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ABSTRACT The Deaf are a large social group in society. Their unique way of communicating through sign
language is often confined within their community due to limited understanding by individuals outside of
this demographic. This is where sign language recognition (SLR) comes in to help people without hearing
impairments understand the meaning of sign language. In recent years, new methods of sign language
recognition have been developed and achieved good results, so it is necessary to make a summary. This
review mainly focuses on the introduction of sign language recognition techniques based on algorithms
especially in recent years, including the recognition models based on traditional methods and deep learning
approaches, sign language datasets, challenges and future directions in SLR. To make the method structure
clearer, this article explains and compares the basic principles of different methods from the perspectives of
feature extraction and temporal modelling. We hope that this review will provide some reference and help
for future research in sign language recognition.

INDEX TERMS Sign language recognition, traditional method, deep learning, SLR datasets.

I. INTRODUCTION
Helping the deaf lead a normal life is meaningful but com-
plicated, for the number of people in this group is growing
rapidly year by year all over the world. According to statistics
from WHO [1], by 2021, about 1.5 billion people world-
wide suffer from some degree of hearing loss, and about
430 million people need medical rehabilitation for hearing
loss, including 34 million children. By 2050 [2], the number
of people who are projected to have some degree of hearing
loss will climb to 2.5 billion. On the other hand, the deaf
community has difficulty integrating into society because of
language barriers. They can only communicate through sign
language, which few hearing people can read and understand.
Therefore, sign language recognition can be very important
to help hearing people understand the intentions of the deaf.
One way is to recognize sign language manually. However,
manual recognition is time-consuming and labor-intensive.
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The use of algorithm-based sign language recognition can
largely avoid the above problem and provide sign language
recognition for the deaf anywhere, anytime. It bridges the
communication gap and contributes greatly to the integration
of deaf people into society. Sign Language Recognition, as an
instantiated research problem in the field of action recog-
nition and trajectory tracking, encompasses a wide range
of research areas, including image segmentation, key point
extraction, temporal modelling, etc. The core problem of sign
language recognition is how to transform a piece of sign
language information into text, as shown in Fig. 2. It requires
focus on not only hand gestures but also hand movement
trajectories, body posture, facial expressions, etc. [3]. Thus,
sign language recognition is a highly integrated and interdis-
ciplinary study. By far, many scholars have made significant
contributions to the field of sign language recognition and
their methods have achieved excellent results. Therefore,
we want to make a summary of these methods. There are
also some review papers [4], [5], [6], [7], [8], [9], and [10] on
sign language recognition published in recent years, however,
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FIGURE 1. The whole development of sign language recognition.

some of them [6], [8], [9], [10] fail to give an introduction
to the latest methods, like Transformer-based sign language
recognition networks, etc. In addition, most of them [4],
[6], [7], [8], [9], [10] do not elucidate the characteristics of
the existing datasets. Most importantly, the structures of the
methods are not classified clearly in [7], [8], and [10], and
the pros and cons of different methods are not analyzed in [5]
and [9]. In this paper, we have analyzed the current better
methods and grouped them by structure from the perspectives
of traditional methods and deep learning-methods. Specifi-
cally, we do not treat each method as a whole but split it into
feature extraction section and temporal modelling section.
We believe this would make the structure of methods much
clearer.

FIGURE 2. The sign language recognition process (The sample in this
figure is collected from the German sign language dataset
RWTH-PHOENIX-Weather 2014).

The whole development of sign language recognition is
shown in Fig. 1. In the early stage of SLR, some auxil-
iary sensing equipment, such as data gloves [11] and color
gloves [12], are used to record key points or regions of the
hand. These captured data are then subjected to classification
and recognition processes using traditional feature extraction
operators. This is the most basic method of recognition, using
sensors to capture a range of features such as hand posi-
tion, movement trajectory and speed. Then, sign language is

recognized using some temporal model like Hidden Markov
Model (HMM) [13] or other methods. However, the com-
plexity of these devices limits their application. As a result,
a number of methods [14] based on image processing have
been proposed to get rid of the limitations of the device. Nev-
ertheless, those operators used in image processing are not
designed specifically for sign language, which cause another
bottleneck in recognition due to the limited representational
capacity. Sign language is a complex and delicate movement
and therefore requires more precise features for its repre-
sentation, while the development of deep learning in recent
years has provided a solution to this problem. Deep learning
has powerful feature extraction capabilities to fully exploit
intrinsic features from limited data automatically, which is
exactly what is required for sign language recognition. Schol-
ars have designed a variety of sign language recognition
networks [15], [16], [17] based on deep learning methods,
and have achieved a significant improvement on recognition
results in public sign language datasets. However, the current
research on sign language recognition is equally deficient.
The limitations of the datasets and the complexity of the
algorithms make sign language recognition a long way from
practical application.

sign language recognition covers a wide range of research
areas, including object detection, trajectory tracking, pose
estimation, action recognition and more, making it a highly
comprehensive research area. From another point of view,
sign language recognition, especially continuous sign lan-
guage recognition, is a typical seq2seq problem. The focus
of solving the sign language recognition problem is how to
establish the mapping relationship between two sequences.
There are still many unsolved problems with sign language
recognition, such as the recognition of unseen sentences.
These problems are the main focus of today’s research. In this
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FIGURE 3. The process of the traditional sign language recognition.

paper, we try to highlight the important parts of the above
issues and analysis of current challenges and directions for
sign language recognition that need to be addressed. We list
the contributions of this paper as follows:

1) Summarize many representative papers, including the
latest approaches based on generative adversarial net-
work (GAN), Graph Convolutional Network (GCN),
Transformer;

2) Break down the different method structures into a
feature extraction section and a temporal modelling
section, and analyze them from the perspectives of
traditional method and deep-learning method;

3) Present the common and latest sign language recogni-
tion datasets, with a description of the distinctive parts
of each dataset;

4) Analyze the existing challenges and future developing
trend of sign language recognition.

We hope to present a comprehensive review of sign lan-
guage recognition based on traditional methods and deep
learning methods. In the traditional-method part, we present
feature extraction methods in three areas: data gloves, color
gloves and image processing, and introduce temporal pro-
cessing methods such as Hidden Markov Model (HMM),
Conditional Random Field (CRF), etc. In the deep-learning-
method part, we present the main framework for sign
language recognition, such as Convolutional Neural Net-
work (CNN), Transformer, etc., and give common methods
for continuous sign language recognition. In addition to the
methods described above, we present evaluation metrics and
datasets in recent years, and analyze the current challenges
with sign language recognition. The remainder of this paper is
organized as follows. Section II introduces the sign language
recognition based on traditional methods. In Section III,
methods based on deep learning are presented and analyzed.
The datasets, challenges and future directions are given in
Section III-C and Section IV respectively. Finally, conclu-
sions are provided in Section V.

II. SIGN LANGUAGE RECOGNITION BASED ON
TRADITIONAL METHODS
In a sign language presentation video, the basic unit of sign
language information is the gloss, which is a complete sign
language word containing several gestures. The task that
contains only one gloss per video is called Isolated Sign
Language Recognition (ISLR). If the message in a video
is a sentence consisting of several glosses, this is called
Continuous Sign Language Recognition (CSLR). The sign
language message is conveyed by a continuous sequence of
gestures, with specific meanings conveyed through each dif-
ferent gesture and the interrelationship between the gestures.
Therefore, in recognition tasks, it needs to be clear what the
gesture is and what the relationship is between the gesture
and the gesture. These are two basic components of sign
language recognition: feature extraction and temporal mod-
elling. The process of traditional sign language recognition
can be summarized as Fig. 3. The specific method of the
traditional sign language recognition is often done with the
help of some sensors placed on data gloves. The features
are obtained by capturing the changes of body parts such as
hands, body posture, etc. by these sensors. There are also
some ways to get the features by using the image process-
ing approaches with the data collected by color gloves and
cameras. After that, some temporal models, such as Hidden
Markov Model (HMM), Conditional Random Field (CRF),
etc., are used to predict the result. In this section, we present
the sign language recognition based on these traditional
methods.

A. FEATURE EXTRACTION
The purpose of feature extraction is to get the key infor-
mation. Most of the sensor-based methods get information
such as hand position, angle, movement speed, etc. and use
them as hand features; while the image-processing-based
methods can get deeper information such as gradient, contour,
histogram, etc.
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1) METHOD BASED ON GLOVES
The gloves used in traditional SLR are mainly data gloves
and color gloves, which were proposed by scholars as early
as the last century. The data glove, which is shown in Fig. 4(a),
mainly uses attached sensors to collect hand shape, position
and other information as a basis for judging hand gestures.

FIGURE 4. The data glove and the color glove.

Waldron and Kim [18] obtained the hand shape and posi-
tion data, including the coordinates of the hand in space
and the pitch, roll, yaw of the hand, etc., from a data glove
mounted with a Polhemus sensor and input them into a
two-stage neural network to recognize isolated American
Sign Language. The system proposed by them is shown in
Fig. 5. This is a typical traditional sign language recognition
system based on data gloves. It contains almost all relevant
shallow features of the hand derived by sensors. Fu et al. [19]
used a data glove that captures not only the gesture of the hand
but also the motion information of the forearm, which was
later trained to classify the numbers 0-10 using a BP neural
network.

FIGURE 5. The sign language recognition system.

As for continuous sign language recognition, the research
can be dated back to 2002. Fang and Gao et al. [20] seg-
mented the video into glosses and then recognized them

one by one. The results show that this divide-and-conquer
approach worked well in isolated sign language recognition
after segmentation and was capable of dealing with some
short sentences. The team used the same idea in 2007 and pro-
posed transition movement models (TMMs), which aimed to
recognize the ME (movement epenthesis, i.e., interval signs
between two sign glosses) after clustering it by its similar
end-start sequences between two signs, to handle transition
parts between two adjacent signs in large-vocabulary contin-
uous sign language recognition [21].

