-dependent accuracy peaked
at 79.69% using PSD, and subject-independent accuracy
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at 55.01%. Hilbert-Huang Spectrum features outperformed
PSD. On the MPED dataset (7 classes - joy, funny, anger,
sadness, fear, disgust, neutral), accuracy was 40.98%. On the
DREAMER dataset (2 classes - high/low valence, high/low
arousal), valence classification achieved 95.73% accuracy,
while arousal classification reached 92.79% accuracy.

Out of various methods, DDE allows us to measure how
the information content or uncertainty of signals evolves
over time, providing a dynamic perspective in understand-
ing and capturing not only frequency-domain features but
also the time-domain variations in EEG signals, enhancing
the distinction between different emotions. Reference [99]
proposed EMD to obtain frequency features and Differential
Entropy (DE) feature extraction for CNN input represen-
tation. The emotion EEG signal undergoes EMD to break
down the signal into intrinsic mode functions (IMFs). This
allows for extracting frequency information. Differential
entropy (DE) features are calculated from each IMF to
capture the frequency components. The DE features from
all IMFs are concatenated into a TF feature vector called
DDE. A custom 2-layer CNN then classifies the extracted
DDE feature vectors into 2 classes (positive/negative emo-
tions) with an accuracy of 97.56%. Reference [104] while
DDE holds great promise, its full potential has yet to be
fully explored in various applications. In contrast, STFT
is a well-established and widely accepted technique with a
proven track of high-frequency resolution and precise TF
localization. As such, [100] computed EEG signals from the
time domain to frequency using a 256-point STFT without
overlapping the Hanning window of one second. Differential
entropy (DE) images based on the Gaussian distribution are
extracted from the EEG signals and fed to a 2-layered CNN
for each frequency band. The FC (fully connected) features of
the CNN are extracted and split into time intervals, allowing
the model to learn the sequential information of the EEG
features. Experiments on the SEED dataset, consisting of
62-channel EEG signals and 3 output classes (Positive, Neg-
ative, Neutral), yielded an accuracy of 90.41%. Likewise,
[101] normalized the STFT outputs to transform these signals
into image representations referred to as Electrode-Frequency
distribution maps (EFDMs). These grayscale images, depict-
ing the frequency distribution across various electrodes in the
EEG signals, were then fed into a CNN featuring 4 resid-
ual blocks. The proposed model achieved an accuracy of
90.59% on the SEED dataset. Furthermore, fine-tuning the
CNN pre-trained on SEED facilitated the learning of more
emotion-related features in the DEAP dataset, resulting in
an accuracy of 82.84%. Reference [102] utilized STFT
and proposed a simplified CNN architecture with channel
selection based on the DenseNet-201 model. The channel
selection approach identified the top 10 channels from the
original 32, namely Frontocentral 2 (FC2), Frontocentral 6
(FC6), Temporal 7 (T7), Central 3 (C3), Central zero (Cz),
Parietal 3 (P3), Parietal zero (Pz), Occipital 1 (O1), Occipital
zero (Oz), and Occipital 2 (O2). The architecture featured

a simplified 4-layer CNN. The evaluation encompassed
intra-subject and inter-subject classification of valence and
arousal in low/high categories using a Gaussian Naive Bayes
classifier. In intra-subject testing with 32 channels, the accu-
racy reached 97.4% for valence and 97% for arousal, whereas
using the 10 selected channels resulted in an inter-subject
accuracy of 92.4% for valence and 93.4% for arousal. For
inter-subject testing with 32 channels, the accuracy reached
98.3% for valence and 96.7% for arousal, whereas using
the 10 selected channels resulted in inter-subject accuracy
of 92.1% for valence and 92.2% for arousal. Though it
offers valuable insights, one of the primary constraints of
STFT lies in choosing the length and type of window and
its fixed time and frequency resolutions, which may not
adequately capture the diverse frequency components present
in EEG signals, especially during emotional states charac-
terized by dynamic and rapidly changing neural activity.
Reference [105] CWT emerges as a compelling alternative to
address this limitation and enhance the effectiveness of EEG
emotion detection. To this end, a comprehensive comparison
between STFT and CWT was performed by [42]. He utilized
CWT to convert EEG signals into EEG scalogram images
since it achieved higher scores in all performance evalua-
tion criteria than STFT. Deep features were extracted using
the GoogleNet model. They were classified into emotion
categories and frequency resolutions, which may not ade-
quately capture the diverse frequency components present in
EEG signals, especially during emotional states characterized
by dynamic and rapidly changing neural activity. The clas-
sification methods considered were GoogLeNet, k-Nearest
Neighbors (k-NN), SVM, and Extreme Learning Machine
(ELM), evaluated on the GAMEEMO datasets. The results
show that SVM outperformed other classifiers, yielding the
highest Sensitivity, F1 score, and accuracy of 98.78%, while
the k-NN classifier had the highest specificity (99.61%) and
precision (99.60%). Using theDEAP dataset as a comparison,
the proposed method achieved 91.2% and 93.7% accuracy
scores for the High/Low-Valence and High/Low-Arousal cat-
egories, respectively. The ML classifiers performed better in
classifying the deep features obtained from the GoogLeNet
model than the GoogLeNet classifier itself, which was why
GoogLeNet was primarily used for feature extraction, and
the extracted features were then classified using different
ML classifiers. On the other hand, [103] analyzed 3 CWT
wavelets - Morse wavelet, Bump, and Amor (Analytic
Morlet), revealing better results with the Morse wavelet. The
first experiment generated scalograms using the 10 frontal
electrodes—fP1, fP2, F3, F4, F7, F8, FC5, FC6, FC1, and
FC2 solely due to the emotional relevance of the frontal brain.
In contrast, the second experiment involved the utilization
of all EEG electrodes in generating scalograms. The pro-
posed 2-layer CNN demonstrated slightly higher accuracy
by employing these 10 frontal channels compared to using
all channels, achieving accuracies of 61.50% for valence and
58.50 for arousal on the DEAP dataset and 56.22% on the
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TABLE 5. A summary of signal-to-image transformations and CNNs in emotion detection applications.

SEED dataset in a 3-class classification scenario involving
Positive, Neutral, and Negative emotions.

D. OTHER EEG APPLICATIONS
In addition to these pivotal applications, a cluster of
lesser-explored yet promising domains, such as schizophrenia
detection, sleep stage classification, dementia analysis, etc.,
has harnessed the power of signal-to-image transformation
and CNNs to advance their respective frontiers.

1) SCHIZOPHRENIA DETECTION
Schizophrenia (SZ) is a chronic mental disorder that affects
how a person thinks, feels, and behaves. According to
WHO [106] Schizophrenia affects approximately 24 million
people or 1 in 300 people (0.32%) worldwide. There is a
pressing demand for accurate and timely SZ identification.
EEG waves can reveal changes in brain activity and pro-
vide information on brain changes during SZ, which can
be analyzed to detect SZ. Reference [108] utilized STFT
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to create visual spectrograms from raw multi-channel EEG
data. These spectrogram pictures are fed into a VGG-16 CNN
architecture, which extracts features and classifies them into
healthy or schizophrenic categories. On Dataset A (children)
and Dataset B (adults), the approach achieved 95% and 97%
accuracies, respectively. Grad-CAM visualization shows that
CNN mostly relies on changes in mid-range frequency pat-
terns in spectrograms to distinguish schizophrenia patients.
Reference [107] used STFT and CWT and smoothed pseudo-
Wigner-Ville distribution (SPWVD) to obtain spectrograms,
scalograms, and SPWVD-based TFRs, respectively.

To maintain the uniformity, the same parameters were
applied to each method. AlexNet, VGG16, and ResNet50
networks are used for feature extraction and classification.
The accuracy of CNN (93.36%) is the highest compared to
other deep networks, such as AlexNet (93.33%), VGG16
(93.09%), and ResNet50 (93.34%), even after fine-tuning
[108] employed a dataset of 14-channel EEG recordings
from 14 schizophrenia patients and 14 healthy controls, with
12 minutes of data sampled at 250 Hz for each participant.
The raw EEG signals are converted into images using CWT.
These images are fed into pre-trainedCNNs, such asAlexNet,
ResNet18, InceptionV3, and VGG19 for feature learning.
Only the convolutional and pooling layer features are col-
lected from these CNNs, bypassing the fully-connected
layers to prevent overfitting on the short dataset. Using an
SVM classifier, the output feature vectors are categorized as
schizophrenia or normal. ResNet18 had the highest average
accuracy of 88% across all EEG channels. The proposed
transfer learning strategy employing ResNet18 and SVM
obtained 98.6±2.29% accuracy by merging relevant frontal,
central, parietal, and occipital areas.

