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ABSTRACT For decentralized characteristics of blockchain platforms, Byzantine Fault Tolerance (BFT)
consensus protocols have been widely used to reach an agreement among nodes in the presence of
malicious node attacks. However, due to their communication complexity, BFT consensus protocols are
considered one major cause of the limited scalability of a blockchain platform. In this study, we propose two
performance improvement techniques — Pipelining and Overlapping — to simplify the BFT consensus
protocol without sacrificing decentralization. These techniques are designed to concurrently optimize
throughput and minimize latency, irrespective of an increase or broad dispersion in consensus node
deployment. We demonstrate the efficacy of these techniques through their application to AuditChain,
a private blockchain leveraging a PBFT-like consensus mechanism with linear communication complexity.
In a WAN environment utilizing AWS EC2 with 4 consensus nodes deployed in one region (ap-northeast-2),
the system achieves about 1997 tx/s with a latency of 0.1 seconds. By further enhancing the distribution
characteristics of our experimental environment, evenwith 32 consensus nodes distributed across two regions
(ap-northeast-2, us-east-1), the system still achieves about 1995 tx/s with a latency of 0.3 seconds. These
findings suggest that the proposed techniques are capable of significantly improving the performancemetrics
of BFT-based blockchain systems.

INDEX TERMS Blockchain, Byzantine fault tolerance, consensus protocol, performance.

I. INTRODUCTION
Blockchain [1] is a technology that uses a distributed database
and is managed through a peer-to-peer (P2P) network. Unlike
traditional databases that are stored in a central server, all
nodes in a blockchain network maintain a copy of the
ledger. Nodes in the network validate transactions through
a consensus protocol, which groups transactions into blocks
and builds hash chains. This process creates an ordered ledger
that ensures consistency. Blockchain technology was first
introduced with the creation of Bitcoin [2] and is widely used
for its decentralization and security features.

The associate editor coordinating the review of this manuscript and

approving it for publication was Dominik Strzalka .

The Byzantine Fault Tolerance (BFT) protocol is a
fundamental concept in distributed system theory and is
used in blockchain systems to ensure security. There are
several BFT consensus protocols [4], [5], [6], [7], [8] that
have been specifically designed for blockchain systems to
handle random node failures and reach consensus among
honest nodes even if Byzantine nodes exist in the system.
The BFT protocol guarantees safety and liveness in the
system, allowing for up to f (< n/3) faults when n nodes
are participating in the system [9], [10], [11]. To ensure
two essential properties, all n nodes must participate in the
consensus process in the BFT consensus protocol, achieved
through multiple voting rounds.

However, the BFT consensus protocol has performance
scalability limitations [12]. These scalability limitations
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FIGURE 1. A diagram of processing a client transaction: each step affects the performance of a BFT consensus blockchain platform.

TABLE 1. Companions with other consensus.

result from the network and processing-level bottlenecks
caused by the large number of messages that need to be sent,
received, and processed to propagate blocks and reach con-
sensus. For example, the typical BFT consensus algorithm,
PBFT [3] uses a communication pattern with O(n2) message
complexity. Most blockchain systems based on the BFT
consensus protocol use a PBFT-like consensus protocol.
The performance of a blockchain platform depends on the
performance of the underlying BFT consensus protocol, with
throughput and latency as key indicators. Throughput is the
number of client transactions processed per second, while
latency is the time between sending a client transaction
and receiving a response. Processing a client transaction
involves several steps (Figure 1), and the sequential process
can lead to low throughput and high latency in a highly
decentralized network with more nodes causing message and
traffic increase and longer latencies between nodes that delay
block receiving and quorum collection. There have been
attempts to improve throughput [4], [5], [6], [7], [8], but
the trade-off between performance and decentralization still
exists.

We propose two performance improvement techniques -
Pipelining and Overlapping - for the BFT consensus protocol
in blockchain systems. These techniques aim to improve the
performance of the BFT consensus protocol by increasing
throughput and reducing latency while maintaining a high
level of decentralization. The techniques are demonstrated
on AuditChain [21], a blockchain platform that uses a
simple BFT consensus algorithm and is deployed in the
AWS cloud environment. We evaluate the effectiveness of
these techniques through experiments on the AWS cloud,

showing that the proposed techniques effectively improve
both throughput and latency while maintaining a high degree
of decentralization.