The data glove method is accurate but complex and
heavy. It captures hand information quickly but ignores facial
expression and body posture. Validation on small datasets
limits its credibility. To minimize the limitation and impact
of the equipment on the signers, some scholars have proposed
the use of color gloves, which are shown inFig.4(b), to replace
data gloves.

Instead of using sensors, color gloves use different color
areas to represent different key areas of the hand, so they
are often used jointly with the camera. Okayasu et al. [22]
assigned distinct colors to glove parts, locating each part
using the colored region’s center of gravity. They utilized an
optical camera to obtain hand data like trajectory, position,
and velocity, feeding it into Hidden Markov Model (HMM)
for ranking likelihood.

Researchers explored color-glove-based continuous sign
language recognition. Bauer and Hienz et al. [23] used two
gloves, one multicolored for the dominant hand and the other
unicolored. They extracted location, handshape, and orien-
tation features, feeding them into HMM, and marking early
continuous sign language recognition exploration. This work
confirmedHMM feasibility andmaintained natural sign flow,
crucial for practical use. The outcomes of this research sub-
stantiated the feasibility of HMM and upheld the preservation
of natural pace of sign language, a pivotal aspect for practical
applicability.

Color glove based features mainly include position, angle,
and handshape. While it simplifies the complexity of the
device, strict background conditions and lack of portability
limit its practical use. This method aims to reduce device lim-
itations but does not solve the problem thoroughly. Instead,
it sacrifices recognition accuracy, making it unpopular.

2) METHOD BASED ON TRADITIONAL IMAGE PROCESSING
METHODS
To overcome the limitations of gloves and sensors for signers,
researchers are using image processing to extract features
directly from images. Digital image processing extracts richer
features that enable the recognition of different sign lan-
guages. This approach allows for isolated and continuous
sign language recognition, and although it’s less accurate than
sensors, it can greatly reduce the constraints of the device on
the signer, making the method more widely applicable.

In the part of the isolated sign language recognition.
Lin and Ding et al. [24] extracted histograms of oriented
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gradients (HOG) features from hand and background images
to train a support vector machine (SVM) for hand detec-
tion. They then combined hand position, velocity, and angle
to form a 4-dimensional vector as the trajectory feature,
and calculated Mahalanobis distance for gesture recognition.
Auephanwiriyakul et al. [25] utilized Scale Invariant Fea-
ture Transform (SIFT) for key point descriptors to match
input frames with standard gestures, using HMMs to translate
sequences into words. Rahim and Miah et al. [26] proposed
an optimal segmentation method for identifying hand ges-
tures from input images by comparing various segmentation
techniques including YCbCr, SkinMask, and HSV (hue, sat-
uration, and value). They processed the images using the
selected method and utilized the resultant images as inputs
to the model, thereby enhancing recognition performance.
Subsequently, they devised a concatenated segmentation
approach leveraging the YCbCr, HSV, and the watershed
algorithm. Additionally, multiple data augmentation tech-
niques were employed to enhance the model’s generalization
capabilities [27], [28]. Ming [29] combined the RGB and
depth information, putting forward 3DMeshMoSIFT feature
descriptor to extract the information of hand motion affected
by occlusions and subtle changes in local areas. Lim et al.
[30] proposed a method called the block-based histogram
of optical flow (BHOF) which establishes the histogram of
optical flow of right hand and left hand as features. Katoch
et al. [31] created the Bag of Visual Words (BOVW), which
is similar to the Natural Language Processing (NLP) Bag
of Words (BOW) but uses image features instead of words,
by taking advantage of Speeded Up Robust Features (SURF)
method to extract the features.

For continuous sign language recognition, Yang et al. [32]
used the mixed Gaussian model [33] to complete the clas-
sification of skin pixel. They then used the histogram and
processed by principal component analysis (PCA), of the
distance from each point of the detected hand contour to a
particular reference point in the picture as features. Yu et al.
[34] utilized CamShift to determine the size and position
of moving hands, employing the color histogram mode for
tracking moving objects. Additionally, they manually des-
ignated three regions (head, chest, and bottom) as gesture
regions. The characterization of the hand’s shape involved
the utilization of 7Hu moments, and its orientation was
ascertained by calculating the angle between the hand’s long
axis and the x-axis. Integration of these features, combined
with the count of hands, facilitated the creation of hybrid
feature vectors. The two methods mentioned above try to
recognize the continuous sign language by segmenting it
into isolated glosses and eliminating the effects of movement
epenthesis (ME). While some scholars tried to recognize
the sequence holistically without these segmentations. Koller
et al. [35] used HOG-3D Features [36] to capture the edges
of the hands spatially and temporally. As for trajectories, they
calculated the covariance matrix of velocity vectors within
a time window and use the eigenvalues of the matrix to

characterize the motion. In addition, they extracted seven
continuous distance measurements across landmarks around
the signer’s face as high-level face features using active
appearance model (AAMs) [37]. Hassan et al. [38] conducted
research on both their sensor-based and vision-based datasets.
For the sensor-based dataset, they used window-based statis-
tical feature extraction techniques, calculating the mean and
standard deviation to serve as features. For the vision-based
dataset, they first detected motion through pixel difference
analysis and selected optimal thresholds to transform image
differences into binary images. Subsequently, features were
extracted using 2D Discrete Cosine Transform (DCT).

It can be concluded that the traditional image processing
approach is effective for sign language recognition, but fea-
ture design is complex and lacks robustness. Although some
image processing approaches such as HOG, SURF and SIFT
may increase the number of features to a large extent, they
are not specifically designed for extracting hand features and
some features gathered from these methods are even invalid,
which means they still have their limitation when facing the
large amount of sign language data.

B. TEMPORAL MODELING
Temporal modelling is a necessary part when dealing with
the sequence problem, which is exactly what sign language
recognition needs. Given that video is the main input for
recognition, understanding the relation among video frames
becomes vital for both continuous and isolated sign language
recognition. This is particularly significant in continuous
SLR where labels change over time. Hidden Markov Models
or Conditional Random Fields approaches are the most com-
monly used traditional methods. In addition, there are some
other methods such as Dynamic Time Warping methods.

1) HMM AND CRF
The most commonly used methods are Hidden Markov Mod-
els (HMM) and Conditional Random Fields (CRF), which are
adopted from the area of natural language processing (NLP).

The utilization of HMM in SLR can be dated back to
2000 or even earlier. Bauer and Hienz et al. [23] designed
the different HMM models for each sign and validated on a
lexicon of 97 signs of German sign language. Gao et al. [39]
proposed self-organizing feature maps (SOFM)/HMM for
modeling signer independent isolated signs. Maebatake et al.
[40] put forward a method using multi-stream HMM for sign
language recognition, modeling the information of hand posi-
tions and movements respectively. To enhance the correlation
between variables in different streams in multi-stream HMM,
Theodorakis et al. [41] applied Product-HMMs (PHMM) for
partial asynchrony between streams. Park and Lee et al. [42]
proposed a cascade of two HMMs to recognize the point
gesture.

The implementation of Conditional Random fields in sign
language recognition can be dated back to 2006 or even
earlier. Yang and Sarkar et al. [43] segmented the video
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FIGURE 6. The process of the sign language recognition based on deep learning.

sequence into coarticulation frames (which has the same
meaning asME) and sign framesmanually and fed key frames
into CRF. Yang and Lee et al. [44] proposed a two-layer CRF
structure which consisted of a T-CRF [45] and a conventional
CRF. The T-CRF can discriminate signs, fingerspelling and
non-sign patterns with the information of hand motion and
place of articulation, and the conventional CRF can recognize
subsign patterns between signs. They validated their approach
on both isolated sign language and continuous sign lan-
guage. Kong and Ranganath et al. [46] used a segmentation
algorithm [47] based on minimum velocity and maximum
directional angle change in movement channel to segment
the continuous sign language sequence and classified the
results into sign or ME. They then used a two-layer CRF to
recognized the sign part of the segmentation. The first layer
concentrates on the phoneme level consisted the information
of handshape, movement, orientation and location, and the
second layer is a Semi-Markov CRF for sign recognition.
It can be concluded that most methods for continuous sign
language use a two-stage process: segmenting gloss signs and
intervals first, then recognizing them. Few scholars use CRF
for sign language recognition due to its complexity in feature
selection and training.

2) DYNAMIC TIME WARPING
Dynamic Time Warping (DTW) was originally used to mea-
sure sequence similarity in speech recognition. Sign language
faces similar issues due to different signing speeds, leading to
attempts at DTW-based recognition.

The DTW algorithm is mostly used for isolated sign lan-
guage recognition, as isolated sign language recognition can
provide a standard reference for verification data. It is gener-
ally not applied to continuous sign language because there
is too much variation in sentence and the sign language
sentences used for verification may not appear in the training
data.Mathur and Sharma et al. [47] collected key frames from
videos and extracted features of hand trajectory, then used
DTW to recognize sign language. Wöllmer et al. [48] pro-
posed a three-dimensional dynamic time warping (3D-DTW)
algorithm to synchronize multimodal data, overcoming the
computational complexity of AHMM. For continuous sign
language recognition, the testing sentence may differ from

the reference and it is impossible to list all sentences in the
dataset. But if one sentence can be segmented into the units
of glosses in advance, DTW may still be useful in the area of
continuous sign language recognition.

3) OTHER METHODS
The distance comparison is a less commonly used method.
The main purpose of this method is to accomplish the task
of sign language recognition by comparing the differences
between the feature vectors of isolated sign languages and
the standard sign language feature vectors. Lin and Ding et al.
[24] extracted gesture features and trajectory features of the
standard sign language to build up a database. Then they
recognized the gesture by extracting the same features of the
given sequence and compared the Mahalanobis distance with
the standard one. Ming [29] introduced 3D Mesh MoSIFT
feature extraction method by firstly detecting key points in
mesh domain which is transformed from 3D point clouds
data, and then computed the 3D gradient and 3D motion
features by calculation of image gradient along the horizon-
tal and vertical directions, and subtraction of corresponding
points in depth image. The Levenshtein distance is used
to measure the similarity of predicted label and truth label
finally. We could see that two methods mentioned above all
cope with gesture recognition. This is because the feature
space created by these methods is insufficient to represent the
more complex sign language information.What’s more, these
methods are not robust enough if the interclass distance is not
well controlled.

