
Received 1 March 2024, accepted 28 April 2024, date of publication 8 May 2024, date of current version 15 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3398732

Accurate Information Type Classification
for Software Issue Discussions With
Random Oversampling
BOBURMIRZO MUHIBULLAEV AND JINDAE KIM , (Member, IEEE)
Department of Computer Science and Engineering, Seoul National University of Science and Technology, Nowon-gu, Seoul 01811, Republic of Korea

Corresponding author: Jindae Kim (jindae.kim@seoultech.ac.kr)

This work was supported by the National Research Foundation of Korea (NRF) funded by Korean Government [Ministry of Science and
ICT (MSIT)] under Grant 2022R1F1A1070464.

ABSTRACT An Issue Tracking System (ITS) plays a crucial role in software development and provides
valuable information for understanding issue management. In an ITS, software developers often discuss
issues that are reported during software development. Recent studies analyzed such issue discussions and
identified information types of issue comments that appeared in the discussions. Automatic classification
of the information types can help developers understand and locate required information more easily,
but existing techniques cannot provide accurate classification. In this study, we propose a more accurate
technique to classify information types of issue comments. The key to increasing classification performance
is employing randomoversampling to deal with imbalances among training instances of different information
types. With random oversampling, we trained a classifier using logistic regression with hyperparameter
tuning and achieved an average 0.95 F1-score, which was much higher than 0.53 of the compared
existing technique. We also considered two other key aspects of the technique to fully investigate the
potential performance improvement. We expanded an existing issue comment dataset by adding 4,098
more instances, almost double the size of the dataset. We analyzed the influence of hyperparameters on
classification performance and found that using values within an appropriate range is important to achieve
high performance.

INDEX TERMS Issue discussion analysis, issue management, issue tracking systems, open source software,
random oversampling.

I. INTRODUCTION
In software development, an Issue Tracking System (ITS)
plays an important role in issue management, and any
issues during the development can be reported, tracked, and
discussed in the system. Because of its crucial roles, many
software engineering studies and techniques have targeted
ITSs. Some of the studies investigated the ITSs and tried
to provide a better understanding of issues and activities
that occurred during the software life cycle [1], [2], [3], [4],
[5], [6]. Another line of work tries to help software developers
by leveraging the information obtained from ITSs, such as

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana .

localizing faults causing reported bugs [5], [7], [8], [9], [10],
[11], [12], or recommend developers suitable for handling
reported issues [13], [14], [15], [16].

One issue with using ITSs is that it is difficult to find
useful information if an issue has a very long issue discussion.
FIGURE 1 shows an example of such issue discussions that
we collected from the issue #13353 of the Keras software
project.1 The first box is the actual issue report, and the other
three boxes show a part of the issue discussion extracted
from the issue. There are 101 comments for this issue,
and each comment may consist of several sentences. In
FIGURE 1, red lines represent solution discussion, and blue

1https://github.com/keras-team/keras/issues/13353

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 65373

https://orcid.org/0009-0006-0452-9456
https://orcid.org/0000-0003-1864-0148
https://orcid.org/0000-0003-3264-185X


B. Muhibullaev, J. Kim: Accurate Information Type Classification for Software Issue Discussions

FIGURE 1. An Example of issue discussion from keras issue #13353.

dotted lines indicate social conversions. To solve the problem,
a developer should read all the sentences and identify the
sentences that are closely relevant to solutions. This is not an
easy task, especially since many sentences exist in the issue
discussion. For instance, the red-lined sentences in FIGURE1
appear only after scrolling down one-third of the long web
page. In such situations, identifying information types of an
individual comment - i.e., each sentence - can be helpful to
find necessary information. In this paper, we will use ‘‘issue
comment’’ and ‘‘sentence’’ interchangeably to indicate an
individual sentence that belongs to a specific information
type.

To solve this problem, Arya et al. analyzed and identified
16 information types in an issue discussion dataset consisting
of more than 4K issue comments collected from GitHub [17].
Then, they trained classifiers using logistic regression and
random forest techniques to identify information types of
issue comments automatically. Using the techniques, we can
focus on the required information directly while filtering
out other unnecessary types of information. For example,
a developer assigned to solve an issue may want to see
comments related to bug reproduction only, and the technique
can be used to list up bug reproduction-type comments.

However, the previous classifiers were still insufficient
to solve the problem since their classification performance
was not sufficiently high. The classification performance
of the existing techniques is measured by the weighted

average F1-score using the dataset consisting of the collected
issue comments. Although the values varied for different
configurations, the overall F1-score ranged from 0.42 to 0.61.
Mehder and Aydemir employed deep learning models and
tried to improve the classification performance [18], but in
their experiments with the same dataset, Arya et al.’s logistic
regression model obtained 0.51 F1-score, and the proposed
models using BERT [19] only achieved 0.54 F1-score. These
results indicate that the existing techniques do not reliably
produce classification outcomes. We need to improve their
performance to truly resolve the problem caused by long issue
discussions.

In this study, we propose a new solution to significantly
increase the classification performance for information types
of issue comments. The core idea of the proposed technique
is employing Random Oversampling [20] to mitigate the
class imbalance problem. During logistic regression classifier
training, we identified a significant class imbalance issue.
The two largest classes (information types) comprised over
half of the training instances, potentially introducing biases
to the classifier. To address this problem, we applied
random oversampling, which copies the instances from
minority classes to balance the number of instances among
the classes. In the previous study [17], this problem was
handled by the Synthetic Minority Oversampling Technique
(SMOTE) [21]. While random oversampling simply copies
existing instances, SMOTE synthesizes similar instances

65374 VOLUME 12, 2024



B. Muhibullaev, J. Kim: Accurate Information Type Classification for Software Issue Discussions

from numeric vectors representing the sentences. Since the
instances were short sentences, we thought that synthesized
vectors might not represent other sentences belonging to the
same class, which eventually decreased the performance.

Surprisingly, the simple change significantly increased the
classification performance. In our experiments, we compared
the classification performance of the two logistic regression
classifiers with different oversampling methods: random
oversampling and SMOTE. With random oversampling, the
average weighted values of precision, recall, and F1-score
were 0.95, 0.95, and 0.95, respectively. On the other hand,
using SMOTE yielded only 0.54, 0.54, and 0.53 for these
same metrics. By simply changing the oversampling method,
we achieved significantly higher classification performance,
demonstrating that improvements do not always require the
adoption of new, complex, and costly training methods.

Although employing random oversampling significantly
improved the performance, we also considered two other
key aspects: dataset expansion and hyperparameter tuning.
Increasing the number of training instances can enhance
classification performance. Hence, we collected and labeled
4,098 issue comments and combined them with the existing
dataset, nearly doubling its size. With the combined dataset,
the average weighted F1-score was improved to 0.56 for
SMOTE but was not changed for random oversampling.
While more instances improved the performance slightly,
we observed that the class imbalance persisted in the
combined dataset, and the performance improvement was
limited without proper handling of the imbalance. We also
analyzed the influence of hyperparameters - LogReg C
(regularization strength), max_df (maximum document fre-
quency), and ngram_range- on classification performance
by experimenting with various values. Our findings indicate
that LogReg C influences classification performance most,
while the impact of max_df and ngram_range is more
limited. However, selecting values within an appropriate
range for these hyperparameters remains important to achieve
high performance.