We made the following contributions to this paper:
1) Introduction of two performance improvement tech-

niques — Pipelining and Overlapping — for the BFT
consensus protocol which enhance throughput and
reduce latency in a highly decentralized network.

2) Implementation of Pipelining and Overlapping in
AuditChain, a blockchain system using a simple BFT
consensus protocol, resulting in a prototype named
AuditChain-PO.

3) Analysis and evaluation of the Pipelining and Over-
lapping techniques on the AWS cloud environment,
using decentralization factors such as the number
of nodes and geographical deployment of nodes.
For an environment comprising 4 consensus nodes
situated within a singular region, the AuditChain-PO
prototype demonstrated a throughput of approximately
1997 transactions per second (tx/s) alongside a latency
of 0.1 seconds. Remarkably, this performance level
was nearly maintained in a more distributed setup
involving 32 consensus nodes across two regions, with
the system achieving roughly 1995 tx/s and a latency
of 0.3 seconds. Our experiment results indicate the
effectiveness of the two techniques in improving both
throughput and latency.

II. RELATED WORKS
Background on BFT Consensus Protocols: Byzantine Fault
Tolerant (BFT) consensus protocols are foundational to the
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security and integrity of distributed systems, allowing them
to withstand malicious or faulty nodes. Notwithstanding
their robustness, protocols like PBFT [3] exhibit inherent
challenges related to scalability, throughput, and latency,
primarily due to their O(n2) message complexity.
Advances in Optimizing BFT Protocols: The landscape of

BFT consensus protocols is marked by continuous innovation
aimed at addressing the intrinsic challenges of scalability,
throughput, and latency. Key developments in this area
include:

• Reduction of Message Complexity: The SBFT pro-
tocol [5] employs a collector mechanism to reduce
message complexity from O(n2) to O(n), enhancing
scalability by streamlining communication within the
system. However, this centralization through collectors
or leader nodes can lead to increased latency.

• Leader-Based Approaches: Protocols such as Hot-
Stuff [4] and its derivatives streamline the consensus
[19], [20] process by employing a leader node that
collects votes, forms a Quorum Certification (QC), and
distributes it among other nodes. This model optimizes
message dissemination and consensus achievement. But
it introduces an additional latency due to its two-step
(round trip) communication process.

• Committee-Based Strategies: In the context of consen-
sus mechanisms, Algorand’s committee selection and
Ouroboros’s epochs and committee structures both serve
to streamline message complexity by designating a sub-
set of nodes for block proposal and validation [6], [14].
These methodologies, although optimizing efficiency,
carry implications for the decentralization characteristic
of blockchain networks.

• Gossip Protocols for Efficient Dissemination: Tender-
mint [7] capitalizes on gossip protocols to ensure reliable
and widespread message dissemination across the
network. However, this system necessitates predefined
intervals to account for the longest expected time for
peer-to-peer message propagation.

• Erasure Coding for Bandwidth Optimization: Honey-
BadgerBFT [15], Poster [16], and DispersedLedger [17]
leverage erasure coding to reduce message sizes and
improve consensus efficiency, with the added benefit of
enhanced fault tolerance. While this method streamlines
the distribution of block information, it concurrently
imposes computational burdens due to the complex
encoding and decoding required.

• Decoupling Consensus and Propagation: The Nar-
whal/Tusk protocol [8] introduces an separation of
block consensus from broadcasting, enabling it to
potentially surpass 100,000 transactions per second
(TPS). However, this separation can result in heightened
latency within the network.

• Parallel Processing and Pipelining: The pipelining
feature introduced by HotStuff allows for the overlap of
different consensus phases, facilitating parallel process-
ing of consensus steps and improving overall efficiency.

Similarly, the Komorebi protocol [18] explores the
synergy between sharding and BFT consensus, enabling
parallel transaction processing and consensus across dif-
ferent network partitions, though managing cross-shard
communication remains a challenge.

