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ABSTRACT An increase in the deployment of Distributed Energy Resources (DERs) and Renewable
Energy (RE) resources is a promising paradigm in the decentralized energy era. It has motivated multi-
Microgrids (MGs) to trade energy directly with others in the Local Energy Market (LEM), as well as with
the main grid. The LEM has become a popular platform that covers several shortcomings of surplus/deficient
energy, which can also manage the increasing connection of multi-microgrids, meet internal balance, and
maximize the social welfare of the community Microgrid (MG). Moreover, in the LEM, the MGs would
like to provide some payoff to encourage each other to exchange their energy locally. However, designing
an appropriate market framework, privacy protection, and the community’s unbalanced energy supply and
demand is challenging. To cope with these challenges, in this study, an LEM for a multi-microgrid system
is designed to maximize the social welfare of the community, and a decentralized clearing algorithm based
on the Alternating Direction Method of Multipliers (ADMM) is proposed for local market clearing and
privacy protection. The Community Manager (CM) is used as an intermediate coordinator between the
interconnected MGs. This way, the computation process will be completely distributed, and the privacy
of each MG will be protected. Moreover, considering the utility function for the consumers and energy
providers, an equivalent cost model based on internal pricing is proposed to state the willingness of the
utility and motivate the participants to join LEM. Finally, an illustrative example and a case study are used to
demonstrate the efficiency and effectiveness of the proposed design of LEM and algorithm in terms of social
welfare and power balance. In our study, we found that by using dynamic pricing in conjunction with our
proposed model, the social welfare of the energy community can be increased by 14.25%. This demonstrates
the significant economic benefits and effectiveness of our approach in the Local Energy Market (LEM).

INDEX TERMS Local energy market, alternating direction method of multipliers, multi-microgrids,
community manager, energy transaction.
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I. INTRODUCTION
A. BACKGROUND AND MOTIVATION
The fundamental transition in the use of local Distributed
EnergyResources (DERs) driven byRenewable Energy (RE),
along with intelligent infrastructures, enables the prosumers
to become an active entity in the Microgrid (MG) with local
generation sources, which continuously consider the man-
agement of energy generation and consumption [1]. Unlike
traditional consumers, prosumers can behave as buyers or
sellers depending on their power generation, load profile, and
electricity pricing. Moreover, they can have a vital role in
achieving energy balance in an MG [2]. The integration of
prosumers into MGs has several advantages, such as motivat-
ing self-consumption and reducing dependency on the grid,
demand peak shaving, reducing greenhouse gas emissions,
and enhancing the penetration of RE resources [3]. There-
fore, to enable prosumers to profit from selling additional
electricity they generate to other prosumers or the grid utility,
various self-consumption regulations have been established
using different plans, including Feed-in-Tariffs (FiT) and net-
metering [4].

Recently, improvements achieved in Information and
Communication Technology (ICT) at the power grid, par-
ticularly at the distribution level, have permitted prosumers
to interact directly with the wholesale electricity market to
participate in various subsequent trading floors. This includes
Day-Ahead (DA) and Real-Time (RT) markets. To deal with
the recent challenges, including the uncertainties associated
with intermittent power generation for the prosumer, sev-
eral Local Energy Markets (LEM) designs are proposed as
alternative solutions for coordinating the prosumers’ energy.
It is related to the more active participation of the demand
side, maximizing individual prosumers’ benefits and mar-
ket bidding structures, including enabling access to trade
flexibility services to Distribution System Operators (DSOS)
and Transmission System Operators (TSOS) [5]. However,
an important challenge in developing reliable LEM processes
for prosumers is motivating consumers to participate in the
LEM to meet their power demand. Therefore, economic and
behavioral considerations should be considered when design-
ing the LEM for all the players in the local market to motivate
them to participate actively [6]. To this end, the user welfare
(or willingness to pay) function has been widely used in
LEM to achieve customers’ active participation and expose
an efficient price signal [7]. For example, the study in [8]
presented the cost function determined by the DA market
price from each consumer. Prices for both mean and standard
deviation on the basis of the DA market from the annual
wholesale market price are calculated using identical hour
intervals to indicate the grid parameter for the consumer
to get involved in energy exchange. The willingness price
for participating in energy sharing is designed in [9] using
dynamic market information considering the total power
demand, the total supply, and the purchasing/selling prices
from/to the utility grid. References [10] and [11] represented
the willingness to pay for the energy of the buyer prosumer

as a quadratic function. The predetermined parameters for
the benefit function indicate the marginal (reservation) price
of each consumer. Following this perspective, every player
can participate in the LEM based on the causal relationships
among energy price, energy supply, and benefit growth during
a given period.

Generally, the operation of the LEM can be divided
into two categories: energy trading pricing and participants’
energy scheduling. On the one hand, research has been con-
ducted by [12] to create an energy trading mechanism by
providing a pricing approach derived from trading the price of
energy from a negotiation technique to enhance the benefits
of small and large scale for prosumers. Reference [13] intro-
duced a method considering the Supply and Demand Ratio
(SDR) to estimate the price optimally by taking into account
the consumption and generation flexibility of prosumers.
A dynamic RT pricing mechanism is introduced in [14] to
enable all stakeholders, including Electric Vehicles (EVs)
and Home Energy Management Systems (EMS), to obtain an
optimal price. On the other hand, LEMpermits scheduling the
MG production and consumption with minimum information
shared and transmitted by production units, such as the study
in [14]; the LEM is proposed for energy scheduling with an
EMS to decrease the cost of operations and maximize the
utilization of DERs. In [15], DA energy scheduling using
the LEM is proposed for the optimal operational planning of
prosumers and grid-connected.

B. RELATED WORK
From the market structure perspective, there are three dif-
ferent categories of LEM structures for Transactive Energy
(TE) that, after self-use, energy consumers may manage and
benefit from excess energy [4]. The first one presents direct
electrical energy transactions between the prosumer and the
consumer without any central operator and is named the peer-
to-peer (P2P) market. The second one presents electricity
collectives or community-based markets, which rely on a
CommunityManager (CM) to manage the power-sharing and
maximize the social welfare inside the community or group of
prosumers or MGs. Meanwhile, a third category is the hybrid
model market, which can be operated as a hybrid of both
aforementioned models [16].

Due to the significance of this subject, numerous research
has been conducted on how prosumers can profit from TE
in different LEM structures. First, several studies on the
Peer to Peer (P2P) market have analyzed revenues that con-
sumers could make through participating in P2P markets.
The concept of P2P energy trading between residential and
commercial multi-energy systems is discussed in [17] to
evaluate the economic benefit allocation for prosumers. The
optimal TE and the fair price for P2P trading are selected to
minimize the cost of energy and maximize the social welfare
of the market participants. The study by [18] suggested a
LEM architecture combining the advantages of P2P energy
trading and distribution locational marginal pricing. Hence,
integrating the locational pricing in the LEMallows a scalable
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method to coordinate demand, considering different con-
straints and losses for the prosumers to increase their profit.
Meanwhile, the P2P approach enables market participants to
engage in negotiations on bilateral energy transactions that
will benefit both parties. In order to decrease the expenses
related to power losses, the work reported in [1] created a
P2P energymarket platform that organizes trade between pro-
sumers employing battery energy storage and the wholesale
electricity market. The purpose of using local energy is to
encourage prosumers to improve peak shaving and decrease
the requirement for balancing at the transmission system
level. The study presented in [19] investigated the external
P2P energy trading in LEMwithin interconnected residential,
commercial, and industrial MG systems. This interaction
saves energy bills for the prosumers and achieves higher
energy utilization of multi-vector energies (electricity, heat,
and natural gas). The study in [20] suggested an approach
that would allow prosumers to select the most effective strate-
gies for TE of internal response and external P2P trading
simultaneously. The suggested solution allows prosumers to
reduce their energy bills and investment costs while becoming
less dependent on grid utilities and, therefore, aggregate into
a sustainable energy system. The work in [21] investigated
energy scheduling using a two-stage optimization approach
to increase its benefit in the P2P energy market. During the
initial phase, the participant prosumers in the P2P energy-
sharing trading determine the optimal quantity of exchanged
energy. The most appropriate associated price mechanism
was examined and suggested using a payment negotiation
model in the next stage.