A novel method for mapping EEG data related to
schizophrenia was introduced by [44] by using the IBIB PAN
dataset from the Department of Methods of Brain Imaging
and Functional Research of Nervous System. Initially, 1D
EEG sequences were transformed into 3D images by gener-
ating EEG spatial feature matrices and conducting channel
segmentation based on cerebral lobes. Subsequently, tempo-
ral feature patch merging was performed using convolutional
layers. The study proposed a lightweight Vision Trans-
former model (LeViT), integrating four convolutional layers
and attention mechanisms to learn spatial-temporal features
within the mapped 3D images. This approach achieved an
average accuracy of 98.99% in subject-independent criteria
and 85.04% in subject-dependent criteria.

2) DROWSINESS DETECTION
Combining diverse feature extraction improves accu-
racy and robustness compared to individual techniques.
Hybrid systems leverage the strengths of different feature
extraction methods, making them versatile and accurate.
Reference [109] used three feature extraction mecha-
nisms (building blocks) to extract features from EEG
signals and STFT spectrograms of EEG: Building Block 1

extracts energy/zero-crossing distributions and spectral
entropy/instantaneous frequency features. Building Block 2
uses pre-trained deep CNNs (AlexNet and VGG16) to
extract deep features from spectrogram images. Building
Block 3 uses tunable Q-factor wavelet transform (TQWT) to
decompose EEG signals into sub-bands and extract statistical
features from the instantaneous frequencies. The extracted
features from each block are fed into separate LSTM clas-
sifiers whose outputs are combined using majority voting.
The proposed hybrid method was evaluated on the MIT-BIH
Polysomnographic EEG dataset for binary classification of
awake vs drowsy states, achieving 94.31% accuracy.

3) ATTENTION-DEFICIT/HYPERACTIVITY DISORDER (ADHD)
With a prevalence of 5.9% in youth and 2.5% in adults,
untreated ADHD can result in a range of negative con-
sequences [110] emphasizing the need for early detection.
Reference [111] proposed a simple and novel method of STI
conversion. In the study, the 19-channel EEG signals were
segmented and passed through three 4th-order Butterworth
bandpass filters to extract theta (4-8Hz), alpha (8-12Hz), and
beta+gamma (12-40Hz) rhythms, resulting in 3 separate 2D
matrices (of size 19 channels x 512 timepoints each) that
contain the amplitude values for each of the 3 frequency
bands respectively. These 3 matrices were then converted into
the R, G, and B channels of the EEG image. The authors
employed a custom CNN with Conv layers for the binary
classification ofADHD/Normal and demonstrated an average
accuracy on subjects of 97.81%, along with high precision,
recall, and F1-scores.

Another approach by [112] involves recording EEG with
the Starstim system from 7 positions covering the primary
hubs of the fronto-parietal executive control network (Fp1,
Fp2, F3, Fz, F4, P3, and P4) controls. Independent component
analysis (ICA) was utilized to identify and remove noise
components. The Wavelet transform was applied to signals
using EEGlab’s newtime function to create ERSP (Event-
Related Spectral Perturbation). The performance of the deep
learning architectures was assessed using accuracy and area
under the curve (AUC). The four-layered (combining filtering
and pooling) CNN trained with ERSPs achieved the highest
accuracy of 88% and AUC of 96%, outperforming the RNN
with stacked LSTM cells and SNN, indicating the effective-
ness of CNN in discriminating between ADHD and healthy
control groups.

4) CONSCIOUSNESS
Within the realm of consciousness studies, research con-
ducted by [69] aimed at predicting levels of Depth of Anes-
thesia (DOA), specifically categorized as anesthetic light
(AL), anesthetic OK (AO), anesthetic deep (AD), and signal
polluted (SP), utilizing EEG signals. The study employed
an enhanced STFT technique featuring a time-varying win-
dow function to generate EEG images. Three distinct
CNN architectures were evaluated—CifarNet, AlexNet, and
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VGGNet—. The findings revealed the superiority of the
Modified STFT over the fixed-window STFT, resulting in
enhanced classification accuracy from 84.7% to 92.3%.
Moreover, the study demonstrated enhanced performance
with deeper CNNs, with CifarNet achieving an accuracy of
87.5%, AlexNet achieving 92.35% accuracy, and VGGNet
attaining the highest accuracy at 93.3%.

5) SLEEP STAGE CLASSIFICATION
Reference [113] proposed an orthogonal CNN (OCNN) with
orthogonal weight regularization for single-channel EEG
sleep state classification. The OCNN utilizes raw EEG
data and transforms them into TF representations using the
Hilbert-Huang transform. This technique employs EMD to
break down the EEG into intrinsic functions and uses the
Hilbert transform to extract instantaneous frequencies and
amplitudes for each function. The proposed OCNN model
achieved an accuracy of 88.4% on the UCD dataset and
87.6% on the MIT-BIH dataset when classifying 5 distinct
sleep stages: wakefulness, Stage 1 (S1), Stage 2 (S2), slow-
wave sleep (SWS), and rapid eye movement (REM) sleep.
Incorporating orthogonal regularization in the OCNN proves
pivotal, enabling reliable classification of sleep stages from
EEG data.

6) DAYTIME SLEEPINESS ESTIMATION FOR APNEA
PREDICTION
Predicting daytime sleepiness is crucial for enhancing pub-
lic safety, as it allows for proactive measures to combat
drowsy driving accidents and workplace errors caused by
fatigue. For this purpose, [56] developed a CNN classifier
to estimate daytime sleepiness in patients suspected of hav-
ing obstructive sleep apnea (OSA). The classifier utilizes
2-channel EEG, 1-channel EOG, and 1-channel chin EMG
signals from overnight polysomnography (PSG) to estimate
the results of the multiple sleep latency test (MSLT). The
approach involves applying Welch’s PSD method within a
frequency range spanning 0.3 to 30.3Hz on the 4 channels.
Subsequently, the PSD estimates were converted to a dB scale
and organized into spectrogram images where one column
corresponds to an individual epoch. The study employs a
custom CNN architecture, comprising 8 convolutional and
4 max-pooling layers, for both 4-class (severe, moderate,
mild, normal) and binary (sleepy and non-sleepy) classifica-
tions based on mean sleep latency (MSL). In the 4-category
classification, the overall accuracy of the CNN was 60.6%,
and themodel performed best for moderate sleepiness (66.9%
accuracy) and worst for normal (52.0%), while the binary
classification accuracy was 77.2%.

7) RECOGNITION OF GRAMMATICAL CLASS OF IMAGINED
WORDS
Reference [114] recorded EEG using aNeuroscan 64-channel
Quik cap of the extended 10-20 system, including electrodes
for measuring eye movement (VEOG and HEOG). STFTwas
used to calculate spectrograms from EEG signals. A shorter

Hanning window was used to improve temporal resolution.
Brain signals were selected from three different brain areas.
Electrodes in group 1 cover Broca’s and Wernicke’s areas.
Electrode group 2 covers a large part of the frontal lobe.
Electrode group 3 covers the Occipital lobe and the Parietal
lobe. The spectrogramswere subjected to baseline normaliza-
tion and fed to Multichannel CNN with three channels. Each
channel comprised three blocks containing 2D Conv layers
for efficient feature extraction. The features extracted from
all three blocks were combined using a concatenate layer to
classify Verb vs Noun EEG signals, resulting in a recognition
rate of 84.6%.

