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ABSTRACT In this paper, we present an innovative methodology for generating virtual received
signal strength indicator (RSSI) fingerprint maps to improve indoor localization systems and wireless
communication systems using RSSI. Focusing on the challenge of extensive labor and time required in
traditional data collection, we propose a generative model that combines customized attention mechanism
with a conditional variational autoencoder (cVAE), leveraging datasets compiled from direct measurements
of RSSI values from different access points in a real-world indoor environment. Our model uniquely
synthesizes high-quality virtual RSSI maps, significantly reducing the need for extensive physical data
collection while enhancing the accuracy and efficiency of indoor positioning systems. By integrating
measured data with innovative data generation techniques, our approach offers a novel solution to indoor
localization challenges. In addition, this model can augment high-quality synthetic data for indoor wireless
signals to expand the volume of available data. We quantitatively demonstrate the effectiveness of our model,
showing an average improvement of over 40% in Euclidean distance errors across several machine learning
algorithms compared to existing methods. Our experiments validate that the virtual RSSI fingerprint map
yields accurate position estimates, with performance enhancements observed in algorithms that confirm the
utility in real-world scenarios. The contribution of our research improves indoor localization systems by
improving indoor positioning accuracy and addresses the limitations of traditional fingerprinting methods,
setting the stage for future innovations in wireless communication.

INDEX TERMS Deep learning, fingerprint map, generative model, indoor localization.

I. INTRODUCTION
Wireless connectivity has become the backbone of modern
digital life, with WiFi networks prevalent in various indoor
environments [1]. Control, management, and performance
optimization of these networks often utilize the received sig-
nal strength indicator (RSSI), a measurement that evaluates
the power level of WiFi receiver is receiving from an access
point (AP). Despite the importance of RSSI data, accurate
measurement and prediction of RSSI data has long been
a complex problem due to the irregular nature of indoor
radio waves, which are primarily affected by factors such as
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interference, obstructions, and multipath fading. Therefore,
various studies are being conducted to obtain RSSI data
accurately limited by various factors [2]. To address this,
numerous studies are investigating methods to accurately
capture RSSI data limited by these factors [3].

Our research is particularly relevant in the context of
indoor localization, where high performance and accuracy
are important [4], [5]. Fingerprint-based localization is one
of the widely used methods for indoor localization, which
records the RSSI of various APs at all locations. However,
this method is typically labor intensive and time-consuming
and requires extensive site surveys. A key challenge is to
reduce the time and effort required for in situ data collection
and provide an alternative to generating virtual fingerprint
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maps without comprehensive in situ data. Furthermore,
the performance of RSSI positioning systems critically
relies on access to accurate RSSI data embedded within
fingerprint maps. While deep learning algorithms readily
capitalize on these data to improve positioning accuracy,
a significant bottleneck lies in data acquisition; securing
sufficient volumes of high-quality training data remains a
persistent challenge [6]. This underscores the urgent need
for robust RSSI data augmentation methods. Existing studies
in this domain focus mainly on replicating existing data for
augmentation purposes [7], [8], [9], [10], [11]. However,
these methodologies often fall short in adequately capturing
the intricate variability and multifaceted nature of RSSI data,
leading to constraints in both data exploitation and system
adaptability.

On the other hand, the generative model is a cornerstone
in machine learning research, especially when working with
limited or imbalanced datasets [12], [13]. It is a technique
for creating new data instances that mimic the underlying
characteristics of the original data, thereby enabling models
to learn more robust and generalizable patterns. In the
context of WiFi RSSI fingerprint map, generation can help
alleviate several issues of certain signal strength levels or
locations such as overfitting, and imbalance in data from
different APs [14]. Moreover, the model is designed to
dynamically account for indoor environmental variables
such as obstructions and human movement, ensuring robust
performance in real-world scenarios.

In this study, we propose DeepRSSI, an innovative model
for generating a WiFi RSSI fingerprint map to improve
fingerprint-based localization. Through this, generating a
virtual fingerprint map reduces the need for laborious field
work in fingerprint mapping, improving the efficiency and
accuracy of indoor localization. Addressing these challenges
underscores the vital importance and urgency of our research.

Our approach focuses on the innovative concept of virtual
WiFi RSSI generation, a method that not only improves
the accuracy of indoor localization, but also improves
the performance of existing artificial intelligence-based
RSSI algorithms through data generation. RSSI positioning
techniques, which has the disadvantage of requiring a lot of
existing resources, can be improved as a more influential tool
by effectively performing indoor positioning through the data
generated by our model. This dual advantage, which can also
enhance existing applications and enhance the required data
by generating precise virtual maps by properly learning the
WiFi RSSI data, suggests significant advances in the field of
WiFi-based indoor localization and network optimization.

Contributions of this paper: (1) Novel generative
model. In this paper, we propose a high performance
generative model based on a novel attention mechanism as
sequential gate self-attention for DeepRSSI. The sequential
gate self-attention mechanism enhances the ability of the
model to focus on the most informative parts of the
data sequence and to incorporate time-dependent positional
information in the learning process, thereby achieving

superior results. In addition, to ensure the reliable learning
of the model by the sequential gate self-attention and
CNN layers, we utilize a loss function that incorporates a
reparameterization trick based on Gaussian distribution. Our
approach exploits the intrinsic temporal structure in RSSI
data and the expressive power of conditional variational
autoencoder (cVAE) to generate high-quality synthetic RSSI
data.

Contributions of this paper: (2) Empirical experimen-
tal data. Another novel aspect of the research is our use of
self-measured RSSI data. Utilizing the unique self-measured
RSSI dataset, we offer a comprehensive evaluation of our
model, including visual comparisons of RSSI contour maps,
quantitative analysis of deviations, and simple discrimination
models. The utilization of self-measured data not only
adds authenticity to our research but also increases the
applicability of our model, ensuring it caters to real-world
scenarios. To validate the effectiveness of the proposed
model, this paper presents a comprehensive evaluation study.
This study includes visual comparisons of RSSI contour
maps and quantitative analysis of deviations to evaluate
the improved performance of data augmentation. This
comprehensive evaluation method aims to provide a clear
view of how our proposed generative model can enhance the
quality and utility of RSSI data in indoor wireless networks.