C. CONCLUSION
We introduced traditional sign language recognition methods
with feature extraction and temporal modeling. Comparing
results was difficult due to different datasets. Most of the
datasets used in the above methods are small in size and
lacked practicality. Traditional methods had limitations in
hand-specific feature extraction and were sensitive to factors
like illumination and occlusion. Manual feature design was
costly and time-consuming, leading to accuracy bottlenecks.
However, the traditional approach is more interpretable, facil-
itating the researcher to explore the importance of different
features and is instructive.
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III. SIGN LANGUAGE RECOGNITION BASED ON DEEP
LEARNING
The typical deep-learning-based methods were proposed
after 2012, where scholars began to extract hand features
automatically using deep neural network. Deep-learning-
based sign language recognition is able to mine the data for
deeper information and automatically generate the features
that best represent the feature of gesture. This is extremely
important for improving the accuracy of sign language recog-
nition. However, this approach requires large-scale datasets
and computing power to support. Nowadays, the emergence
of large-scale datasets and the increasing computing power
of GPUs have given deep learning-based sign language
recognition methods a lot of room for development. And
some problems like weakly supervised learning of continuous
sign language recognition can be resolved well, so more
and more well-performed end-to-end models are starting to
emerge.

The study of sign language recognition involves a range
of elements such as action recognition and trajectory
tracking.

Since sign language videos are composed of a series of
frames, many typical convolutional neural networks (CNN)
are often used for feature extraction like GoogLeNet [49],
ResNet [50] and etc. In terms of temporal feature extraction,
a number of temporal networks have been applied to temporal
modelling like recurrent neural network (RNN), temporal
convolutional network (TCN) [51] and etc. In addition to
the extraction of spatial and temporal features separately,
some 3D convolutional neural networks have been proposed
for the simultaneous extraction of spatio-temporal infor-
mation such as C3D [52] and I3D [53] and etc. Apart
from the approaches mentioned above, some methods inte-
grate traditional methods into deep learning and show good
performance. Nowadays, many scholars make use of the
Transformer [54] or its variants for sign language recognition
and similarly obtain better recognition results. The process of
sign language recognition based on deep learning is shown
in Fig. 6.

A. EVALUATION METRICS
For isolated sign language recognition, commonly used eval-
uation metrics are accuracy rates. Here, we focus on common
evaluation metrics for continuous sign language recognition.
Commonly used metrics for continuous sign language recog-
nition include Word Error Rate (WER), BLEU (Bilingual
Evaluation Understudy) [55] and ROUGE (Recall-Oriented
Understudy for Gisting Evaluation) [56], mostly inherited
from the field of speech recognition translation.

1) WER (WORD ERROR RATE)
The WER is the percentage of the total number of words that
need to be replaced, deleted or inserted in order to make the
recognized word sequence consistent with the original word
sequence. The expressions are shown as follows:

WER = 100 ×
Substitution+ Deletion+ Insertion

Total
(3)

In other words, WER indicates the proportion of words that
need to be altered to align the recognized text with the correct
reference text. The definition of WER shows that the lower
the metric, the better the recognition. It is important to note
that the WER can be greater than 100% as the number of
words to be replaced, deleted or inserted may be greater than
the total number of words in the original sequence. TheWER
metric is commonly used for sequence recognition tasks and
therefore for sign language recognition, most methods use
WER as an evaluation metric.

2) BLEU (BILINGUAL EVALUATION UNDERSTUDY)
BLEU is a precision-based metric for evaluating similarity,
utilized to analyze the extent to which n-grams in the can-
didate translation appear in the reference translation. The
idea of BLEU is to calculate precision by comparing n-gram
model between the output and the reference, and the expres-
sions are as in (1), shown at the bottom of the page. The
candidates in the formula are the sentences generated by
the models, and they will be compared with the references
to get the final scores. n-gram means the clip formed by
n words adjacent to each other. The common idea of the
BLEU metric is to calculate the percentage of n-gram clips
in candidate, which appear both in candidates and references.
Depending on the size of n, the commonly used metrics are
BLEU-1, BLEU-2, BLEU-3 and BLEU-4.When n is smaller,
the accuracy of the words is measured; when n is larger, the
fluency of the sentences and the accuracy of the syntactic
structure are measured. To make a more balanced result, the
BLEU with different n are often sum up by weighting.

3) ROUGE (RECALL-ORIENTED UNDERSTUDY FOR GISTING
EVALUATION)
ROUGE measures the extent to which the content of the ref-
erence summaries is covered in the system’s output, primarily
focusing on whether the machine-generated summaries have
captured the information from the reference summaries. The
ROUGE evaluation metric is similar to the BLEU metric, but
it measures recall, that is the percentage of n-gram clips in
reference, which appear both in candidates and references.
The expressions are as (2), shown at the bottom of the page.

BLEUn =

∑
C∈{Candidates}

∑
n−gram∈C Countclip (n− gram)∑

C ′∈{Candidates}
∑

n−gram′∈C ′ Countclip (n− gram′)
(1)

ROUGEn =

∑
S∈{ReferenceSummaries}

∑
n−gram∈S Countmatch (n− gram)∑

S∈{ReferenceSummaries}
∑

n−gram∈S Count (n− gram)
(2)
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Although some translation models could generate fluent sen-
tences under the metrics of BLEU, the meanings of some
generated sentences are too far apart from the references. The
recall metrics ROUGE emerged as a solution to the problem
of recognizing what is actually needed. There are also some
variants like ROUGE-L (Longest common subsequence),
ROUGE-W (Weighted longest common subsequence) and
ROUGE-S (Skip-bigram co-occurrence statistics). The emer-
gence of these metrics complemented the accuracy metrics,
and to this day both BLEU and ROUGE metrics and their
variants remain the main metrics in the field of sign language
recognition.

Strictly, WER focuses on the overall accuracy of recog-
nition but does not take into account the types of errors nor
their potential impact on the semantic meaning of sentences.
In contrast, BLEU and ROUGE focus on consistency in
recognition outcomes. BLEU overlooks the semantic and
syntactic correctness, emphasizing primarily the literal cor-
rectness of the translation outputs. Therefore, BLEU is more
apt for assessing the global quality of translation rather
than local accuracy or fluency. ROUGE, on the other hand,
emphasizes the completeness of content and information
encapsulated within the reference summaries. In addition,
there are other evaluation metrics such as METEOR, CIDEr
(Consensus-based Image Description Evaluation), etc. but
they are not commonly used.

B. DEEP-LEARNING-BASED SIGN LANGUAGE
RECOGNITION METHODS
The deep learning approach has the ability to express a larger
feature space and therefore achieves better results in both
ISLR and CSLR. In addition, deep learning methods can
focus not only on manual components such as hand shape,
orientation, and movement, but also on non-manual compo-
nents such as mouthing, eye gaze, and eyebrow movements.
This greatly enriches the features of the data, resulting in a
significant improvement in recognition accuracy. The spe-
cific steps of recognition can be divided into pre-processing,
feature extraction and temporal modelling, and recognition.

1) PRE-PROCESSING
A well-designed neural network has powerful redundancy
removal capabilities, so that only the full image is needed as
input to obtain deep features. However, the full image input
is computationally intensive and makes the network take
longer to converge. So how to balance this contradiction is
important. There are usually two methods of pre-processing,
one is to crop the hand region in the image and feed it into the
neural network for training, and the other is to feed the full
frame into the network.

Koller et al. [17] experimented and pointed out that using
full frame as input gives better results than using cropped
hand images. This is because complete frame information can
provide more information than local features, such as hand
trajectories, facial expressions, etc. In the later research [57],

they cropped a rectangle of 92×132 pixels around the center
of the hand on the RWTH-PHOENIX-Weather dataset [58] as
the input of the network. De Coster et al. [59] cropped hand
regions by OpenPose BODY-135 model [60]. To alleviate the
noise that may occur near hand key points, they determine a
suitable location for the hand crop in the extension of the fore-
arm: based on the position of the elbow and wrist key points.
Cihan Camgoz et al. [61] combined two SubUNets, which
concentrated on hand patches and full frames respectively,
to recognize continuous sign language. The WER indicator
decreased by up to 2.4 and 1.0 compared to using hand patch
and full frame separately, reaching the value of 42.1.

Although hand patches can be regarded as a more relevant
information about hand, the size of cropping region needs to
vary according to the datasets or real scenarios. However,
the distances between the signers and camera are almost
same within a given dataset, so it is unnecessary to change
the size of the cropping box. Nevertheless, if the dataset is
changed, cropping box with the original size may not be able
to cover the hand regions in the new one. This may affect the
recognition results.