Here are the key contributions of this study.
• We propose an accurate and reliable technique to
classify information types of issue comments from issue
discussions.

• We expand the issue comment dataset and double its
size. The dataset is publicly available.

• We present an analysis of the influence of hyperparam-
eters on the classification performance.

The rest of the paper is organized as follows. First,
we explain the details of our approach in Section II-A. Then,
we provide our empirical evaluation design of the proposed
technique’s performance in Section III. Next, we present the
evaluation results and discuss the influence of oversampling
methods, the dataset, and hyperparameters on classification
performance (Section IV). After that, we discuss studies
related to this paper (Section V) as well as threats to the
validity of the study (Section VI), and finally we conclude
with future work (Section VII).

II. INFORMATION TYPE CLASSIFICATION OF ISSUE
COMMENTS
This section will explain our approach for classifying the
information types of issue comments.

A. OVERALL PROCESS
To improve the classification performance of the existing
approach [17], we considered three aspects of the technique:
oversampling method, dataset, and hyperparameter tuning.
Among the three aspects, the oversampling method is the
most important part of the proposed technique. By using a
different oversampling method, we can expect to mitigate the
imbalance of training instances from different information
types. In addition, we expanded the dataset with more
collected and labeled issue comments to provide more
training instances for the classification. Finally, we analyzed
the influence of hyperparameters on the classification
performance.

FIGURE 2 shows the overall process of the proposed
technique. The process begins with a dataset containing col-
lected issue comments. Next, the issue comments, expressed
in natural language sentences, are converted into numeric
vectors during the pre-processing step. Once the numerical
vectors are obtained, a logistic regression technique is applied
to the vectors to train a classifier. During this training
step, we used grid search to tune the hyperparameters with
three hyperparameters, LogReg C, ngram_range, and
max_df, to use optimized values for the hyperparameters.
Finally, the trained classifier can be used to classify the
information type of comments on new issues.

In the following sections, we will explain the key aspects
of the proposed information type classification technique in
more detail.

B. RANDOM OVERSAMPLING
We use RandomOversampling [20] in the proposed approach
to mitigate class imbalance in the dataset. We found that
the number of instances in each class differed significantly;
hence, mitigating class imbalance was a key issue in more
accurate classification. In the previous study, SMOTE and
class weights were used, and SMOTE showed slightly better
performance when only textual features - sentences - were
considered [17]. However, the performance was not high -
around 0.5 F1-score- hence, we thought employing another
oversampling method could solve this issue.

In the problem of classifying information type of issue
comments, we believe that random oversampling is more
appropriate than SMOTE. We are dealing with issue com-
ments that are originally natural language sentences and are
converted into numerical vectors for training. SMOTE helps
to balance the class difference by adding more data in the
minority class with fewer issue comments, resulting in a
balanced class ratio. On the other hand, random oversampling
simply copies existing instances randomly so that all new
instances are actual sentences written by humans. In this way,

VOLUME 12, 2024 65375



B. Muhibullaev, J. Kim: Accurate Information Type Classification for Software Issue Discussions

FIGURE 2. The overall process of the information type classification technique.

there is no risk of newly generated sentences belonging to
different classes, and yet more instances are added for the
minority classes to solve the class imbalance problem.

In addition, random oversampling is a simple method to be
applied, compared to SMOTE. Although the dataset currently
has only a few thousand instances, it would be better if
we could apply lower-cost pre-processing steps and obtain
the same performance. As we already explained, random
oversampling only requires copying randomly selected
instances, which is a relatively cheaper operation than
SMOTE synthesis. Hence, if we can achieve the same
performance, employing a simple, low-cost method is a
reasonable choice.

C. DATASET EXPANSION
Expanding the dataset enhances machine learning accuracy
by allowing the model to capture a broader range of patterns,
reducing overfitting and improving its understanding of
diverse scenarios.

To this end, we collected more issue comments and
expanded the dataset used for our information type classi-
fication technique. In the previous study [17], Arya et al.
collected about 4K issue comments from three OSS projects
and labeled their information types to present a dataset, which
we will refer to the Arya2019 dataset from now on.

We selected five prominent open-source software (OSS)
projects for our study, incorporating three from the Arya2019
dataset and adding two additional projects to broaden our
research scope. Subsequently, we gathered an additional 4K
issue comments from these five OSS projects. Each comment
was categorized according to 16 pre-defined information
types as outlined in the Arya2019 analysis [17]. These newly
collected and categorized comments were then combined

with the existing Arya dataset to enrich our research
foundation. We also excluded three classes (Testing, Future
Plan, and Issue Content Management) with a small number
of occurrences and considered 13 information types in total
to be consistent with the existing dataset. With the combined
dataset, we can expect more accurate classifiers by using
additional training instances to represent the features of
sentences in each information type.

We employed a simple multi-step labeling process to label
the collected issue comments. First, one annotator read each
sentence and assigned one of the information types. Then,
two other inspectors verified the assigned information type
for each sentence and labeled it if they thought the label
was incorrect. Finally, the original annotator re-examined
the marked sentences again, discussed their labels with
inspectors, and decided which labels were more appropriate.

In this way, we can obtain more labeled issue comments
relatively quickly. A more thorough labeling process could
be used to obtain more carefully verified, reliable training
instances like the previous study [17]. However, we found
that most of the issue comments were quite plain and simple;
hence, they could be labeled without much difference of opin-
ions. Among 4,098 collected issue sentences, we disagreed
on only 129 sentences (3.15%) and scrutinized them to label
them correctly. This approach allowed us to focus more on
difficult cases for correct labeling while we quickly obtained
many easily labeled issue comments.

D. HYPERPARAMETER TUNING
Since we used grid search to optimize the hyperparameters,
we must also specify a set of values for each considered
hyperparameter. TABLE 1 shows the option values of
hyperparameters used for a grid search.

65376 VOLUME 12, 2024



B. Muhibullaev, J. Kim: Accurate Information Type Classification for Software Issue Discussions

TABLE 1. Option values used for LogReg C, ngram_range, and max_df
hyperparameters.