8) DETECTION OF FOCAL/NON-FOCAL EEG SIGNALS
Non-focal EEG signals signify normal brain activity or
abnormalities that are not localized to a specific location.
In contrast, focal EEG signals show abnormal brain activ-
ity focused on a specific brain region. Reference [115]
mentions the use of the Bern-Barcelona-Dataset (BBD)
for this analysis. Existing 1D EEG signals were converted
into 2D RGB-scaled images with varied texture patterns
using the RP (Recurrence Plot) technique. Several models
like AlexNet, VGG16, VGG19, ResNet18, ResNet50, and
ResNet101 were used for feature extraction, and the best
features were obtained through VGG16. The VGG16 fea-
ture extractor was combined with various binary classifiers,
such as SoftMax layer, decision tree (DT), random forest
(RF), KNN, naïve Bayes (NB), and SVM to form ensemble
models, which were then used to train and validate on the
classification of Normal and Focal EEG signals. Performance
comparison revealed that VGG16 alone achieved an accu-
racy of 96.36% while combining it with different classifiers
yielded varying results: VGG16+DT (decision tree) achieved
95.78%, VGG16+KNN reached 96.98%, VGG16+Naive
Bayes achieved 95.51%, VGG16+SVM attained 95.94%,
and VGG16+RF (random forest) yielded the highest accu-
racy of 96.99%, surpassing all other combinations.

9) DEMENTIA STAGE CLASSIFICATION
Classifying dementia stages aids in optimizing treatment
strategies, predicting disease progression, and fostering a
better understanding of dementia’s complexities. Refer-
ence [116] proposed a CNN framework using 2D spectral
representations of EEG PSD for classifying Dementia stages,
namelyAlzheimer’s disease (AD),mild cognitive impairment
(MCI), and healthy control (HC). A modified periodogram
method with rectangular windowing was employed aimed
at reducing spectral leakage and achieving better resolu-
tion. The periodogram was computed for each epoch of
the 19-channel EEG, providing information about the power
present in different frequency bands. The estimated PSD
values are then used to create PSD images. Each PSD image
corresponds to an EEG epoch. The matrix is essentially a
heatmap with higher PSD values represented by brighter
pixels—a grayscale image. The study utilized a 1-layer CNN

66742 VOLUME 12, 2024



K. E. C. Vidyasagar et al.: STI Conversion and CNNs for Physiological Signal Processing: A Review

for binary and 3-way classification, obtaining accuracies of
92.95% in AD vs HC, 84.62% in AD vs MCI, 91.88% in
MCI vs HC, and 83.33% in 3-way (AD vs MCI vs HC)
classification.

10) AUTOMATIC DETECTION OF AUTISM SPECTRUM
DISORDER
Reference [118] proposed a method in which the initial
phase involves refining raw EEG data through re-referencing,
filtering, and normalization. Next, the preprocessed signals
are divided into 3.5-second segments, which undergo STFT,
and the generated spectrogram plots are saved as images
for classification using both ML and DL methods. In the
ML method, Spectrogram images were processed using the
tCENTRIST algorithm, extracting textural feature vectors
whose dimensionality was reduced by employing PCA. Six
ML classifiers, including Naive Bayes, Linear Discriminant
Analysis, Random Forest, KNN, Logistic Regression, and
SVM, were tested, with SVM attaining the highest accuracy
of 95.25%. In the DL-based process, three different CNN
models are used for classification, out of which Model 3 per-
formed best using a batch size of 64 with an accuracy of
99.15% and an F1 score of 1.0.

11) ALZHEIMER’S DETECTION
Reference [119] introduced a novel approach for Alzheimer’s
disease (AD) classification using EEG signals, presenting
a Dual-Input Convolution Encoder Network (DICE-net).
Utilizing recordings from 36 AD patients, 23 Frontotem-
poral dementia (FTD) patients, and 29 healthy individuals,
the signals underwent preprocessing, including denoising
and extraction of Band power, Coherence features, and
time-frequency domain characteristics using methodologies
like DWT. These features were inputted into the DICE-
net architecture, comprising 2 Conv layers, 2 Transformer
Encoder layers, and Feed-Forward layers. Results demon-
strated DICE-net’s efficacy, achieving an accuracy of 83.28%
in distinguishing AD from healthy controls, surpassing base-
line models, and exhibiting good generalization performance.
The findings suggest that this convolution transformer net-
work can effectively capture the intricate features of EEG
signals, facilitating improved AD diagnosis and potential
expansion to other dementia types like FTD. This approach
holds promise for enhancing early detection accuracy and
advancing interventions for AD.

12) CLINICAL DEPRESSION ANALYSIS
Utilizing integrated audio spectrograms alongside multiple
frequencies of EEG signals, [120] reported a significant
enhancement in diagnostic performance. This end-to-end
framework was developed using the Multimodal Open
Dataset for Mental Disorder Analysis (MODMA) dataset.
STFT was applied to extract spectrograms from both EEG
signals and audio data. Various pre-trained CNN architec-
tures, including ResNet, DenseNet, and EfficientNet, were

FIGURE 3. Distribution of datasets used in EEG classification tasks.

explored for feature extraction, with DenseNet demonstrating
slightly superior overall performance. Notably, a proposed
ViT method emerged as the top performer, achieving an
accuracy of 97.31%, precision of 97.71%, and recall of
97.34% metrics, showcasing promising prospects for clin-
ical depression diagnosis through advanced deep learning
techniques.

13) DELIRIUM PREDICTION
Using a limited dataset of critically ill older adults, [121]
employed a Vision Transformer (ViT) model to detect delir-
ium in EEG data. The cohort included 13 individuals aged
50 and above, requiring mechanical ventilation in ICUs, with
seven experiencing delirium according to CAM-ICU assess-
ment. EEG data underwent rigorous preprocessing, including
artifact removal and noise reduction through Individual Com-
ponent Analysis (ICA). Sampled every 4 milliseconds from
eight sensors, the continuous data was segmented into various
lengths (0.1s to 5s) and resized to 224 × 224 images for
ViT input. Achieving training accuracies surpassing 99.9%,
ViT demonstrated optimal testing accuracy of 97.58% using
5-second data slices, outperforming traditional methods like
random forest and support vector machines in delirium clas-
sification. Notably, ViT’s robust performance persisted even
without ICA cleaning, suggesting the potential for accurate
delirium prediction in EEG data without extensive feature
engineering.

III. CNNs AND SIGNAL-TO-IMAGE CONVERSION IN EMG
APPLICATION DOMAINS
Surface electromyography (sEMG) signals are recorded
using electrodes placed on the skin surface above the
muscles. sEMG signals can be recorded using two
main approaches, each offering distinct advantages. High-
density sEMG (HD-sEMG) employs a grid or array of
electrodes with a substantial number, typically ranging
from 100 to 200 electrodes, closely spaced at around
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TABLE 6. A summary of signal-to-image transformations and CNNs in other EEG applications.
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TABLE 6. (Continued.) A summary of signal-to-image transformations and CNNs in other EEG applications.

10 mm intervals. This configuration grants HD-sEMG
exceptional spatial resolution, allowing for the precise obser-
vation of muscle activity at the motor unit level. Moreover,
it captures signals at high sampling rates, typically exceed-
ing 1kHz, which enables detailed tracking of rapid muscle
activations. Conversely, sparse multi-channel sEMG utilizes
a smaller number of electrodes, typically fewer than 16,
with greater spacing, typically between 2-3 cm, resulting in
coarser spatial resolution. The sampling rates are compara-
tively lower, around 100-200Hz, making recording simpler.
Figure 4 visually distinguishes between HD-sEMG and
sparse multi-channel sEMG, highlighting HD-sEMG’s pro-
vision of instantaneous snapshots with higher-fidelity signals
and fine spatial and temporal resolutions, in contrast to sparse
multi-channel sEMG, which relies on temporal windows for
contextual information while offering practical simplicity in
data acquisition.