2) FEATURE EXTRACTION AND TEMPORAL MODELLING
In the realm of feature extraction, 2D CNNs (often com-
bined with temporal modeling methods such as RNNs) and
3D CNNs have been extensively employed in sign language
recognition due to their robust feature extraction capabilities.
Concurrently, the rising popularity of transformers has also
demonstrated increasingly promising performance in this
domain. Consequently, this section provides a comprehensive
review of these two categories of methods, followed by an
exploration of other approaches such as GNNs and GANs.
When it comes to features, deep learning-based sign language
recognition methods often consider three types of informa-
tion: RGB information, depth information, and skeletal key
points information. All of the information can be collected
easily by somatosensory equipment like Kinect, especially
for RGB information which can even be obtained by camera
on mobile phone. This is very beneficial for the portabil-
ity of the sign language recognition system. On the other
hand, the complementarity of different information allows
for more accurate recognition. It is important to make trade-
offs. Accordingly, this section concludes with an examination
of the various input modalities in sign language datasets,
emphasizing the importance of striking a balance between
them.

a: METHODS BASED ON CNN AND RNN
One of the commonly used methods is combining CNN and
RNN. Convolutional Neural Networks (CNNs) are a multi-
layer perceptron variant inspired by biology. Their structure
includes multiple layers such as convolutional, pooling and
fully connected layers. As the central component of a CNN,
the convolutional kernel slides over the input image and
extracts features by computing dot products with localized
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regions of the image. As the depth of the network increases,
the CNNs are able to capture a wider range of contextual
information and more complex features. Through training,
CNNs are able to extract features from low to high lev-
els layer by layer and utilize these levels of features for
effective prediction or classification. Due to their excellent
performance, CNNs have been widely used in computer
vision fields such as image classification and have achieved
remarkable results. As for sign language recognition, 2D
CNNs are usually used to extract features within a sin-
gle frame or for gesture recognition in image data [62],
while for the action context represented by a sequence of
frames, recurrent neural networks (RNNs) are often utilized
for interpretation. RNNs sequentially process elements of an
input sequence, computing the current hidden state based on
both the current input and the previous hidden state. This
mechanism enables them to capture long-term dependen-
cies within sequences. Nevertheless, standard RNNs often
struggle to effectively capture such dependencies in practical
applications, primarily due to issues like gradient vanishing
or explosion.To address these challenges, variants like Long
Short-Term Memory Networks (LSTMs) and Gated Recur-
rent Units (GRUs) have been introduced. These architectures
incorporate sophisticated gating mechanisms, facilitating the
effective capture of information across longer sequences.
Reference [17] and [57] all use GoogLeNet pretrained on
ILSVRC dataset [63] as the backbone and both of them
used RGB image as the input to recognize continuous sign
language. Reference [17] combines CNN-LSTM and HMM,
using the former part to calculate the maximum likelihood
of input image and converting it to emission probabilities of
HMM by Bayes’ rule. Then EM algorithm is used to train
CNN-LSTM iteratively. Experiments on different LSTM
structures are also carried out. Although the models with
more layers and number of hidden units showed better per-
formances, it made the network hard to train. The authors
later [57] compared the tandem approach (an intermediate
step between GMM (Gaussian Mixed Model)-HMM and
the hybrid CNN-HMM) with hybrid CNN-HMM and found
that the hybrid CNN-HMM showed better performance on
computational cost. Shanableh [64] proposed a two-stage
approach, which first detects the number of words in a sen-
tence for segmentation, and each word is converted into a
motion image, so each motion image can contain traces of
previous or successive words. Then, Inception-v3 is used to
extract features from motion images and BiLSTM is used
for recognition. Pu [65] considered both the information of
skeleton points and RGB obtained by Kinect to recognize
isolated sign language. He utilizes LeNet [66] and 3D-CNN
based on AlexNet to extract the features of trajectories and
handshapes, reaching a Top-1 accuracy of 0.858 on CSL
dataset [67]. However, He did not give the solution when
the Kinect failed to detect the hand region, and there was no
explanation on how to distinguish left hand and right hand.
In two studies by Hu et al. References [68] and [69], both

utilized 2D CNNs to extract frame features, followed by the
use of 1D CNNs and BiLSTM for short-term and long-term
temporal modeling. In [68], they proposed an identification
module to emphasize informative regions in each frame that
are beneficial in expressing a sign, along with a correlation
module to capture cross-frame trajectories. These modules
were placed after each stage of the feature extractor to recog-
nize body trajectories between adjacent frames. Meanwhile,
in [69], they introduced the spatial self-emphasizing mod-
ule (SSTM) and temporal self-emphasizing module (TSEM),
which were integrated into each block of the feature extractor
to emphasize spatial and temporal features, respectively.

Some researchers perform 3D convolution on videos
directly to learn spatio-temporal information. Refer-
ences [70], [71], and [72] all used 3D-CNN to extract
features. Sarhan et al. [71] used RGB video data as the
input and obtained the optical flow stream from it. They
then utilized two I3D networks to extract features from
two streams above, and the predictions of each stream are
averaged during the evaluation to give the final label. Pu et al.
[70] processed the RGB information of the continuous sign
language video by 3D-ResNet and then fed the features
to the encoder-decoder network. Zhou et al. [72] proposed
(3+2+1)D ResNet Model, which combines a 3D ResNet to
extract spatial and temporal information simultaneously, a
2D ResNet to extract features spatially and a 1D convolu-
tional network to extract features temporally. Its recognition
results on the Hong Kong Sign Language (HKSL) dataset
they proposed and CSL dataset can reach up to 94.6% and
96.0% respectively. The 1D convolutional network for tem-
poral feature extraction is in fact a Temporal Convolutional
Network (TCN) [51]. Compared to the serial processing of
RNNs, TCN can process temporal information in parallel.
In addition, compared with 3D-CNN, it can effectively com-
press the amount of data while increasing the computational
speed. Gao et al. [73] utilized this structure as well. They
processed the image by a 2D discrete wavelet transform to
enhance the image before inputting the RGB video sequence.
The order of their (2+1)D and 3D modules is different
from [72] and a residual module was also applied. Their Top-
1 accuracy results can be up to 98.4%. Han et al. [74] also
used R (2+1) D for separate spatial and temporal modeling.
In addition, they proposed a lightweight spatial-temporal-
channel attention module that enables the network to focus on
the significant information along spatial, temporal, and chan-
nel dimensions.Cui, R., et al. [75] used VGG-S model [76]
pretrained on ILSCRV and TCN jointly followed with a
BiLSTM (Bidirectional LSTM) to produce the alignment
proposal. Then they utilized the GoogLeNet combined with
TCN to learn the features with alignment proposal.

Yang et al. [77] proposed SF-Net which concatenates the
features extracted by 2D and 3D ResNet18. They divided the
network into three parts to concentrate on the features from
frame level, gloss level and sentence level. In gloss level,
a LSTM was used to reduce dimension and form compact
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gloss level features and in sentence level, a BiLSTMwas used
to encode the context information. This level-by-level feature
fusion method is also used in [67], [78], and [79], showing its
capability. Reference [67] labeled 400 frames randomly from
CSL dataset to fine-tune a Faster R-CNN [80] pre-trained
on VOC2007 person-layout dataset for hand detection. They
aimed to recognize the continuous sign language and pro-
posed a solution by compressive tracking [81] when the
detector fails to get the hand region. A video-sentence latent
space was also put forward tomatch the video clips andwords
in the sentence. However, using a sliding window to extract
clip features of each piece of video can be computational-
intensive. And if the latent space is too big in the case
of oversized datasets, it may be hard to get the mapping
function by networks. Reference [78] put forward a method
to enhance the gloss feature in the task of continuous sign
language recognition. By introducing GFE module (which
is a decoder), they calculated the cross entropy of the out-
puts of GFE decoder and CTC decoder, aiming to make the
outcome of GFE decoder closer to the alignment proposal
produced by CTC decoder. After the back propagation, the
GFE could be able to represent smooth features. This method
is highly dependent on the quality of the CTC results, as it
uses the output of CTC as the supervision information. Refer-
ence [79] recognized continuous sign language by combining
phrase-level features of video frames extracted by ResNet152
as well as BiLSTM and outcomes of a LSTMwhich was used
to capture the sequential label information. Then, a RNN-T
[82] model was used to train these concatenation features.
The concatenation operation could establish links between
labels and video sequences, making the features more rep-
resentative when feeding into the RNN-T.

Themethods based onCNN andRNN achieve good perfor-
mance even on the small datasets in the field of sign language
recognition due to the strong inductive bias of CNN and
RNN. They concentrate on the locality of frames and cope
with sequence strictly along the chronological order. With
time going by, more and more large datasets are beginning to
emerge and the application of CNN and RNN may come to a
bottleneck, i.e., they may not perform well on large datasets,
for sign language not only contains manual features like
hand shape, orientation and movement, but also non-manual
features like mouthing, eye gaze and eyebrow movements,
etc. [59]. It is difficult to capture the relationship between
manual features and non-manual features if we only look
for their relationship locally. What’s more, RNN may suffer
vanishing gradients and cannot handle long sequence, and is
uncapable to establish links among random frames.

b: METHODS BASED ON TRANSFORMER
The feature extraction based on Transformer and its variants
are very popular in recent years. Transformer was origi-
nally designed to deal with NLP problems and it shows
its strong power in global relationship establishment on
the large datasets. Various types of Transformers [83] have

been designed by scholars to cope with different tasks
in computer vision field and etc. and these structures are
also very popular in the field of SLR, especially in the
field of sign language translation (SLT). Unlike spoken lan-
guage, sign language has its unique grammatical structure,
which means they have different sequence order. SLR gen-
erates the glosses in the same order with sign language
while SLT aims to transfer gloss sequence into our spoken
language sequence. Current Transformer-based approaches
mostly integrate SLR and SLT into one framework, so we
give an overall introduction here. The fundamental prin-
ciple underlying the Transformer architecture lies in the
utilization of self-attention to effectively capture overarch-
ing dependencies across various positions within the input
sequence. This architecture comprises two primary compo-
nents: the encoder and the decoder. The encoder is composed
of multiple layers of encoding, each layer encompassing
two principal sub-layers: the multi-head self-attention mech-
anism and the positionally fully connected feed-forward
network. The multi-head self-attention mechanism enables
concurrent focus on multiple positions within the sequence,
whereas the position feedforward network conducts indepen-
dent nonlinear transformations on the representation of each
position. Additionally, a third sub-layer is introduced within
the decoder to attend to the encoder’s output.