The hyperparameter LogReg C controls the strength of
regularization in the model. Smaller LogReg C values
result in stronger regularization, preventing overfitting.
In TABLE 1, five different LogReg C values from 0.01 to
100 were tested, with higher LogReg C values generally
leading to better precision, recall, and F1-score.
ngram_range defines the range of word n-grams

considered as features in text data processing. We tested
five different values for ngram_range, as shown in
TABLE 1. Larger ranges capture more context but may
increase computational complexity, hence it is important to
adjust this hyperparameter and find appropriate values.
max_df is a hyperparameter to filter out words with

document frequency higher than the given value when we are
using the TfIdfVectorizer of scikit-learn library.
If we set the value higher, we can include more words in
the vocabulary, even if the words may not be closely related
to the key characteristic of the sentence. On the other hand,
low values of max_df may also lower the dimension of the
converted vectors by excluding more words, even if they are
shown in other sentences. For max_df, we tested four values
from 0.1 to 1, which contain very low to extremely high
values.

Although the employed grid search method tested all
combinations of values and provided the best outcome,
we also investigated the influence of the hyperparameters.
One downside of grid search is that it takes quite a long time if
there are many different combinations of option values. In our
case, with the option values shown in TABLE 1, there are
100 combinations for the three hyperparameters. If we can
find a sweet spot or at least narrow down the range, it will be
helpful for future training since we can use appropriate option
values directly.

Hence, we additionally trained classifiers with different
combinations of option values and analyzed the influence of
hyperparameters.

III. EVALUATION
This section explains our empirical evaluation design for the
proposed technique, including research questions, subjects
and data collection, and experimental setup to answer the
questions.

A. RESEARCH QUESTIONS
In this section, we provide Research Questions (RQ) to be
answered about the proposed technique’s key aspects and
performance.

TABLE 2. The Subjects for data collection.

• RQ1: Does random oversampling improve the clas-
sification performance? We employ random oversam-
pling instead of SMOTE to balance categories of the
training data. To analyze its effect, we need to verify
whether random sampling increases the classification
performance of the information type.

• RQ2: Can using more data improve classification
performance?We also expanded the dataset by collect-
ing and labeling more issue comments. Hence, we need
to analyze whether the additional issue comments are
indeed helpful in improving classification performance.

• RQ3: How do hyperparameters affect the classi-
fication performance? We used grid search to find
the optimal result with various hyperparameter ranges.
However, understanding the influence of hyperparam-
eters is necessary to adjust the classification technique
further and more efficiently.

B. DATA COLLECTION
As we explained in Section II-C, we used five OSS
projects as the subjects of our study. TABLE 2 shows
brief information about the subjects. The project column
shows each project’s name. The selected Issues# and Average
Comments# columns show the number of issues we collected
and the average number of comments on the collected issues.
The Closed Issues column indicates the total number of
closed issues that were part of the data collected for each
project.

The five OSS projects used for this study are all Python
projects related tomachine learning. Tensorflow, Scikit-learn,
and SpaCy were also subjects from the previous study [17],
but we collected additional comments from more recent
issues.We have included two other OSS projects - Pandas and
Keras - indicated by the bold font in TABLE 2 as our subjects
as well. All of these OSS projects are popular and have been
developed and managed for more than seven years, so there
is a high probability that they contain issue discussions.

For evaluation, we used two datasets: one is Arya2019
dataset from the previous study [17], and the other is the
dataset combined Arya2019 with issue comments collected
from the OSS projects. This data was used to evaluate
the proposed technique’s effectiveness without additional
training instances. The Combined dataset is obtained by
combining Arya2019 and the 4,098 labeled issue comments
we collected. In total, the combined dataset contains 8,428
labeled issues from five different OSS projects. We employed

VOLUME 12, 2024 65377



B. Muhibullaev, J. Kim: Accurate Information Type Classification for Software Issue Discussions

FIGURE 3. The ratio of information types in Arya2019, new, and the combined datasets.

the combined dataset for our empirical evaluation and
observed whether additional training instances improved the
classification performance. The combined dataset and other
resources related to this study are publicly available.2

FIGURE 3 shows the ratio of information types in each of
the three datasets: Arya2019, New, and Combined. Arya2019
is the 4,330 issue comments that were collected in a
previous study [17]. The new dataset contains the 4,098 issue
comments that were newly collected and labeled for this
study. The combined dataset contains 8,428 issue comments
from both the Arya2019 and New datasets.

Overall, all three datasets show a similar distribution
of each information type in a certain way. Although
there are some differences in actual ratio, the three most
common information types are Solution Discussion, Social
Conversation, and Investigation and Exploration. In all three
datasets, these top-3 information types account for more than
half of the total data.

However, there were also changes in the ratio of minority
classes. In the newly collected dataset (FIGURE 3b),
Contribution and Commitment and Bug Reproduction types
have more instances compared to the Arya2019 dataset
(FIGURE 3a). As a result, these types are the new third and
fourth largest types from the combined dataset (FIGURE 3c).

2https://github.com/Bobur98/OSS_information_type_detection

The information type distribution in FIGURE 3c indicates
that the class imbalance is still an important issue even after
we added more instances to the dataset. Some information
types, such as Contribution and Commitment, became more
frequent after being supplied with more instances from
newly collected data. However, still, the biggest information
type (Solution Discussion) contains almost thirty times the
instances from the smallest type (Action on Issue).

C. EXPERIMENTAL SETUP
To answer the research questions, we designed three
experiments.

Firstly, we compared the classification performance using
random oversampling and SMOTE. We used the Arya2019
dataset for this experiment to rule out the influence of
additional training instances we collected. We employed
5-fold cross-validation and computed average precision,
recall, and F1-score to evaluate the classification performance
for the 13 information types except for the three excluded
types as explained in Section II-C. For the measurements,
weights were used to compensate for the size of classes when
computing the average values. Since the only difference is an
oversampling method, we can answer RQ1 by comparing the
measurements of the two setups.

Since both techniques employed grid search for hyper-
parameter tuning, the option values needed to be provided.

65378 VOLUME 12, 2024



B. Muhibullaev, J. Kim: Accurate Information Type Classification for Software Issue Discussions

TABLE 3. The classification performance comparison for random oversampling and SMOTE.

Due to the lack of information on which hyperparameter
valueswould provide the best performance during experiment
design, it was a conservative choice to use the originally
reported values for the existing technique [17].
Secondly, we analyzed the combined dataset and repeated

the first experiments with it. We first checked the ratio of
information types in each of the Arya2019, newly collected
and combined datasets, and observed whether the class
imbalance issue can be mitigated with the newly collected
instances. Then, we applied the classification techniques and
compared the results with the first results to verify further
whether additional instances could be helpful in improving
performance.

Lastly, we investigated the influence of hyperparameters
on the classification performance. We applied the proposed
technique to the combined dataset, showing all possible
hyperparameter values in TABLE 1. Then, we analyzed how
the different combinations of hyperparameter values affected
the classification performance. In particular, we checked the
precision, recall, and F1-score change when one of the
hyperparameters changed while the other two had fixed
values.

IV. RESULTS
In this section, we present our empirical evaluation results for
the classification performance of the proposed approach.