Second, some research studies were conducted to assess
the use of the community energy market in the interest of
collective social welfare. Most of these investigations discov-
ered that prosumers’ participation in the community energy
market is economically feasible. For example, the study
by [22] established the energy scheduling issue under unpre-
dictability regarding clean energy production and energy
storage technologies for a community-based energy market.
For an energy community considering power network limits,
the price is established on a DA clearing mechanism basis.
Research by [23] presented a community market for MGs
based on a standard auction market. In this market, the seller
and buyer submit their bids and asks by announcing their
available surplus energy and their benefits models. The focus
is on the prosumers of MGs getting profit from their excess
resources or sharing their resources to reduce the overall cost
of acquiring their demand. The authors in [24] proposed an
RT energy sharing and management in the community-level
energy system based on two-layered sub-problems. The elec-
tricity price in a community market is calculated based on
local observation and RT appliance scheduling to reduce the
prosumers’ daily costs. A study in [25] merged different
RE sources, flexible and non-flexible loads, EVs, Hydro-
gen Vehicles (HV), and a Hydrogen Storage System (HSS)
in a community energy market based on a matching and
clearing approach. The LEM is organized at the distribution

level, where the prosumers can participate in the LEM or
trade with DSO. The authors in [26] proposed a framework
for scheduling a multi-MG system in a community energy
market considering the uncertainty of the RE resources and
loads. The proposed framework can achieve optimal energy
and ancillary service scheduling within each MG and facil-
itates fair energy trading among the MG community. In [8],
the energy collectives and fairness model for a community
electricity market, where the market players are represented
as a single community, is introduced. The proposed model
achieves the optimal economic power dispatch for the com-
munity and different collective agreements for the physical
constraints. The research in [27] thoroughly compared the
characteristics of the community and P2P market designs in
terms of social welfare, total payment, and energy trading vol-
ume. The results suggested that the community-based energy
market can ensure that prosumers are satisfied, resulting in
higher energy trading volume and social welfare.

Third, several studies have been conducted to conduct
efficient application of the hybrid P2P energy trading in
TE, such as [3], which aimed to create an electricity trad-
ing scheme by suggesting a pricing approach for the hybrid
P2P energy market. Using the suggested hybrid system, pro-
sumers are able to engage in a variety of markets, particularly
the wholesale market, rather than sequential participation to
maximize their benefits. Furthermore, the Direct Load Flow
(DLF) program is conducted to incorporate the power line
constraints in energy trading of the market players. In [28],
the authors integrated a P2P energy trading scheme that can
assist a centralized market operator in minimizing the energy
demand during peak hours. The prosumers form a suitable
coalition with consumers to participate in P2P energy trad-
ing to meet their energy demands. On the other hand, the
centralized market operator acts as an intermediary between
the peers and the superior power system. The work presented
in [29] developed a hybrid P2P energy market consisting of
conventional pool-based and P2P configurations. Individual
cost minimization is possible for each energy prosumer due to
the hybrid P2P energy-sharing market, and the social cost of
the whole market is also reduced. The work presented in [30]
introduced a hybrid energy trading mechanism based on the
formed communities, considering the energy loss and wheel-
ing charging at the local trading level. The market model can
be adapted to large-scale trading participants efficiently in a
distributed way to maximize the prosumer benefits. In [31],
an integration of prosumers in the hybrid market using the
generic supply-demand function method is proposed. This
interaction provides incentives for individual prosumers to
participate in the LEMand permits prosumers to freely decide
whether they will buy or sell based on their purchase desire.

C. RESEARCH GAPS AND MAIN CONTRIBUTION
Although studies, as mentioned earlier, have considered
framework design for energy scheduling and trading of pro-
sumers in LEM, the joint consideration of the prosumer
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willing to participate in the LEM to optimize their profit
has not been undertaken. In contrast, prosumers might have
different responses and decisions during the participation.
Moreover, the literature also lacks modeling of different types
of prosumers, such as PV systems, to participate in the LEM
energy trading, where the parameters of participants are pre-
determined. Different from these research studies, this paper
distinguishes itself in the existing body of research by jointly
considering the willingness of prosumers to participate in the
Local Energy Market (LEM) to optimize their profit. Unlike
previous studies, a symmetric model for the prosumer is
proposed that aligns with reality and encourages participation
in LEM. The willingness to participate is modeled based on
real-dynamic market information using the SDR of energy
sharing and the retail market price, providing an adequate
trading design to incentivize active participation. The main
contributions and novelty of this research paper are:

- LEM for Multi-MGs: The LEM for multi-MGs is
considered where each MG can sell and buy energy
from the main grid and directly trade with other MGs
mediated by the CM.

- Design of a Competitive Framework: A competitive
framework for the participation of multi-MGs in the
community energy trading market, which is more real-
istic in the foreseeable future, is designed.

- Mathematical and Technical Formulation:The
mathematical and technical formulation of the inter-
action of local energy providers and the demand of the
sellers and buyers with the MG CM is described.

- LEMClearing Problem Solution: The LEM clearing
problem is addressed by designing a specific iterative
process based on a distributed algorithm using the
Alternating DirectionMethod ofMultipliers (ADMM).
This algorithm reduces the complexity of the mar-
ket clearing model and efficiently utilizes a private
topology for exchanging information between market
participants

The remainder of this paper is organized as follows. Section II
introduces the market structure, and Section III presents the
modeling of the utility function using the internal price.
The mechanism and architecture of the proposed LEM is
introduced in Section IV. The numerical experiments are
presented in Section V, and the conclusions are in Section VI.

II. MARKET STRUCTURE
The energy-sharing model and control mechanism are first
presented in this section, followed by formulating the prob-
lem corresponding to the classification of the participants in
the LEM and determining the internal price addressed by the
SDR.

A. ENERGY SHARING MODEL
MGs provide a new economic and control mechanism, where
multiple MGs can trade electricity with the grid utility

FIGURE 1. Shows the LEM energy trading paradigm among two- MGs
with the internal network, prosumers, and meters.

using centralized energy retailers and trade energy among
themselves using a LEM. To facilitate the community-based
trade of multiple MGs, we proposed a local electricity market
design composed of two energy entities: a main grid and
multiple MGs. Figure 1 depicts the schematic of the proposed
framework of LEM with two individual transactive MGs.
Each MG is composed of different prosumers (loads and
DER) and MG operators. All the MGs are connected to one
another through the bidirectional power-sharing system, and
the whole community of the MGs is connected to the grid
utility via a Point of Common Coupling (PCC). The grid
meter is placed at the PCC with the external utility grid to
measure the energy exchanged between the grid utility and
the MGs community. Each prosumer in an MG is equipped
with a local bidirectional meter that measures the energy that
the specific prosumer. This meter measures the prosumer’s
generation, consumption, and energy transactions with other
prosumers and sends information to the MG operator. Each
MG’s energy resource capacities, preferences, surplus, and
energy demand are private information. MG operator is
adopted in this framework to deal with the practical issues
of collecting information, managing massive prosumers, and
solving the centralized problem in the LEM. The MG oper-
ator manages their data and sends the information to the
CM. The CM classifies the MG and coordinates the clearing
process. This coordination task implies sending information
to the MG operator and receiving information back from
them. The community-based market, which is operated by
the CM, has access to the retail energy market to trade energy
with the grid utility.

Take the DA energy market as a research problem in
this study. The main steps and the action sequence of the
LEM mechanism are illustrated in Figure 2. The transaction
occurs in two markets. The main market is called the retail
market, which is operated by the retail market operator. The
submarket is called the LEM for the MG community, which
is coordinated by the CM. The DA problem was solved
the day before the actual power exchanges in the LEM and
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FIGURE 2. The sequence of actions for the proposed LEM.

retail market occurred. All MGs should follow the market
mechanism to suggest the optimal power and price to the
community, where the final goal is to maximize their social
welfare.

As the first step in the proposed framework, each MG
operator collects the preferences information related to their
prosumers. In parallel, the retail market operator also pro-
vides technical information on the retail market prices to the
MG operator. Once the MG operator receives this informa-
tion, the SDR, the willing-pay function for the consumers,
and the utility cost functions are determined, as detailed in
Section III. Note that the utility function is calculated based
on real-dynamic values to encourage all the prosumers to
join the LEM. From the view of the MG operator, self-
consumption of energy is still the first choice for their
consumers. Next, each MG operator sends the SDR to the
CM to classify the MG in the community as either buyer or
seller. The interaction between the sellers and the buyers in
the community is conducted by the CM. The CM coordinates
the clearing process by including other factors, such as the
retail energy price and the penalty of energy transmission.
The market is cleared after an iterative process by sending
information to the MG operators and receiving information
back. Each MG operator adapts its offering/bidding param-
eters to avoid any loss. After clearing the market, the CM
broadcasts the clearing results and sends an energy request
to the retailer market operator either to buy or sell energy to
the grid utility. Then, the retailer market operator accumu-
lates energy requests from the CM to sell or purchase the
energy from the MG community. Meanwhile, the CM sends
information to the MG operator. This way, the MG operator
determines the optimal operation by a cooperative energy
and share scheduling model, in which energy from the grid
utility and community can be cooperatively utilized among
consumers. This process provides a fair distribution of the
sharing benefits.