To fully leverage the computational capabilities for
long-range dependencies of transformers and the local fea-
ture extraction abilities of CNNs, Shin et al. [84] proposed
a multi-branch network based on convolutional and trans-
former layers to parallelly extract local and long-range
dependency features. De Coster et al. [59] trained a Video
Transformer Network (VTN) [85] with the features extracted
from RGB information by ResNet-34 pretrained on Ima-
geNet [86] and the pose flow obtained by OpenPose BODY-
135 model [60]. The result showed the accuracy of 92.92%
on AUTSL isolated sign recognition dataset [87]. However,
they chose to uniformly down sampling the video frames
before feeding them into the VTN. This may be not a good
choice as the information of the video may not be evenly dis-
tributed. Du et al. [88] utilized a tiny Swin-Transformer [89]
to transform RGB images into semantic features and used
another Mask-Future Transformer for temporal sign lan-
guage video modeling and comprehension of sign language
actions. This Mask-Future Transformer aimed to calculate
the self-attention without using the future frames and they
believed it is more suitable for sequence modelling and
comprehension. However, Two-Transformer-based structures
would make the training harder and more time-consuming.
Niu et al. [90] used pretrained ResNet to extract features
of each RGB frame and fed them to the Transformer. They
avoided overfitting by stochastically dropping some frames
during training and not computing back-propagation for a
part of the input frames during spatial feature extraction. Fur-
thermore, they introduced sub-gloss states for each gloss, and
calculated extension function of gloss sequence and sub-gloss
state number sequence by Monte Carlo sample method. They
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FIGURE 7. The main structure of GAN used in SLR.

then approximated the likelihood term in the sampled results
and computed the lower bound of CTC, whose objective
value is proved to become larger by iteration in this way.
The performance showed WER of 24.9 and 25.1 on RWTH-
PHOENIX-Weather 2014 and RWTH-PHOENIX-Weather
2014T respectively.

Yin et al. [91] translated the sign language by two steps.
They first generated the glosses by Spatial-Temporal Multi-
Cue (STMC) Network [92], which used multiple visual
cues as input including face, hand, full-frame and pose and
extracted the temporal features of inter-cue and intra-cue.
This STMC network tried to extract almost all the pos-
sible features from the single RGB information to make
the feature more representative by detecting different body
parts. It is more effective than just feeding full frames into
the network. These features are fed to BiLSTM and calcu-
lated the Connectionist Temporal Classification (CTC) [93]
loss. Then they did the Neural Machine Translation (NMT)
by Transformer network. Camgoz et al. [15] combined the
recognition and translation. They utilized the spatial embed-
ding approach [94] to extract non-linear frame level spatial
representation and fed them to the self-attention layer after
combining with positional encoding. They calculated the loss
in gloss level by CTC as intermediate supervision in Trans-
former encoder, helping match video frames with glosses.
In decoder, they input word embedding and attention infor-
mation from encoder and generalized the final output. The
results shown BLUE-4 and WER of 22.38 and 24.98 respec-
tively on RWTH-PHOENIX-Weather 2014T dataset. They
expanded channel numbers, adding the mouthing and pose
information in Transformer network in the later work [95].
The results showed 19.51 and 45.90 on BLEU-4 and ROUGE
metrics respectively. Li et al. [96] exploited a semantic
hierarchical structure among video segments by different
sliding window sizes. Instead of pooling or concatenating
of multi-scale segments directly, they developed inter-scale
and intra-scale attention approaches to calculate the relation

locally and globally. They finally decoded the features by
Transformer decoder.

Guo et al. [97] used the adaptive temporal interaction
(ATI) module to incorporate the adaptive shift operation
and self-attention to capture local and non-local temporal
correlations concurrently. For the transformer to be able to
distinguish between temporal and spatial features of sign
language videos, Cui et al. [98] designed an ST dual-channel
feature extraction network to extract contextual features and
dynamic features, respectively. Zuo et al. [99] enhanced
the transformer backbone from a consistency perspective by
adding spatial attention consistency constraints and sentence
embedding consistency constraints. Hinrichs et al. [100]
extracted and augmented body markers using data imputation
and velocity-like features, which were then used with a trans-
former network for continuous sign language recognition,
and achieved state-of-the-art performance.

Although good performance has been achieved by
Transformer-based sign language recognition and translation
network, it can’t be denied that the drawback of Transformer
still exists. Transformer only takes the previous content of
the output text into account, and it is incapable to incorporate
context from both directions, whichmay lead to the omittance
of crucial information between gestures. With the emergence
and success of Bidirectional Encoder Representations from
Transformers (BERT) [101], many scholars adopted it from
NLP field and designed BERT-based sign language recogni-
tion network [19], [102], [103], [104], [105].
Hu et al. [102] designed a SignBERT model for isolated

SLR. They utilized 2D hand pose sequence of both hands
as data and train the SignBERT in an self-supervised man-
ner by masking and reconstructing visual tokens. Instead of
inputting the skeletal coordinates to the SignBERT directly,
they adopted the spectral-based Graph Convolution Net-
work (GCN) [106] to process the sequence frame-by-frame
to generate the frame-level semantics representation. After
adding position encoding and hand chirality embedding
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(to distinguish left and right hand), they trained the fea-
tures with SignBERT decoded the results by MANO [107],
which created a mapping from low-dimensional pose to
triangulated hand mesh. Then they applied the SignBERT
to downstream recognition task. Zhou et al. [103] applied
(3+2+1)D ResNet () [72] to extract selected key frames
features and fed it into BERT to calculate the temporal
relationship among each frames. In addition, they utilized
open-pose [108] to locate the region of the dominant hand
in the selected key frames and processed them by (3+2+1)D
ResNet and BiLSTM to extracted the spatial-temporal fea-
tures. After combining the output of BERT, spatial features
of key frames and the spatial-temporal features of dominant
hand, they input them into a BiLSTM and optimized the CTC
loss. They also designed a module, minimizing the feature
distance between hand image and BERT output represent-
ing the same gloss at each time step by Jensen-Shannon
divergence (JSD) loss. The WER metric reached 1.52 and
23.30 on signer independent (i.e., the signer in the train-
ing and test sets are not identical) and unseen sentence
(i.e., the sentences in the testing set have never occurred
but each of their words has appeared in other sentences in
the training set) conditions respectively on CSL dataset, and
20.1 on RWTH-PHOENIX-Weather 2014 dataset. They then
refined the structure by implementing multiple BERTmodels
for different input modalities and designed a cross-attention
mechanism to exchange inter-modality information between
BERT models [104]. The WER reached 1.14 and 19.80 on
signer independent test and unseen sentence test respectively
on CSL dataset, and 18.3 on RWTH-PHOENIX-Weather
2014 dataset.

The Transformer-based network achieved good perfor-
mance on isolated and continuous sign language recognition
even on SLT tasks. The reason is that multi-head attention
mechanism, which is the core of Transformer, calculated
the attention among tokens globally. This trait is hard to
be achieved by using CNN, so Transformer performs better
than CNN theoretically especially on large datasets at the
cost of larger amount of parameters. Meanwhile, because
of the weak inductive bias, the Transformer needs to be
trained over a longer period of time to converge. To speed
up, pretraining is used [19], [102], [103], [104] to equip
the network with a prior knowledge. We could also see the
implementation of Transformer is in fact to deal with 1D
temporal problem in the SLR field, which means CNN is
involved to compress the data into vectors before feeding
the data into Transformer (except for [88], which utilized
two Transformer models to extract spatial and temporal fea-
tures separately). So precisely, the vast majority of current
Transformer-based approaches are actually a combination of
the transformer and CNN approaches. From recognition with
CNN and RNN to recognition with CNN and Transformer,
we found that the performance of sign language recognition
has been greatly improved, and the recognition criteria have
also evolved from validation within the dataset to signer

independent recognition and unseen sentence recognition,
being much closer to real-world application scenarios.

c: OTHER METHODS
In addition to the methods mentioned above, Generative
Adversarial Network (GAN) [109], [110] and Graph Neural
Network (GNN) [111], [112], [113], [114], [115] are also
used in the domain of SLR. The main structure of GAN used
in SLR is shown as Fig. 7.

Generative Adversarial Network (GAN) consists of two
parts, which are generator and discriminator. Generator aims
to produce the predicted results and discriminator aims to
distinguish generated results and real labels. These two parts
are trained iteratively. When discriminator is unable to tell
the difference between generated results and real labels,
we assume that the generator has the ability to generate real
data. Papastratis et al. [110] designed the generator by feeding
the frames into 2D-CNN and establishing the short-term and
long-term temporal dependencies within the sequence by 1D
convolution and BiLSTM separately. The output sequence
and the ground truth label are fed into the discrimina-
tor, in which a two-stream network is designed to process
the sequence on gloss-level and sentence-level respectively.
Finally, a fully connected layer is used to generate the judging
scores. In decoding phase, a Transformer decoder is used
to generate the translation. Elakkiya et al. [109] extracted
manual and non-manual features by BPaHMM [116], and
denoised and reduced dimension by variational autoencoder
(VAE). The LSTM and 3D-CNN are employed as gen-
erator and discriminator. A deep reinforcement learning
method is implemented to optimize the hyperparameter and
regularization.

Although GAN can be used to some effect in sign language
recognition, its training time is too long and it requires a large
dataset to support it.What’s more, GAN is still based on CNN
and RNN, which means it has the same shortcomings of CNN
and RNN.