A. OVERSAMPLING METHODS
TABLE 3 shows the result of the comparison of classification
performance between random oversampling and SMOTE.
The columnsRandomOversampling and SMOTE showed the
classification performance when we used random oversam-
pling and SMOTE, respectively. Performance was measured
as precision, recall, and F1-score with the Arya2019 dataset
using 5-fold cross-validation. The ratio column provides
the ratio of each information type to the entire Arya2019
dataset. Each row separately shows the precision, recall, and

F1-score values for each information type. The Total row
shows the same values for all instances without distinguishing
information types.

The results show that using random oversampling
improves classification performance for all information
types significantly in all aspects. When using random
oversampling, we had an overall precision of 0.95, recall
of 0.95, and F1-score of 0.95, which are much higher than
0.54, 0.54, and 0.53 of SMOTE. When we consider each
information type separately, the performance (F1-score) of
random oversampling ranges from 0.76 to 1.00, which is
much higher than the 0.21 to 0.73 of SMOTE. Even in
the worst case, using random oversampling shows better
performance than the best case of using SMOTE. Therefore,
random oversampling significantly outperforms SMOTE in
precision, recall, and F1-score for each information type.

Moreover, random oversampling provides more reliable
results regardless of information type. When we employed
random oversampling, the F1-score did not vary too much,
dropping to only 0.76 even for the worst case. However, using
SMOTE causes significant degradation of performance for
some information types such as Observed Bug Behaviour
(0.21) or Workarounds (0.22), which take smaller portions -
3.03% and 2.06% respectively - in the dataset. Note that using
SMOTE provided much better performance than the average
for Social Conversation (0.73) or Solution Discussion (0.61),
which are the two largest information types from the dataset.
Hence, we can count on the proposed technique more and
expect to obtain more reliable results for every information
type.

As we have seen in the evaluation results, random
oversampling is a better solution than SMOTE to the
problem of class imbalance in information types of issue
comments and provides better classification performance.
Random oversampling directly replicates instances from the
minority classes, giving the model sufficient examples to
learn from. This ultimately leads to better classification

VOLUME 12, 2024 65379



B. Muhibullaev, J. Kim: Accurate Information Type Classification for Software Issue Discussions

TABLE 4. The classification performance for the combined dataset.

performance across all classes. On the other hand, SMOTE
synthesizes new instances close to existing instances, which
are represented by numeric vectors. However, it is possible
that a close distance in numeric vector representations does
not guarantee the similarity of the sentences they represent.
This might explain why SMOTE was less effective for the
issue comment classification problem, although we need
a more thorough investigation to prove this point. Since
the main purpose of this study is to provide an accurate
information type classification, we leave further investigation
on this matter as future work.

B. DATASETS
TABLE 4 provides the classification performance when
we use the combined dataset. We tried both oversampling
methods for the combined dataset and measured overall pre-
cision, recall, and F1-score with all instances and information
types, which are shown as columns (measurements) and
rows (information types). Underneath the numbers for each
measurement, the increments (with ↑) or the decrements
(with ↓) from the same measurement obtained with the
Arya2019 dataset (TABLE 3) are presented. Bold-faced
numbers indicate the information type that has shown the
most changes - increment and decrement - after we added
more instances to the dataset.

The effect of additional instances varies depending on the
oversampling techniques used. In the case of using random
oversampling, F1-score increases for five information types
and decreases for two information types. However, the
increments and the decrements only range from 0.01 to 0.05;
eventually, the weighted average does not change. On the
other hand, when we used SMOTE, six information types
showed higher F1-score, and seven information types had
lower F1-score, which means all information types have
shown changes in performance. The amount of increments
and decrements are 0.02 to 0.31 and 0.01 to 0.13, respectively,
which leads to the increment of the weighted average
F1-score to 0.56 (0.03↑). Therefore, adding more instances
significantly affects classification performance when we use
SMOTE, but the influence is less significant when we use
random oversampling.

We observed that the changes in classification performance
are, to some extent, linked to the class imbalance issue.
Notably, the most substantial improvement was observed in
the Contribution and Commitment information type, with its
ratio soaring from 1.92% to 7.81%. Despite starting as the
second smallest information type in the Arya2019 dataset,
it ascended to the fifth largest in the combined dataset.
Consequently, the trained classifier exhibited enhanced
performance on this information type, resulting in a
notable increase of 0.31 in the F1-score. In contrast,

65380 VOLUME 12, 2024



B. Muhibullaev, J. Kim: Accurate Information Type Classification for Software Issue Discussions

TABLE 5. The classification performance of different hyperparameter value combinations.

the Expected Behaviour information type experienced the
most pronounced negative impact. The F1-score dropped
by 0.13, which was almost 30% of the original score.
Since there were very few instances of this type, its
ratio decreased from 2.86% to 1.84%, making it the
second-smallest information type. Such changes did not
affect the performance significantly when we used random
oversampling. However, using SMOTE was not effective
in handling such class imbalance, hence classification
performance varied for different information types.

C. HYPERPARAMETER TUNING
TABLE 5 shows the classification performance of different
combinations of the hyperparameter values. The Target
column indicates the hyperparameter whose values are
changed, and the Fixed column shows the other two
hyperparameters whose values are fixed. The other columns
contain Precision, Recall, and F1-score for each value of the
target hyperparameter. Apart from using specific values for
hyperparameters, all other parts of the proposed approach
were left unchanged - i.e., the use of random oversampling
with the combined dataset.

We tested all possible combinations of the values we used
for the grid search (TABLE 1), but due to the limitation of
the space, we only report a part of the results that show
the influence of hyperparameters more clearly. Although we
do not list all cases in the paper, the full results of all the
combinations are publicly available.3

Overall, the classification performance changes slightly
if we use the values in a certain range but drops quickly
outside of the range. For LogReg C, using values from 1 to
100 continuously provides a high F1-score, which is at
least 0.92, while using smaller values decreases F1-score
significantly to 0.67. max_df does not affect the per-
formance much, as long as we do not use the extreme
value, 1. Change ngram_range values also influence the
performance slightly, just like LogReg C in the appropriate
range.

The results in TABLE 5 may give an impression that
using hyperparameter values in the appropriate ranges is

3Analysis Results of All Hyperparameter Combinations.

okay, but it is not entirely true. For instance, it looks like
ngram_range values have only a small impact on the
classification performance. However, the option values (1, 2)
and (1, 3) give the best performance, and compared to the
worst case (1, 1), the overall performance increases by 0.03.
This is the same increment we obtained by doubling the
instances of the dataset, which cannot be ignored.

Moreover, using inappropriate combinations of option
values may decrease the performance significantly. Note that
we only report a part of the results for all combinations of
option values. Even if we use an appropriate option value
for one hyperparameter, out-of-range values for the other
hyperparameters can significantly drop the performance. For
example, using ngram_range value (1, 1) and max_df
value 0.1 with LogReg C 1 value only achieves an F1-score
of 0.88, which is still high but about 7% lower than the best
case.

Therefore, although LogReg C has the most influence on
the classification performance, we cannot ignore the other
hyperparameters since they may also affect the performance
greatly if we use a wrong combination of values.