These advancements represent significant strides in the
quest to optimize BFT protocols, each contributing unique
solutions to the complex puzzle of enhancing distributed
systems’ performance while maintaining or balancing their
foundational security and decentralization principles.
Integration of Blockchain andDatabase Technologies:The

advent of blockchain-inspired databases like LedgerDB [22],
BigChainDB [23], and Postchain [24] combines blockchain’s
auditability with traditional database efficiency, enhancing
data storage and query execution while retaining the audit
and verification strengths of blockchain. However, these
hybrid systems might compromise on blockchain’s hallmark
features such as absolute decentralization and the high-level
security provided by consensus mechanisms inherent in pure
blockchain systems. This trade-off highlights the challenges
in balancing efficiency with the uncompromised security and
trustless nature characteristic of blockchain technology.

Within this evolving landscape, our work introduces
Pipelining and Overlapping techniques, specifically designed
to enhance the throughput and latency challenges endemic
to BFT consensus protocols. By implementing these
techniques in AuditChain [21], called AuditChain-PO,
which utilizes a simplified PBFT consensus mechanism,
we demonstrate substantial improvements in throughput and
latency. AuditChain-PO consistently achieves a throughput
of 1995 tx/s and a latency of 0.3 seconds, even in settings
characterized by elevated decentralization aspects.

This paper’s methodology enhances BFT protocol opti-
mization within the constraints of predefined consensus
architecture parameters. Our analysis, summarized in Table 1,
examines existing research. Notably, while Hotstuff features
pipelining in its BFT consensus steps, it is limited to a
depth of four. In contrast, our proposed pipelining method
expands on this, allowing for multiple consensus processes
to be pipelined concurrently. Our techniques, pipelining
and overlapping can be applied to various PBFT protocol
derivatives, such as Tendermint, HotStuff, and inclusive of
AuditChain.

III. PERFORMANCE IMPROVEMENT TECHNIQUES
To improve the performance of the BFT consensus protocol,
we propose two techniques:

1) Pipelining technique focusing on throughput: By
pipelining the consensus process on blocks, nodes
allow to start the consensus process on blocks of the
following height before the consensus on blocks of the
previous height is complete.

2) Overlapping technique focusing on latency: By
overlapping the block propagation and consensus
process, nodes allow to first agree on a small digest of
a block (the block’s hash), and then each node receives
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FIGURE 2. Pipelining to increase transaction throughput.

the block in the agreed order and executes a transaction
to update its local state.

These techniques aim to improve both the throughput and
latency of the BFT consensus protocol in a decentralized
environment.

A. PIPELINING TECHNIQUE
The traditional BFT consensus protocols follow a sequential
process, where one consensus process must be completed
before the next one starts. To speed up the block consensus
process, the pipelining technique can be used to pipeline
multiple consensus processes. This technique is depicted
in Figure 2. Two types of pipelines are considered in the
proposed pipelining technique:

1) Consensus instances pipeline: Nodes can start the
consensus process as soon as they receive a new block
if they satisfy the hash chain property between blocks.

2) BFT consensus steps pipeline: The BFT consensus
protocol includes several voting steps to handle Byzan-
tine faults. These steps can be overlapped as they have
the same message pattern and format.

When using the pipelining technique to overlap multiple
consensus processes, the hash chain property of a blockchain
can be leveraged to enable fast consensus decisions. This
property ensures that each block extends the previous block
by block hash pointers. With the hash chain property, a node
can reach a consensus decision on a block with a higher
height is complete. However, we must consider how to
handle pipeline hazards that arise due to the interdependence
of multiple consensus processes. If a failure occurs in
one consensus process for a specific block, all subsequent
consensus processes for blocks must be aborted and rolled
back. To maintain this overhead within a certain range,
it is important to control the maximum number of pipeline
consensus processes.

B. OVERLAPPING TECHNIQUE
The overlapping technique aims to optimize this process by
overlapping block propagation and consensus. This technique
is shown in Figure 3 for the BFT consensus protocol. The
block generator simultaneously sends out the hash of a block,
which is much smaller in size compared to the entire block,
and the block itself. The nodes participating in the consensus
process first agree on the block hash before receiving the

FIGURE 3. Overlapping to reduce transaction latency.