Contributions of this paper: (3) Enhanced Indoor
Localization. The proposed DeepRSSI model can reduce
the time and effort spent on field investigations by gen-
erating virtual fingerprint maps without thorough field
investigations, while maintaining or reducing localization
errors. An innovative DeepRSSI method that conditionally
generates a virtual RSSI fingerprint map not only reduces
the need for extensive site investigations but also provides
the possibility to reduce localization errors. Accordingly,
our study represents a practical leap forward that makes the
process of indoor localization-related tasks more streamlined
and more efficient and accurate.

The overall goal of this study is to improve the robustness
and abundance of RSSI data and optimize fingerprint-based
localization performance through virtual fingerprint map.

The remaining part of the paper is organized as follows.
Section II introduces detailed descriptions of the character-
istics of RSSI data and various data generation techniques.
Section III is the structure of the generative model based
artificial intelligence for RSSI data, and Section IV is the
experiment and performance evaluation result of DeepRSSI.
Section V is the conclusion of this paper.

II. PRELIMINARY
A. RECEIVED SIGNAL STRENGTH INDICATOR
RSSI measures the power level of a signal received from
a wireless network and functions as a relative measure
of signal strength from a specific AP. RSSI data has
diverse applications, such as calculating the location of
individuals or objects, and even in the creation of routing
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TABLE 1. Comparison of generative models in fingerprint-based localization.

tables [22]. Techniques utilizing Wi-Fi and bluetooth low
energy (BLE) for indoor location measurement are precise
but infrastructure-intensive and consume a lot of resources
such as cost and time. Previous studies have explored the use
and characteristics of Wi-Fi RSSI data to enhance wireless
communication [23], [24].

RSSI also introduces variability in signals due to several
factors, such as physical layout and fading of the environ-
ment, which can lead to inherent variability. Therefore, our
objective is to study a model that learns with identifiable pat-
terns attributed to the physical and structural characteristics
of indoor environments based on the periodic characteristics
of the RSSI data studied previously [25].
Furthermore, our study differentiates itself from these

previous studies because it not only analyzes RSSI data,
but also proposes a new model for the generation of this
data, which is designed to dynamically adapt to various
indoor environmental conditions such as obstacles and human
movement

B. GENERATIVE MODELS
Generative models such as the following are widely used
to enrich datasets, especially when the amount of available
data is limited. Autoencoder (AE) is primarily used for
data compression and noise reduction [26]. They consist of
an encoder that maps input to a lower-dimensional latent
space and a decoder that attempts to reconstruct the original
data from the latent representation. While AE can learn to
replicate the training data accurately, they may struggle to
generate novel samples that are not directly based on the
training data. Variational auto encoder (VAE) is a class of
generative models that have gained considerable attention
due to their ability to model complex, high-dimensional data
distributions [27]. VAE maintains the characteristics of there

AE, but increases the diversity of themodels output by adding
a random variable to the latent representation. In this process,
more colorful data can be generated while being close to
the original data. Shorten and Khoshgoftaar [28] presented
a comprehensive overview of data generation techniques
in various domains. In general, GAN is widely used in
various fields and applications such as images [29]. However,
a recent study has shown that the effectiveness of VAE has
improved with data generation to improve the performance
of classification models [30].

In order to generate sequential table RSSI data that have
inherently stochastic properties, we chose to advance the
architecture of VAE due to their efficiency in generating
various sample arrays suitable for this task. This selection
is particularly relevant given the nature of RSSI data that
require a subtle understanding of stochastic behavior for
accurate generation. Although GAN excels at capturing and
replicating high-dimensional data distributions, it often faces
challenges in terms of training stability and mode collapse.
On the other hand, the VAE-based generative model we
target seeks to more effectively encode the spatiotemporal
dependencies of the data through the latent space and learn
reliably for the ability to create structured latent spaces that
are important to RSSI data.

Therefore, we extend the capabilities specifically for
generating RSSI data based on the unique strengths of the
VAE. The enhanced features of DeepRSSI based on the
VAEs architecture are designed to better capture the temporal
and spatial dependencies inherent in RSSI data, which
are often overlooked in conventional generative models.
Therefore, these improved VAE architectures not only
generate various RSSI data samples but also adequately learn
the actual signal changes these samples are seen in the indoor
environment.
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FIGURE 1. The procedure of generating indoor WiFi RSSI fingerprint map data through artificial intelligence model.

FIGURE 2. Fig. 2a, Fig. 2b, Fig. 2c, and Fig. 2d are the heat maps of the data measured on the fourth floor.

In following section, we design a system to demonstrate
the adaptability and effectiveness of our DeepRSSI based on
the characteristics of RSSI data.

C. SELF ATTENTION MECHANISM
The attention mechanism is a technique for efficient cal-
culation by selectively focusing on specific features or
areas of input data [31]. Attention mechanisms are used
in various ways such as additive attention, dots attention,

and self-attention [32], [33]. The self-attention mechanism
is a specific type of attention mechanism for processing
sequential data, which has been increasingly used in various
applications such as natural language processing or sequence-
to-sequence tasks [33]. It has the ability to model dependen-
cies regardless of their distance in the sequence, capturing
long-term dependencies, and contributing to more accurate
representation of sequences. This mechanism calculates the
relevance of each element in a sequence to all other elements,
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FIGURE 3. Compare autocorrelation between original RSSI data and
shuffled RSSI data for each AP.

allowing the model to focus on the most relevant parts during
data processing [34].

The self-attention mechanism that sorts and weights
the importance of various functions within a sequence
becomes a key innovation in our sequential gate self-attention
mechanism. Our study builds on previous research in these
areas but significantly extends it by proposing a uniquemodel
for RSSI data generation.

D. NOVELTY OF DEEPRSSI
Advances in indoor localization through RSSI-based fin-
gerprinting have focused mainly on improving database
quality and coverage. Studies by Seong and Seo [15] and
Serreli et al. [18] in Table 1 have used generative models
such as AE and GAN to augment fingerprint data, and
aimed to reduce manual work required for data collection and
improve positioning accuracy through optimized synthetic
RSSImodels. These studies mainly augment existing datasets
without adaptability to specific requirements of various
indoor scenario and characteristics of radio waves or WiFi
signal.

In contrast, DeepRSSI introduces a subtle approach using
a cVAE combined with a novel sequential gate self-attention
mechanism. The method goes beyond simple data augmenta-
tion to conditional generation for a virtual RSSI map. It is
a significant advance from the general data augmentation
of existing studies, providing an efficient solution to adapt
to the unique characteristics of different environments and
generating maps that reflect the complex signal propagation
dynamics within the indoor space. This feature distinguishes
our approach from others, such as the augmentation-oriented
tasks such as Suroso et al. [20], [21] and Njima et al. [16],
[9], or in anomaly detection-oriented RAD-GAN such as
Ai et al. [19] in Table 1.
Therefore, DeepRSSI is a strategic advancement that goes

beyond the static generation approach seen in previous
studies in Table 1 for RSSI data, and the conditional

generation of virtual maps to address the labor intensive
deployment of fingerprint databases is a distinct contribution
from existing studies.