In conclusion, our empirical evaluation results show that
the proposed random oversampling approach remarkably
improves classification performance. The weighted average
F1-score of the technique is 0.95, which is 79.25% higher
than the compared technique. With such high precision
and recall, we can develop more reliable applications that
accurately identify information types from issue discussions.
In addition, we also provide an extended dataset with more
instances that can further improve performance, although the
effect can be limited. Finally, we analyzed the influence of
hyperparameters on classification performance, which can
be considered for training classifiers for issue comment
information types.

V. RELATED WORK
A. INFORMATION TYPE CLASSIFICATION IN ISSUE
TRACKING SYSTEMS
Issue management is an important part of software
development and evolution, and issue-tracking systems
are a great source of information to help with related
tasks. Many techniques have been proposed to identify

VOLUME 12, 2024 65381

https://github.com/Bobur98/OSS_Information_types/blob/main/results/hyperparameter_experiments.xlsx


B. Muhibullaev, J. Kim: Accurate Information Type Classification for Software Issue Discussions

the types of information obtained from an ITS and help
developers understand and extract more useful and actionable
information for issue management.

Arya et al. conducted a study to address information
retrieval in long discussion threads [17]. They identified
16 information types from issue comments and proposed
and investigated techniques to automatically classify the
information types. To classify issue comments based on
their information types, they extracted conversation fea-
tures and text features and then applied random forest
and logistic regression to obtain a trained classification.
Although Arya et al. pioneered classifying information types
to more easily retrieve valuable information from issue
discussions, an important limitation of their work is the
low accuracy of the proposed techniques. They achieved
the best overall precision and recall by using a random
forest with conversational features, but the values were about
0.6; thus, the resulting information type is unreliable. Our
proposed technique improved the classification performance
significantly to 0.95, hence information retrieval from issue
discussions could be much more reliable with our technique.

Similarly, Mehder and Aydemir tried to improve the classi-
fication performance using deep language models [18]. This
research first proposes an Arya et al.’s dataset comprising
4,656 labeled sentences annotated with 16 information types
extracted from discussions in three AI libraries on GitHub.
After preprocessing, the dataset is reduced to 4,330 sentences
across 13 classes due to duplicates and class imbalance.
A benchmark is created by splitting the dataset into training
and testing sets, ensuring the preservation of label ratios.
The replication study focuses on logistic regression models,
replicating Arya et al.’s experiments with textual features.
Results showed comparable or improved performance
over the original work due to differences in validation
methods. Then, the research extends to classification using
transformer-based deep language models (BERT, RoBERTa,
and DistilBERT). Two evaluation settings are designed:
(1) using the benchmark dataset and (2) Leave-One-Group-
Out cross-validation. Performance comparison demonstrates
that BERT variants outperform logistic regression through
statistical testing. Finally, the study examines the models’
performance when a new issue arises, showing RoBERTa’s
suitability for such scenarios, although some classes have
zero F1-scores due to data sparsity. Even though the
replicated technique and the newly proposed models did not
perform well, they were all slightly over 0.5.

Many other studies have tried to classify information
obtained from ITSs. McMillan et al. introduced an SVM-
based method for classifying software applications using
API call features, effective on large Java repositories [22].
Our research complements this by introducing an advanced
technique for classifying issue comments in ITSs, enhancing
automated software analysis, and improving bug localization.
Their model achieved an 85% hit rate when tested on a
GitHub dataset. Ferreira et al. compared BERT with classic

models for incivility detection in open-source code discus-
sions. BERT, integrating context and SMOTE, outperformed
traditional models with an F1-score of 0.87 [23]. Our research
advances the classification of issue comments in ITSs, utiliz-
ing random oversampling to achieve a high F1-score. While
we focus on classifying issue-related information for better
management, Ferreira et al. demonstrate the effectiveness
of BERT, especially with data augmentation and SMOTE
balancing. Pan et al. developed amethod for extracting crucial
information from OSS developer chat rooms, employing a
two-level taxonomy to categorize discussions and achieving
an accuracy of 0.81 in classifying new threads, outperforming
existing methods [24]. While their project succeeded in
categorizing discussions, insights from our method could
potentially enhance their approach by providing strategies for
improving classification performance, such as oversampling
techniques and dataset expansion. Additionally, Siddiq et al.
utilized a BERT-based technique to classify GitHub issue
types, achieving an F1-score of 0.8571 on a dataset of over
800,000 labeled issues [25]. Kallis et al.’s Ticket Tagger
program autonomously categorizes software issue tickets on
GitHub, achieving an F-measure score of 0.83 [26]. Kim
and Lee studied labels assigned to issue reports and how
such labeled issues have been managed during software
development. In this study, they identified the categories
of the labels, which represent information types of the
labels [27]. Nadeem et al. introduced a RoBERTa-based
method, achieving high F1-scores for bug reports, enhance-
ments, and questions, implemented in an industry tool
called Automatic Issue Classifier (AIC) [28]. Merten et al.
explored issue types and information distribution in unstruc-
tured natural language text, emphasizing the presence of
prioritization and scheduling information across various
open-source projects [29]. Our approaches, like handling
class imbalance, augmenting the dataset with more labeled
instances, and applying hyperparameter tuning techniques,
can potentially enhance the accuracy and effectiveness of
their classification model. Krasniqi and Rrezarta developed
an automated method for extracting relevant bug-fixing
comments from large discussion threads [30]. They combined
Sentiment Analysis, Text Rank Model, and Vector Space
Model to identify comments based on query relevance, pos-
itivity, and semantic relevance, outperforming the baseline
Vector Space Model. However, classifying software issue
discussions faces challenges such as data imbalance and
noise. Pattaramon et al. identified data imbalance issues [31],
while our study addresses these challenges by enhancing
issue comment classification using random oversampling
in ITSs.

B. ISSUE TRACKING SYSTEMS
One line of work tries to locate a bug using the ITS’s informa-
tion. Information-Retrieval (IR) based bug localization tries
to identify faulty locations by using information retrieved

65382 VOLUME 12, 2024



B. Muhibullaev, J. Kim: Accurate Information Type Classification for Software Issue Discussions

from issue reports [9], [32], [33], [34], [35], [36], [37], [38],
[39], [40], [41], [42], [43]. Although our proposed technique
does not classify issue reports directly, it can be used to add
more information by classifying issue report comments. Also,
since issue reports themselves contain sentences related to the
issues, our technique might be used to filter out less relevant
sentences.