Graph Convolutional Network (GCN) [117] aims to con-
duct convolution operation in graph. A graph can be defined
as G = (V ,E), indicating the nodes and edges of the graph
respectively. The adjacency matrix A reflects the connectivity
of the nodes. The layer-wise propagation function of GCN
can be written as follows:

H (l+1)
= σ

(
D̃−

1
2 ÃD̃−

1
2H (l)W (l)

)
(4)

where Ã = A + I represents the adjacency matrix with
self-connections of the undirected graph, D̃ii =

∑
j Ãij and

W (l) is a trainable weight matrix. The function is activated
by σ , which can be ReLU etc. GCN could help us find the
relationship among nodes in graph, which is a more widely
used form of data. Since the skeletal key points are the only
data resources which can be represented as graph in SLR,
the GCN-based approaches mostly take these information as
input. Skeleton data focuses on joint positions rather than the
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entire image. This approach removes non-critical information
such as background and clothing, reducing data redundancy
and enhancing robustness to lighting and scene variations.
References [111], [112], and [118] all utilized spatial-
temporal GCN, for skeletal key points information are also in
sequence manner. This spatial-temporal GCN is similar to 3D
CNN, which takes both spatial and temporal adjacent nodes
into consideration. Wang et al. [112] defined a layer-wise
propagation rule of GCN spatially by partition and aggre-
gation and then expanded the size of convolution kernels
temporally. Jiang et al. [118] utilized the spatial decoupling
graph convolution [119] method, which adopts decoupling
aggregation in GCN to enhance the performance, and a
STC (spatial, temporal and channel-wise) attention module
to construct the basic block. Then a multi-stream approach
is exploited to deal with joint, bone, joint motion and bone
motion separately, where bone and motion nodes can be
calculated by subtracting the joint coordinates spatially and
temporally respectively. The results of different streams are
concatenated in the final. They reduced the whole-body
skeleton graph nodes number from 133 to 27, as the higher
the number of nodes, the more noise is introduced. Miah et al.
[120] firstly constructed a skeleton graph based on 27 whole-
body key points. Subsequently, they conveyed information
from four streams into their proposed multi-stream SL-GDN
to extract features. Finally, they concatenated the four differ-
ent features and performed classification. In their subsequent
research, a multi-stream network approach was similarly
employed. However, distinguishingly, they incorporated two
graph-based neural network channels, leveraging attention
mechanisms to generate temporal-spatial features and spatial-
temporal features respectively. These features were then
fused with the generic features extracted by the final branch’s
universal deep neural network module [121]. Shin et al.
[122] constructed a dual-stream network, which generates
graph-based features by utilizing channel attention modules
and a complete skeletal joint skeleton in the first stream. The
second stream focuses on capturing joint motion information,
followed by feature fusion for classification. Case in the
graph structure of GNN, the two hand nodes and the other
body joints are equally treated, to fully explore the correlation
between two hands, Guo et al. [123] designed a hand shift
operation to capture detailed associations between hands.
In addition, a cascaded attention module was introduced in
the feature extractor, which establishes residual connections
to the input of spatial, temporal, and channel attention, mak-
ing the model more focused on useful information in sign
language actions. Instead, Papadimitriou et al. [124] used
a modulated GCN to model various correlations between
different body joints beyond the physical structure of the
human skeleton. Meng, L., et al [125] proposed a multi-scale
attention network (MSA) to model the dependencies between
remote vertices to learn the long-distance dependencies, and
an attention enhanced temporal convolutional network was
proposed to automatically assign different weights to dif-
ferent frames in order to solve the problem of inaccurate

recognition of motion blur frame joints. Kan et al. [111] pro-
posed a hierarchical spatial-temporal graph structure, which
consists of models on high-level and fine-level. In high-level
graph, three vertices which denote facial region, left-hand
region and right-hand region are presented which indicate
the relative motion between these three main components.
In fine-level graph, skeletal key points of a specific region
are used to analysis the detailed information.

Because sign language is performed by multiple parts of
the body, the nodes of the graph structure used in sign lan-
guage recognition should respond to information from those
parts. However, too many nodes do not provide additional
useful information to the model, but instead introduce noise
into the model, which affects the accuracy of the model [118],
[126]. Therefore, for skeleton-based SLR, it is important to
choose the right nodes for model learning.

d: METHODS BASED ON MULTI-MODALS
We introduce the feature extraction from another perspective
in this part, focusing on the types of input data.We introduced
different types of data and reviewed classic multi-modal
based methods. The forms of input data can be categorized
into RGB information, depth information and skeletal key
points information. And the data required for the body parts
also varies as sign language is not just presented by hands,
but also facial expression, mouthing, the movement of bodies
etc., which can be divided into manual features including
hand shape, orientation and movement etc. and non-manual
features including mouthing, eye gaze and eyebrow move-
ments etc.

The forms of input data can be categorized into RGB
information, depth information and skeletal key points infor-
mation, of which RGB information is most commonly used,
for RGB information is closer to the human eye’s visual
perception and easy to obtain by portable devices like mobile
phones and cameras. Depth information usually serves as
additional information for RGB information, which is seldom
used independently. Skeletal key points are in fact a more
refined information which get rid of most of the redundancy,
so it often performs better on the recognition tasks. But
meanwhile, the precise position of key points is not easy to
obtain. References [15], [17], [57], [59], [61], [70], [71], [73],
[75], [77], [88], [90], and [91] all chose RGB information as
input, showing the popularity of this data form. References
[65] and [103] combined the RGB information and skele-
tal key points information, but it is worth noting that their
skeletal key points are all obtained from RGB information by
algorithms. In fact, seldom scholars would acquire position of
skeletal points by markers or sensors currently due to the high
precision of key points detection algorithms like Openpose
etc. Jiang et al. [118] combined RGB and depth information,
generating pose, optical flow, HHA [127], and depth flow
from original resources. It can’t be denied that rich kinds of
data would lead to a better performance, but it would also
cause a drain on time and computing power.
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The body parts information can be categorized into man-
ual component, which refers to the features of hand shape,
orientation, movement and etc., and non-manual component,
which includes the information about mouthing, eye gaze,
expression and etc. Non-manual component usually serves
as additional information for manual component and it could
provide richer information for recognition. Nevertheless, it is
crucial to conduct alignment among different feature streams,
otherwise it may cause confusion to the network.

Koller et al., [128] designed multi-stream CNN-HMM to
process sign gloss, mouth shape and hand shape features
separately and synchronize at sign ends. Gündüz et al. [129]
cropped face regions and hand regions from original video
frames and processed them in different streams. Liang et al.
[130] developed an automatic toolkit for British sign lan-
guage recognition, which took hand-arms movements and
facial expressions into consideration. Zheng et al. [131] pro-
posed a face highlight module to extract facial expression
information and fused it with non-facial features. To fur-
ther describe hand movements, optical flow could also be
used to improve the performance network [71], [118], [132].
Slimane et al. [133] used CNN to extract features from full
frame and employed self-attention for temporal modeling.
In addition, a secondary stream for the cropped handshape
sequences was added, and an attention mechanism was used
to focus only on the required context and discard unnecessary
distant information, efficiently aggregating the hand features
with their appropriate spatio-temporal context. Sarhan et al.
[134] used a three-stream model to process RGB, optical
flow and TD attention data, respectively. For TD attention,
they generate pixel-precise attention maps that focus on both
hands, thereby preserving valuable hand information while
eliminating distracting background information.

Nowadays, more scholars choose to input with full frames
of sign language video, for they contain complete information
including hand shape, movements, facial expression etc. This
requires an elaborately designed network structure that can
extracts useful features and discards redundant information.

3) RECOGNITION
The recognition steps for isolated and continuous SLR are
different. For isolated SLR, the recognition is done by
classification. This can be achieved easily by Softmax func-
tion [71], [72] or SVM [65]. Nevertheless, for continuous
sign language, the recognition result is a sequence, which
is essentially a seq2seq problem. Connectionist temporal
classification (CTC) and Encoder-Decoder Network are two
major approaches prevailed in seq2seq problem and they are
then adopted from NLP field to continuous SLR by scholars.
We will introduce the application of these two methods in
continuous sign language recognition.

a: CONNECTIONIST TEMPORAL CLASSIFICATION
Connectionist temporal classificationwas first put forward by
Grave et al. [93] in 2006. It aims to resolve seq2seq problem

without fine-grained labels. In addition to the units, which
corresponds to the words in dictionary L (the set of all words
that appear in the dataset), in Softmax output layer of CTC,
an extra unit representing ‘blank’ is added to the Softmax
layer. This extra unit aims to establish all possible many-
to-one mapping from output sequence to label sequence as
they may not be equal in length. The dictionary turns to
L ′

= L ∪ {blank} and the emergence possibility of a certain
sentence π can be calculated as follows:

P (π |x) =

∏T

t=1
ytπt∀π ∈ L ′T (5)

where x is an input sequence of length T , L ′T is the set of
length T sequences and ytk is interpreted as the probability of
observing label k at time t . Then the many-to-one mapping
B is defined by removing all blanks and repeated labels
to form the possible output sequence (e.g., B (a− ab−) =

B (−a− abb) = aab Where ‘-’ represents blank) and the
conditional probability of a given labelling l can be calcu-
lating the sum of probabilities of all possible output sequence
as follows:

P (l|x) =

∑
π∈B−1(l)

P (π |x) (6)

The optimization objective is to maximize the conditional
probability of the given labelling l and the result can be
obtained by forward-backward algorithm based on dynamic
programming algorithm.