III. DESIGN PRINCIPLE AND ARCHITECTURE
In this section, we detail the design principles and architecture
of his approach to create a virtual fingerprint map, as shown in
Fig. 1. We present DeepRSSI, an architecture of cVAE with
various deep learning techniques that conditionally control
floor data to generate RSSI data. In addition, we propose a
novel attention mechanism based on the self-attention that
allows the original RSSI data to be effectively generated using
cVAE as shown in Fig. 4.

1) ANALYTICAL APPROACH FOR RSSI DATA
We designed the model to generate an effective fingerprint
map for accurate indoor localization while preserving the
spatial properties of the environment. The model aims
to capture the underlying distribution of the strength and
sequence data for RSSI signals associated with each access
point (AP), while taking into account the location and floor
information. We represent the importance of RSSI data
sequences at APs (A,B,C ,D), as shown in Fig. 3. This visual-
ization compares the original RSSI signal sequence with the
shuffled RSSI signal sequence for each AP, demonstrating
the importance of sequence order in RSSI data analysis. The
Lag in Fig.3 signifies the temporal delay between consecutive
RSSI readings. In the unshuffled original RSSI data, this
delay is characterized by a high autocorrelation, indicating
a strong sequential dependency. Conversely, when the RSSI
sequence is randomized, amarked decrease in autocorrelation
is observed across all APs. This underscores the necessity of
retaining the sequential integrity of RSSI data for the precise
analysis and learning of artificial intelligence models.

We also clearly indicate the spatial variation of RSSI
data in the indoor environment through a heat map showing
the distribution of the average signal intensity of each AP,
as shown in Fig. 2. These heat maps show the spatial
variability and signal distribution patterns implied by eachAP
in RSSI data and highlight the need for models that accurately
interpret and utilize these data.

Overall, Figs. 2 and 3, measured at each AP, highlight
that both temporal and spatial aspects must be considered for
proper learning of RSSI data.

A. SEQUENTIAL GATE SELF-ATTENTION MECHANISM
One of the major components of our DeepRSSI is the
sequential gate self-attention mechanism. This mechanism
builds on the principle of the transformer based self-
attention mechanism [33]. However, we introduce several
modifications that make it particularly suitable for processing
sequential RSSI data. Without this mechanism, learning
from RSSI data proves challenging and unstable due to the
inherent complexities about WiFi RSSI data. The proposed
mechanism enables superior learning of WiFi RSSI patterns
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FIGURE 4. The overall structure of encoder and decoder layers of DeepRSSI model.

by effectively considering complexity and has been proven in
real-world implementations.

The objective of self-attention is to calculate an attention
score for each element in the sequence, reflecting the
relevance of that element in the context of the other
elements [33]. We introduce the sequential gate self-attention
mechanism to consider the relationships among different
RSSI measurements, thereby enhancing the learning ability
of model to simulate realistic WiFi RSSI patterns.

Our attention mechanism assigns different weights to dif-
ferent vectors in an input WiFi RSSI sequence x1, x2, . . . , xn.
In addition, this calculates queries (Q), keys (K ), and values
(V ) for each element. These are calculated by applying
linear transformations to the input sequence with time-based
positional encoding (TPE), as shown in:

inputs = (x1, x2, . . . , xn) + TPE, (1)

Q = inputs ·Wq, (2)

K = inputs ·Wk , (3)

V = inputs ·Wv. (4)

In these equations,Wq,Wk , andWv are weight matrices for
the query, key, and value computations, respectively.

The attention mechanism in our model works by calcu-
lating attention scores and attention weights. The attention
scores are determined based on the dot product of the
query and key in the RSSI dataset, with a scaling factor to
normalize the results. Attention weights are then computed
using a softmax function applied to attention scores, ensuring
a distribution between 0 and 1, which allows them to be

interpreted as probabilities. This process is fundamental in
determining the relative importance of each element in the
RSSI data sequence.
The attention scores are then calculated based on the dot

product of the query and key for each pair of elements in RSSI
dataset, scaled by the square root of these dimensions. The
attention weights are then calculated by applying the softmax
function to the attention scores. The softmax function ensures
that the attentionweights sum to 1 and are distributed between
0 and 1, which allows them to be interpreted as probabilities.
Attention scores and attention weights are calculated as
shown in Eqs. (5)-(6) below:

AttentionScores =
QKT
√
d

+ α(Q,K ), (5)

AttentionWeights = softmax(AttentionScores), (6)

where d is the dimension of the query and key Q and
K . KT denotes the transpose of the matrix K , and the
α(Q,K ) function is designed to introduce an additional layer
of contextual information into the attention mechanism by
integrating the variances, which are statistical measures of
the query and key. The function α(Q,K ) is computed as
the product of the variances of each vector Q and K . This
computation not only enhances the attention scores but also
embeds deeper insights into the data distribution, reflecting
the inherent variability and dynamics of the RSSI data.

Finally, the output is calculated as a weighted sum of gated
residual connection with value, where the weights are given
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by the attention weights as shown in the following equation:

Output = inputs+ Gate · (AttentionWeights · V ). (7)

This allows us to generate fake data that is more realistic and
context-aware. According to Eqs. (1)-(7), our model not only
incorporates temporal features through attention weights,
but also encodes information by considering the physical
distribution of AP signals within the input data, allowing the
output to reflect both temporal and spatial characteristics of
the RSSI environment. The following subsections describe
details of these techniques.

We aim to improve the ability of the model to capture
temporal dependencies and intricate spatial patterns within
the RSSI data. Therefore, we introduce a special attention
mechanism that combines two additional methods that are
used to learn the properties of RSSI data well.

1) TIME-BASED POSITIONAL ENCODING
The original self-attention mechanism treats the input ele-
ments independently of their positions in the sequence [35].
While this approach is generally applicable, it may not
fully capture the characteristics of RSSI data, which can
exhibit structured patterns under certain conditions, as well as
random fluctuations due to dynamic environmental variables.
Our enhanced model is designed to account for these
unique aspects of RSSI data. In the context of Wi-Fi signal
strength measurements, the order of data points is vitally
important. To improve existing limitations, we introduce a
novel TPE using in Eqs. (1)-(4). The TPE consists of two
main components: the positional encoding (PE) and the time
embedding (TE).