Software bug prediction is challenging, but it is important
for prioritizing bug fixes and improving software quality.
Machine learning is effective for bug prediction, and several
studies have proposed various machine learning models
and features for this task. Malhotra et al. compare five
machine learning classifiers (Multinomial Naive Bayes,
Decision Tree, Logistic Regression, Random Forest, and
AdaBoost) for predicting fault priorities using data from six
open-source projects [44]. The authors found that all five
classifiers performed well, but Multinomial Naive Bayes
achieved the best overall performance. Barah et al. propose
a machine-learning system for predicting the severity of
software bug reports in closed-source projects [45]. Just
as we experimented with different oversampling methods
and hyperparameter tuning techniques to optimize our
classification model, researchers comparing eight different
machine learning algorithms (Naive Bayes, Naive Bayes
Multinomial, Support Vector Machine, Decision Tree (J48),
RandomForest, LogisticModel Trees, Decision Rules (JRip),
and K-Nearest Neighbor) and compare their performance
against a dataset of bug reports from a closed-source project.
The authors found that Logistic Model Trees performed the
best, with an accuracy of 86.31%. Samant et al. explore the
use of machine learning to predict bug priority in software
projects [46]. They propose a machine-learning model that
uses various features, including bug report text, developer
information, and project history. The authors evaluate their
model on a dataset of bug reports from two open-source
projects and find that it achieves 80% accuracy. Oliveira et al.
propose a deep-learning approach for predicting bugs [47].
They utilize a convolutional neural network to learn features
from the text of bug reports and then use a recurrent neural
network to predict bug priority. The model’s evaluation on
a dataset of bug reports from two open-source projects
shows it achieves 85% accuracy. Wong et al. delve into
fault localization techniques in software development, which
involves identifying and fixing bugs or faults efficiently [7].
They can apply similar techniques like classification of
information types to identify the type of bugs or faults and
categorize them into several groups, which can help fix bugs
more efficiently. Clemente et al. studied the use of machine
learning to predict the severity of software bug reports [48].
Their proposed model incorporates diverse features such
as bug report text, developer details, and project history.
Upon evaluating a dataset comprising bug reports from two
open-source projects, the model demonstrates an accuracy
of 82%. By applying similar text processing techniques,
they can effectively represent textual data for machine

learning models, facilitating more accurate predictions of
fault priorities or bug severity.

Previous research has described several methods for
automatically classifying issues in bug-tracking systems. For
example, Antoniol et al. have demonstrated the potential
of machine learning algorithms to distinguish bugs from
other issue types [49]. Herzig et al. team defined six
issue categories– bugs, feature requests, and documentation
requests [50]. They found that developers often mislabeled
these categories. In response, Zhou et al. integrated structured
and free-text data to develop a classifier [51]. This model
was highly adept at identifying whether a report was a
bug or a different issue type. Murphy et al. address bug
triage in open-source projects by using machine learning
for predicting developer assignments based on bug descrip-
tion [16]. Our method can enhance the analysis of bug
descriptions in the bug triage process. By applying similar
classification methods to categorize information within bug
reports, the bug triage system can better understand and
extract relevant details from bug descriptions. Notably,
given GitHub’s minimalist issue tracking structure, GitHub
issues don’t typically contain structured data. Our solution
proficiently automates the tagging of GitHub issues, basing
its classification solely on the text in the issue titles and
details. This is crucial for developers, as it expedites the
process of addressing new issues [52] by instantaneously
sorting them upon submission. In summary, our work on
information type classification of issue comments offers
valuable insights and methodologies that can be leveraged
by researchers working on predicting fault priorities, bug
severity, or bug priority in software projects. By incorporating
similar approaches and techniques, they can enhance the
accuracy and efficiency of their classification models.

VI. THREATS TO VALIDITY
Several points might affect the validity of this study.

First of all, this study was conducted on subjects that
were all open-source Python projects related to machine
learning libraries. Hence, it is possible that the proposed
technique might not show enhanced performance if issue
comments were collected from other sources. For instance,
issue discussions could be more formal in commercial
software product development; hence, we may observe less
social conversation information. Also, other information
types, such as Bug Reproduction or Workarounds, could
be more complicated and make it less easy to capture the
patterns in other types of software. However, by employing
random oversampling, we resolved the class imbalance issue
and achieved very high performance. Although there is a
limit to representing all software with our subjects, software
development tends to share common characteristics, so there
is a good chance that our high-performance technique can
also show promising performance for other subjects.

Also, labeling the collected issue comments could be sub-
jective and not entirely free from human errors. We employed

VOLUME 12, 2024 65383



B. Muhibullaev, J. Kim: Accurate Information Type Classification for Software Issue Discussions

a more simplified method to collect more issue comments
in a relatively short time period. However, that does not
mean that the provided results are not trustworthy. As we
explained in Section II-A, we verified labels in a multi-step
process with multiple human examiners. Only 3.15% of
the labels disagreed, and we also solved the issues for
them. Moreover, we evaluated the proposed technique with
another independent dataset from the previous study, and the
technique continuously showed better performance, which
does not diminish the study’s implications. In addition, the
resources, including code and the datasets we used in this
study, are publicly available for further verification, as we
mentioned in Section III-B.

VII. CONCLUSION
In this study, we proposed an improved automatic infor-
mation type classification technique for issue comments in
software development. We primarily implemented random
oversampling to enhance performance alongside two sup-
plementary techniques: data extension and hyperparameter
experimentation. We utilized random oversampling during
preprocessing to address the class imbalance, and our
evaluation demonstrates a notable performance boost simply
by switching oversampling methods. Our proposed approach
yields more precise and dependable classification results
for information types within issue comments than existing
techniques.

Furthermore, we augmented the dataset with additional
labeled issue comments and observed that employing random
oversampling yielded consistent results for both the original
data from Arya2019 [17] and the extended dataset.
In addition, we investigated the influence of hyperparam-

eters on the classification of information types in issue com-
ments. We found that we need to choose the hyperparameters
LogReg C, max_df carefully, and ngram_range since
the classification performance may significantly decrease if
out-of-range values are selected for these hyperparameters.
This information can be helpful when future studies require
the application of machine learning techniques to classify
issue comments.

We can leverage more accurate and reliable classification
results with the proposed technique. To develop a new
technique to help software engineers with issue management,
such a high-performance technique is an essential part of
a successful application. Since we achieved quite a high
performance for the classification, our future work will focus
more on the applications of the proposed technique’s outcome
and further investigations on this matter, such as which kinds
of approaches are more effective for issue comment-related
problems.

REFERENCES
[1] D. Bertram, A. Voida, S. Greenberg, and R. Walker, ‘‘Communication,

collaboration, and bugs: The social nature of issue tracking in small,
collocated teams,’’ in Proc. ACM Conf. Comput. Supported Cooperat.
Work, Feb. 2010, pp. 291–300.

[2] M. K. Thota, F. H. Shajin, and P. Rajesh, ‘‘Survey on software defect
prediction techniques,’’ Int. J. Appl. Sci. Eng., vol. 17, no. 4, pp. 331–344,
Jan. 2020.

[3] F. Tu, J. Zhu, Q. Zheng, and M. Zhou, ‘‘Be careful of when: An empirical
study on time-related misuse of issue tracking data,’’ in Proc. 26th ACM
Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., Oct. 2018,
pp. 307–318.

