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ABSTRACT The assessment of artificial intelligence (AI) application for prediction of internal combustion
engine (ICE) performance and its impact on CO2 emissions is conducted in this paper. Three machine
learning techniques (Random Forest, Support Vector Regression, and Semi-supervised Deep Fuzzy C-
means) are developed to analyze inputs from an engine simulation software package database. By employing
these sophisticated mathematical techniques, we successfully assess the influence of engine power range
on CO2 emissions in this paper. Moreover, the framework facilitates segment-based analysis, which enables
segment-specific assessment of CO2 emission based onmetrics such as average traveled distance and average
daily trips in urban and rural settings. The Deep Fuzzy C-means model (DFCM) seems promising to predict
engine performance, with high predictive accuracy and a coefficient of determination (R2) approaching unity.
The results indicate that integration of inter-class and intra-class distinctions, along with considering the
interquartile range of engine power provides invaluable insights for the formulation of strategies aimed
at overhauling the passenger vehicle fleet and advancing decarbonization efforts. By implementing the
proposed innovative techniques, we aspire to enrich the precision of ICE emission models, leading to
more reliable calculations and an enhanced understanding of the environmental implications associated with
vehicles.

INDEX TERMS CO2 emissions, internal combustion engine, passenger car classification, machine learning
techniques.

I. INTRODUCTION
In the past decade, there has been a concerning increase in
greenhouse gas (GHG) emissions, with an average annual
growth rate of 1.3%. The Paris Agreement, adopted over
eight years ago [1], set the target of limiting global warming
to below 1.5◦C. However, it has not yielded positive
outcomes. GHG emissions have continued to rise, reaching
53.8 gigatons of carbon dioxide equivalent (GtCO2-eq) in
2022. Surprisingly, the transportation sector alone accounted
for 15% (8.7 GtCO2-eq) of these emissions, with a significant
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70.1% attributed to land-based modes such as passenger and
freight transport. This sector’s contribution to global GHG
emissions stands at 10% [2]. To tackle the pressing issue of
climate change, nations worldwide are formulating tailored
strategies for mitigating global warming at various levels
of governance. These efforts involve the implementation
of context-specific policies aimed at curtailing the impact
of climate change on different regions and urban centers.
Notable examples include the European Union’s pledge to
reduce its GHG emissions by 55% by 2030 and achieve
carbon neutrality by 2050 [3]. International accords such
as the Kyoto Protocol and the Paris Agreement have
been established to drive national-scale reductions in GHG
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emissions, promoting the transition to cleaner energy sources
and electrified transportation systems. A foundational step
in the pursuit of these objectives involves the quantification
and comparison of vehicle emissions, providing critical
insights into the current state of road transportation in diverse
geographic regions [4].

It is noteworthy that despite the implementation of
new CO2 measurement regulations, leading to substantial
alterations in the composition of newly immatriculated
vehicle fleets and the technical specifications of vehicles
over time [5], it is not foreseen to directly impact on-
road CO2 emissions. More specifically, despite significant
advancements in technology and strategies such as acquiring
new vehicles and decommissioning old or damaged ones, the
Swiss passenger car fleet persistently demonstrates elevated
CO2 emissions, exemplified by the cars depicted in Fig. 1,
which are indicative of the overall fleet.