Firstly, we construct the positional encoding, denoted as
PE used in the Transformer for a given position pos and
dimension d which can be 2i or 2i + 1 [33]. The elements
of this matrix are calculated by the following function, which
incorporates a balance of sine and cosine functions:

PE(pos,2i) = sin
( pos
100002i/d

)
, (8)

PE(pos,2i+1) = cos
( pos
100002i/d

)
. (9)

This encoding is added to the input sequence before it is
passed to our attention mechanism, thereby allowing the
mechanism to take the sequence order into account.

Then, we introduce a new process of TE for TPE that
further strengthens the ability of model to capture temporal
patterns. The TE is created by applying a dot product
of the weight matrix Wtime with the input sequence and
passing the result through a sinusoidal function. The use of a
sinusoidal function provides a continuous and differentiable
way to encode time information, which is a fundamental
concept in signal processing that allows us to represent any
periodic function as a sum of sinusoidal components of
different frequencies. This is achieved by applying a linear
transformation followed by a sinusoidal function to the input

sequence as follows:

TE = sin(Wtime · inputs). (10)

The trainable weight matrix Wtime with Glorot uniform
distribution is used to prevent vanishing and to learn
important temporal features in the data during the training
process [36].

Then, we combine both the PE and TE to create the TPE
as follows:

TPE = PE + TE . (11)

With respect to the input sequence, the resulting TPE is
both location and time aware, allowing the sequential gate
self-attention mechanism to better capture and exploit the
temporal patterns and dependencies inherent in WiFi RSSI
data.

Specifically, the encoding techniques we introduce allow
our AI model to dynamically respond to changes in the
environment within the indoor environment. These factors are
known to cause complexity in RSSI data, and in this regard,
the adaptability of our model represents a significant step
forward in addressing this complexity.

2) GATED RESIDUAL CONNECTION
In DeepRSSI, we introduce a gated residual connection that
modulates the contribution of each element in the sequence
based on its importance, thereby selectively focusing on the
crucial elements. In practice, residual connections, which
can bypass the self-attention layer for elements that are
not considered important, are often used to improve model
performance [33], [37].

The purpose of our gated residual connection is to
modulate the contribution of output based on its relevance
to the final sequence representation. This introduces an
additional level of adaptivity to the model, allowing it to
focus its attention on the most informative parts of the input
sequence. Therefore, our model selectively controls how
much information to let through by using gated residual
connection unlike traditional attention mechanisms that
equally treat the output.

This gated residual connection can dynamically adjust the
contributions from different parts of the sequence, allowing
the model to focus on more relevant features and enhancing
its ability to discern meaningful patterns in the RSSI data.

The gated residual connection operates through a learned
linear transformation applied to the input sequence, followed
by a sigmoid activation function as shown in Eq. (12):

Gate = σ (Wgate · inputs), (12)

whereWgate is a weight matrix that is learned during training.
Through this, the gated residual connection empowers our
model to focus more on the salient parts of the input sequence
as shown in Eq. (7), selectively amplifying important features
and attenuating less meaningful ones. This ability is crucial
for dealing with RSSI data, which often contains temporal
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Algorithm 1 Sequential Gate Self-Attention
1: procedure Sequential gate self-attention

mechanism(inputs)
2: procedure build(self , input_shape)
3: Initialize attention weightsWq,Wk ,Wv
4: Initialize gate weightsWgate
5: Define position as a range of input sequence
6: Compute div_term using 2i/d on the position for
i in range of dimensions

7: Compute PE(pos,2i) and PE(pos,2i+1) using sine
and cosine on the div_term and position to form PE

8: Initialize time weightWtime
9: end procedure

10: inputs+ = PE
11: TE = sin(Wtime · inputs)
12: inputs+ = TE
13: Q = inputs ·Wq
14: K = inputs ·Wk
15: V = inputs ·Wv

16: AttentionScores =
QKT
√
d

+ α(Q,K )
17: AttentionWeights = softmax(AttentionScores)
18: weighted_inputs = AttentionWeights · V
19: gate = σ (Wgate · inputs)
20: output = inputs+ gate · weighted_inputs
21: return output
22: end procedure

patterns with variable importance across different time steps.
The gated residual connection allows the model to adaptively
capture the most informative aspects of the RSSI data.

B. GENERATIVE MODEL BASED ON CVAE
In this section, we discuss the principles and architectural
details of the DeepRSSI model designed to generate RSSI
data with the aid of cVAE model with sequential gate self-
attention mechanism.

In the cVAE model as shown in Fig. 4, we employ an
encoder-decoder architecture to map the RSSI data into a
latent space and subsequently generate new data instances as
shown in Eqs. (13)-(14):

Encoder : qφ(z|x, c) = N (z; µφ(x, c), σφ(x, c)), (13)

Decoder : pθ (x|z, c) = N (x; µθ (z, c), σθ (z, c)). (14)

The encoder, given an input x and a condition c, produces
a Gaussian distribution over the latent variable z. The mean
(µ) and standard deviation (σ ) of this distribution are
functions of the input data and the condition. In contrast,
the decoder generates new data instances from the provided
latent representations and conditions. For a given latent
representation z and condition c, the decoder defines a
Gaussian distribution over the reconstructed data x. The
mean (µ) and standard deviation (σ ) of this distribution are
functions of the latent representation and the condition.

In addition, we use 1-D convolutional neural network
(CNN) in the cVAE model to effectively extract features of
various signal strengths implied by RSSI data, as shown in
Fig. 2, and put them in a shape suitable for the proposed
sequential gate self attention mechanism as shown in Fig. 4.
Given an input x, the encoder defines a distribution qφ(z|x)
over the latent variable z, while the decoder defines the
conditional distribution pθ (x|z). The objective function of
our model, known as the evidence lower bound (ELBO)
plays a crucial role [27]. It ensures the fidelity of the
reconstructed data and maintains the regularity of the latent
space. Specifically, we achieve efficient learning between
data fidelity and latent regularity by optimizing model
parameters to stabilize and optimize ELBO. The traditional
cVAE loss function which combined with mean square error
(MSE) and Kullback-Leibler (KL) divergence optimizes both
the reconstruction and distribution of RSSI data as shown in
Eq. (15):

Loss : L(θ, φ; x, c) = Ez ∼ qφ(z|x, c)[log pθ (x|z, c)]