A. CNNS IN EMG GESTURE RECOGNITION
Gesture Recognition is a vital field focused on develop-
ing systems that can interpret and classify EMG signals
generated by muscle activity. It holds immense poten-
tial in enhancing the quality of life for individuals with
diverse motor abilities. Studies have harnessed various
methods to process and extract valuable information from
EMG data. There are various fundamental tools in these
investigations. One such is using the Fourier transform as
an essential step in generating spectrograms for feature

FIGURE 4. Comparison of HD-sEMG and sparse multi-channel sEMG
acquisition methods.

extraction. To begin with, [122] applied STFT on the 1D
raw EMG signals acquired from NinaPro databases DB3 and
DB4 to convert them into 2D functions with the resulting
spectrogram computed by taking the square magnitude of
the STFT. The CNNs automatically learn discriminative fea-
tures from the spectrogram images, eliminating the need for
feature engineering and selection. Two CNN architectures
were compared: CNN-1 comprised one conv layer, while
CNN-2 incorporated two conv layers. Results indicated that
CNN-2 with two conv layers extracted superior features,
yielding higher accuracies for both NinaPro DB3 and DB4
datasets. Specifically, CNN-2 achieved accuracies of 57.4%
and 88.04% for NinaPro DB3 and DB4 datasets, respectively
outperforming the first CNN architecture, which achieved
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accuracies of 60.34% and 86.18% for the same datasets in
classifying the 17 hand andwrist movements. Similarly, [123]
collected 8-channel EMG data, encompassing three grasping
gestures (fist, pinch, card) and three sign language gestures
(ok, victory, good), utilizing an armband. A simple CNN
was employed for classification, utilizing various input data
representations comprising raw data, STFT, wavelet trans-
form (WT), and scale average wavelet transform (SAWT)
images. Among the STI conversion methods compared, CNN
using SAWT images achieved the highest accuracy of 94.6%
for classifying the selected hand gestures, outperforming
WT (90.3%) and STFT (92.1%). Additionally, the SAWT
approach imposed a lesser computational load than conven-
tional multi-channel STFT or WT techniques. In another
approach, [124] harnessed STFT to create frequency feature
maps from multi-channel EMG signals, classifying 9 distinct
classes using a CNN collected from three healthy men and an
amputee. These classes included rest and 8 distinct postures
(power grasp, precision grasp, lateral grasp, wrist flexion,
wrist extension, wrist pronation, and wrist supination), each
with 3 force levels. The results demonstrated that, in the case
of healthy subjects, the proposed CNN method exhibited a
5-10% higher classification accuracy of 88% compared to
the traditional ANN method, both before and after reseating
the sensors. Furthermore, CNN outperformed the ANN by
approximately 20% in classifying force levels, while the
performance in posture classification remained similar. This
suggests that CNN holds a distinct advantage in classifying
finer differences within EMG signals. On a similar note,
[125] investigated the utility of Convolutional-ViT (CViT)
in the realm of EMG-based gesture classification, leverag-
ing the integration of convolutive Blind Source Separation
(BSS) preprocessing techniques. They obtained HD-sEMG
signals from two publicly available datasets. They employed
a 2D grid representation of raw input data denoted as
X ∈ RC× S×D, where C represents the number of channels
(set to 64), S denotes the window size (102 for DB1 and 50 for
DB2), and D signifies the depth (maintained at 1). Using
a Hann window, STFT was applied to capture changes in
non-stationary EMG signals, yielding a 2D STFT image. The
proposed CViT model was structured with 3 conv layers for
spatial feature extraction and dimensionality reduction, fol-
lowed by a transformer block housing 1 multi-head attention
layer to capture long-range dependencies. The BSS-CViT
model exhibited 96.61% and 91.98% accuracies on the two
datasets, showcasing a significant 6.63% improvement over
the shallow-CNN approach. This disparity underscores the
limitations of CNNs in capturing the intricate long-term
dependencies in raw HD-sEMG data. At the same time, the
implementation of CViT proved highly effective in address-
ing this challenge.

Furthermore, [126] acquired EMG signals from the upper
arm and upper body, specifically without considering wrist
muscles from 7 healthy subjects (6 electrodes), 1 trans-radial
amputee, and 1 wrist amputee using 8 surface electrodes. The

signals were normalized and segmented. FFT was applied
on segments to extract spectrogram features using the Ham-
ming window. PCA was used to reduce the dimensionality
to 25 channels and convert it to a 5 × 5 matrix while
maintaining useful information fed to a 4-layered CNN. The
proposed model was compared with traditional TDAR-SVM
(Time Domain Auto-Regressive) in which features such as
MAV, ZC, SSC, WL, and AR are extracted from the EMG
signals and concatenated to be classified by SVM. While
PCA-CNN outperformed TDAR-SVM’s 61.6% accuracy for
healthy subjects using 6 electrodes with 69.4%, TDAR-
SVM was slightly better (62%) than PCA-CNN (58.6%) for
amputees. This performance can be improved by providing
more data. Similarly, [127] collected sEMG signals using
an 8-channel Myo armband for 10 hand gestures. Wavelet
transform is applied to remove noise, and a maximum value
is derived from each of the 8 channels for every gesture,
which serves as an additional auxiliary 9th channel. The
9-channel sEMG signals were converted into spectrogram
images by mapping time from original time-domain signals
and frequency from frequency-domain signals generated by
the Fourier transform. The dataset was evaluated on 4models:
Model-1 is a single-label classifier, Model-2 is a multi-label
classifier, Model-3 is a combination of both with 22 deep-
ened network layers, and Model-4 in which pretreatments
are carried out on the sEMG signals of each channel, such
as removing noise. Out of all 4 models, Model-1 with
5 conv layers, when iterated 3100 times, yielded an accu-
racy of 94.06% when compared to 93% by SVM, while
the multi-labelled CNN having 9 SoftMax outputs (one
per channel) outputs a label obtained by the Majority Vote
Algorithm.

On the other hand, many methods involve wavelet-based
transformations. Reference [128], As such, CWT was used
over STFT to convert raw signals into spectrograms because
CWT can better adapt to the non-stationary characteristics
of sEMG signals. These images were fed into EMGNet
with 4 Conv layers to classify the movements. The 4-layer
CNN model was evaluated on 2 different datasets: On the
Myo Dataset consisting of 7 classes, it achieved an accuracy
of 98.81%, while on the NinaPro DB5 Dataset consisting
of 3 subsets, each with 12, 17, and 23 classes, it yielded
accuracies of 69.62%, 67.42%, 61.63% respectively. On a
similar note, [129] proposed a Region-based CNN (R-CNN)
with WPT as an STI conversion method. WPT is a variation
of DWT that provides a more flexible and comprehensive
signal decomposition by allowing multiple sub-bands to be
analyzed at each level of decomposition [130]. The proposed
R-CNN is a combination of VGG-16-based CNN that jointly
extracts informative features from EMG signals through
convolutional and pooling layers and a Region Proposal Net-
work (RPN), which subsequently identifies potential gesture
regions using the RPN. This enhances the model’s capacity
for accurate recognition by combining feature learning with
region-focused processing, resulting in an accuracy of 96.5%
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in the classification of 4 hand gestures, namely close fingers,
wave-in, fist, and gun.

While CWT is intricate and computationally demanding,
it is worth noting that transforming EMG data into structured
2D representations through reshaping provides a simpler
and computationally more efficient approach. Notably, [131]
obtained 2D EMG-picture representations by reshaping the
1D EMG time-series data from the Myo armband sensor into
a 50×8 matrix with 50 timesteps and 8 channels. A convolu-
tional recurrent neural network (CRNN) model consisting of
conv layers and a Gated Recurrent Unit (GRU) was used to
extract spatial data from EMG pictures to classify 10 distinct
dynamic hand gesture classes, namely rest, close, open, fist,
right, left, thumb up, thumb down, supination, and pronation.
In training subjects, the accuracy is 96.57%, whereas in fresh
subjects, it is 95.10%.

Similarly, [132] introduced a Transfer Learning strategy
for sEMG gesture recognition, collecting 128-channel EMG
data from forearm and upper arm muscles for a source
gesture dataset that included 30 distinct hand gestures involv-
ing diverse finger, wrist, and elbow positions. A sliding
window was implemented to divide the EMG data points
into multiple segments, and these segments were reshaped
into a 16 × 8 image, where 16 rows represent the chan-
nels, and 8 columns represent the time steps. So, each
source image captures the spatial pattern of muscle activation
across 128 channels, which were used to train the source
CNN and designed as a general gesture feature extractor.
Transfer Learning was employed by transferring the initial
layers of a source CNN to both the target CNN and CNN-
LSTM networks. These networks were then fine-tuned using
limited data from three distinct targets datasets: TG_BS,
TG_New, and DB-a. CNN achieved an accuracy of 92.4%.
The target CNN and target CNN-LSTM achieved accu-
racies of 92.13±4.5%, 93.32±3.9%, 91.18±6.25%, and
93.73±7.03%, 97.34±3.79%, 94.57±6.77% for the TG_BS,
TG_New, and DB-a datasets respectively. The study con-
cluded that Transfer Learning significantly decreased average
training times and remained effective even when dealing with
new users, new gestures, and variations in data collection sys-
tems or locations. Additionally, due to the inclusion of tempo-
ral context, it was noted that the Target CNN-LSTM slightly
outperformed the Target CNN. Reference [133] proposed a
CNN model employing a 1-D convolution kernel to extract
intricate abstract characteristics and enhance recognition
accuracy. The evaluation utilized the NinaPro DB1 dataset,
encompassing 52 distinct gestures. Three variations of sEMG
images, including raw-sEMG images, sEMG-feature images,
and multi-sEMG-features images, were generated using the
mappingmethod of the multi-channel sEMG amplitude to the
image pixel value referring to Du’s coloring scheme. These
images were then fed as inputs for the deep CNN model
comprising 2 conv layers for classification. The amalgama-
tion of the deep CNN with the multi-sEMG-features image
achieved the highest average accuracy in gesture recogni-
tion, achieving a notable 82.54%. Reference [134] converted