B. PROBLEM FORMULATION
The study considers an energy community that consists of a
set of residential MGs. Each MG has on-site variable-scaled
PV systems and regular loads to serve. To formulate the prob-
lem, let N = {1, 2, 3, . . . ,N } denote the set of the MGs in
the community, and N ≜ |N | represents the total number of
MGs in the community. Each MG n in the community can be
defined as follows: MGn =

{
MG1,MG2,MG3, . . . ,MGN

}
,

where n∈N . Let us consider the local energy genera-
tor P and the energy consumption C in each MG n are
indexed by G = {1, 2, 3, . . . ,G} and D = {1, 2, 3, . . . ,D} ,
respectively. The sets of the local energy resources and the
energy consumption in each MG n are defined as Png ={
Pn1,P

n
2,P

n
3, . . . ,P

n
G

}
and Cn

d =
{
Cn
1 ,C

n
2 ,C

n
3 , . . . ,C

n
D

}
,

where G ≜ |G| and D ≜ |D| represent the total number
of local energy generators and consumers, respectively. The
MGs in the community are classified according to their type
of energy sharing. Note that the classification is based on
predicted energy generation and consumption. Specifically,
when anMG predicts the total power generation is larger than
its total power demand, it is classified as a seller. Otherwise,
the MG is considered to be a buyer. In this study, the SDR
approach is applied. The SDR for a MG n∈N is defined as
follows:

SDRn =

∑G
g=1 P

n
g∑D

d=1 C
n
g

,where n = {1, 2, 3, . . . ,N } (1)

We identify S = {1, 2, 3, . . . , S} as the set of sellers
when SDRn≥1, and B = {1, 2, 3, . . . ,B} as the set of buyers
when SDRn < 1. Here, S ≜ |S| and B ≜ |B| rep-
resent the total number of sellers and buyers, respectively.
Therefore, S∪B = N and S∩B = ∅. and represent the
index of the sellers and the buyers in the set S and B,
respectively. The seller MGs can participate in this LEM,
depending on the amount of their energy surplus. Note that
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the self-consumption of energy is the first choice for the MG.
Thus, when SDRn = 1, theMG n is not required to participate
in the LEM.

Generally, the export price from the utility grid is lower
than the import price to encourage local energy sharing. The
prosumers can participate in theMG using an internal price to
maximize their own profit and reduce the impact on the utility
grid. In this work, we defined Prn as the internal price model
for eachMG n. The principle of formulating the internal price
Prn is based on the SDRn of MG and RT price from the grid
utility [13]. It should be noted that the price at which energy
is purchased internally should not exceed the price of energy
imported from the grid utility, and the price at which it is sold
should not be less than the price at which it is sold to the grid
utility. The internal buying and selling prices for each MG n
are given in Eq. (2) and (3), respectively.

Prnsell =


π
grid
sell ·π

grid
buy(

π
grid
sell − π

grid
buy

)
·SDRn + π

grid
sell

, 0≤SDRn≤1

π
grid
sell , SDRn > 1

(2)

Prnbuy =

{
Prnsell ·SDR

n
+ π

grid
buy

(
1 − SDRn

)
, 0≤SDRn≤1

π
grid
sell , SDRn > 1

(3)

where Prnsell,Pr
n
buy represent the internal buying and selling

prices, respectively. πgridsell , and π
grid
buy represent the selling and

buying price from the grid utility. As illustrated in Eqs. (2)
and (3), the internal price is inversely proportional to the vari-
able SDR. In other words, the internal selling price becomes
high with the lower SDR and vice versa. When SDRn > 1,
the power surplus of the MG n is sold to the consumers and
the community at the price πgridsell . In this case, setting Prnbuy
as low as possible can encourage the MGs and community
to increase consumption using the internal generation (e.g.,
through a demand response program) and reduce the impact
on the grid utility. When 0≤SDRn≤1, the price of energy
bought by the community from the MG n is between πgridsell
and πgridbuy , and it continues to decrease with the increase of
SDR.

The reason for introducing the internal price in this study
is that we have taken advantage of the SDR pricing mech-
anism in the TE framework by modeling the utility function
formulations for the combination of power supply and energy
consumption to increase social welfare. In the next sections,
we present the main contribution of this study, which is
divided into three main subsections: the methodology, pro-
sumers model, and markets.

III. MODELLING OF THE UTILITY FUNCTION USING THE
INTERNAL PRICE
The utility function is a mathematical representation of the
individual’s benefit from providing or consuming an energy
service. The concept of the utility function is widely applied
in the field of ‘‘Microeconomics’’ to describe the satisfaction

FIGURE 3. Satisfaction area for the sellers and energy buyers.

of the prosumers based on the decision-making process. In the
energy market, the prosumers are satisfied when they pur-
chase and sell their energy in LEM between πgridsell , and π

grid
buy ,

as displayed in Figure 3. However, quantifying these benefits
and representing the level of satisfaction of a prosumer as
a function when it consumes or provides a certain amount
of energy might be difficult due to the time and quantity of
consumption and uncertainties of the local energy resources.
In this context, we propose a dynamic utility function by
generalizing the SDR pricing mechanism to consider the sit-
uation where prosumers can flexibly change their behavior in
RT to increase their profit. The utility to a prosumer consists
of two parts: the utility of energy consumption and supply,
which a quadratic function can capture.

A. MODELLING OF ENERGY CONSUMPTION
As discussed above, we have employed the utility function
for consumption modules to evaluate the willingness to pay
for energy demand. All consumer certainly can gain some
benefits in the utilization of more power for their desired
activities until they approach the limited demand. The power
demand for consumers can usually be classified into two
categories: non-flexible and flexible demand. Suppose that
the total demand for consumers, Cn

d , is the sum of the flexible
and non-flexible demand. Thus, for any Cn

d , the following
relationship must be satisfied:

Cn
d_min≤C

n
d≤C

n
d_max (4)

where Cn
d_min and C

n
d_max represent the minimum and maxi-

mum power demand, respectively for each consumer d inMG
n.

There are different types of utility functions frequently
applied for modeling the energy consumption. A quadratic
function is one of the popular forms of the utility function
used in line with the vast majority of the literature [6], [8]
to describe electricity consumption patterns of the consumer
satisfaction. The motivation behind choosing the quadratic
utility function is that it is closely related to the utility func-
tion described in [32], which leads to a proportionally fair
demand response program. Quadratic utility function for the
consumer Cn

d Can be expressed as follows:

ψ(Cn
d ) =

1
2
αnd

(
Cn
d
)2

+ βndC
n
d + γ nd (5)
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where ψ(Cn
d ) is the utility function of the consumer d in the

MG n. α, β, γ > 0 are predetermined parameters. These
parameters describe how the rate of change of consumer’s
utility changes as consumption changes.

In Eq. (5), The utility function U is used by the litera-
ture [10], exploit the derivative function ofψ(Cn

d ) to calculate
the marginal cost function. By assuming the constant param-
eter γ is zero, the marginal cost function is given as:

∂ψ(Cn
d )

∂Cn
d

= αnd
(
Cn
d
)
+ βnd = π∗ (6)

π∗ denotes the marginal cost of the utility function ψ(Cn
d ).

In order to combine the advantage of the aforementioned
function and the internal price for the consumer, we consider
that the internal price for Prnbuy represents the marginal price
π∗. This amount describes the change in the total cost that
arises when the energy consumption is incremented by a unit.
Therefore, the marginal cost is mathematically expressed as:

αnd
(
Cn
d
)
+ βnd = Prnbuy (7)

Eq. (7) quantifies the variation of the trajectory with
respect to the constant parameters α and β. This quan-
tification is used to update the model parameters in order
to minimize the residual error that measures the mismatch
between the derivative function and the marginal cost.
An approximation to a known curve can be discovered by
sampling the curve and interpolating linearly between the
minimum and maximum power demand. The linear regres-
sion model is applied to define the optimal parameters for
minimizing the residual error. The objective function is given
by the following formula:

Minimize
αnd≥0,βnd≥0

1/2

Cnd_max∑
Cnd=Cnd_min

((
αnd

(
Cn
d
)
+ βnd

)
− Prnbuy

)2
(8)

The optimization problem in Eq. (8) is solved for limi-
tation of the power demand of Cn

d , starting from Cn
d_min to

the maximum demand Cn
d_max . The decision variables in the

MG operator are αnd and βnd , which captures the dynamic
weight of energy consumption utility and the dynamic energy
consumption preference of consumers. More specifically, the
lower value of the parameters αnd , β

n
d , the more consumers

benefit from the DR program. By doing so, the consumers
express their willingness to pay a price premium if they can
be ensured.

B. MODELLING OF POWER SUPPLY
In the literature [6], in order to evaluate the pricing models
for the supply utility, the quadratic function ϕ (·) is often used
to (approximately) model the operation cost that comes from
supply unit. The cost function of the supply utility represents
the cost associated with providing the offered energy to the
community of the grid utility, which arises from operation
costs (e.g., fuel, startup and shutdown cost, levelized cost)
and maintenance costs. The quadratic function of the power

FIGURE 4. Prosumer utility as a function of energy consumption and
energy supply for various internal price.

supply can be expressed as:

ϕ
(
Png

)
=

1
2
αng

(
Png

)2
+ βngP

n
g + γ ng (9)

Png_min≤P
n
g≤P

n
g_max (10)

where αng , β
n
g , γ

n
g represent the constant parameters of the

supply utility g in eachMG n. Png_min and P
n
g_max represent the

minimum and maximum power supply, respectively, for each
local energy provider g in MG n.Generally, the supply utility
functions of the energy provider only include their operation
cost. That is unlikely to be very rational considering the fact
that the energy provider certainly can get some benefits in the
TE and be encouraged to participate in the LEM. Therefore,
the dynamic internal price is proposed to formulate an initia-
tive model for the local energy provider. Assuming that the
marginal cost of the supply utility is given as follow:

∂ϕ
(
Png

)
∂Png

= αng

(
Png

)
+ βng = Prnsell (11)

The mathematical expression to identify the constant
parameters of the supply utility can be described as:

Minimize
αng≥0,βng≥0

1/2

Png_max∑
Png=P

n
g_min

((
αng

(
Png

)
+ βng

)
− Prnsell

)2
(12)

The optimization problem in Eq. (12, namely, minimizing
the curve error to find the decision variables αng and β

n
g where

the derivative function of ϕ
(
Png

)
is equal to the marginal cost

Prsell . Figure 4. depicts an example of the consumer’s d and
local energy source g in the MG n as a function of ψ(Cn

d ),

and ϕ
(
Png

)
for a given upper and lower bound with different

values of internal price Prnbuy and Pr
n
sell , respectively.
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FIGURE 5. A block diagram of the interaction between the MGs, the LEM,
and the retailer.