− DKL(qφ(z|x, c)||p(z)). (15)

Algorithm 2 Generative Model Base cVAE
1: procedure cVAE(input, coordinates)
2: enco_node = concatenate(input, coordinates)
3: Apply Dense layers with leaky_relu to enco_node
4: Reshape enco_node for 1D Convolution
5: Apply 1D Convolution to enco_node
6: Apply sequential gate self-attention to enco_node
7: Flatten enco_node
8: z_mean = Dense(latent_dim)(enco_node)
9: z_log_var = Dense(latent_dim)(enco_node)
10: z = sampling([z_mean, z_log_var])
11: deco_node = concatenate(coordinates, z)
12: Apply Dense layers with leaky_relu to deco_node
13: Reshape deco_node for 1D Convolution
14: Apply 1D Convolution to deco_node
15: Apply sequential gate self-attention to deco_node
16: prediction = Dense(input_num)(deco_node)
17: return prediction
18: end procedure

In this case, we need to stabilize VAE model with strong
performance to efficiently learn large amounts of RSSI data.
Consequently, we present subtle modifications to traditional
sampling functions that contribute to new improvements
to the original re-parameterization trick by inserting small
constants for numerical stability into the exponent of the
exponential function as the following Eq. (16):

z = µ + exp
(
1
2
log

(
σ 2

))
∗ ϵ, (16)

where z denotes the sampled latent variable, and µ and
σ represent the mean and standard deviation of the latent
variable z respectively. Traditionally, a sample z would be
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drawn from this distribution which is characterized by a
mean µ and a standard deviation σ . However, this random
sampling operation is non-differentiable and thus disrupts
the backpropagation process integral to the training of neural
networks. To circumvent this restriction, we use a standard
normal distribution random variable ϵ. We apply a reparam-
eterization trick that separates the stochastic part from the
deterministic part of the network [27]. This ensures that z
becomes a deterministic function of the parameters and ϵ,
making the network fully differentiable from gradient-based
optimization methods and serving as an effective means to
stabilize the VAE model and efficiently learn from large
amounts of RSSI data. The term exp

(
1
2 log

(
σ 2

))
∗ ϵ in the

exponent is derived from the transformation of the Gaussian
distribution, serving as an effective means to stabilize the
VAE model and efficiently learn from large amounts of
RSSI data. The log-variance is unbounded from above and
below, which gives more flexibility during optimization. This
contrasts with the variance itself, which is bounded below
by zero. This small modification for numerical stability is
a frequently used idea in the field of machine learning used
according to the model and research purpose [27]. Therefore,
we show through the practical implementation of Section IV
that the trick contributed appropriately to the RSSI generative
model. Through the sampling function that updates these
processes, our cVAE model with CNN layer and Sequential
gate self-attention mechanism is able to generate stable
synthetic data that are similar to the training data and adherent
to specific conditions, which in our case are the RSSI data.
With the sampling function thus updated, the KL divergence
computation is reformulated as shown in Eq. (17):

DKL = −
1
2

J∑
j=1

(
1 + log

((
σj

)2
+ ϵ

)
−

(
µj

)2
−

(
σj

)2)
,

(17)

where DKL is the KL divergence measuring the difference
between the learned latent distribution qφ(z|x) with φ being
the parameters of the encoder and a prior distribution p(z).
Concurrently, pθ (x|z) defined by the decoder parameter
θ serves as a likelihood function that contextualizes the
interaction between the encoder and decoder in the latent
variable space z.

Through these processes, the proposed DeepRSSI model
with sequential gate magnetism is able to generate stable
synthetic data that are similar to the training data and adherent
to specific conditions, which in our case are the RSSI data.

The DeepRSSI model, integrating a cVAE with our
proposed attention mechanism, is meticulously designed
for efficient computation, optimizing both time and space.
The computational complexity of the sequential gate self-
attention mechanism, denoted as O(N 2

· A) for input
sequences of length N and attention dimension A, focuses
computation on the most crucial parts of the data sequence
N . This strategic focus not only explains the quadratic
dependence on sequence length N but also the linear

FIGURE 5. Comparison of cVAE in training process. The blue line
represents training loss, and the orange line represents validation loss.

dependence on attention dimension A, underscoring the
capability of model to efficiently process sequences. The
inclusion of the self-attention mechanism results in a
parameter increase from 31,056 to 31,840, translating to an
approximate 2.52% increase in memory overhead. Despite

66204 VOLUME 12, 2024



N. Yoon et al.: DeepRSSI: Generative Model for Fingerprint-Based Localization

FIGURE 6. Experimental setup for RSSI data collection.

this nominal augmentation in resource requirement, the
efficiency gained in model performance is significant. This
enhancement is achieved by directing computational efforts
towards the most informative segments of the data sequence,
thus improving performance without incurring substantial
additional memory costs.

IV. EXPERIMENTS
In this section, we evaluate the performance by comparing
simulated and original data using quantitative and qualitative
methods.1 The DeepRSSI we present has the potential for
a new paradigm shift that can leapfrog the existing RSSI
fingerprint map technique, which is declining due to cost
and time constraints, by conditionally generating similar
simulation data rather than just augmenting it. Therefore,
we demonstrate the effectiveness of various quantitative
and qualitative evaluations and real-world indoor positioning
of virtually generated fake data. We also demonstrate the
performance of DeepRSSI using directly measured data from
dynamic real-world environments and the necessity of using
sequential gate self-attention mechanisms in DeepRSSI. The
performance evaluation plan entails three core components:
visual comparison of RSSI contour maps, analysis of
quantitative deviations such as variance, and the application
of simple discrimination models. These components provide
a thorough and rigorous evaluation of the effectiveness and
efficiency of the model in improving RSSI data quality, and
thereby fingerprint map-based localization accuracy.

A. IMPLEMENTATION
We implement the sequential gate self attention mechanism
proposed in Section III using Python code as shown in
Algorithm 1 and use it in DeepRSSI model-based cVAE
as shown in Algorithm 2 with parameters such as Table 2.
In detail, we use 3000 epochs and the Adam optimization

1Data related to this paper are available upon request by contacting the
author.