instantaneous signal samples to image pixels directly for
HD-sEMG (as for csl-hdemg&CapgMyo datasets), while for
sparse multi-channel sEMG (as for NinaPro), a time window
is employed to sample the sEMG signals, and the signals
recorded by C channels within an L-frame time window are
converted to an sEMG image of size L×C. The key idea
is to use a ‘‘divide and conquer’’ strategy. The approach
consists of two stages: the multi-stream decomposition stage
and the fusion stage. In themulti-stream decomposition stage,
the sEMG image is divided into equal-sized patches, and
each patch is used as input for a single-stream CNN. In the
fusion stage, the learned features from all streams are com-
bined and fed into a fusion network for improved gesture
recognition accuracy. The proposed CNN is compared to a
standard single-stream CNN, which is similar to each stream
in the multi-stream framework. For the ssCNN, the full raw
sEMG image is provided as input rather than divided patches.
msCNN outperforms ssCNN on all three datasets with 85%
accuracy on the NinaPro dataset, 95.4% on the csl-hdemg
dataset, and 99.8% on CapgMyo with a 150 ms time window
using majority voting.

Amid the prevailing trends in TF analysis, Variational
Mode Decomposition (VMD) offers a distinctive avenue
dedicated to extracting essential features from complex mul-
tivariate time-series data. Reference [135] applied VMD,
proposed by [137] as an enhancement over EMD, to extract
spatial-temporal features from multi-channel sEMG signals.
A two-stage classifier was used - the first stage classified
gestures into 3 superclasses (Finger, Wrist, Functional move-
ments) using 1D EMG and SVM. The second stage took
Multivariate-VMD (MVMD) decomposed sEMG as input to
a Separable CNN to predict the final 52 gesture classes within
each superclass. The accuracies achieved by the approach
on the NinaPro DB1 dataset across three electrode con-
figurations were - DB1-E1 (12 classes): 93.95%, DB1-E2
(17 classes): 92.9%, and DB1-E3 (23 classes): 88.67%.
MVMD overcomes EMD’s robustness issues stemming from
its dependence on extreme points and stopping conditions
due to its mathematically less grounded approach. While the
conventional emphasis lies on time or TF characteristics, few
prefer PSD-based techniques as they offer a comprehensive
view of the signal’s spectral content. As such, [55] applied
Welch’s method, which uses FFT to generate PSD feature
maps from 8-channel raw EMG signals. Subsequently, a 5-
layer CNN classifier was used to recognize hand gestures
from the EMG-PSD features, achieving a 99% accuracy on
6-gesture classification (Right, Left, Up, Down, Stop/fist,
None/no gesture).

Meanwhile, [136] introduces a new deep learning archi-
tecture named Temporal Multi-Channel Vision Transformer
(TMC-ViT) for hand gesture classification using surface
electromyography (sEMG) signals. The TMC-ViT interprets
the input as a 2D grid of data, which involves mapping raw
sEMG signals into dimensions N× T, where N represents the
number of electrodes and T signifies the time steps enabling
the capture of temporal patterns effectively. Adapting the
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TABLE 7. A summary of signal-to-image transformations and CNNs in gesture recognition applications.
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TABLE 7. (Continued.) A summary of signal-to-image transformations and CNNs in gesture recognition applications.

Vision Transformer to handle multi-channel temporal sig-
nals, the model incorporates convolutional neural network
blocks to reduce dimensionality and extract embeddings.
These embeddings undergo further processing in the Vision
Transformer blocks with multi-head attention mechanisms
for efficient feature extraction. Evaluation of the Ninapro
DB5 dataset shows an impressive 89.60% accuracy with raw
sEMG data, outperforming other DL models like ViT, CNN,
DCNN, and LSTM. The TMC-ViT achieved an outstanding
99.93% accuracy on the New Dexterity dataset, surpassing
classical machine learning methods like Linear Discriminant
Analysis, Random Forest, and SVM. Despite having efficient
prediction times of less than 0.56 ms per sample while com-
peting with CNN and RF models, the TMC-ViT excels in
accuracy, showcasing a performance edge over other deep
learning models considered in the study.

B. CNNS IN OTHER EMG APPLICATIONS
Various other avenues were investigated and pursued in the
realm of EMG. Reference [138]’s work centers on fusing
EEG and EMG signals to determine the actions and intentions
of the user by classifying task weight levels: 0 lbs, 3 lbs, and
5 lbs. using CNN. The acquired signals were processed and
segmented to remove non-moving portions, which were con-
verted into images by 2 methods: the signal images method
involves stacking the time series signals into an array to
form an image, while spectrogram images were generated by
applying STFT using the Hann window. These images were
then normalized and fused to input 2D CNN. Three fusion
methods were tested, out of which the grouped spectrogram
method had the highest mean accuracy of 80.51% compared

to stacked (80.03%) and mixed (79.72%). The authors state
that frequency information captured in the spectrograms is
more relevant for classifying task weight during motion than
solely time domain information. The results, therefore, show
that 2D CNNmodels leveraging the TF information via spec-
trograms outperformed the 1D CNN models using the raw
time series signal images.

Meanwhile, [55] collected a dataset comprising EMG sig-
nals from the forearm using the Myo armband device. The
signals underwent processing using Welch’s method, which
involved applying the FFT to each signal segment and then
averaging the resulting periodograms to calculate the PSD
for generating feature maps. These feature maps were used
as input for a CNN designed to classify the signals into
six categories: Right, Left, Up, Down, Stop, and None. The
system achieved an average accuracy of 99% in recognizing
gestures. To estimate the percentage of muscle activity, the
system compared the envelope of the EMG signals to a
reference signal from the user. The estimation was computed
by averaging the envelope values obtained from selected
sensors, depending on the recognized gesture. The system
demonstrated precise muscle activity estimation, with con-
sistent results achieved using the Butterworth filter and the
root mean square (RMS) method. The percentage estima-
tion indicated 50% for stable force and 22% for incremental
force.

On a different note, [139] introduced a unique approach
leveraging Transfer Learning for EMG-based personal
identification using CWT and CNN. The EMG signals
were collected from the open-hand gesture of 21 volun-
teers using the Myo armband and transformed into 2D
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FIGURE 5. Distribution of datasets used in EMG classification tasks.

scalograms throughCWT. The identification network utilized
a 4-layer CNN trained with CWT scalograms, achieving a
recognition accuracy of 99.203%, while the verification net-
work employed a Siamese network, reaching an accuracy of
99.285%.When combined with a transfer learning algorithm,
the personal identification network can efficiently retrain the
model when new data is added.

In summary, the breakdown of EMG research datasets in
Figure 5 offers noteworthy findings. The majority consti-
tutes a custom dataset (40.00%), emphasizing tailored data
collection. The NinaPro database significantly contributes
28.00%, with Db3 and Db4 each representing 4.00%, Db5
consisting of 8.00% and NinaPro Db1 comprising 12.00%.
Other datasets comprise 32.00%, highlighting the signifi-
cance of diverse and comprehensive data in understanding
EMG signals.

IV. CNNS AND SIGNAL-TO-IMAGE CONVERSION IN ECG
APPLICATION DOMAINS
The applications of CNNs in the realm of electrocardiography
(ECG) represents a transformative approach that has brought
new dimensions to the analysis and interpretation of cardiac
data. With the advent of CNNs, ECG signals can be effec-
tively converted into visual representations, harnessing the
power of STI transformation techniques [19] indicates that,
in comparative analyses, 2D-CNNs initialized with AlexNet
weights demonstrate superior performance in contrast to 1D
signal methods, even in the absence of extensive large-scale
datasets.