IV. MECHANISM AND ARCHITECTURE OF THE
PROPOSED LEM
In this section, the LEM among multiple MGs is established.
The architecture of the energy-sharing system in this paper
is illustrated in Figure 5, consisting of three components:
the MG operator, LEM, and the retailer. The proposed LEM
divides the MGs into sellers and buyers during the schedul-
ing period. As discussed in Section II, such classification is
performed based on each MG’s net production and demand
obtained from the total generation and local energy demand
of its total assets. Note that the classification is based on pre-
dicted electricity generation and consumption. A distributed
iteration algorithm is proposed to analyze and realize market
clearing further to determine the DA LEM prices and energy
trading amounts of MGs.

A. WELFARE FUNCTION FOR SELLER
According to the definition of social welfare definition, in a
LEM where the seller in the market offers their surplus
energy for trading with buyers under the supervision of a
CM, the social welfare of the seller can be modeled by
summation of the benefits of the seller which describes their
satisfaction level from selling their energy. Therefore, seller
can be modeled in two parts: (1) the economic benefits of

selling excess electricity to LEM and grid, and (2) the seller’s
satisfaction due to energy consumption. The social welfare of
the seller is modeled in Eq. (13).

WS (Pcom,sell ,Pgrid,sell , πLEM )

= Pcom,sell ·πLEM + Pgrid,sell ·π
grid
sell

+

 G∑
g=1

ψ(Cd ) −

G∑
g=1

ϕ
(
Pg

) (13)

Here, WS represents the social welfare of the seller ,
composed of three terms. The first term is the revenue from
selling energy to the community. The second term represents
the revenue from selling energy to the grid. The third term
described the cost of the prosumer’s utility for the seller
. πLEM describes the clearing price for the LEM. Pcom,isell
represents the sold power to the community. Pgrid,isell represents

the sold power to the grid. A set of technical constraints
should be considered for the seller, which are expressed in
the following:

G∑
g=1

Pg −

D∑
d=1

Cd > 0 (14)

G∑
g=1

Pg −

D∑
d=1

Cd = Pcom,sell + Pgrid,sell (15)

Constraint (14) guarantees that the local energy generation
of each seller is higher than the total consumption. Con-
straint (15) demonstrates the energy balance for local sellers
including the energy sharing with the community Pcom,isell and

utility grid Pgrid,sell .

B. WELFARE FUNCTION FOR BUYER
As mentioned above, buyer agents are those who need to
buy some power at a certain time slot. Buyer satisfaction
level describes the buyer’s welfare, which is determined by
the difference between the benefits of the local user utility
and payment of the power from the local energy provider,
community, and grid utility. The following relation describes
the total welfare of the buyer :

WB (Pcom,buy ,Pgrid,buy , πLEM )

=

G∑
g=1

ψ(Cd ) −

G∑
g=1

ϕ
(
Pg

)
− Pcom,buy ·πLEM − Pgrid,buy ·π

grid
buy (16)

Here, WB describes the social welfare of the seller in

the community, while Pcom,buy is the amount of power buyer

purchased from the community. Pgrid,buy is the amount of
power the buyer purchased from the utility grid. It should be
noted that buyer welfare can be a negative value in instances
when the utility it gets is lower than the purchasing prices.
The power balance is constrained by each buyer constraints
given by:

D∑
d=1

Cd −

G∑
g=1

Pg > 0 (17)

D∑
d=1

Cd −

G∑
g=1

Pg = Pcom,buy + Pgrid,buy (18)

where the inequality constraint (17) guarantees the total
demand of each buyer is higher than the local power gen-
eration, while the constraint (18) ensures the power balance
for the buyer , where the left-hand side of the constraint
represents the imported power from the buyer , and the
right-hand side defines the summation of the injected power

from the community Pcom,sell and the grid utility Pgrid,sell .
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C. COMMUNITY OBJECTIVE FUNCTION
Following the elaborations on the sections above, a generic
framework for the LEM is conceptualized to achieve the
social welfare of the community. The CM manages the com-
munity to maximize the total social welfare of all sellers
and buyers, where minimal financial costs typically represent
the highest social welfare. When S∪B = N , mathematically,
the objective function of the community to maximize social
welfare is as follows:

Maximize

Pcom,sell ,Pgrid,sell ,πcomsell ,P
com,
buy ,Pgrid,buy ,πcombuy

S∑
=1

WS (19)

(
Pcom,sell ,Pgrid,sell

)
+

B∑
=1

WB
(
Pcom,buy ,Pgrid,buy , πcombuy

)
− Cgrid

penalty·P
com

S.t. πcombuy ≤π
grid
buy (20)

πcomsell ≥π
grid
sell (21)

S∑
=1

Pcom,buy =

B∑
=1

Pcom,sell (22)

πcomsell = πcombuy (23)

The objective function (18) is composed of two terms. The
first term is the summation of the optimization problems (13)
and (16) for the sellers and buyers, respectively. The second
term represents the network charge from the grid utility to the
community, where Cgrid

penalty describes the network usage fee
for both the sellers and buyers.Pcom is the total energy sharing
in the community. πcombuy , π

com
sell describe the buying and selling

prices for the buyer and seller in the LEM, respectively.
Constraints (20) and (21) set limits to the energy prices of
the buyer and seller, respectively. Constraints (22) and (23)
impose the balance of the power-sharing and the clearing
price within the community, respectively.

D. DECENTRALIZED CLEARING MECHANISM
In the proposed formulation in (18), the first term problem is
a quadratic program formulation composed of a cooperative
solution of the participants in the LEM. The sellers and buyers
in the LEM have separable objectives (13) (16). The coupling
constraint is the balance of the power-sharing and the price
constraint in (24) and (25), which contains variables from
both the clearing price and the total power-sharing. This
problem can be implemented in a centralized manner using a
supervisory entity such as the CM. However, the CM requires
the information of all players to solve this problem, including
the utility function, clearing price, power demand, and supply.
Since the market players are independent, the centralized
approach is not suitable to solve the proposed optimization
problem in order to protect the privacy and security of each
market player subject and improve the calculation speed of

massive data. Moreover, the centralized approach is subject
to performance limitations, such as the scalability and limited
flexibility to clear the LEM. Therefore, the market players
need to share limited information to achieve a decentral-
ized energy trading consensus. As a result, we employ the
distributed algorithm based on ADMM to clear the LEM
and determine the optimal energy sharing among the market
players. ADMM offers benefits if a problem is separable
in local optimization subproblems. ADMM is applied in
decentralized optimization to solve problems in a distributed
manner.

In this section, the concept of ADMM is briefly discussed
and then designed to solve the problem (18), which has many
advantages over a centralized approach in terms of privacy
and the computation burden, to name a few. Moreover, the
proposed distributed approach can be proved to converge to
the optimal solution for the market clearing problem.

1) GLOBAL VARIABLES CONSENSUS ADMM FORMULATION
The consensus ADMM is widely used in diversifying areas
in MG applications such as cybersecurity and energy trading.
Its convergence was proved when different blocks of vari-
ables were updated. It is also a strongly desirable method
for solving problems in which the objective and constraints
are distributed across multiple agents. Each agent only has to
handle its own objective function and constraint term, plus a
quadratic term, which is updated each iteration. To formu-
late the ADMM, let i and j agents in a networked system
which are indexed by {1, 2, 3, . . . ,N } and {1, 2, 3, . . . ,M} ,
respectively. Each of these agents has a local private convex
objective function and local optimal solution of f (xi) and
g(zi), where xi∈RN and zi∈RM are the optimization variables.
f : Rn

→ R and g : Rm
→ R are convex functions. The

objective of distributed optimization is to minimize a global
objective function, which is a sum of the objective functions
of all agents in f (xi) and g(zj):

Minimize
N∑
i=1

fi(xi) +

M∑
j=1

gj(zj)

Au− Bv = 0 (24)

In the above expression, A∈Rl×N And B∈Rl×M are con-
stant matrix and vector. u = (x1, x2, . . . , xN ) and v =

(z1, z2, . . . , zM ) are the set of the variables for each xi and zj,
respectively. Since the constraint is that all the local variables
should agree, i.e., be equal, this is called a global consensus
problem ref to [34]. The augmented Lagrangian function,
based on the global variable consensus of the constraints, can
be written as:

Lρ(x, z, λ ) =

N∑
i=1

fi(xi) +

M∑
j=1

gj(zj) + λ
T
·(Au− Bv)︸ ︷︷ ︸

①

+
ρ

2
∥Au− Bv∥22︸ ︷︷ ︸

②

(25)
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where ① and ② are the loss and regularization function,
respectively. λ is the multiplier associated with the equality
constraint, and ρ > 0 is the penalty parameter.
The variables x, z and λ are updated separately and sequen-

tially by following the iterative scheme:

xk+1
1 = argmin

xi∈RN
Lρ((x1, x2, . . . , xN ), vk , λ )

xk+1
2 = argmin

xi∈RN
Lρ((xk+1

1 , x2, . . . , xN ), vk , λ )

.