Hence, given the slow uptake of alternative fuels in
conjunction with a significant rise in the number of passenger
vehicles, there is a pressing need to accurately estimate CO2
emissions across various geographical areas. Researchers
have made substantial progress in addressing the discrep-
ancies arising from diverse estimation methodologies. They
have employed advanced simulation programs to construct
comprehensive emission inventories, thus improving the
accuracy and credibility of their findings [6], [7], [8].
These simulation-based strategies effectively overcome the
limitations of traditional laboratory testingmethods and serve
as a crucial bridge between the two primary estimation
techniques. In the current context, machine learning models
are increasingly relevant in sectors such as energy and
automotive technology [9], [10], [11]. Through integrating
engine research with machine learning modeling approaches,
it is feasible to optimize engine calibration and reduce
the dependency on extensive experimentation and Three-
dimensional (3D) simulation [12], [13]. In the concept of
engines, particularly amidst the progress in technology and
changes in characteristics of passenger cars such as engine
size and vehicle mass, the promotion of internal combustion
engines (ICE) remains active in numerous countries. This
persistence is further supported by significant reasons for
utilizing machine learning in internal combustion engines,
including expediting the development of new engines and
lowering costs, particularly in the design of environmentally
friendly internal combustion engines [14], [15]. Machine
learning offers the capability to adjust input parameters to
simulate the combustion characteristics of an engine, thereby
forecasting pertinent engine parameters effectively [16], [17].
Intelligent internal combustion engines can analyze a wider
array of data inputs, encompassing climate conditions and
geographical parameters, to enhance engine efficiency and
reduce CO2 emissions [18]. Dornof et al. [19] examined
the influence of European C-segment passenger car models
on the comparison of CO2 emissions under controlled
laboratory conditions versus real-world road conditions.
The results indicate that CO2 emissions from diesel-

powered vehicles in the same class are quite similar, while
gasoline-powered vehicles show significantly lower CO2
emissions in the same power range. Conventional laboratory
experiments are carried out in controlled environments,
potentially lacking in capturing the diverse and dynamic
variables influencing real-world emissions comprehensively.
Conversely, simulation programs facilitate more authentic
and dynamic simulations by incorporating a wider array
of variables and scenarios [20], [21], [22], [23]. Numerous
researchers have employed machine learning methodologies
for the anticipation of engine-related parameters. According
to Zhang et al [24], the utilization of support vector regression
algorithm in numerical simulations has proven to be highly
effective in forecasting engine performance and emissions.
Karunamurthy et al. [25] conducted a comprehensive review
of various machine learning methodologies and algorithms,
including artificial neural networks, random forest, semi
supervised fuzzy and support vector machine, as utilized by
multiple researchers. The discussion in this review delved
into an in-depth analysis of performance and emission
characteristics of ICEs. The primary objective was to forecast
the optimal operational settings to enhance performance and
minimize emissions. Yang et al. [26] compared three machine
learning models to predictive performance in forecasting
indicated mean effective pressure indicator with the input
parameters spark timing, speed, and load. For the prediction
of engine related parameters, the prediction accuracy and
effect of artificial neural networks, random and support vector
machine was good. In this research, three machine learning
techniques – Random Forest (RF) [27], Support Vector
Regression (SVR) [28], and semi-supervised deep fuzzy C-
means clustering (DFCM) [29], [30] – will be employed to
forecast and enhance the efficiency of engine combustion
parameters. Besides mathematically examining the model
prediction outcomes, the effectiveness of predictions will also
be assessed from the perspective of ICE combustion, enabling
the evaluation of engine power range influence on CO2
emissions via inter-class and intra-class classification. This
evaluation considers metrics like average traveled distance
and average daily trips in urban and rural settings. The core
focus of this study is to construct a robust mathematical
model to evaluate average CO2 emissions for various vehicle
class scenarios, providing a more accurate understanding of
CO2 emission levels and shedding light on the influence of
vehicle class diversity on the CO2 footprint of passenger
vehicle fleets. Given the limited informative value of CO2
standard values for real-world emissions [31], this research
presents a significant stride towards a renewed approach
to assessing CO2 impacts in vehicle fleet scenarios. This
study builds upon previous research that concentrated on
developing a machine learning technique for categoriz-
ing passenger cars based on technical and dimensional
attributes [32], [33], [34].

The rest of the paper is structure as follows. Section II
briefly introduces the Swiss transport, Section III provides
concise details on the used datasets and the methods,
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FIGURE 1. CO2 emission for selected Swiss passenger cars. Data source: ASTRA (Technical data), BFE (CO2 enforcement data).