FIGURE 4. AuditChain architecture consists of three components: a client,
a BSP, and auditors.

entire block. Once the block is received, they can then reach
a consensus on it.

However, to complete the consensus protocol, all nodes
must receive the entire block associated with the block hash
agreed between them. It is called block availability. If a block
proposer is malicious, that is, the block proposer propagates
the block hash but not the block, all nodes cannot complete
the consensus even though they agree on the block hash.
Hence, we have to guarantee block availability when the
overlapping technique is applied to a BFT consensus protocol
to guarantee the liveness of the system.

To reduce consensus decision latency, the overlapping
technique for the BFT consensus protocol enables concurrent
processing of block propagation and consensus. The overlap-
ping technique may be useful since it is enough to reach an
agreement on the block hash and the size of the block hash is
much smaller than the size of a block.

IV. SECURITY
Applying pipelining and overlapping techniques to the
underlying BFT consensus protocol (ex. PBFT [3],
AuditChain [21]) still follows the security assumptions
of the underlying BFT consensus protocol. Pipelining
and Overlapping techniques can cause failures, and the
underlying BFT consensus protocol detects and handles those
failures. Therefore, Pipelining and Overlapping techniques
do not require any additional security assumptions from the
underlying BFT consensus protocol.

A faulty node can create pipeline hazards. Fortunately, the
underlying BFT consensus protocol takes into account faulty
behaviors that cause pipeline hazards during the consensus
process. For example, PBFT handles a primary fault where
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FIGURE 5. Message pattern of AuditChain in a single view.

the primary node does not disseminate a valid block. The
underlying BFT consensus protocol is designed to detect and
manage failures to meet safety and liveness of the system,
even in the presence of up to N/3 failures. Accordingly,
we respond to failures that lead to pipeline hazards by
employing pre-established strategies for managing such
failures.

Overlapping technology must assure block availability,
ensuring that a node consistently receives a valid block cor-
responding to the received block hash. The underlying BFT
consensus protocol already provides the block availability.
For instance, if a node fails to receive a block a specified
time window, the timer will expire, prompting the activation
of the view change protocol. Consequently, faults that disrupt
block availability can be effectively addressed using the
fault handling mechanisms inherent to the underlying BFT
consensus protocol, rendering the development of an entirely
new fault handling protocol unnecessary.

V. PROTOTYPING ON AUDITCHAIN
A. OVERVIEW OF AUDITCHAIN
1) SYSTEM ARCHITECTURE
AuditChain [21] is a private blockchain system developed
internally for performance evaluation, assuming a partially
synchronous network. While the traditional PBFT [3]
consensus algorithm is monolithic, block generation steps
are separated from the consensus layer in AuditChain.
As shown in Figure 4, AuditChain has two types of nodes:
A Block Service Provider (BSP) and consensus nodes called
auditors. BSP is responsible for creating blocks, while
auditors forming a consensus network are responsible for
agreement on blocks received from the BSP. The consensus
algorithm shown in Figure 5 is like PBFT but with linearO(n)
communication complexity. The difference with PBFT is that
it is linearized and has an additional node, BSP, as a static
block producer.

2) CONSENSUS PROTOCOL
In Figure 5, the consensus protocol proceeds to a series
of views (v = 0, 1, 2, . . .) and a series of rounds (h =

0, 1, 2, . . .) within one view. Each view has one active
BSP responsible for generating and propagating blocks. One
round proceeds with consensus on one block. In each round,
the auditor initiates the consensus by creating a consensus
instance CIh corresponding to a block Bh of height h, and

FIGURE 6. Message pattern of BSP change protocol.

there is one primary auditor (referred to as a primary) that
collects and propagates messages. Each round of AuditChain
proceeds as follows.

➀ Propose:TheBSP proposes a blockBh, It broadcasts the
proposal message with block Bh to the audit network.