.

.

xk+1
n = argmin

xi∈RN
Lρ((xk+1

1 , xk+1
2 , . . . , xN ), vk , λ )

zk+1
1 = argmin

xi∈RN
Lρ(uk+1, (z1, z2, . . . , zM ), λ )

zk+1
2 = argmin

xi∈RN
Lρ(uk+1, (zk+1

1 , z2, . . . , zM ), λ

.

.

.

zk+1
M = argmin

xi∈RN
Lρ(uk+1, (zk+1

1 , zk+1
2 , . . . , zM ), λ )

λ
k+1

= λ
k

+ ρ(Auk+1
− Bvk+1) (26)

The convergence properties of the ADMM to meet the
constraint can be referred to in [34] and [35]. The stopping
criteria for the iteration could be defined as follows:

rk+1
=

∥∥∥Auk+1
− Bvk+1

∥∥∥
sk+1

= ρ

∥∥∥ATB(vk − vk+1)
∥∥∥

When these criteria become less than the specified factor,
it could be considered that the ADMM algorithm has con-
verged to the optimal solution.

2) ADMM FOR SOLVING THE PROPOSED OPTIMIZATION
PROBLEM
Since the objective function (18) maximizes the community’s
total social welfare, we first term the problem for market
clearing. Subsequently, we determine the payments among
the grid utility based on the solution of the term in the
objective function (18). We consider each seller and buyer
as an individual agent in the community, which are indexed
in sets of {1, 2, 3, . . . , S} And {1, 2, 3, . . . ,B} , respectively.
In order to decompose the optimization problem in (18)
based on the ADMM rules (24), the augmented Lagrangian
is written as below:

Lρ(Pcom,sell , πcomsell ,P
com,
buy , πcombuy , λ )

=−

 S∑
=1

WS
(
Pcom,sell , πcomsell

)
+

B∑
=1

WB
(
Pcom,buy , πcombuy

)
+ λ

T (Au− Bv) +
ρ

2
∥Au− Bv∥22 (27)

where

A =

[
1 0
0 1

]
B =

[
1 0
0 1

]

u =


S∑
=1

Pcom,buy

πcombuy


v =

 B∑
=1
Pcom,sell

πcomsell


According to (22) and (23), u and v, are the variable

vector for the seller and buyer, respectively. A and B describe
the constant constraints for the vector u and v, respectively.
In ADMM iterations, we alternately optimize the augmented
Lagrangian function of each seller to obtain the optimal
variable of Pcom,isell and πcomsell , and each buyer to obtain the

optimal variable Pcom,|buy and πcombuy . In this respect, the local
variables in (14) and (15) for the seller while (17) and (18)
for the buyer are solved locally.

The ADMM approach has communication links between
each agent, which means that the potential privacy risk still
exists. Regarding the proposed LEMmechanism, the ADMM
process for the sellers and buyers is conducted separately,
which would improve computational efficiency and privacy
preservation. In this study, we introduced the functionsM and
N at the CM level to transform the loss and regularization
function to a single function in each update between the
sellers and buyers, respectively, as indicated in (28) and (29).

M (X k+1) = A′
·X + B′

= λ
T
·(Au− Bvk ) +

ρ

2

∥∥∥Au− Bvk
∥∥∥2
2

(28)

N (X k+1) = A′′
·X + B′′

= λ
T
·(Auk+1

− Bv)

+
ρ

2

∥∥∥Auk+1
− Bvk

∥∥∥2
2

(29)

where X represents the variable of the next update of each
agent. A′, A′′, B′′ And B′ Are a constant value. k is the
iteration number of the ADMM.

Seller - update:
At the iteration (k + 1), the update for the variable(
Pcom,sell , πcomsell

)k+1
Of each seller is formulated as below:

Minimize
Pcom,sell ,πcomsell

(
−WS

(
Pcom,sell , πcomsell

)
+ A′

·

(
Pcom,sell
πcomsell

)
+ B′

)
Subject to: (14) and (15). (30)

Buyer - update:
At the iteration (k + 1), the update for the variable(
Pcom,⟩buy , πcombuy

)k+1
Of each buyer is formulated as below:

Minimize
Pcom,sell ,πcomsell

(
−WS

(
Pcom,sell , πcomsell

)
+ A′

·

(
Pcom,sell
πcomsell

)
+ B′

)
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FIGURE 6. Information flow between the CM and the market participant.

FIGURE 7. The single-line diagram for the illustrative example.

Subject to: (17) and (18) (31)

The implementation procedure of the proposed framework
from the CM perspective is shown in Figure. 6.

The first iteration is dedicated to the seller, the second to
the buyer, and the third updates the Lagrangian multiplier in
accordance with equation (26).

V. NUMERICAL EXPERIMENTS
This section summarizes the findings of this paper and
presents the numerical results related to the mathematical
models and the decentralized algorithm previously described.
For ease of illustration, we report results on a simple illustra-
tive example to demonstrate the proposed design of the LEM.
Then, we apply the proposed design over a real case study in a
residential area in Latvia, considering different pricing pack-
ages provided by the retailer. The simulationswere performed

FIGURE 8. The supply and demand ratio (SDR) for MG① and MG②.

within a Python 3.7 environment, using CVXPY to model the
objective functions using the CPLEX. A Personal Computer
(PC) was used for the experiments with a CPU Intel Core i5
1135G7 2.30 GHZ and 32GB of RAM.

A. ILLUSTRATIVE EXAMPLE
The numerical result of the illustrative example is conducted
in a fully connected 2 MG system with a main grid. Each
MG is composed of 1 consumer and 1 energy provider, which
possess a PV system. The CM takes the place of managing
the MG community. The single-line diagram is illustrated
in Figure 7. Since the proposed method evaluates the will-
ingness of the utilities to participate in LEM, we choose
a single timeslot of the energy generation and demand for
demonstration. The level of the power generation and the
power demand are assumed to be [0, 5] kW and [2, 4] kW for
MG① and [0, 2] kW and [2, 6] kW for MG②, respectively.
We set the electricity retail prices for πgridbuy and πgridsell are
19.01 ¢/kW and 8.7¢/kW, respectively. We assumed the grid
tariff in energy terms is 0.01 ¢/kW. It is also important to note
that the capacity subscription tariff costs, e.g., (fixed cost,
static and dynamic capacity cost, . . . ) are excluded.

Following the steps mentioned in section II-A., each MG
calculates locally the SDR value, internal price, and the utility
function for the consumer and the energy provider using Eqs.
(8) and (12), respectively. The SDR of each MG is illustrated
in Figure 8. As illustrated, the MG① behaves as a seller and
the MG② as a buyer. Since the internal price is calculated
based on the SDR ratio, different SDRs will provide different
internal prices. Figure 9. represents the value of the internal
prices for each MG.

It can be observed that the MG① is willing to participate
in the LEM by selling and purchasing at the price of 8.7¢/kw.
On the other hand, MG② indicates the willingness to partic-
ipate at the price of 13.6¢/kw and 17.3¢/kw for selling and
buying, respectively. Table 1. Describes the parameter values
of the convex function of the utilities based on the internal
price for a competitive LEM. These parameters dynamically
reflect the profit of each MG in the LEM.

Figures 11, and 12 represent the curves of utility function
for the seller ‘‘MG①’’ and the buyer ‘‘MG②’’. The CM coor-
dinates the market clearing using an iterative process after
classifying the players based on SDR values. The iterative
process to solve the clearing problem is portrayed in Fig. 12.

68242 VOLUME 12, 2024



Y. Zahraoui et al.: Competitive Framework for the Participation of Multi-Microgrids

FIGURE 9. The internal prices for each MG.

TABLE 1. Parameter of the utility function for each MG.

FIGURE 10. The utility curves of the power utility for the MG①.

FIGURE 11. The utility curves of the power utility for the MG②.

As illustrated, the initial tentative price for the energy traded
in the LEM is broadcasted from the seller ‘‘MG①’’ and
the buyer ‘‘MG②’’. Meanwhile, the LEM prices stay in the
range of the selling and purchasing the energy from the retail
market. After 33 iterations, the market is fully cleared at price
of 13.86¢/kw.

Fig. 13. represents the total surplus power supply and
demand for the seller and buyer in the LEM. Fig. 14. And
15, illustrates the optimal energy sharing of the community
which is realized through the proposed LEM design. Fig. 14.
represents the convergence of the power in the community,
which verifies that the total traded energy between the seller
and the buyer is the same. It is noticeable that the sellers are
urged to be motivated and incentivized to sell their surplus

FIGURE 12. Clearing price process for the LEM.