Figure 6 illustrates the dataset distribution for ECG clas-
sification. The MIT-BIH dataset dominates, accounting for
48.15% of the total, while the smaller portions include PTB
(14.81%), Custom Dataset (7.41%), and Others (29.63%).

FIGURE 6. Distribution of datasets used in ECG classification tasks.

A. ARRHYTHMIA DETECTION
Classifying arrhythmias is of significant importance in the
realm of healthcare as it facilitates the early identification
and accurate diagnosis of abnormal heart rhythms, thereby
reducing the risk of critical cardiac incidents. Consequently,
several DL approaches have been explored for arrhythmia
classification. Starting with [65], a novel 2-stage classifi-
cation approach was introduced, utilizing recurrence plots
(RP) and CNN. The ECG data was obtained from sev-
eral public databases to cover different arrhythmia types:
MIT-BIH Arrhythmia Database, Creighton University Ven-
tricular Tachyarrhythmia Database, MIT-BIH Atrial Fibrilla-
tion Database, and MIT-BIH Malignant Ventricular Ectopy
Database. The data was segmented into 2-second ECG signal
segments, converted into 2D RPs to visualize recurrence
patterns, essentially avoiding extensive feature extraction and
noise filtering steps, and then used for classifying between
noise ventricular fibrillation (VF), and ‘other’ rhythms in
the initial stage, while the later stage focused on classifying
‘other’ rhythms into atrial fibrillation (AF), normal, pre-
mature atrial contraction (PAC), and premature ventricular
contraction (PVC) using beat-based RPs centered on detected
R-peaks. The study compared AlexNet, VGG16, and VGG19
on the RP images and observed best performance and compu-
tational efficiency with AlexNet yielding an average testing
accuracy of 91.83% for stage-1 and 98.44% for stage-2 clas-
sification of arrhythmias compared to accuracies of 89.92%
for stage-1 and 91.52% for stage-2 by VGG-16 and 84.21%
for stage-1 and 89.70% for stage-2 by VGG-19.
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TABLE 8. A summary of signal-to-image transformations and CNNs in other EMG applications.

If the arrhythmias exhibit distinctive recurring patterns
or extended dependencies, employing RPs may prove to be
more effective in capturing and representing these recurring
patterns. On the other hand, if arrhythmias present themselves
as fleeting events characterized by fluctuating frequencies,
CWTs can be instrumental in capturing and highlighting
these dynamic features. Consequently, [140] generated 2D
TF scalograms from individual heartbeats using CWT with
the Mexican hat wavelet and fed them into a 3-layer CNN for
feature extraction, incorporating RR interval-based features;
namely, the Previous RR interval, Post RR interval, RR inter-
val ratio, and Local average RR interval, and concatenated
to the CNN features before passing through the dense layers.
The proposedmethodwas evaluated on theMIT-BIH arrhyth-
mia database, where it successfully classified heartbeats into
four main categories: Normal beat, Supraventricular ectopic
beat (SVEB), Ventricular ectopic beat (VEB), and Fusion
beat, achieving an overall accuracy of 98.74%.

Shifting the focus to [141], ECG time domain signals
from the MIT-BIH database consisting of 5 types of arrhyth-
mias namely: normal beat (NOR), left bundle branch block
beat (LBB), right bundle branch block beat (RBB), prema-
ture ventricular contraction beat (PVC), and atrial premature
contraction beat (APC) were transformed into spectrograms
using STFT and fed to 2D CNN for classification, without
the need for manual feature extraction. After conducting
experiments with various learning rates and batch sizes, they
settled on the optimal learning rate of 0.001 and a batch size
of 2500. The proposed model was evaluated and compared
with a 1D CNN model. The average accuracy of the pro-
posed 2D-CNN model, at 99.00%, surpassed the 1D-CNN
model, which achieved 90.03%. In a comprehensive study
by [142], various representations of ECG spectrograms were
compared alongside different CNN architectures for classi-
fying 6 ECG heartbeat arrhythmias, including normal beat,
left bundle branch block (LBBB), right bundle branch block
(RBBB), premature ventricular contraction (PVC), namely
Log-scale STFT, Mel-scale STFT, Bispectrum, and 3rd-order

Cumulant. Additionally, four CNN architectures were com-
pared, including AOCT-Net, MobileNet, SqueezeNet, and
ShuffleNet. Among the CNN models, MobileNet achieved
the highest accuracy, and the best approach was the combina-
tion of Mel-scale spectrogram representation and MobileNet,
resulting in an accuracy of 94.6%. Moreover, the results
indicate that SqueezeNet was fastest at 2.7s, followed by
ShuffleNet, AOCT-Net, and MobileNet.

Reference [143] presented an automated method for
detecting shockable ventricular cardiac arrhythmias (SVCA)
on the analysis of ECG signals acquired from two public
databases, the Creighton University database (CUDB) and
MIT-BIHmalignant ventricular arrhythmia database (VFDB)
by leveraging the Fixed Frequency Range based on the
EmpiricalWavelet Transform (FFREWT) filter bank for mul-
tiscale analysis and segmentation, founded upon the detection
of spectral boundary points. A 4-layered CNN yielded a
classification accuracy of 81.25% for ventricular fibrilla-
tion vs ventricular tachycardia, 99.036% for shockable vs
non-shockable classification tasks, and 99.8% for ventricular
fibrillation vs normal.

Several researches were explored in segmenting the ECG
signal and extracting meaningful features or representations
from these segments for further analysis, albeit using differ-
ent techniques and representations. Indeed few approaches
share a common emphasis on analyzing segments of ECG
signals. Certainly, [144]’s approach exemplifies this diverse
landscape. They adopted a two-step preprocessing approach
involving noise reduction and QRS segmentation. Subse-
quently, the feature extraction process unfolded in two stages:
firstly, by evaluating QRS segments using spectral entropy
derived by normalizing the power spectrum of the signal
and then calculating its Shannon entropy, which results
in TF maps, and then, by reducing the dimensionality of
TFM using (2D)2PCA. The performance of the proposed
CNN with 3 Conv layers was assessed on the MIT-BIH
dataset with 5 types of heartbeats for different time reso-
lutions and frequency partitions, with the highest attained
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TABLE 9. A summary of signal-to-image transformations and CNNs in Arrhythmia detection.
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accuracy of 98.33% for a time resolution of 0.05 seconds
and 18 frequency partitions. Meanwhile, [145]’s approach
stands out by uniquely focusing on mapping R-R intervals
to a 2D-pixel grid. ECG signal segment between two con-
secutive R-peaks, called the R-R interval, was extracted, and
its amplitude values were mapped to pixel intensities across a
2D-pixel grid of 28×28 fixed image size. These ECG images
were classified using the proposed 4-layer CNN architecture
into 3 classes: normal, ST-change, and ventricular ectopic
beat. They obtained the best accuracy of 99.23% with the
intra-patient scheme on the European ST-T database recorded
with single lead L3.

B. HEARTBEAT CLASSIFICATION
Several innovative approaches have emerged to enhance the
accuracy and efficiency of heartbeat classification, which
is paramount in healthcare for early detection and accurate
diagnosis of cardiac conditions. Building upon this image-
based approach, [146]’s research employed Faster R-CNN
with 2D ECG images as input. After preprocessing ECG
signals from the MIT-BIH database and patient recordings
using EMD for denoising and detecting R-peaks via DWT,
the transformation of 1D ECG signals into 2D ECG images
was accomplished using the sliding window algorithm. The
2D ECG images were fed into a Faster R-CNN model,
which consisted of a feature extractor and a region proposal
network for classifying ECG beats into 5 classes, namely
Normal(N), Supraventricular(S), Ventricular(V), Fusion(F),
Unknown(Q). The model achieved an average test accuracy
of 99.21% across classes, surpassing the performance of one
versus rest SVM, which achieved an accuracy of 96.62%.