➁ Prepare: On receiving a proposal message containing
a valid block Bh in a view v, an auditor sends an
AuditTXprepare for Bh to the primary if Bh is valid to vote.
The primary collects at least (n − f ) AuditTXprepare to
form a prepareQCh in view v and round h. The primary
broadcasts the prepareQCh to all auditors.

➂ Commit: On receiving a prepareQCh for Bh, an auditor
sends an AuditTXcommit for Bh to the primary if the
prepareQCh is valid to vote. The primary collects at least
(n − f ) AuditTXcommit to form a commitQCh in view v
and round h. The primary broadcasts the commitQCh to
all auditors.

➃ Reply: On receiving a commitQCh from the primary,
an auditor commits a block Bh, executes the client
transaction in Bh, and sends a reply to the client. Finally,
the auditor creates an audit block of the block Bh,
containing prepareQCh and commitQCh as proof of the
agreement for Bh.

3) BYZANTINE FAILURE HANDLING
In AuditChain, Byzantine nodes can exist: (active) BSP
and f auditors. Among these, Byzantine BSP and Byzantine
primary auditors can break safety and liveness. Therefore,
the auditors monitor the presence of the behavior of the
Byzantine BSP and the Byzantine primary auditor during
the consensus process. When the auditor detects Byzantine
BSP or Byzantine primary auditor, it switches to a new
non-byzantine BSP or non-byzantine primary auditor.
The Byzantine BSP may not propagate blocks at all that

propagate different blocks to the auditor so that the agreement
does not proceed. In this case, the primary cannot generate
a QC (prepareQCh or commitQCh). Auditors that have not
received QC from the primary cannot distinguish whether the
primary is byzantine or BSP is byzantine. (It may be due to
an unstable network, not a fault of a node. However, since it
is difficult to distinguish the two, they are all considered to
be faulty in node.) Therefore, the auditor firstly handles the
situation that does not receive QC as primary auditor failure.
In addition, when a situation in which QC is not received even
on the (f+1)-th comes, the auditor processes it as BSP failure.
The auditor determines that the BSP is Byzantine when a

block is not received or when a QC is not received for (f+1)-th
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time and changes the BSP and starts a new view by executing
the BSP change protocol. The BSP change protocol ensures
that all host auditors eventually enter the same view. Figure 6
shows the message pattern of the BSP change protocol.

➀ Phase 1: An auditor sends a BSP change message miv+1
to its Primary. BSP change message includes the height
h of the highest prepared block and a prepareQCh as the
latest state. The primary determines the highest prepared
block height among the received BSP change messages
upon collecting at least (n − f ) miv+1. After then, the
primary broadcasts a new-BSP proposal message βv+1
prosing the new view v+ 1 to all auditors.

➁ Phase 2: When the auditor receives a valid βv+1 from
the primary, the auditor sends a Vote message λiv to the
primary for the βv+1. Upon receiving the quorum of vote
messages, the primary generates a vote QC, which is a
QC for the vote message, and propagates the vote QC to
the rest of the auditors. The auditor that receives a valid
vote QC from the primary starts the corresponding view.

The Byzantine primary in the consensus protocol does not
broadcast a QC (prepareQCh or commitQCh) or broadcasts
an invalid QC. If the auditor does not receive a valid QC that
must be received from the primary, the auditor determines that
the primary is Byzantine and changes it to the primary of the
next round and sends audit TX of prepare phase. The primary
change in BSP change protocol is the same as the primary
change in consensus protocol. In the BSP change protocol,
the Byzantine primary does not send a new-BSP proposal or
a vote QC, or an invalid new-BSP proposal or an invalid vote
QC. If the auditor does not receive a valid new-BSP proposal
or a valid vote QC, the auditor determines that the primary
is Byzantine and changes to the primary of the next round to
send a BSP change message.

B. PIPELINING ON AUDITCHAIN
1) CONSENSUS INSTANCES PIPELINE
In basic AuditChain, an auditor starts a consensus process
for a block Bh as soon as it receives the block, even if the
previous consensus instance for CIh−1 has not yet ended.
And the auditor decides to commit a block by gathering
two quorums (prepareQCh and commitQCh) for each block.
When pipelining consensus instances, auditors can start the
consensus process as soon as a valid chained block is
instances for chained blocks, the QC for the higher-height
block can commit the lower-height block. This is because the
QC for Bh implies that the quorum number of auditors have
agreed not only on the blocks of height h but also on all blocks
of height h or less that are linked by hash pointers.