FIGURE 13. The total surplus power supply and demand of the seller and
buyer in LEM.

energy in the community rather than grid utility, because the
selling price in the LEM is higher than the grid utility. The
total amount of energy purchased from and sold to the utility
grid for the buyer and seller is shown in Fig. 15. As observed,
the total amount of energy purchased from the grid by the
buyer is significantly reduced with the application of LEM
trading, where the buyer attempted to purchase the power
from the community to increase their social welfare. The
proposed mechanism allows prosumers to benefit maximally
from their participation in the LEM.

An CM operates the community of the MG to maximize
their social welfare, by optimizing the energy transaction and
the interactions among the sellers and buyers and with the
grid utility. Fig. 16. illustrate the convergence of the seller
and buyer to maximize their individual welfare. Since maxi-
mizing the social welfare is implicitly related to minimizing
the operation cost for each player, the convergence is ensuring
that no entity is penalized with respect to acting individually.
Moreover, it has been demonstrated that the clearing price not
only maximizes the social welfare for the players, but also the
payoff for energy provider.

In the context of the efficiency of the proposed algorithm
for market clearing, we perform our algorithm to solve the
objective function on different parameters of ρ = 40, 10, 2,
and 0.5. From Fig. 17, we can see those different choices of
ρ can make a difference at the beginning of the algorithm,
and after several iterations it can converge to the optimal
value. Therefore, our algorithm has good performance in
convergence rate and is not too sensitive to the value of ρ,
except for the first several iterations.
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FIGURE 14. Traded energy by seller and buyer in LEM.

FIGURE 15. Traded energy with the main grid.

FIGURE 16. Curves of the welfare level for the seller and buyer.

The market clearing problem is solved by the proposed
algorithm based on the ADMM algorithm in an iterative pro-
cess. In this work, the primal and dual convergence is defined
as 0.001, and the penalty ρ is set as 10. Figure 18. displays
the aggregated primal and dual residual at each iteration.
It depicts that the proposed algorithm can only converge to
the specified thresholds after a few iterations only.

The centralized solution is obtained by directly solving
the market clearing model with the Pyomo IPOPT solver.
The iteration process of the objective value is displayed in
Figure 19, demonstrating that the ADMM-based algorithm
can reproduce the optimal outcomes obtained from cen-
tralized optimization. The computation times to solve the
objective function are 0.1691 (s) and 3.218 (s) for the
centralized and the proposed ADMM method, respectively.
Meanwhile, the maximum solution time for the seller and
buyers’ sub-problems is 0.0633 (s). As it can be observed,
the proposed ADMMapproach needs more computation time
than the centralized approach, and it can maintain privacy
information protection, i.e., the CM does not need to have

FIGURE 17. Evaluation of the objective function for different ρ.

FIGURE 18. The supply and demand ratio (SDR) for the community.

FIGURE 19. The supply and demand ratio (SDR) for the community.

access for the preferences of each MG participating in the
LEM.

B. CASE OF STUDY
A case study of an actual segment of an electricity distribu-
tion system of a residential area in the city of Riga, Latvia,
is used for the testing of the developed framework [36]. There
are four MG connected with the grid utility, and each MG
is composed of different DERs (loads and PV1 systems),
as displayed in Figure 20. All those DERs have PV capacity
between [0, 11] kW and energy consumption between [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24], [25], and [26] kW. Figure 21 Represents the SDR
of each MG. In order to elaborate the proposed LEM, fixed-
rate pricing and dynamic pricing are considered. Table 2
represents the characteristics of the pricing packages from the
retailer. We assume the spot market price is 10 ¢/kW and the
fixed price for selling is 6.75 ¢/kW. We set our algorithm at
the criteria stop at 10−5.
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FIGURE 20. The topology of the case of study.

TABLE 2. The characteristics of the pricing packages.

FIGURE 21. The supply and demand ratio (SDR) for the community.

FIGURE 22. The internal pricing for the MGs using the dynamic pricing.

According to the proposed scheme, the utility functions
for each MGs are directly influenced by the pricing package.
The impact of the internal pricing using the dynamic and
the fixed rate pricing at the LEM is depicted in Figures 22
and 23, respectively. According to Figures 22 and 23, the
internal price of the MGs using dynamic pricing is higher

FIGURE 23. The internal pricing for the MGs using the fixed rate pricing.

FIGURE 24. Clearing process under the dynamic pricing.

FIGURE 25. Clearing process under the fixed rate pricing.

than fixed-rate pricing. Thus, the utility coefficients for the
consumers and energy providers in each MG using dynamic
pricing are higher than fixed-rate pricing.
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FIGURE 26. Total power exchange of community using the dynamic
pricing and Fixed-rate pricing.

FIGURE 27. Comparison of the social welfare using dynamic pricing and
Fixed-rate pricing.

Fig 24 and Fig 25, show the market clearing process using
the proposed LEM design under the dynamic and fixed-rate
pricing. Where it can be verified that in the πcomsell , and π

com
buy

Between seller and buyer they will reach convergence. Also,
the clearing price satisfies pricing’s constraints, it means that
aMG④ cannot offer a price higher than retailer’s selling price
and the MG①, MG②, andMG③ cannot ask for an energy at a
price lower than retailer’s purchasing price. As can be noted
the clearing price is 9.86 ¢/kw for the dynamic pricing and
7.98 ¢/kw for the fixed rate pricing.
The total power exchange for the community using the

dynamic and fixed rate pricing is demonstrated in Figure 26.
As expected, the exchange energy amount to the main grid
for both packages is similar, equal to zero. The reason is that
the amount of energy exchanged in the LEM is insufficient to
meet the community’s self-demand. The CM never sells elec-
tricity to the main grid since the electricity purchasing price
of the main grid is always no higher than that of the LEM.
The community also needs to purchase energy of 345.21 kW
from the main grid to satisfy their power demand, which is
365 kW.

Figure. 27. illustrates the economic benefit of the commu-
nity from the view of social welfare. As can be observed,
the changes in social welfare and the total trading payment
mainly depend on the pricing, and they increase and decrease
with the increase in pricing in the LEM. Obviously, the com-
munity enjoys the highest social welfare when using dynamic
pricing. The reason is that the sellers benefit more when the
LEM price is high, and the buyers can enjoy more at a lower
price.

VI. CONCLUSION
In recent years, extensive research has been conducted
to explore MGs to establish a fully competitive market
between prosumers. Nevertheless, ensuring the secure and
efficient operation ofMGs necessitates the implementation of
advancedmarket designs and private topology for exchanging
information. In this research, an LEM framework involving
energy trading for multi-MGs connected with the main grid
is proposed. This framework provides chances for intercon-
nected MGs to utilize the surplus energy in the community to
increase their social welfare. The MGs, as in the community,
were classified into sellers and buyers based on their SDR.
Consequently, the willingness to participate in a LEM is
modeled based on real-dynamic market information using the
internal pricing method and the retail market price, which
provide an adequate trading design to incentivize players
to participate actively in the trading process. The objective
function for the sellers and the buyers is reformulated as a
distributed convex optimization problem. The CM plays a
role as an intermediate coordinator between the sellers and
buyers for market clearing. The LEM clearing problem relied
on a specific iterative process ADMM algorithm to protect
the privacy and security of each market player. Implemented
case studies verified that the proposed framework could help
multi-MGs trade power locally to meet their own power
requirements with minimum cost. Moreover, the convergence
of the proposed ADMM approach was proved, and the com-
parisonwith the centralized approachwas also examined. The
proposed approach obtains the optimal result in a reasonable
number of iterations. It provides the same value of social
welfare as demonstrated in the centralized approach, while
it needs lower information exchange. Our study found that
by using dynamic pricing in conjunction with our proposed
model, the social welfare of the energy community can be
increased by 14.25%. This demonstrates the significant eco-
nomic benefits and effectiveness of our approach in the Local
Energy Market (LEM).

However, a limitation of our work is that the algorithm
takes many iterations to converge to the clearing price, which
increases the computation cost and may cause some com-
munication delay. In future work, we plan to focus more
on improving the algorithm based on the second derivative
model to make it converge faster and provide more privacy.

REFERENCES

[1] T. Morstyn and M. D. McCulloch, ‘‘Multiclass energy management
for peer-to-peer energy trading driven by prosumer preferences,’’ IEEE
Trans. Power Syst., vol. 34, no. 5, pp. 4005–4014, Sep. 2019, doi:
10.1109/TPWRS.2018.2834472.

[2] A. Paudel, K. Chaudhari, C. Long, and H. B. Gooi, ‘‘Peer-to-
peer energy trading in a prosumer-based community microgrid:
A game-theoretic model,’’ IEEE Trans. Ind. Electron., vol. 66,
no. 8, pp. 6087–6097, Aug. 2019, doi: 10.1109/TIE.2018.
2874578.

[3] M. Khorasany, Y. Mishra, and G. Ledwich, ‘‘Hybrid trading scheme
for peer-to-peer energy trading in transactive energy markets,’’ IET
Gener., Transmiss. Distrib., vol. 14, no. 2, pp. 245–253, Jan. 2020, doi:
10.1049/iet-gtd.2019.1233.