Another dimension of ECG signal transformation was
explored by [147], who adopted CWT to convert 1D ECG
signals into 2D scalogram images, which were then used to
train an AlexNet deep CNN model with transfer learning,
retraining only the fully connected layers. Experiments on
the PhysioNet dataset with arrhythmia from MIT-BIH, con-
gestive heart failure from BIDMC, and normal sinus rhythm
(NSR) ECG data from subjects with no significant arrhyth-
mias demonstrated that the proposed approach obtained
98.7% accuracy in classifyingArrhythmia (ARR)/Congestive
heart failure (CHF)/Normal sinus rhythm (NSR). In a con-
trasting approach, [148] proposed efficient multimodal fusion
frameworks, Multimodal Image Fusion (MIF) and Multi-
modal Feature Fusion (MFF), employing Gramian Angular
Field (GAF), Recurrence Plot (RP), and Markov Transi-
tion Field (MTF) to create three different images for ECG
heartbeat classification. This approach considers the fusion
of multiple modalities for improved classification accuracy.
In MIF, the images were fused into a 3-channel image
input for a CNN classifier. In MFF, features extracted from
each imaging modality using AlexNet were fused via a
Gated Fusion Network and classified by SVM. Experiments
were carried out using the PhysioNet MIT-BIH Arrhythmia
dataset, which contained 5 arrhythmia types (N/S/V/F/Q),
and the PTB Diagnostics (2 classes: MI/Normal) dataset for

myocardial infarction (MI) detection. MFF achieved 99.7%
and 99.2% accuracy in arrhythmia and MI classification,
respectively, but MIF had a faster inference speed.

Departing from conventional ECG signal analysis, [149]
utilizes an arterial blood pressure (ABP) dataset from the
PhysioNet database, notably the MGH dataset from the
multi-parameter databases (MIMIC) category, to classify
heartbeats as normal or abnormal, offering a fresh perspec-
tive on data sources. The raw signals were preprocessed by
denoising. DWT was used to extract details and approx-
imation coefficients, which provide information about the
different scales and details of the ABP signal and obtain
a continuous signal. To gain more information about it in
a 2D space, they used CWT to generate scalograms that
were fed into CNN. The Semi-AlexNet model was used for
classification and attained 89.03% accuracy.

C. BIOMETRIC AUTHENTICATION
The R-wave is a crucial feature in ECG analysis as it cor-
responds to ventricular depolarization. The ECG signal can
be segmented as in [150] or analyzed around the R-peak
as in [151]. The former approach is centered on short ECG
signal segments, precisely extracting 0.5-second windows
centered on R-peaks. To enhance information content, they
employed CWT, yielding valuable TF representation images.
A small CNN classifier was designed to learn from these
CWT images with simpler decision boundaries. Addition-
ally, pre-trained deep CNN models, namely GoogLeNet,
ResNet, MobileNet, and EfficientNet, were evaluated for
biometric recognition. Experiments were conducted on PTB
single-session and ECG-ID multisession datasets, compris-
ing 100 and 90 subjects, respectively. Identification and
verification performance were also analyzed on the multi-
session data. The proposed model achieved an accuracy of
99.90% on PTB, 98.20% for ECG-IDmixed-session datasets,
and 94.18% for ECG-ID multisession datasets. Regarding
0.5-second intervals surrounding the R-peaks in ECG-ID
multisession datasets, the ResNetmodel obtained an accuracy
of 97.28%. Verification performance was statistically signif-
icant for all models.

Meanwhile, the latter detected R-waves using the Pan-
Tompkins algorithm from the filtered ECG signals of
MIT-BIH NSR following segmentation to identify the P,
QRS, and T waves. ECG images are obtained by projecting
signals onto a 2D space using a linear equation after esti-
mating the partial baseline using regression analysis. Finally,
user recognition is processed through deep learning with
automatic feature extraction and learning using an ensemble
model consisting of 2 CNNs (one with 3 Conv layers and
another with 2) to extract spatial features and one RNN using
LSTM for temporal information. The best output features
from all 3 models are fused and retrained to get the final
classifier. This ensemble network model achieved the highest
recognition rate of 98.9% compared to each single network.

Reference [152] described a personal recognition sys-
tem based on the ECG signal’s 2D coupling image. The
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TABLE 10. A summary of signal-to-image transformations and CNNs in heartbeat classification.

2D coupling image is created using three preprocessed and
partitioned 1D ECG signal periods. These 2D coupling
images were used to train a 12-layer CNN designed for
image classification. For comparison, pre-trained networks
like resnet-v2-152, inception-resnet-v2, inception-v4, and
inception-v3 were tested on the MIT-BIH dataset. Exper-
iments on the MIT-BIH and PTB datasets revealed that
the pre-trained networks like Inception V3, Inception V4,
Inception-ResNet V2, and ResNet V2-152 achieved accu-
racies of 98.71%, 99.12%, 100%, and 100%, respectively,
across 18 classes whereas the proposed CNN achieved an
accuracy of 99.2% on MIT-BIH. On PTB data, the accuracy
of the 12-layer CNN was 98.45%. Meanwhile, [154] trans-
formed the 1D ECG signal into a 224 × 224 pixel grayscale
image, with pixel intensity determined by the amplitude
of each ECG sample, and subsequently converted it into
a binary image through thresholding. Furthermore, various
feature extraction algorithms were applied to the resulting
2D binary image to effectively detect patterns, including
peaks, noise, and baseline drifts, while also segmenting the
2D ECG images into beats centered around the R-peak.
A custom CNN model with 6 Conv layers was designed
and trained to classify an input ECG signal as belonging
to the genuine user or an imposter. The proposed approach
was evaluated on MWM-HIT, PTB, CYBHi and MIT-BIH
databases, achieving accuracies of 96.20%, 99.27%, 90.20%
and 99.96 respectively.

V. DISCUSSION
This review exclusively covers papers from the past five
years. It underscores the intersection of signal processing and
deep learning as a powerful strategy for automated feature
learning and classification of complex physiological signals.
The transformation of 1D time series data into 2D images
enables the application of advanced 2-dimensional convolu-
tional and other DL architectures that can effectively learn
spatial, spectral, and temporal characteristics and discrimina-
tive features from the visual representations.

Figure 9 reveals that STFT dominates with 26.59% of the
total classifiers, CWT and PSD techniques are also prevalent,
representing 23.39%, within which, Morlet wavelet is the
most frequently utilized, accounting for 6.38% in each. The
Hanning window is the most popular choice within the STFT
at 8.51%.

For EEG analysis, TF methods like STFT, CWT, and
WPT, as well as feature calculation and projection meth-
ods like CSP and AEP, offer means to generate 2D images
effectively capturing spectral, temporal, and spatial aspects.
Though STFT remains widely used due to its computational
efficiency, CWT provides variable resolution and has shown
advantages in handling non-stationary dynamics compared
to fixed-resolution STFT. Meanwhile, when used as com-
plementary techniques, approaches like CSP and AEP can
provide an essential dimension to the analysis and serve
as potent tools to enhance the insights obtained through
TF methods. Studies indicate that CNNs using integrated
STI conversion approaches seeking to effectively capture the
complex spectral, temporal, and spatial aspects of EEG can
yield higher accuracies and represent a promising direction
for future research in this field.

In EMG and ECG analysis, employing time-frequency
transforms like STFT and CWT have been found effective
in converting 1D signals into 2D spectrogram and scalo-
gram images as input for CNN models. For EMG gesture
recognition, CNNs achieve strong performance, with CWT
providing better adaptation to signal non-stationarity,
although STFT enables faster processing. However, direct
signal reshaping of multi-channel EMG into 2D arrays also
offers a simpler alternative enabling spatial pattern learning
by CNNs. For ECG analysis, CNNs achieve high perfor-
mance for detecting a range of arrhythmia types from ECG
spectrograms and scalograms. In addition, when dealing with
ECG signals, which exhibit specific recurrent patterns and
long-term dependencies, Recurrence Plots (RPs) have proven
to be effective in capturing these features. On the contrary,
CWT was able to record ECG components manifesting as
transient events with varying frequencies.
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FIGURE 7. Distribution of various ML and DL techniques employed for physiological signal analysis.

FIGURE 8. Distribution of optimizers used in CNNs for physiological
signal classification.

Moreover, it has been reported that deeper networks and
transfer learning models trained on natural images were able
to mitigate overfitting on limited ECG data.