TABLE 2. Training parameters.

function using a learning rate of 0.001, a mean squared
error and KL divergence for loss function and use a callback
function called early stopping to prevent overfitting. The
loss function of a VAE consists of two main components.
First, MSE is used to measure the similarity between
the data learned by the model and the data generated
through data augmentation. Second, the KL Divergence
assesses how closely the latent vector produced by the
encoder matches the normal distribution used for sampling.
Traditional backpropagation is not feasible in VAE when
sampling latent vector, so backpropagation is facilitated by
multiplying the latent vector by the normal distribution.
As training progresses, the mean and variance outputs
from the encoder gradually converge towards the normal
distribution through KL Divergence. This research use Intel
i5-11500 CPU @ 4.60 GHz, 32 GB RAM, Nvidia GeForce
RTX 3060ti for training and data generation. To evaluate
the performance of model effectively, we allocate 90% of
the data for training purposes to ensure a comprehensive
learning process and reserve the remaining 10% for testing so
that the generalization capabilities of model can be evaluated
unbiased.

B. EXPERIMENTS IN REAL-WORLD ENVIRONMENT
1) DATA ACQUISITION
We conduct a wireless site survey using NetSpot on the
Windows 11 Laptop with a network interface card (NIC)
[38]. We conducted the experiments in a controlled indoor
environment with a known layout and designated APs as
shown in Fig. 1. This allowed us to directly capture real-time
RSSI data from the surrounding Wi-Fi network. We also use
data measured in an indoor environment without controlling
for obstacles such as objects, human movement effects, and
other variables that may affect the proposed model.

The dataset was obtained from a right-angled, densely
populated building with numerous wireless networks, which
represents common indoor environments. This enhances the
reliability and applicability of our models and experimental
outcomes. To ensure accurate and reliable measurements,
we carefully calibrated the NIC and positioned the laptop at
various locations within the indoor environment.

Figure 6 illustrates the experimental setup used in the
RSSI data collection process. Figure 6 included a laptop
with a NIC for recording RSSI values, with reference points
strategically placed within the interior environment. Each red
dot on the floor marks to a grid spaced 5m apart to display
the reference locations where RSSI readings from the various
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FIGURE 7. Visual comparison between real RSSI data and virtual data at each AP.

APs are meticulously recorded. The selection of 5m intervals
provides the basis for DeepRSSI to generate finer-interval
virtual maps. This methodology demonstrates the ability of
DeepRSSI to generate detailed indoor maps from sparse
datasets, reducing the need for thorough data collection while
maintaining high localization accuracy. Subsequently, further
measurements are made with smaller intervals for testing for
performance evaluation.

There are several advantages to measuring RSSI data
directly using the Netspot program and a Windows 11 laptop
equipped with a NIC. It enables us to capture real-time RSSI
values from the indoor environment and mapping them to
heatmap to help optimize AP deployment, providing a direct

and accurate representation of the Wi-Fi signal strengths at
various locations [39]. This approach ensures the authenticity
and reliability of the collected data, making it a valuable
resource for training and evaluating the augmented model.
In the following sections, we present the results and analysis
based on this directly measured RSSI dataset, demonstrating
the effectiveness and performance of our proposed generative
model for enhancing indoor Wi-Fi RSSI data.

2) DATA STRUCTURE AND PREPROCESSING
The preparation of our experiments begins with the orga-
nization and processing of the RSSI dataset. This dataset,
stored in comma-separated values (CSV) format, consists of
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TABLE 3. PCC and SCC for each AP.

columns indicating ‘AP’, ‘sequence’, ‘signal’, ‘x’, ‘y’, and
‘z’. ‘AP’ represents one of the four APs from which the RSSI
data (‘sequence’ and ‘signal’) are collected. We use datasets
representing RSSI measurements on floors 4 and 5 of the
building to learn the DeepRSSI model. Data on each floor
consisted of 4481 measurements with data structures.

In this study, the scale of RSSI is measured from the
minimumvalue of -100 dBm to themaximumvalue of 0 dBm.
In the dataset, the minimum RSSI value that the device can
measure is -99 dBm. Therefore, the value -100 dBm is used
to indicate that there was no detectable signal.

The first stage of data preprocessing involves divided the
complete dataset into distinct subsets, each corresponding to
a specific AP, labeled as ‘A’, ‘B’, ‘C’, and ‘D’ in the fourth
floor. In addition, the labels corresponding to the AP on the
fifth floor are ‘E’, ‘F’, ‘G’, and ‘H’. This division enables
the handling of data pertaining to individual APs, facilitating
a more granular analysis of the RSSI data. After the data
preprocessing process, the resulting dataset has dimensions
(256, 35). To utilize it efficiently, it was divided into training,
validation, and test datasets at an 8:1:1 ratio. This division
strategy was designed considering the overall distribution of
the data to ensure optimal training and evaluation. Although
the APs on each floor are different, they are similarly labeled
to enable efficient execution of subsequent correlation tests,
KS tests, and Q-Q plot tests.

3) PERFORMANCE EVALUATIONS
Prior to full-scale performance evaluation, we present a
process by which the cVAE generative model stabilizes loss
depending on the learning epoch, as shown in Fig. 5. Despite
the complex and long structure of RSSI data, we can confirm
that our designed CNN layer, sequential gate self-attention
mechanism layer, and reparameterization trick enable fast and
reliable learning. In addition, we use a convolutional filter
that acts as an interpolation to create a smooth contour map
for RSSI data. As can be seen visually, the contour map of
RSSI generated by each AP shows that the original data and
the composite data are very similar.

4) VISUAL COMPARISON
Visual comparison of RSSI contour maps serves as the
qualitative analysis in the evaluation plan as shown in the
Fig. 7. It allows for a graphic interpretation of the quality

of the fake data. This method is essential as it enables
us to visually affirm the improvements in signal strength
and coverage provided that each AP position is generated.
Contour maps in visualization metric are generated to
provide a spatial representation of the RSSI data across
the various floors for each AP. In these maps, the color
represents the RSSI signal strength, and the location of each
point corresponds to the physical coordinates of the Wi-Fi
signal across various layers for each AP. Visualization using
these contours allows us to intuitively express Wi-Fi signal
propagation patterns in the environment, thereby improving
our understanding of the spatial distribution of signal strength
in the environment.

5) QUANTITATIVE COMPARISON
The second aspect of the evaluation study concerns quantita-
tive deviations, specifically variance. This analysis provides
a statistical measure of the spread and dispersion of the
fake data. A reduction in variance signifies less dispar-
ity in signal strength, indicating the success of model
in providing consistent signal coverage across different
indoor locations. We use Pearson and Spearman correlation
coefficients to quantitatively compare the original data and
the virtual data obtained through the generative model.
The Pearson correlation coefficients quantify the linear
correlation between the two datasets, while the Spearman
correlation coefficients measure the strength and direction of
the monotonic relationship between the two datasets. Both
these metrics provide us with a comprehensive understanding
of the correlation patterns of the original and virtual data.