2) BFT CONSENSUS STEPS PIPELINE
The basic AuditChain consensus process consists of two
steps: Prepare and Commit. To optimize the process, both
steps can be pipelined, specifically, the Commit step of
consensus instance CIh and the Prepare step of consensus
instance CIh+1 can be performed simultaneously. By doing
this, an auditor can skip the Commit step ofCIh and determine

FIGURE 7. Message pattern of AuditChain adopting the overlapping
technique.

its commit through the prepareQCh+1 in the Prepare step of
CIh+1. However, this technique is efficient only if the Prepare
step of CIh+1 starts before the Prepare step of CIh ends. If the
Prepare step of CIh+1 starts later, the consensus process of
CIh may be delayed. To avoid this, the auditor only skips the
Commit phase when there is a Prepare step of CIh+1 that can
pipeline with the Commit step of CIh. Otherwise, the auditor
originally proceeds with the Commit step.

3) PIPELINE HAZARD
If the BSP or primary is Byzantine, pipeline hazards
can occur. Section IV describes how AuditChain detects
and handles these failures. After detecting and handling
the failure, AuditChain aborts the consensus process and
rollbacks from the block height of the failed consensus
process to the maximum block height of the pipelined
consensus process. To ensure that this overhead remains
within acceptable bounds, it is important to control the
maximum number of pipeline consensus processes.

C. OVERLAPPING ON AUDITCHAIN
1) OVERLAPPING BLOCK BROADCAST AND CONSENSUS
The basic AuditChain protocol accelerates the consensus
process by using an overlapping technique that allows
overlapping block broadcasts and consensus. Figure 6 shows
the AuditChain message pattern that adopts the overlapping
technique. When a BSP finishes generating a block, the
BSP broadcast a block proposal message within a block
Bh along with a hash of Bh, to the network of auditors.
The auditors start the consensus process on a hash of Bh
immediately upon receiving the hash, which is smaller in size
and quicker to receive than the entire block. However, the
auditor cannot commit the block Bh with the QC gathered
during the consensus process until they receive the block Bh
and verify its validity. Only then can they use the QC to decide
whether to commit the block following the commit rule.

2) BLOCK AVAILABILITY
To ensure the liveness of the system in BFT consensus pro-
tocols that use the overlapping technique, block availability
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TABLE 2. Definitions of sections.

must be guaranteed. In AuditChain, this is achieved through
the handling of BSP failures. Even if the BSP acts maliciously
by not broadcasting a valid block or broadcasting an invalid
one, block availability is ensured by detecting and handling
the malicious BSP. If an auditor does not receive a block
within a specified time frame or detects an invalid block, the
auditor considers the BSP to be Byzantine and triggers the
BSP change protocol to replace it with a new one.

VI. LIMITATIONS
This section describes the scope to which pipelining and
overlapping techniques can be employed. The proposed
techniques are generally applicable to any variations of
PBFT [3] consensus protocols, e.g., Tendermint [7] or
HotStuff [4], and including AuditChain [21].

The pipelining technique can be categorized into two
primary types: consensus instance pipelining and BFT step
pipelining. To begin with, consensus instance pipelining is
suitable in cases where the consensus structure operates
independently of block generation and the outcomes of
consensus. This is because the consensus process is pipelined
without reliance on the results from the previous-height
block’s consensus process. BFT consensus protocols com-
patible with consensus instance pipelining include PBFT,
AuditChain, and Nawal [8]. Conversely, this technique is not
applicable to Hotstuff and Tendermint due to their blocks
incorporating the outcome of the previous-height block’s
consensus. On the other hand, BFT step pipelining is suitable
when the consensus structure contains multiple steps for
acquiring quorum, as is the case with PBFT.