Figure 7 provides an insightful overview of the distribution
of classifier choices in the context of physiological signal
processing. Deep learning techniques are the dominant pref-
erence, standing alone, and constitute a significant 62.74%
of the cases reviewed. Within DL, Custom CNNs emerge as
the frontrunner, accounting for over half of DL approaches
at 48.04%. Moreover, the application of pre-trained models,
such as AlexNet, VGG, andResNet, is notable and constitutes
14.7% of the classifier choices, emphasizing the signifi-
cance of transfer learning. On the ML side, SVM stands
out with 4.90%. Additionally, 19.6% of studies employed
combinations of classifiers, reflecting the flexibility and inno-
vation within the field. A key insight is that deeper CNN
architectures like VGG, ResNet, and Inception pre-trained
on natural images tend to extract more optimal features,
even when data is limited. Training a DL model is often a
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FIGURE 9. Distribution of various STI transformation techniques employed for physiological signal analysis.

multifaceted endeavor. The subtle interplay between parame-
ter fine-tuning and architectural design choices influences the
model’s overall performance. Consequently, multiple combi-
nations must be considered. In addition, the training phase
involves intensive computations, resulting in lengthy train-
ing times. Transfer learning appears to be a potential fix to
these problems. It accelerates the training process by utilizing
pre-trained models and their learned features, reducing the
requirement for intense parameter adjustments and training
timeframes. Fine-tuning via transfer learning is thus a valu-
able strategy. However, shallower custom CNNs may suffice
for some applications. Comparative analysis on larger bench-
mark datasets is needed to glean conclusive design guidelines.

Another significant challenge arises when selecting hyper-
parameters, as the choice of optimizer and learning rate can

profoundly influence training dynamics and convergence.
Figure 8 shows that the most commonly adopted optimizer
was the Adam optimizer (55.7%), with the SGD optimizer
(21.3%) also being used but not that extensively. The opti-
mizer choice can profoundly influence training dynamics and
convergence. Furthermore, it was learned that learning rates
in the order of 1e-4 yield optimal results, with 1e-3 also being
effective for physiological signal classification in combina-
tion with Adam optimizer. Additionally, the neural network’s
architecture poses challenges, including the decision on the
number of layers and the size of each layer. Our analysis
showed that neural networks with 4, 5, or 6 layers were
frequently employed for biomedical signal analysis. A poor
choice may lead to underfitting or overfitting, hampering the
model’s generalization capability.
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TABLE 11. A summary of signal-to-image transformations and CNNs in biometric authentication.

In recent years, there has been a notable surge in research
efforts to leverage advanced architectures combining convo-
lutional structures with attention mechanisms. This approach
offers a promising avenue for extracting both locally and
globally dependent information. By integrating convolutional
structures and attention mechanisms, these architectures
facilitate the learning of spatial-temporal features [44].

Pooling operations in traditional methods like max or
average pooling generate fixed-length representations, treat-
ing all positions equally and disregarding inter-position
relationships. However, attention mechanisms dynamically
weigh the significance of different positions based on con-
text [83]. This allows for a more nuanced approach to
sequence analysis. While CNNs struggle with capturing
long-term dependencies, the CNN-ViT framework effec-
tively extracts global context information, thereby improving
long-term dependency modelling [125]. Lightweight Convo-
lution Transformer (LCT) integrates convolution tokenization
and attention-based pooling to extract spatial and temporal
correlated information from multi-channel signals concur-
rently, addressing ViT’s lack of translation equivariance and
localization. Additionally, ViT’s class token disregards the
relationship between different time-step data, causing infor-
mation loss [83]. Hybrid CNN-ViT architectures leverage
the inherent bias of convolutional layers for uncertainty
modelling in EEG data, enhancing local feature processing
through self-attention mechanisms. Moreover, Data Uncer-
tainty Learning integrates convolutions in transformers,
mitigating Multi-Head attention’s limitations in handling

local features and ensuring stability in classification accuracy
even with increased noise. Thus, CNN-ViT models not only
reduce the computational complexity of transformer mod-
ules, which limits their deployment on resource-constrained
signals through convolution down sampling but also enhance
global context awareness and discrimination ability com-
pared to pure ViT architectures [82].

Moreover, while CNNs have traditionally been limited
in their capacity to capture long-term dependencies in
raw physiological data, hybrid CNN-ViT architectures have
emerged as a viable solution. By effectively extracting global
context information, CNN-ViT frameworks improve the
model’s ability to model long-term dependencies, thereby
enhancing the processing of local features through the
self-attention mechanism in the transformer module
[82], [125].

The inclusion of CNN layers in Transformers addresses
their limited generalization on insufficient data by provid-
ing essential inductive biases like translation equivariance
and localization [154], [155], leading to a more lightweight
Transformer. CNN-ViT architectures alleviate the need for
extensive training data required by vanilla ViT, with convolu-
tion blocks extracting spatial features and improving feature
map resolution. Moreover, CNNs reduce input dimensional-
ity while preserving important data, ensuring compatibility
with ViT’s input requirements. This integration allows CNNs
to learn embeddings that serve as inputs for ViT, facilitating
efficient feature extraction and embedding learning in hybrid
architectures [136].
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TABLE 12. Summary of various popular physiological signal datasets.

Tuning CNN-ViT models is more challenging than pure
CNN architectures, requiring exploration of superior tech-
niques for fusing CNN and Transformer modules [82].
Despite promising outcomes, clinical biomarkers of irregu-
lar EEG signal alterations remain understudied, which can
be analyzed through fine-grained discriminative features of
EEG signals, particularly those with high frequency and
long-term dependencies. However, Transformers struggle
with low-pass filtering -and reduced accuracy with increased
depth, which can be addressed by incorporating CNN to intro-
duce high-frequency components to strengthen the model’s
capability [83].

From our vantage point in the dynamic landscape of
research, the fusion of CNNs with ViTs emerges as a
promising avenue for the analysis of physiological signals.
These hybrid architectures elevate conventional methods by

seamlessly integrating CNNs’ spatial feature extraction with
ViTs’ global context awareness and attention mechanisms.
Moreover, CNNs aid in feature embedding and contribute to
reducing the complexity of the network compared to pure
ViT architectures, making them more computationally effi-
cient. This integration also leverages the inherent inductive
bias provided by CNNs, such as translation equivariance
and localization, which aids in improving the model’s inter-
pretability and performance. However, challenges persist in
optimizing these models and exploring finer features of
physiological signals. Nonetheless, this integration marks a
notable advancement in deciphering complex physiological
data, holding potential for various clinical applications.

Furthermore, in advancing the field of physiological signal
processing through deep learning, it is imperative to advo-
cate for a consistent and reproducible evaluation framework
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TABLE 13. A comparison of signal-to-image conversion techniques for physiological signals.

across studies. Currently, there exists a lack of standardized
practices for evaluating the performance of deep learning
models applied to physiological signal analysis. This vari-
ability in evaluation methodologies makes it challenging to
compare results across studies and hinders the progress of
the field as a whole. Therefore, there is a pressing need
for the establishment of standardized benchmarks, datasets,
evaluation metrics, and experimental protocols to ensure fair
and meaningful comparisons between different algorithms
and approaches.

While deep learning models have shown remarkable suc-
cess in automated feature learning and classification of
physiological signals, it is essential to acknowledge the lim-
itations and potential biases inherent in these models. Deep
learning models are often regarded as ‘‘black boxes,’’ making
it challenging to interpret their decisions and understand the
underlying mechanisms driving their predictions. As such,
there is a growing interest in developing transparent and
interpretable deep learning models that can provide insights
into how they arrive at their decisions. Techniques such as
attention mechanisms, layer-wise relevance propagation, and

saliency maps can help elucidate the important features and
patterns learned by deep learning models, enabling clinicians
and researchers to trust and interpret their predictions more
effectively.

This emerging field still presents multiple challenges
regarding optimal STI techniques, neural network architec-
ture, model interpretability, and computational efficiency.
Asmethodsmature, real-world clinical translation will neces-
sitate multi-modal frameworks fusing physiological signals
with clinical context. Ultimately, intelligent integration of
signal processing and deep learning promises to unlock clin-
ically relevant insights from complex physiological data.

VI. CONCLUSION
In summary, this paper reviewed innovative techniques and
recent advances in converting physiological signals into 2D
image representations to enable automated feature learning
using CNNs. A systematic analysis was presented, span-
ning diverse applications in EEG, EMG, and ECG signal
processing. The relative merits of employing different STI
transformations, deep network architectures, and training
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methodologies were discussed. The review synthesized key
insights from current literature and highlighted challenges
and promising research directions at the intersection of deep
learning and physiological signal analysis. This comprehen-
sive overview of state-of-the-art methods aims to catalyze
continued innovations in designing effective end-to-end sys-
tems for extracting clinically valuable information from
multidimensional physiological data using advancedmachine
learning.
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