[4] C. Catal and B. Diri, ‘‘Software defect prediction using artificial immune
recognition system,’’ in Proc. 25th Conf. IASTED Int. Multi-Conf., Softw.
Eng. Anaheim, CA, USA: ACTA Press Anaheim, 2007, pp. 285–290.

[5] M. D’Ambros, M. Lanza, and R. Robbes, ‘‘An extensive comparison of
bug prediction approaches,’’ in Proc. 7th IEEE Work. Conf. Mining Softw.
Repositories (MSR), May 2010, pp. 31–41.

[6] T. Merten, D. Kramer, B. Mager, P. Schell, S. Bürsner, and B. Paech,
‘‘Do information retrieval algorithms for automated traceability perform
effectively on issue tracking system data?’’ in Requirements Engineering:
Foundation for Software Quality. Gothenburg, Sweden: Springer, 2016,
pp. 45–62.

[7] W. E. Wong, R. Gao, Y. Li, R. Abreu, F. Wotawa, and D. Li, ‘‘Software
fault localization: An overview of research, techniques, and tools,’’ in
Handbook of Software Fault Localization: Foundations and Advances,
2023, pp. 1–117.

[8] P. S. Kochhar, Y. Tian, and D. Lo, ‘‘Potential biases in bug localization:
Do they matter?’’ in Proc. 29th ACM/IEEE Int. Conf. Automated Softw.
Eng., Sep. 2014, pp. 803–814.

[9] K. C. Youm, J. Ahn, and E. Lee, ‘‘Improved bug localization based on
code change histories and bug reports,’’ Inf. Softw. Technol., vol. 82,
pp. 177–192, Feb. 2017.

[10] K. C. Youm, J. Ahn, J. Kim, and E. Lee, ‘‘Bug localization based on code
change histories and bug reports,’’ in Proc. Asia–Pacific Softw. Eng. Conf.
(APSEC), Dec. 2015, pp. 190–197.

[11] J. Zhou, H. Zhang, and D. Lo, ‘‘Where should the bugs be fixed?
More accurate information retrieval-based bug localization based on bug
reports,’’ in Proc. 34th Int. Conf. Softw. Eng. (ICSE), Jun. 2012, pp. 14–24.

[12] A. Zakari, S. P. Lee, K. A. Alam, and R. Ahmad, ‘‘Software fault
localisation: A systematic mapping study,’’ IET Softw., vol. 13, no. 1,
pp. 60–74, Feb. 2019.

[13] J. Anvik, L. Hiew, and G. C. Murphy, ‘‘Who should fix this bug?’’ in Proc.
28th Int. Conf. Softw. Eng., May 2006, pp. 361–370.

[14] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T.
Zimmermann, ‘‘What makes a good bug report?’’ in Proc. 16th ACM
SIGSOFT Int. Symp. Found. Softw. Eng., Nov. 2008, pp. 308–318.

[15] G. Jeong, S. Kim, and T. Zimmermann, ‘‘Improving bug triage with bug
tossing graphs,’’ in Proc. 7th Joint Meeting Eur. Softw. Eng. Conf. ACM
SIGSOFT Symp. Found. Softw. Eng., Aug. 2009, pp. 111–120.

[16] G. Murphy and D. Cubranic, ‘‘Automatic bug triage using text categoriza-
tion,’’ in Proc. 16th Int. Conf. Softw. Eng. Knowl. Eng., 2004, pp. 1–6.

[17] D. Arya, W. Wang, J. L. C. Guo, and J. Cheng, ‘‘Analysis and detection
of information types of open source software issue discussions,’’ in Proc.
IEEE/ACM 41st Int. Conf. Softw. Eng. (ICSE), May 2019, pp. 454–464.

[18] S. Mehder and F. Basak Aydemir, ‘‘Classification of issue discussions in
open source projects using deep language models,’’ in Proc. IEEE 30th Int.
Requirements Eng. Conf. Workshops (REW), Aug. 2022, pp. 176–182.

[19] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ 2018,
arXiv:1810.04805.

[20] A. Moreo, A. Esuli, and F. Sebastiani, ‘‘Distributional random oversam-
pling for imbalanced text classification,’’ in Proc. 39th Int. ACM SIGIR
Conf. Res. Develop. Inf. Retr., Jul. 2016, pp. 805–808.

[21] D. Elreedy and A. F. Atiya, ‘‘A comprehensive analysis of synthetic
minority oversampling technique (SMOTE) for handling class imbalance,’’
Inf. Sci., vol. 505, pp. 32–64, Dec. 2019.

[22] C. McMillan, M. Linares-Vásquez, D. Poshyvanyk, and M. Grechanik,
‘‘Categorizing software applications for maintenance,’’ in Proc. 27th IEEE
Int. Conf. Softw. Maintenance (ICSM), Sep. 2011, pp. 343–352.

[23] I. Ferreira, A. Rafiq, and J. Cheng, ‘‘Incivility detection in open source
code review and issue discussions,’’ J. Syst. Softw., vol. 209, Mar. 2024,
Art. no. 111935.

[24] S. Pan, L. Bao, X. Ren, X. Xia, D. Lo, and S. Li, ‘‘Automating developer
chat mining,’’ in Proc. 36th IEEE/ACM Int. Conf. Automated Softw. Eng.
(ASE), Nov. 2021, pp. 854–866.

65384 VOLUME 12, 2024



B. Muhibullaev, J. Kim: Accurate Information Type Classification for Software Issue Discussions

[25] M. L. Siddiq and J. C. Santos, ‘‘Bert-based GitHub issue report
classification,’’ in Proc. 1st Int. Workshop Natural Lang.-Based Softw.
Eng., 2022, pp. 33–36.

[26] R. Kallis, A. Di Sorbo, G. Canfora, and S. Panichella, ‘‘Predicting
issue types on GitHub,’’ Sci. Comput. Program., vol. 205, May 2021,
Art. no. 102598.

[27] J. Kim and S. Lee, ‘‘An empirical study on using multi-labels for issues in
GitHub,’’ IEEE Access, vol. 9, pp. 134984–134997, 2021.

[28] A. Nadeem, M. U. Sarwar, and M. Z. Malik, ‘‘Automatic issue classifier:
A transfer learning framework for classifying issue reports,’’ in Proc.
IEEE Int. Symp. Softw. Rel. Eng. Workshops (ISSREW), Oct. 2021,
pp. 421–426.

[29] T. Merten, B. Mager, P. Hübner, T. Quirchmayr, B. Paech, and S. Bürsner,
‘‘Requirements communication in issue tracking systems in four open-
source projects,’’ in Proc. REFSQ Workshops, 2015, pp. 114–125.

[30] R. Krasniqi, ‘‘Extractive summarization of related bug-fixing comments
in support of bug repair,’’ in Proc. IEEE/ACM Int. Workshop Automated
Program Repair (APR), Jun. 2021, pp. 31–32.