68246 VOLUME 12, 2024

http://dx.doi.org/10.1109/TPWRS.2018.2834472
http://dx.doi.org/10.1109/TIE.2018.2874578
http://dx.doi.org/10.1109/TIE.2018.2874578
http://dx.doi.org/10.1049/iet-gtd.2019.1233


Y. Zahraoui et al.: Competitive Framework for the Participation of Multi-Microgrids

[4] T. AlSkaif, J. L. Crespo-Vazquez, M. Sekuloski, G. van Leeuwen, and
J. P. S. Catalão, ‘‘Blockchain-based fully peer-to-peer energy trading strate-
gies for residential energy systems,’’ IEEE Trans. Ind. Informat., vol. 18,
no. 1, pp. 231–241, Jan. 2022, doi: 10.1109/TII.2021.3077008.

[5] X. Jin, Q. Wu, and H. Jia, ‘‘Local flexibility markets: Literature review
on concepts, models and clearing methods,’’ Appl. Energy, vol. 261,
Mar. 2020, Art. no. 114387, doi: 10.1016/j.apenergy.2019.114387.

[6] M. Khorasany, A. Najafi-Ghalelou, and R. Razzaghi, ‘‘A framework for
joint scheduling and power trading of prosumers in transactive markets,’’
IEEE Trans. Sustain. Energy, vol. 12, no. 2, pp. 955–965, Apr. 2021, doi:
10.1109/TSTE.2020.3026611.

[7] M. N. Faqiry, L. Edmonds, H. Wu, and A. Pahwa, ‘‘Distribution locational
marginal price-based transactive day-ahead market with variable renew-
able generation,’’ Appl. Energy, vol. 259, Feb. 2020, Art. no. 114103, doi:
10.1016/j.apenergy.2019.114103.

[8] F. Moret and P. Pinson, ‘‘Energy collectives: A community and
fairness based approach to future electricity markets,’’ IEEE
Trans. Power Syst., vol. 34, no. 5, pp. 3994–4004, Sep. 2019, doi:
10.1109/TPWRS.2018.2808961.

[9] Y. Tao, J. Qiu, S. Lai, and J. Zhao, ‘‘Integrated electricity and
hydrogen energy sharing in coupled energy systems,’’ IEEE
Trans. Smart Grid, vol. 12, no. 2, pp. 1149–1162, Mar. 2021, doi:
10.1109/TSG.2020.3023716.

[10] G. Hug, S. Kar, and C. Wu, ‘‘Consensus + innovations approach for dis-
tributed multiagent coordination in a microgrid,’’ IEEE Trans. Smart Grid,
vol. 6, no. 4, pp. 1893–1903, Jul. 2015, doi: 10.1109/TSG.2015.2409053.

[11] W. Liu, Q. Wu, F. Wen, and J. Østergaard, ‘‘Day-ahead congestion man-
agement in distribution systems through household demand response and
distribution congestion prices,’’ IEEE Trans. Smart Grid, vol. 5, no. 6,
pp. 2739–2747, Nov. 2014, doi: 10.1109/TSG.2014.2336093.

[12] F. Lezama, J. Soares, P. Hernandez-Leal, M. Kaisers, T. Pinto, and
Z. Vale, ‘‘Local energy markets: Paving the path toward fully transactive
energy systems,’’ IEEE Trans. Power Syst., vol. 34, no. 5, pp. 4081–4088,
Sep. 2019, doi: 10.1109/TPWRS.2018.2833959.

[13] N. Liu, X. Yu, C. Wang, C. Li, L. Ma, and J. Lei, ‘‘Energy-sharing
model with price-based demand response for microgrids of peer-to-peer
prosumers,’’ IEEE Trans. Power Syst., vol. 32, no. 5, pp. 3569–3583,
Sep. 2017, doi: 10.1109/TPWRS.2017.2649558.

[14] M.Marzband, A. Sumper, J. L. Domínguez-García, and R. Gumara-Ferret,
‘‘Experimental validation of a real time energy management system for
microgrids in islanded mode using a local day-ahead electricity market and
MINLP,’’ Energy Convers. Manage., vol. 76, pp. 314–322, Dec. 2013, doi:
10.1016/j.enconman.2013.07.053.

[15] S. Lilla, C. Orozco, A. Borghetti, F. Napolitano, and F. Tossani,
‘‘Day-ahead scheduling of a local energy community: An alternating
direction method of multipliers approach,’’ IEEE Trans. Power Syst.,
vol. 35, no. 2, pp. 1132–1142, Mar. 2020, doi: 10.1109/TPWRS.2019.
2944541.

[16] T. Sousa, T. Soares, P. Pinson, F. Moret, T. Baroche, and E. Sorin,
‘‘Peer-to-peer and community-based markets: A comprehensive review,’’
Renew. Sustain. Energy Rev., vol. 104, pp. 367–378, Apr. 2019, doi:
10.1016/j.rser.2019.01.036.

[17] R. Jing, M. N. Xie, F. X. Wang, and L. X. Chen, ‘‘Fair P2P energy
trading between residential and commercial multi-energy systems enabling
integrated demand-side management,’’ Appl. Energy, vol. 262, Mar. 2020,
Art. no. 114551, doi: 10.1016/j.apenergy.2020.114551.

[18] T. Morstyn, A. Teytelboym, C. Hepburn, and M. D. McCulloch, ‘‘Integrat-
ing P2P energy trading with probabilistic distribution locational marginal
pricing,’’ IEEE Trans. Smart Grid, vol. 11, no. 4, pp. 3095–3106, Jul. 2020,
doi: 10.1109/TSG.2019.2963238.

[19] T. Chen, S. Bu, X. Liu, J. Kang, F. R. Yu, and Z. Han, ‘‘Peer-to-peer energy
trading and energy conversion in interconnected multi-energy microgrids
using multi-agent deep reinforcement learning,’’ IEEE Trans. Smart Grid,
vol. 13, no. 1, pp. 715–727, Jan. 2022, doi: 10.1109/TSG.2021.3124465.

[20] H. Yao, Y. Xiang, S. Hu, G. Wu, and J. Liu, ‘‘Optimal prosumers’
peer-to-peer energy trading and scheduling in distribution networks,’’
IEEE Trans. Ind. Appl., vol. 58, no. 2, pp. 1466–1477, Mar. 2022, doi:
10.1109/TIA.2021.3133207.

[21] A. Jiang, H. Yuan, and D. Li, ‘‘A two-stage optimization approach on the
decisions for prosumers and consumers within a community in the peer-to-
peer energy sharing trading,’’ Int. J. Electr. Power Energy Syst., vol. 125,
Feb. 2021, Art. no. 106527, doi: 10.1016/j.ijepes.2020.106527.

[22] J. L. Crespo-Vazquez, T. AlSkaif, Á. M. González-Rueda, andM. Gibescu,
‘‘A community-based energy market design using decentralized decision-
making under uncertainty,’’ IEEE Trans. Smart Grid, vol. 12, no. 2,
pp. 1782–1793, Mar. 2021, doi: 10.1109/TSG.2020.3036915.

[23] P. Shamsi, H. Xie, A. Longe, and J.-Y. Joo, ‘‘Economic dispatch for an
agent-based community microgrid,’’ IEEE Trans. Smart Grid, vol. 7, no. 5,
pp. 2317–2324, Sep. 2016, doi: 10.1109/TSG.2015.2487422.

[24] L. Yan, X. Chen, Y. Chen, and J. Wen, ‘‘A hierarchical deep reinforcement
learning-based community energy trading scheme for a neighborhood of
smart households,’’ IEEE Trans. Smart Grid, vol. 13, no. 6, pp. 4747–4758,
Nov. 2022, doi: 10.1109/TSG.2022.3181329.

[25] Y. Xiao, X. Wang, P. Pinson, and X. Wang, ‘‘A local energy market
for electricity and hydrogen,’’ IEEE Trans. Power Syst., vol. 33, no. 4,
pp. 3898–3908, Jul. 2018, doi: 10.1109/TPWRS.2017.2779540.

[26] Y. Liu, Y. Li, H. B. Gooi, Y. Jian, H. Xin, X. Jiang, and J. Pan, ‘‘Distributed
robust energy management of a multimicrogrid system in the real-time
energy market,’’ IEEE Trans. Sustain. Energy, vol. 10, no. 1, pp. 396–406,
Jan. 2019, doi: 10.1109/TSTE.2017.2779827.

[27] C. Liu and Z. Li, ‘‘Comparison of centralized and peer-to-peer decen-
tralized market designs for community markets,’’ IEEE Trans. Ind. Appl.,
vol. 58, no. 1, pp. 67–77, Jan. 2022.

[28] W. Tushar, T. K. Saha, C. Yuen, T. Morstyn, Nahid-Al-Masood, H. V. Poor,
and R. Bean, ‘‘Grid influenced peer-to-peer energy trading,’’ IEEE
Trans. Smart Grid, vol. 11, no. 2, pp. 1407–1418, Mar. 2020, doi:
10.1109/TSG.2019.2937981.

[29] Y.Xia, Q. Xu, and F. Li, ‘‘Grid-friendly pricingmechanism for peer-to-peer
energy sharing market diffusion in communities,’’ Appl. Energy, vol. 334,
Mar. 2023, Art. no. 120685, doi: 10.1016/j.apenergy.2023.120685.