Additionally, we present using the Kolmogorov - Smirnov
(KS) test and the quantile - quantile (Q-Q) plot in a
quantitative manner to verify the similarity between the
original RSSI data and the fake data. The KS test is used to
determine whether two distributions differ. However, there is
a limitation that theKS test alone is not clear about the general
difference because it is sensitive to each feature. Therefore,
we further conduct Q-Q plot comparisons to conduct
quantitative performance evaluations more comprehensively.
The Q–Q plot compares the data with the quantile of the
standard normal distribution to visualize how properties such
as location and range of the distribution are similar or
different in the distribution of the two data.

• Results of the correlation coefficients: As shown in
Table 3, the Pearson correlation coefficient (PCC) shows
0.751 for the lowest AP ‘B’, and the remainingAPs show
a value approximately 0.9. The Spearman correlation
coefficient (SCC), which measures the monotonic
relationship between the datasets, also demonstrates a
strong correlation, with the lowest being 0.753 for AP
‘B’, and the remaining APs yielding values around 0.9.
Both PCC and SCC approach +1, indicating a strong
positive correlation. Therefore, it can be interpreted
that the virtual data exhibit a high average correlation
of 0.8 or more, demonstrating a strong linear and
monotonic relationship with the original data [44].
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FIGURE 8. KS tests for each APs. Each histogram and trend line represent fake data in red and real data in blue.

• Results of KS test: In the Fig. 8, the KS test results across
each of the APs demonstrate that there is a difference
between the real and virtual data. However, this differ-
ence is relatively small, and the maximum difference in
the KS statistic slightly exceeds 3%. In addition, each
AP also mostly statistically indicates that the p-value is
much smaller than the conventional significance level
of 0.05. This suggests that although the distribution is
not the same, the variation is minimized, indicating a

certain level of consistency between the real and virtual
datasets. The overlay of trend lines on the histograms
provides a visual affirmation of this similarity, as they
closely trace each other, illustrating a consistent pattern
across both real and virtual datasets.

• Result of quantile-quantile Plot: In the Fig. 9, a blue
dot represents real data and a red dot represents virtual
data. Gray lines are also fitted to the quantiles of real
and virtual data, respectively. The Q-Q plot visually
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FIGURE 9. Q-Q plot for each AP between real and virtual data.

compares the distribution of real and virtual data for
each data set. The overlapping blue and red dots in
the middle of the distribution means that the real and
virtual data are somewhat similar in these regions.
However, in the tail part of the distribution, there
is a slight difference between real and virtual data.
Nevertheless, these differences are tolerated in this study
which prioritizes common patterns over outlier cases,
and are demonstrated in subsequent indoor positioning
experiments.

6) INDOOR LOCALIZATION ERRORS
We compared the Euclidean distance error using existing
commercialized machine learning algorithms and displayed
the results in Fig. 10, which suggests the feasibility of the
virtual fingerprint map. In addition, we strategically employ
a 5m interval for real data collection, a distance that is
sufficiently effective for indoor localization positioning [45].
The Fig. 10a is the indoor data of the fifth floor of the building
measured at 5m intervals, and Fig. 10c is the virtual indoor
data of the fifth floor generated at 1m intervals by the model
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FIGURE 10. Comparison of CDF results that measured indoor localization errors using various learning algorithms based on virtual fingerprint map [40],
[41], [42], [43].

trained with the data of the fourth floor. It is important to note
that the training of model on the fourth-floor data does not
directly influence the fifth-floor predictions. Our approach
emphasizes the efficiency of generating a multi-layered
virtual fingerprint map when the propagation environments
of the floors are similar. This contribution suggests that, using
data on a single layer, we can generate virtual fingerprint
maps on multiple layers, which can significantly reduce the
time and effort required for related tasks.

To evaluate indoor localization errors, we conduct two
experimental studies using a variety of fundamental machine
learning algorithms and deep learning architectures like
Transformer, CNN, and ResNet model [41], [42], [43].
The Transformer model incorporates MultiHeadAttention
layers and dense layers for processing, optimized with
the Adam optimizer [41]. The CNN architecture utilizes
sequential convolutional layers, focused on extracting spatial

hierarchies in data, also optimized with Adam [42]. The
ResNet model employs convolutional and residual blocks,
focusing on the preservation of features between layers [43].
These algorithms are currently used in indoor localization
studies, and we experiment with each model with the default
settings provided in the scikit-learn library [40]. As shown in
Fig. 10, this study confirms that the results of our generative
virtual dataset are better than the actual data, even if it is
not measured in practice. In terms of quantitative terms,
our virtual fingerprint dataset demonstrates the average
performance improvement of Euclidean distance errors,
which is improved over the actual measured fingerprint
dataset, with RandomForest at 46.50%, XGBoost at 30.33%,
KNN at 35.06%, Transformer at 64.65%, ResNet at 76.69%,
and CNN at 76.22%. The performance of ElasticNet is
similar to the actual measured fingerprint map, with a slight
difference of about -4.5%. In addition, when we generate
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smaller 50cm intervals fingerprint map with our generative
model, as shown in Fig. 10d, the Euclidean distance improved
by 33.38% for RandomForest, 8.94% for XGBoost, 6.21%
for ElasticNet, 7.91% for Transformer, 14.37% for ResNet,
and 14.00% for CNN compared to the virtual data generated
with 1m intervals. Moreover, we compare the performance
of the fingerprint map data of the virtual map generated at
1m intervals with the fingerprint map data made using linear
interpolation at 1m intervals to prove the validity of this
generative model. This study shows that the performance of
each model when applied to the virtual map of as shown in
Fig. 10c improved by 21.55% for RandomForest, 25.25%
for XGBoost, 0.83% for ElasticNet, 4.72% for KNN, 2.62%
for Transformer, 19.65% for ResNet and 26.45% for CNN
compared to using linear interpolation as shown in Fig. 10b.
The results indicate that our generative model has the
potential to significantly reduce time and cost expenditures
in the field of fingerprint-based indoor localization without
compromising accuracy.