CTC is commonly used in weakly supervised learning
and it was a common method for continuous sign language
recognition until transformer became popular for visual tasks.
References [61], [70], [77], [78], [90], [92], and [135] all
used CTC as the objective function. Although the CTC-based
approach can produce better results, its drawbacks cannot be
neglected. The equation (6) holds when each frame in target
sequence is conditionally independent, which is exactly what
CTC assumes. Nevertheless, this is unreasonable, for each
frame within the local scope of the sign language video is
intrinsically linked. To alleviate this issue, some other meth-
ods [82], [136] could be tried in the future study. Besides,
in the process of solving dynamic programming, the input
video sequence must be longer than the output label sequence
in length. These led to the development of Encoder-Decoder
Network architectures.

b: ENCODER-DECODER NETWORK
The Encoder-Decoder Network consists of two parts to match
two sequences in an intermediary latent space. Encoder
aims to encode the input sequence into a fixed size vec-
tor, and decoder aims to complete the alignment between
input sequence and target sequence in the latent space and
output the predicting results. This structure could deal with
complicated seq2seq problem, so not only Encoder-Decoder
Network could resolve SLR but even SLT, especially for
Transformer (which is actually an Encoder-Decoder Network
essentially) because it can calculate the attention globally
instead of following the sequence order. Here again we
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TABLE 1. Methods based on CNN and RNN.

emphasis that sign language has its unique grammatical struc-
ture as oppose to spoken language, which may lead to the
different orders of words in a language sequence. SLR is

TABLE 2. Methods based on transformer.

to output the language sequence with same words order in
inputting video sequence while SLT transform the order of
words in output language sequence into our spoken language
form. In fact, some SLT based on encoder-decoder network
incorporates the SLR process, so a uniform presentation is
made here. In the early studies, the encoder-decoder network
of SLR and SLT are all based on RNN [70], [94], [137].
Camgoz et al. [94] embedded the frames in video sequence
by 2D CNN and words in label sequence by linear projection
and inputted them into the encoder-decoder network based on
RNN.
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TABLE 3. Other methods.

Guo et al. [137] constructed the hierarchical encoder-
decodernetwork, which contains two layers of LSTM and
an additional LSTM was used to select key clips from input
videos. Puet al. [70] combined encoder-decoder network with
CTC, designing a BiLSTM encoder, a LSTM decoder and a
CTC decoder. Although encoder-decoder network improves
the performance of SLR and SLT, it may suffer long-term
dependencies between source and target sequence due to
the characteristic of RNN, so attention mechanism [140],
[141] is used to provide extra information to the decoder
to alleviate the long-term dependencies. On the other hand,
Transformer is in fact an Encoder-Decoder Network essen-
tially, which is most popular in SLR and SLT fields. The
multi-head attention, which is the core of Transformer-
based network, can establish links among all embedding
features globally. References [15], [85], [88], [90], [91], [96],
[102], [103], and [104] all designed their network based on
Transformer, which obtained good performance.Although the
encoder-decoder network is popular among SLR and SLT,
it requires large computing power and it is hard to converge,
so some tricks are used to assist the training, like pre-training,
key pooling [137] etc. In addition, the latent space should
be well designed to make the decoding successfully. What’s
more, most encoder-decoder networks are unable to capture

TABLE 4. The comparison of isolated SLR methods.

bi-directional information when decoding, which may omit
some import information among frames. Although BERT
aims to resolve this problem, it requires great computational
cost which is unaffordable for many scholars. For portable
utilization, trade-off should be made.

C. CONCLUSION
We first summarise each of the previously mentioned meth-
ods in Tables 1 to 3. Each table contains the form of the
input data, the feature types, and the methods. At the end of
the table, we summarise the advantages and disadvantages
of such methods. The comparison of isolated SLR methods
is shown in Table 4. The comparison of continuous SLR
methods is shown in Table 5.

From Table 4 it can be found that in relatively small
datasets such as CSL, the performance can be perfectly good.
But when it comes to larger dataset such as WLASL, the
accuracy only reached up to 57.13%. We could also find
that the input with full frame tends to obtain better perfor-
mance. This is due to the rich information included in the
full frame like facial expression, mouthing etc. All methods
mentioned above are not signer-independent, which means
the same signer may appear in both training set and testing
set. This may cause confusion in practical applications if the
network learnsmore information about signer rather than sign
language. De Coster et al. [59] mention in their paper that
because robust models pick up individual idiosyncrasies, val-
idation, and test results will be overly optimistic due to data
leakage if the same person appears in the training, validation,
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TABLE 5. The comparison of continuous SLR methods.

and test sets. In contrast, signer-independent SLR necessitates
distinct signers in the training and test sets, compelling the

TABLE 5. (Continued.) The comparison of continuous SLR methods.

network to focus on sign language information. For example,
the pose-based transformer proposed by Alyami et al. [142]
achieves 99.74% and 68.2% accuracy in signer-dependent
and signer-independent modes, respectively, on the KArSL-
100 dataset. From Table 5 we could find that the majority of
encoder-decoder (Transformer) based methods reduce WER
to below 25 or even below 20, showing the capability of
this structure. More than half scholars choose to use more
than one feature types especially the combination of hand
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and full frame as this combination can not only concentrate
on the hand information locally, but also other information
and relation among different body parts globally. Although
different form of input data may provide additional infor-
mation, RGB is still the most commonly selected data for
it is easy to acquire by portable devices, which are also the
main platforms to conduct SLR in the future. We could also
see that most experiment did not test their network on signer
independent and unseen sentence situation except for [70],
[79], [92], [103], [137], whichmeans themajority approaches
still have limitation on practical applications. This is still a
bottleneck in the field of continuous SLR.

IV. DATASETS
Sign language recognition datasets are one of the most impor-
tant parts in SLR field and they support the validation of
the effect of the algorithm. For sign language recognition,
the early sources of data are often data collected by sen-
sors, which include mainly the position of joint points, hand
movement trajectories, etc. Due to the complexity of the
acquisition device, the size of the data set is often small and
unique, which are not persuasive and comparable. With the
development of machine learning and deep learning, the form
of data is becoming simpler and easier to obtain, all thanks
to the powerful data processing capabilities of deep learning.
Currently, common forms of data include RGB video, RGB-
D video, skeleton key points, etc. Here we briefly introduce
some of the classic datasets as well as the latest ones.

The sign language can be divided into two parts,
i.e., fingerspelling and sign. The fingerspelling is a sim-
ple form of sign language, which represents the alphabet
by different gestures. Strictly, fingerspelling recognition
can be categorized into gesture recognition. ASL alpha-
bet dataset [143] is an American fingerspelling dataset in
which the samples are all static and presented by sin-
gle hand. The dataset is split into two parts according to
their difficulty of recognition. However, most fingerspelling
datasets are recorded in a more homogeneous environ-
ment. In order to achieve the dataset in the wild, Shi
et al. proposed two American sign language fingerspelling
datasets, i.e., ChicagoFSWild [144] and ChicagoFSWild+
[145], In which ChicagoFSWild+ includes 50,402 training
sequences by 216 signers, 3115 development sequences by
22 signers and 1715 test sequences by 22 signers, with no
overlap in signers in the three sets.and contains 10.2% of
left-handed situations and 2.6% of other situations. In addi-
tion to these large datasets, researchers in different countries
also produce small datasets of local fingerspelling, however,
the majority of these datasets are small in scale. Here we
do not give a further introduction. Although fingerspelling
is a form of sign language representation, it needs to be
represented letter by letter, which is cumbersome and time-
consuming. So far, fingerspelling acts as an aid to sign
language expression.

The most commonly used continuous sign language
datasets are RWTH-PHOENIX-Weather 2014 [35] and

RWTH-PHOENIX-Weather 2014T [94], containing German
Sign Language (GSL) collected from weather forecast pro-
grammes. RWTH-PHOENIX-Weather 2014 contains 45,760
video samples at 210 × 260 resolution from 9 different sign-
ers. In addition, the dataset provides videos of the signer’s
right hand movement trajectory. RWTH-PHOENIX-Weather
2014T is an extension of the RWTH-PHOENIX-Weather
2014 corpus and aims for SLT task. It is presented by 9 differ-
ent signers with a vocabulary of 1066 different sign glosses
in sign language and 2887 different words in German spo-
ken language. The total number of video samples are 8257.
SIGNUM [146] was created by Ulrich von Agris et al. from
RWTHAachenUniversity. It is also a German Sign Language
dataset, including 450 isolated glosses and 780 continuous
sentences from 25 different signers.What’s more, Koller et al.
introduced 1miohands datasets [16], which is a dataset on
common gestures in Danish Sign Language, New Zealand
Sign Language and German Sign Language, containing over
one million hand shapes images presented by 23 persons.
It can be used as a pretraining dataset for network to acquire
prior gesture information.

Apart from German Sign Language, American Sign Lan-
guage (ALS) datasets take a large proportion of all datasets.
American Sign Language Lexicon Video Dataset (ASLLVD)
[147] was created by scholars in Boston University. It was
collected from multi-angle by four cameras. Linguistic anno-
tations include gloss labels, morphological and articulatory
classifications of sign type. ASL-LEX [148] is an Ameri-
can Sign Language dataset covering 993 types of glosses,
together with detailed lexical and phonological information
about these glosses like frequency, iconicity, phonologi-
cal composition, and neighborhood density. This dataset
was updated to ASL-LEX 2.0 [149] later and the vocabu-
lary was expanded to 2,723, which includes more detailed
information. How2Sign [150] is a multimodal and Multi-
view continuous American Sign Language dataset, including
RGB, depth and 2D key points information from frontal
view and side view. The total length of videos can be up to
80 hours. Word-Level American Sign Language (WLASL)
[151] dataset features more than 2,000 common different
words in American Sign Language by 119 signers. It con-
sists 21,083 RGB videos without other types of information.
By far it is the largest isolated American Sign Language
dataset, which contains different backgrounds, illumination
conditions. MS-ASL [152] is another isolated sign language
dataset containing 1,000 types of signs which were recorded
in challenging and unconstrained real-life conditions by over
200 signers. The types of signs in 27 Class ASL Sign
Language [153] are less, but theywere performed by 173 indi-
viduals and the resolution of RGB image is up to 3024×3024.
The American Sign Language dataset is well diversified and
informative, and has been one of the main choices for sign
language recognition in recent years.

Chinese Sign Language dataset is also an important part
in SLR field. Chinese Sign Language Recognition Dataset
(CSL) is a comparatively large dataset containing isolated
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TABLE 6. Fingerspelling datasets.

and continuous sign language. The isolated part [154]
includes 500 different types of glosses while the continuous
part [67] contains 100 sentences. The multi-modal informa-
tion like RGB, depth and skeleton key points are provided.
We also have a heard of DEVISIGN dataset but unfortunately,
we haven’t found any access to this dataset and none of the
articles in recent years we have read utilized this dataset
for validation. Currently Chinese sign language datasets are
small in number and size compared to ASL and GSL.