The concept of overlapping becomes feasible within con-
sensus structures characterized by a single block generator
node responsible for both block creation and propaga-
tion. This encompasses consensus protocols like PBFT,
AuditChain, Hotstuff, and Tendermint. Moreover, it is also
applicable in consensus structures that involve multiple block
generator nodes, such as in the case of Nawal.

VII. PERFORMANCE EVALUATION
We evaluate the effectiveness of pipelining and overlapping
techniques on AuditChain [21] deployed in AWS environ-
ments.We compare the performance (throughput and latency)

of the basic AuditChain and the performance improved
AuditChain.

A. EXPERIMENTAL SETUPS
Implementation. We implement the prototype of the opti-
mized AuditChain using Go programming language. We test
with three variants: AuditChain (or ‘‘none’’) is the basic
AuditChain without any techniques. AuditChain-P (or ‘‘P’’)
adopts only the pipelining technique, and AuditChain-PO (or
‘‘P+O’’) adopts the pipelining and overlapping techniques.
Workload. Performance (throughput, latency) is measured
for 1 minute after the first 30 seconds after the test starts.
We use the Hyperledger Caliper benchmarking tool to test the
performance. In Every test, for a total of 2 minutes, the client
submits a SendPayment transaction to BSP.When referring to
latency, we mean the time elapsed from the client submits the
transaction to the client receives the f+1 commit events from
auditors. Deployment. We run our evaluation on AWS EC2.
In our experiments, the nodes for the BSP and auditors are
hosted by an EC2 c5d.4xlarge instance with 16 CPU cores, 16
GB of RAM, 400GB of NVMe SSD, and a 10Gbps NIC. The
nodes for clients are hosted by an EC2 c5d.12xlarge instance
with 48 CPU cores, 96 GB of RAM, 900 GB of NVMe SSD,
and an 18Gbps NIC. The nodes form a fully connected graph.
We run our experiments on two scenarios: a local-distributed
scenario, where every node is deployed in the Seoul region,
and a global-distributed scenario, where auditor nodes are
distributed across two AWS regions: Seoul (ap-northeast-2),
N.Virginia (us-east-1). Profiling. To analyze the latency of
experiments, we profile the time for each section. We divide
4 sections as shown Table 2. Consensus delay is an overhead
for consensus because the BSP generates blocks quickly
regardless of the consensus result, but consensus proceeds
sequentially in the order of block height.

B. EFFECT OF PERFORMANCE IMPROVEMENT
TECHNIQUES
We first experiment with local and global distributions
by varying the batch size to analyze the effectiveness
of each performance improvement technique. We conduct
experiments where we used batch size = [100, 500, 1000].
A send rate per client of 1100 was used in local deployment,
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FIGURE 8. Evaluating throughput and average latency (with log scale) at the two types of deployments.

FIGURE 9. Profiling data for the experimental results in Figure 8.

while 400 was used in global deployment. We compare the
performance of AuditChain, AuditChain-P, and AuditChain-
PO. Figure 8 shows the results of the experiments. To analyze
the results in Figure 8, the time for each section was profiled,
and the results are shown in Figure 9.
In Figure 8, AuditChain in local deployment saturates

faster than AuditChain in global deployment. As seen in
Figure 9, the block generation and broadcast time increase
as the batch size increases. Moreover, deploying the auditor
globally increases block propagation and consensus time. The
consensus delay in AuditChain becomes larger as the batch
size decreases because the cycle for the BSP to generate
blocks becomes shorter, but the consensus speed cannot
keep up. The pipelining technique increases throughput and
reduces latency by processing consensus instances in parallel
and eliminating consensus delay. Figure 8 shows the most
significant effect of the pipelining technique with a batch
size of 100. AuditChain-P has 117% increased throughput

and 99% reduced latency at local deployment and 977%
increased throughput and 99% reduced latency at global
deployment compared with AuditChain. In Figure 8 (a),
for batch sizes of 500 and 1000, the pipelining effect is
negligible because performance is already saturated. The
overlapping technique reduces latency because they initiate
consensus faster by the difference between block broadcast
time and hash broadcast time. The difference is larger with
larger batch sizes and is larger for the global deployment
than for the local deployment. Figure 8 shows the greatest
effect of the overlapping technique, with a batch size of
1000 being the largest difference. AuditChain-PO has a
22% reduced latency at the local deployment compared with
AuditChain-P.