[30] L. Ma, L. Wang, and Z. Liu, ‘‘Multi-level trading community for-
mation and hybrid trading network construction in local energy
market,’’ Appl. Energy, vol. 285, Mar. 2021, Art. no. 116399, doi:
10.1016/j.apenergy.2020.116399.

[31] Y. Chen, S. Mei, F. Zhou, S. H. Low, W. Wei, and F. Liu, ‘‘An energy
sharing game with generalized demand bidding: Model and properties,’’
IEEE Trans. Smart Grid, vol. 11, no. 3, pp. 2055–2066, May 2020, doi:
10.1109/TSG.2019.2946602.

[32] P. Samadi, H. Mohsenian-Rad, R. Schober, and V.W. S. Wong, ‘‘Advanced
demand side management for the future smart grid using mechanism
design,’’ IEEE Trans. Smart Grid, vol. 3, no. 3, pp. 1170–1180, Sep. 2012,
doi: 10.1109/TSG.2012.2203341.

[33] B. Cornélusse, I. Savelli, S. Paoletti, A. Giannitrapani, and A. Vicino,
‘‘A community microgrid architecture with an internal local
market,’’ Appl. Energy, vol. 242, pp. 547–560, May 2019, doi:
10.1016/j.apenergy.2019.03.109.

[34] S. Boyd, ‘‘Distributed optimization and statistical learning via the alternat-
ing direction method of multipliers,’’ Found. Trends Mach. Learn., vol. 3,
no. 1, pp. 1–122, 2010, doi: 10.1561/2200000016.

[35] J. Gallier and J. Quaintance, Fundamentals of Optimization Theory With
Applications to Machine Learning. Philadelphia, PA, USA: University of
Pennsylvania, 2019.

[36] T. Korõtko, F. Plaum, T. Häring, A. Mutule, R. Lazdins, O. Borsčevskis,
A. Rosin, and P. Carroll, ‘‘Assessment of power system asset dispatch
under different local energy community business models,’’ Energies,
vol. 16, no. 8, p. 3476, Apr. 2023, doi: 10.3390/en16083476.

YOUNES ZAHRAOUI (Member, IEEE) received
the B.S. and M.S. degrees in electrical engineer-
ing from the University of Boumerdes Faculty
of Hydrocarbons and Chemistry (INH), Algeria,
in 2015 and 2017, respectively, and the Ph.D.
degree from British Malaysian Institute, Univer-
siti Kuala Lumpur, Malaysia, in 2022. He is
currently a Postdoctoral Researcher with NTNU,
Norway. His research interests include motor
drives, autonomous technologies, microgrid con-

trols, energy management systems, hybrid renewable energy systems,
microgrid systems, energy efficiency, energy market, artificial intelligence
applications, and electric vehicles.

VOLUME 12, 2024 68247

http://dx.doi.org/10.1109/TII.2021.3077008
http://dx.doi.org/10.1016/j.apenergy.2019.114387
http://dx.doi.org/10.1109/TSTE.2020.3026611
http://dx.doi.org/10.1016/j.apenergy.2019.114103
http://dx.doi.org/10.1109/TPWRS.2018.2808961
http://dx.doi.org/10.1109/TSG.2020.3023716
http://dx.doi.org/10.1109/TSG.2015.2409053
http://dx.doi.org/10.1109/TSG.2014.2336093
http://dx.doi.org/10.1109/TPWRS.2018.2833959
http://dx.doi.org/10.1109/TPWRS.2017.2649558
http://dx.doi.org/10.1016/j.enconman.2013.07.053
http://dx.doi.org/10.1109/TPWRS.2019.2944541
http://dx.doi.org/10.1109/TPWRS.2019.2944541
http://dx.doi.org/10.1016/j.rser.2019.01.036
http://dx.doi.org/10.1016/j.apenergy.2020.114551
http://dx.doi.org/10.1109/TSG.2019.2963238
http://dx.doi.org/10.1109/TSG.2021.3124465
http://dx.doi.org/10.1109/TIA.2021.3133207
http://dx.doi.org/10.1016/j.ijepes.2020.106527
http://dx.doi.org/10.1109/TSG.2020.3036915
http://dx.doi.org/10.1109/TSG.2015.2487422
http://dx.doi.org/10.1109/TSG.2022.3181329
http://dx.doi.org/10.1109/TPWRS.2017.2779540
http://dx.doi.org/10.1109/TSTE.2017.2779827
http://dx.doi.org/10.1109/TSG.2019.2937981
http://dx.doi.org/10.1016/j.apenergy.2023.120685
http://dx.doi.org/10.1016/j.apenergy.2020.116399
http://dx.doi.org/10.1109/TSG.2019.2946602
http://dx.doi.org/10.1109/TSG.2012.2203341
http://dx.doi.org/10.1016/j.apenergy.2019.03.109
http://dx.doi.org/10.1561/2200000016
http://dx.doi.org/10.3390/en16083476


Y. Zahraoui et al.: Competitive Framework for the Participation of Multi-Microgrids

TARMO KORÕTKO (Member, IEEE) received
the B.Sc. and M.Sc. degrees in mechatronics and
the Ph.D. degree in energy and geotechnology
from Tallinn University of Technology (TalTech),
Tallinn, Estonia, in 2007, 2010, and 2019, respec-
tively. In 2018, he became a member of the Micro-
grids and Metrology Research Group, Department
of Electrical Power Engineering and Mechatron-
ics, TalTech, where he is currently employed as
a Senior Researcher. He has published more than

20 articles on the topics of energy management and control of microgrids,
power system digitalization, local energy markets, energy storage systems,
and machine learning applications in electric power systems. His research
interests include microgrids, local energy markets, prosumers, power system
digitalization, and artificial intelligence in electric power systems.

ARGO ROSIN (Senior Member, IEEE) received
the Dipl.Eng., M.Sc., and Dr.Sc.Eng. degrees in
electrical engineering from Tallinn University of
Technology (TUT), Tallinn, Estonia, in 1996,
1998, and 2005, respectively. He became a Pro-
fessor of power supply, in 2018. He is cur-
rently the Head of the Microgrids and Metrology
Group, Department of Electrical Power Engineer-
ing and Mechatronics, TUT. He is the Co-Founder
and a Leading Researcher with the first global

cross-border Smart City Center of Excellence—Finest Twins (2019–2026),
which focuses on developing research and cross-border innovation networks
and capabilities in five domains—data, governance, mobility, energy, and
built environment. He is also the Co-Founder of the Estonian Centre of Excel-
lence for zero energy and resource-efficient smart buildings and districts.
He has supervised project-related fields of six Ph.D. theses and over 30 mas-
ter’s theses. He has published several international (Springer and IET) books
and more than 80 articles on smart grids and microgrids, energy manage-
ment, and control and diagnostic systems. His research interests include the
energy efficiency of household and industrial systems, energy demand-side
management, microgrids, and industrial control systems. He has received
several national awards, including theGoldenBadge of the EstonianMinistry
of Defence for productive cooperation and The Best Development Work
2005 from the Tallinn City Government.

TEKAI EDDINE KHALIL ZIDANE received the
B.Eng. and M.Eng. degrees in electrical engi-
neering from the University of Setif, Algeria, in
2010 and 2012, respectively, and the Ph.D. degree
in electrical engineering from Universiti Malaysia
Perlis, Malaysia, in 2021. From 2014 to 2019,
he was a Low Voltage Network Engineer and
an Electrical Network Operations Engineer (MV)
with Algerian Electricity and Gas Company
SONELGAZ, Algeria. He was a Postdoctoral

Researcher with the University of Technology Malaysia, Johor Bahru,
Malaysia, from July 2022 to March 2023. He is currently a Postdoctoral
Researcher with Mälardalen University, Sweden. His research interests
include economics and optimization of agrivoltaic and PV systems, renew-
able energy systems, microgrids, and power system resilience.

HANNES AGABUS received the Ph.D. degree in
energy and geotechnology from Tallinn Univer-
sity of Technology (Taltech), in 2009. With over
20 years of experience in the energy and green
sector, he has successfully initiated, overseen, and
concluded numerous development and investment
projects, including research initiatives. He is cur-
rently an Energy Economics Expert with TalTech,
focusing primarily on energy policy and markets.
He has contributed to important developments in

the Estonian energy sector, assisting in the formulation of development plans
and the creation of different acts, grid codes, and standards.

SAAD MEKHILEF (Fellow, IEEE) received the
B.Eng. degree in electrical engineering from the
University of Setif, Setif, Algeria, in 1995, and
the master’s degree in engineering science and the
Ph.D. degree in electrical engineering from the
University of Malaya, Kuala Lumpur, Malaysia,
in 1998 and 2003, respectively. He is currently a
Distinguished Professor with the School of Sci-
ence, Computing and Engineering Technologies,
Swinburne University of Technology, Melbourne,

VIC, Australia, and an Honorary Professor with the Department of Electrical
Engineering, University of Malaya. He has authored or coauthored more
than 500 publications in academic journals and proceedings and five books
with more than 32 000 citations. His current research interests include power
converter topologies, the control of power converters, renewable energy, and
energy efficiency.

68248 VOLUME 12, 2024