There are also many other sign language datasets in
different countries and regions. BBC-Oxford British Sign
Language Dataset (BOBSL) [155] is a large-scale sign
language dataset, comprising 1,940 episodes of British-Sign-
Language-interpreted BBC broadcast footage. It covers a
wide range of topics from horror, period and medical dramas,
history to sitcoms, nature and science documentaries etc. pre-
sented by 37 signers. LSFB Dataset [156] is a comparatively
large dataset for French Belgian Sign Language presented
by 100 signers. It includes isolated sign language, which
covers 47,551 samples for 395 glosses, and continuous sign
language which is made of over 25 hours of video clips
associated with a time-aligned annotation. LSA 64 [157] is
a database for Argentinian Sign Language, including 64 dif-
ferent types of signs presented by 10 subjects. It was collected
both indoor and outdoor and each subject wore black clothes
and fluorescent-colored gloves. Greek Sign Language (GSL)
dataset [158] is a large-scale dataset for SLR and SLT. It com-
prises RGB and depth information collected from 7 different
signers and there are 310 unique glosses and 331 unique
sentences, up to 10,290 sentence instances, 40,785 gloss
instances.

It also was divided into two parts for signer depen-
dent recognition and signer independent recognition. LSE-
Sign [159] is a lexical database for Spanish Sign Language,
containing 2400 individual signs presented by 2 signers.

Ankara University Turkish Sign Language Dataset (AUTSL)
[87] is a large-scale, multi-modal datasets on isolated sign
language. It includes the RGB, depth and skeleton key points
information of 226 different types of glosses performed by
43 different signers and the total number of videos reach
up to 38,336. KArSL [160] is an Arabic Sign Language
dataset covers 502 types of sign words presented by three
professional signers and there are 75,300 samples in the
whole database. It was recorded in fixed background in green
and signers were not restricted to wear specific clothes.
It also includes three modalities i.e., RGB, depth and skele-
ton key points. The aforementioned sign language datasets
are categorized based on their sign language types, namely
fingerspelling, isolated, continuous, and a combination of
continuous and isolated signs. Detailed information about
these datasets is presented in Tables 6 through 9, including
data types, scale, recording backgrounds, and dataset char-
acteristics. In recent years, scholars in different countries
and regions introduced their local sign language datasets
and most of them are large in scale and good in qual-
ity. Different types of sign language datasets offer more
choices for researchers to validate their algorithms or build
cross-language recognition models. This is a very important
factor for the improvement of sign language recognition.
It is evident that an increasing number of researchers are
focusing on creating datasets more suitable for real-world
application scenarios. This entails considerations such as
recording in complex backgrounds and specific usage sce-
narios as considered by GSL. Additionally, factors like the
number of signers, signer independence, professional level
of signers, and dominant hand usage are taken into account.
Consequently, the collection of datasets tailored to real-world
application scenarios should comprehensively consider both
recording environments and demonstrators as key factors.
In terms of annotation, a growing number of continuous sign
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TABLE 7. Isolated sign language datasets.
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TABLE 8. Continuous sign language datasets.

TABLE 9. Dataset containing isolated and continuous sign language.

language datasets, such as RWTH-PHOENIX-Weather 2014,
provide not only sentence-level annotations but also word-
level annotations.

This dual annotation approach facilitates researchers to
explore the data from both sentence and word segmenta-
tion perspectives. In contrast to most isolated sign language
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datasets that only annotate isolated word labels, datasets
like ASL-LEX and ASLLVD offer additional phonologi-
cal information and linguistic annotations. This provides
researchers with more diverse entry points. For instance,
Kezar [162] proposed improving sign language recognition
through phonological enhancements. Therefore, it is desir-
able that the annotation of the dataset be as comprehensive
as possible to provide researchers with a variety of research
perspectives. In addition, from the perspective of dataset
construction, in order to reduce bias in the dataset, it should
include representative samples from different ages, genders,
body types and physical characteristics, and clothing, while
ensuring necessary privacy protection for signers.

V. CHALLENGES AND FUTURE DIRECTIONS
Currently, research in sign language recognition has reached
a kind of bottleneck. On one hand, isolated sign language
recognition is near perfect in small to medium sized datasets,
but still underperforms on large scale datasets. On the other
hand, continuous sign language recognition can achieve good
results in simple scenarios, but there is still much room for
improvement in complex scenarios. The specific questions
are as follows, which are also the future trends.

A. THE LENGTH OF VIDEOS IS SHORT
To the best of our knowledge, the length of the videos is
short in most datasets especially for continuous sign language
datasets. Nevertheless, in reality, sign language is mostly
long sentences and there are no signs of division between
sentences. It is not known whether the current method can
be used in real-life long-sentence sign language recognition.
On the other hand, current methods lack the ability to han-
dle long videos, RNN-based methods suffer from long-term
dependencies, and Transformer-based methods increase the
number of operations exponentially. Therefore, the improve-
ment of the model’s ability to process long sentences and to
accurately segment between sentences, as well as its adapt-
ability to short sentences, still requires further research.

B. UNSEEN SENTENCE AND SIGNER INDEPENDENT
CONDITIONS ARE NOT CONSIDERED
The recognition of different signers and unseen sentence
are important in sign language recognition. Signer indepen-
dent means that signers used for validation are different
from those used for training while unseen sentence means
that sentences in the testing set have never occurred but
each of their words has appeared in other sentences in
the training set. This is relevant to whether sign language
recognition can actually be used for practical applications.
References [70], [79], [92], [103], and [137] all tested
their models on signer independent and unseen sentence
conditions but the majority of studies didn’t. Due to the
variations among signers in aspects such as speed and body
dimensions, models may capture individual traits, leading to
challenges in performance when unseen signers are presented
[163]. Methods that are not demonstrator-independent often

struggle to perform well with signers outside the training
set, resulting in a notable performance decline when new
users employ the system. Regrettably, collecting sufficient
training data from each new user to retrain the sign lan-
guage recognition (SLR) models is impractical. In contrast,
signer-independent SLR offers greater practicality, enabling
new users to directly utilize the system without the need for
gathering data for training. For the recognition of unseen
sentences, one aspect involves researching how to enable the
model to learn lexical-level features from massive datasets of
sentence sequences. On another note, pursuingmore effective
algorithms for vocabulary segmentation remains a significant
and meaningful direction for research.

C. NO ABILITY TO RECOGNIZE SIGN LANGUAGE OUTSIDE
THE DATASET
Sign language vocabulary is so large that it is difficult to
capture it all by building a dataset, so getting the models to
learn the new sign language themselves will be one of the
main solutions. Currently, some scholars [164], [165], [166]
have carried out research on isolated sign language recogni-
tion based on few-shot learning or zero-shot learning. There
is still a large room for improvement. As for continuous sign
language, we haven’t found any research on few-shot learning
or zero-shot learning. Consequently, conducting research on
few-shot and zero-shot learning for isolated and continuous
sign language remains a highly challenging task.

D. THE RECOGNITION ON MULTI-PERSON CONDITION IS
NOT CONSIDERED
All the samples in current datasets concentrate on sin-
gle signer. However, it needs to be sufficiently robust in
multi-person scenarios if sign language recognition is to be
used in real-world applications, for in real-life scenarios there
is often interference from other people. Therefore, designing
and training robust models to focus solely on the signer
presents a worthwhile direction for research.

E. THE COMPLEXITY OF THE MODEL IS IN HIGH LEVEL
Although sign language recognition has achieved good
results on servers, most methods have complex models and
are difficult to implement on portable devices. However,
the goal of sign language recognition is to provide an aid
to everyday communication between the deaf and people
without hearing impairments, which is impossible through
computers. Therefore, a future key research direction is the
lightweighting of models to facilitate deployment on portable
devices.

F. ONLINE RECOGNITION IS NOT PERFORMED
Both BERT and BiLSTM models are designed to capture
contextual information from both past and future elements in
a sequence. Most work is now done with recorded data sets as
the validation target, which means the contextual information
can be easily accessed by BiLSTM or BERT [75], [79], [92],
[102], [103], [104], [132], [135]. Nevertheless, in practice,
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sign language presentations are unpredictable and we can
only predict with the information in the previous section.
Therefore, some methods based on BiLSTM and BERT will
no longer work. How to use one-direction sequences for
prediction and achieve better recognition results will become
an important research topic.

VI. CONCLUSION
Sign language recognition is a vital area of research because it
is so relevant to our lives. The use of computer-aided sign lan-
guage recognition is of great social importance as it can build
bridges between the deaf and people without hearing impair-
ments and help integrate deaf people into society. In this
paper, we gave an introduction on sign language recognition,
including methods based on traditional approaches and deep
learning, metrics, datasets, challenges and future directions.
We especially introduce some state-of-the-art methods like
Transformer-based sign language recognition networks, and
the characteristics of different datasets. The advantages and
disadvantages of different methods are analyzed and com-
pared, and the structures of different methods are split and
introduced. Currently, as algorithms continue to evolve, sign
language recognition is showing increasingly good results on
large datasets based on deep learning. Sign language recog-
nition based on traditional methods has gradually become
less applicable for reasons such as susceptibility to factors
such as light and occlusion, and poor effect on large-scale
data processing. On the other hand, the availability of many
large datasets has allowed for more effective validation of
recognition methods. Yet we should also see that due to the
complexity of themodel, signer independence and some other
reasons, sign language recognition still has a long way to
go before practical applications.In response to the primary
challenges present in SLR, we conducted an in-depth analysis
and provided potential research directions for researchers to
consider. We hope that this review will help scholars in the
field of sign language recognition research, as well as those
whowill be conducting research on sign language recognition
by providing them with some ideas for their research.
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