[31] P. Vuttipittayamongkol, E. Elyan, and A. Petrovski, ‘‘On the class overlap
problem in imbalanced data classification,’’ Knowl.-Based Syst., vol. 212,
Jan. 2021, Art. no. 106631.

[32] M. M. Rahman and C. K. Roy, ‘‘Improving IR-based bug localization with
context-aware query reformulation,’’ inProc. 26th ACM Joint Meeting Eur.
Softw. Eng. Conf. Symp. Found. Softw. Eng., Oct. 2018, pp. 621–632.

[33] Y. Wang, Y. Yao, H. Tong, X. Huo, M. Li, F. Xu, and J. Lu, ‘‘Bug
localization via supervised topic modeling,’’ in Proc. IEEE Int. Conf. Data
Mining (ICDM), Nov. 2018, pp. 607–616.

[34] C. Mills, E. Parra, J. Pantiuchina, G. Bavota, and S. Haiduc, ‘‘On the
relationship between bug reports and queries for text retrieval-based
bug localization,’’ Empirical Softw. Eng., vol. 25, no. 5, pp. 3086–3127,
Sep. 2020.

[35] M. Pradel, V. Murali, R. Qian, M. Machalica, E. Meijer, and S. Chandra,
‘‘Scaffle: Bug localization on millions of files,’’ in Proc. 29th ACM
SIGSOFT Int. Symp. Softw. Test. Anal., Jul. 2020, pp. 225–236.

[36] M. Rath and P. Mäder, ‘‘Structured information in bug report
descriptions—Influence on IR-based bug localization and developers,’’
Softw. Quality J., vol. 27, no. 3, pp. 1315–1337, Sep. 2019.

[37] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, ‘‘Bug
localization with combination of deep learning and information retrieval,’’
in Proc. IEEE/ACM 25th Int. Conf. Program Comprehension (ICPC),
May 2017, pp. 218–229.

[38] M. Rath, D. Lo, and P. Mäder, ‘‘Analyzing requirements and traceability
information to improve bug localization,’’ in Proc. IEEE/ACM 15th Int.
Conf. Mining Softw. Repositories (MSR), May 2018, pp. 442–453.

[39] Z. Yang, J. Shi, S. Wang, and D. Lo, ‘‘IncBL: Incremental bug
localization,’’ in Proc. 36th IEEE/ACM Int. Conf. Automated Softw. Eng.
(ASE), Nov. 2021, pp. 1223–1226.

[40] K. E. E. Swe and H. M. Oo, ‘‘Bug localization approach using source code
structure with different structure fields,’’ in Proc. IEEE 16th Int. Conf.
Softw. Eng. Res., Manag. Appl. (SERA), Jun. 2018, pp. 159–164.

[41] X. Xia, D. Lo, X. Wang, C. Zhang, and X. Wang, ‘‘Cross-language bug
localization,’’ inProc. 22nd Int. Conf. ProgramComprehension, Jun. 2014,
pp. 275–278.

[42] Y. Xiao, J. Keung, Q. Mi, and K. E. Bennin, ‘‘Improving bug localization
with an enhanced convolutional neural network,’’ in Proc. 24th Asia–
Pacific Softw. Eng. Conf. (APSEC), Dec. 2017, pp. 338–347.

[43] R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry, ‘‘Improv-
ing bug localization using structured information retrieval,’’ in Proc.
28th IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Nov. 2013,
pp. 345–355.

[44] R. Malhotra, A. Dabas, A. S. Hariharasudhan, and M. Pant, ‘‘A study
on machine learning applied to software bug priority prediction,’’ in
Proc. 11th Int. Conf. Cloud Comput., Data Sci. Eng., Jan. 2021,
pp. 965–970.

[45] A. Baarah, A. Aloqaily, Z. Salah, M. Zamzeer, and M. Sallam, ‘‘Machine
learning approaches for predicting the severity level of software bug reports
in closed source projects,’’ Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 8,
pp. 285–294, 2019.

[46] N. Samant, H. Limaye, A. Bapat, S. Shinde, and A. Nerurkar, ‘‘Optimizing
issue tracking systems using deep learning-based issue classification,’’ in
Proc. 2nd Int. Conf. Paradigm Shifts Commun. Embedded Syst., Mach.
Learn. Signal Process. (PCEMS), Apr. 2023, pp. 1–6.

[47] P. Oliveira, R. M. C. Andrade, I. Barreto, T. P. Nogueira, and L. Morais
Bueno, ‘‘Issue auto-assignment in software projects with machine learning
techniques,’’ in Proc. IEEE/ACM 8th Int. Workshop Softw. Eng. Res. Ind.
Pract., Jun. 2021, pp. 65–72.

[48] C. J. Clemente, F. Jaafar, and Y. Malik, ‘‘Is predicting software security
bugs using deep learning better than the traditional machine learning
algorithms?’’ in Proc. IEEE Int. Conf. Softw. Qual., Rel. Secur. (QRS),
Jul. 2018, pp. 95–102.

[49] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and Y.-G. Guéhéneuc,
‘‘Is it a bug or an enhancement: A text-based approach to classify change
requests,’’ in Proc. Conf. Center Adv. Stud. Collaborative Res. Meeting
Minds, 2008, pp. 304–318.

[50] K. Herzig, S. Just, and A. Zeller, ‘‘It’s not a bug, it’s a feature:
How misclassification impacts bug prediction,’’ in Proc. 35th Int. Conf.
Softw. Eng. (ICSE), May 2013, pp. 392–401.

[51] Y. Zhou, Y. Tong, R. Gu, and H. Gall, ‘‘Combining text mining and data
mining for bug report classification,’’ J. Softw., Evol. Process, vol. 28, no. 3,
pp. 150–176, Mar. 2016.

[52] J. L. Cánovas Izquierdo, V. Cosentino, B. Rolandi, A. Bergel, and J. Cabot,
‘‘GiLA: GitHub label analyzer,’’ in Proc. IEEE 22nd Int. Conf. Softw.
Anal., Evol., Reengineering (SANER), Mar. 2015, pp. 479–483.

BOBURMIRZO MUHIBULLAEV received the
bachelor’s degree in computer science and
business administration from Sejong University,
in 2021. He is currently pursuing the master’s
degree in computer science and engineering
with Seoul National University of Science
and Technology. His research interests include
machine learning, software engineering, and web
development. He is researching to improve infor-
mation types’ analysis in open-source software

issue discussions. Additionally, he practices web development by creating
useful websites.

JINDAE KIM (Member, IEEE) received the B.S.
degree in physics and computer science and the
M.S. degree in computer science and engineering
from Seoul National University, South Korea,
in 2009 and 2011, respectively, and the Ph.D.
degree in computer science from The Hong Kong
University of Science and Technology, in 2019.
He is currently an Assistant Computer Science and
Engineering Professor with Seoul National Uni-
versity of Science and Technology. His research

interests include automatic program repair and mining software repositories
and software evolution.

VOLUME 12, 2024 65385