C. DECENTRALIZATION FACTORS
To analyze the performance improvement techniques that
can be achieved through the techniques when adding
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FIGURE 10. Evaluating throughput and average latency (log scale) by varying batch size and the number of auditors.

FIGURE 11. Profiling data for the experimental results in Figure 10.

decentralized factors (e.g., reducing the number of consensus
nodes or deploying consensus nodes in globally), we perform
two experiments and compare the performance ofAuditChain
and AuditChain-PO.

1) INCREASING THE NUMBER OF CONSENSUS NODES
We conduct experiments where we increased the number of
auditors from 4 to 32 and used batch size = [100, 500, 1000],
and send rate per client = 600 in local deployment. Figure 10
shows the results of these experiments. To analyze the results
in Figure 10, the time for each section was profiled, and the
results are shown in Figure 10. With a batch size of 100,
AuditChain’s performance degraded dramatically as the num-
ber of auditors increased from 4 to 32, due to the consensus
delay. As mentioned earlier, consensus delay occurs because
consensus between nodes takes longer than block generation
and broadcast time. For 4, 8, and 16 nodes, the consensus time
is shorter than block generation and broadcast time. However,

when the number of nodes increases to 32, the consensus
time becomes longer than the block generation and broadcast
time as the number of nodes increases. However, AuditChain-
PO maintained a constant throughput with slightly increased
latency as the number of auditors increased to 32. This is
because consensus starts faster due to the difference between
block broadcast and block hash broadcast time, without
causing consensus delays through performance improvement
techniques. When using batch sizes of 500 and 1000, both
AuditChain and AuditChain-PO have constant throughput
with slightly increased latency as the number of auditors
increased to 32. This is because the block generation and
block broadcast time increase as the block size increases,
and they become longer than the consensus time, as shown
in Figure 12 (c-f). As with a batch size of 100, there
is a point where increasing the number of nodes with
the same batch size increases consensus time and incurs
consensus overhead. However, AuditChain’s performance is
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FIGURE 12. Comparing throughput and average latency (with log scale)
when expanding the node’s deployment.

FIGURE 13. Profiling data for the experimental results in Figure 12.

expected to degrade significantly, whereas AuditChain-PO’s
performance is expected to remain stable, similar to
Figure 10 (a).

2) DEPLOYING CONSENSUS NODES GLOBALLY
We compare the performance results of increasing the node
dispersion. We use 32 auditors, send rate per client =

400, batch size = 100, and change the auditor deployment
from local to global. Figure 12 shows the results of these
experiments. To analyze the results in Figure 12, the time
for each section was profiled, and the results are shown
in Figure 13. When changing the auditor deployment,
AuditChain drastically drops in performance. We can expect
block broadcast and consensus time to increase as we change
node deployment from local to global. In this case, the
increase in consensus time is greater than the increase in
block broadcast time (Figure 13). However, AuditChain-
PO has constant throughput and slightly increased latency.
As the distance between nodes increases by changing the
auditor deployment from local to global, the latency increases
because the consensus and block broadcast time increase.
In the case of AuditChain, the latency increases by 2965x,
and in the case of AuditChain-PO, it increases by 4x.
AuditChain in local deployment achieves around 1997 tx/s
with a latency of 0.1 seconds. AuditChain-PO in global

deployment still achieves about 1995 tx/s with a latency of
0.3 seconds.

VIII. CONCLUSION
In this paper, we proposed and demonstrated the improve-
ment of performance scalability of BFT for blockchain
system. The pipelining technique streamlines the consensus
process, increasing throughput by maximizing network
resource usage. The overlapping technique processes block
broadcast and the consensus process in parallel for faster
consensus initiation, reducing the latency. Experiments on
AWS showed that both proposed techniques improve both
throughput and latency using decentralization factors such
as the number of nodes and geographical deployment of
nodes.
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