Overall, the KS test and Q-Q plot present a difference
in empirical distribution between original data and virtual
data, particularly in the tail regions. The generative model
demonstrates excellent performance in the context of indoor
localization. Our experiments on indoor localization errors
show that the virtual dataset generated by our model not
only reflects the main patterns found in real-world data, but
outperforms them in terms of localization error. Furthermore,
the performance of machine learning algorithms such as basic
Random Forest, which are not tuned on our hypothetical fin-
gerprinting map, shows competitive performance in a study
that is actually positioned against that algorithm [5], [40].
In conclusion, while the virtual data are not an exact

replica of the original data, they successfully simulate the
key patterns and characteristics present in the original data,
making them a significant and useful tool for tasks like indoor
localization. The ability of the generation model to produce
such high-quality virtual data highlights its potential utility
in this domain. It allows us to achieve comparable accuracy
while significantly reducing time and cost expenditures in site
survey for fingerprint-based localization.

C. EFFECT OF VIRTUAL DATA FOR POSITIONING
ACCURACY
We generate 32 real data samples and a total of 3612 virtual
data samples to evaluate the impact of mixing virtual
fingerprint data with real data on the accuracy of indoor
positioning systems. From a dataset consisting purely of
real data (0%) to one composed entirely of virtual data
(100%), we experimented with different ratios of virtual to
real data, including intermediate mixes of 25%, 50%, and
75%. The ratio of virtual data represents the proportion of
virtual samples relative to the base number of 32 real samples.
Specifically, for the 100% virtual data scenario, we utilized
an equivalent number, 32 out of the 3612 virtual samples,
to emphasize the robust generative capabilities of our model.

We evaluated indoor localization errors across multiple
models using traditional machine learning algorithms and
advanced deep learning architectures. The results shown
in Table 4 highlight the potential benefits of virtual data
integration in improving positioning precision across all
models tested. The values in Table 4 represent the mean
localization error in meters, which we determined by
averaging the distances of the localization error in multiple
iterations of the tests, each using a specific proportion of
real and virtual data. The results show a clear trend: As the
proportion of virtual data increases, the localization error
tends to decrease, underscoring the efficacy of our data
augmentation technique.

Our results show that positioning accuracy is significantly
improved, especially for deep learning models such as
Transformer, ResNet, and CNN, which outperforms existing
algorithms with higher virtual data rates. For example,
the accuracy of ResNet and CNN peaks at 100% virtual
data rates, demonstrating their ability to effectively utilize
synthetic fingerprints. Conversely, existing models show
optimal performance at lower virtual data rates (25% and
50%), suggesting that balance is critical to maximizing the
benefits of virtual data augmentation. This work highlights
the importance of leveraging virtual fingerprints to improve
indoor positioning systems, especially in scenarios where real
data collection is impractical or insufficient.

D. EXTENDED COMPARATIVE ANALYSIS
Our DeepRSSI can adequately learn the subtleties of indoor
RSSI data to produce highly accurate virtual maps, even at
intervals finer than the actual measurement data, or even
where the virtual RSSI fingerprint map has not been
learned. This approach has different ingenuity from existing
augmented or optimization studies on RSSI fingerprint data,
summarized in Table 1 and Subsections II-D. In addition to
the goal of generating a virtual fingerprint map of DeepRSSI,
we experimentally demonstrate a side contribution that also
facilitates the augmentation of RSSI data. In this section,
we validate our results on other datasets to make comparisons
with existing studies in Table 1 usingUJIndoorLoc, a publicly
available, larger-scale real-world dataset related to state-
of-the-art methods, to broaden the scope of experimental
comparisons [17]. In two studies by Njima et al., the
augmented synthetic fingerprint data show a difference of
3.93 m and 3.47 m in the mean localization error reflecting
the average deviation of the predicted location from the
actual location of the model [9], [16]. In the study by
Ai et al., UJIndoorLoc is used for an average check, and
the experiments performed for the augmentation are not
compared using the own data set [19]. Our DeepRSSI shows
that, when simply augmented for UJIndoorLoc, the mean
localization error produces high-quality synthetic data with
less error than the original of 2.75m. In addition to generating
virtual maps for resource savings, which are the main
research objectives, it also demonstrates a very good aspect in
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TABLE 4. Comparison of model performance based on the proportion of virtual data with results measured as mean squared error (MSE) in meters [40],
[41], [42], [43].

terms of augmenting similar data targeted by existing studies,
demonstrating broader applicability.

V. FUTURE WORK
The industrial significance of our approach lies in its
potential to revolutionize RSSI-based mapping generation
by enabling conditional generation tailored to specific needs
and environments. This capability opens new avenues for
enhancing indoor positioning systems, especially in complex
and dynamically changing environments, where existing
models may struggle to maintain accuracy and reliability.
However, despite the promising advances introduced by
the DeepRSSI model in the RSSI-based indoor localization
domain, this study acknowledges the limitations of no
extensive experiments in various real-world environments.
Mainly focus on the development and initial verification
of the model for generating conditionally generated new
maps, and our future research agenda includes extending the
experimental verification of the DeepRSSI model to cover
a wide range of environments. Future research will aim
to conduct a thorough comparative analysis with state-of-
the-art indoor localization systems in real-time scenarios.
This will not only demonstrate the diversity and robustness
of the model, but will also further solidify its industrial
relevance by demonstrating its applicability and performance
advantages in the operating environment. Through these
efforts, we aspire to overcome current limitations and
leverage the potential of generative models in enhancing
indoor localization techniques for different applications.

VI. CONCLUSION
In this paper, we propose a novel generative model that
generates high-quality virtual RSSI fingerprint mapping in
an indoor environment and can additionally be used for data
augmentation. The comprehensive performance evaluation
plan shown in this study provided sufficient evidence for the
effectiveness of the proposed model. The indoor localization
error analysis revealed that the virtual RSSI data generated
by the model can be used effectively in applications such as
wireless network optimization and indoor localization. As a
result, the work presents an important contribution towards
the advancement of the WiFi RSSI fingerprint map. Fur-
thermore, the model for the ability to generate high-quality
virtual data has the scalable potential to use data from various
communication media, not limited to WiFi RSSI, suggesting
a wide range of contributions to significantly saving time and

money in generating WiFi fingerprint map and improving
performance efficiency. In addition, our model takes advan-
tage of the inherently unpredictable nature of wireless signal
propagation to generate diverse and complex RSSI data. Our
research proposes a model that can adequately handle data
containing such diversity and complexity, and will ultimately
improve network performance. In future research, our focus
will shift to more complex and extensive real-world scenario
testing to evaluate the adaptability and robustness of our
model in dynamically changing environments. We intend
to improve it to a diverse and reliable generative model
through validation of models applying state-of-the-art indoor
localization systems and comparative verification through
various metrics.
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