Section IV describes the algorithms, the performed experi-
ments, and the discussion of the results and last, section V
provides the majors findings of our work and recommenda-
tions for further research.

II. SWISS TRANSPORT: A REGIONAL PERSPECTIVE
Based on data from the International Energy Agency [35],
Switzerland’s share of global human-caused CO2 emissions
resulting from fossil fuels is below 0.2%. Despite this,
the transportation sector notably influences Switzerland’s
overall carbon footprint, with about 30.6% of the country’s
CO2 emissions in 2021 stemming from transportation
activities. Within transportation modes, road transport is
the predominant source, contributing to 97.3% of these
emissions. Passenger vehicles constitute a significant portion
of Switzerland’s road transport emissions, accounting for
around 71.2% of the total emissions [36]. Notably, the
regulated CO2 emissions from passenger cars in Switzerland
display a variable pattern. Nevertheless, Switzerland has
set a long-term target of achieving net-zero greenhouse
gas emissions by 2050 by employing negative emission
technologies, as depicted in Fig. 2. In 2023, Switzerland
recorded the registration of over 6.6 million motor vehicles.
Among these, more than 4.7 million were passenger cars.
Despite a high public transport acceptance rate of 59% in
the population, car travel remains dominant, constituting
around two-thirds of the total passenger kilometers trav-
eled [37]. Switzerland’s mobility can be segmented into

three primary regions - urban, suburban, and rural areas,
each facing distinct sustainability challenges stemming from
urbanization. According to the Federal Office for statistics
(BFS) typology ‘‘Area with urban character, 2012’’, urban
areas are categorized into three main estimates: urban core
areas, areas of influence of urban cores, and areas outside
the influence of urban cores [37]. The classification helps
distinguish the different characteristics and dependencies
of urban, suburban, and rural areas. Throughout 2023,
these vehicles collectively covered a distance of 55 billion
kilometers annually, averaging 20.8 kilometers per day.
According to the Federal Office for Spatial Development,
this translates to a rate of 100,000 kilometers per minute.
For journeys exceeding one kilometer, on average, 92% of
individuals used passenger cars. The urban-rural disparities
are highlighted in Fig. 3 when examining cantons. Urban
cantons such as Geneva and Basel-Stadt exhibit the shortest
daily travel distances, with values of 18.3 km and 19.7 km
respectively, while Alpine cantons like Uri and Valais show
considerably greater distances. Fribourg stands out with an
average daily distance of 37.2 km, contrasting with the
relatively shorter distance of 24.1 km in Ticino [38]. Fur-
thermore, vehicles powered by diesel and gasoline engines
typically covered greater annual distances compared to those
equipped solely with electric motors or hybrid systems,
as depicted in Fig. 4. This resulted in an average type-
approval CO2 emission of approximately 120.9 g CO2/km
for newly registered vehicles in 2022. The transition to
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FIGURE 2. Overview of CO2 emission targets in Switzerland, Source: BAFU (long-term climate strategy).

FIGURE 3. The daily travel distances in urban and rural areas, Data Source: BFS (statistics/mobility-traffic).

the World Harmonized Light-Duty Vehicles Test Procedure
(WLTP) unveiled an average 20% increase in emissions
compared to the New European Driving Cycle (NEDC)
standards [39]. Additionally, the estimated emissions indicate
that newly registered vehicles in the southeastern region
of the country generally demonstrate lower fuel efficiency
and higher CO2 emissions compared to those in the
northwest [37].

III. MATERIALS AND METHODS
A. DATA PREPARATION
In this study, we undertook a comprehensive analysis utilizing
the extensive dataset sourced from the Swiss Motor Vehicle
Information System (MOFIS), which encompasses detailed
records of over 4.7 million passenger vehicles [40]. The

dataset contains a plethora of attributes including type
approval numbers, physical specifications, weight properties,
ownership details, technical specifications, and registration
timelines. Furthermore, we augmented this dataset with
information from the Technical Type Approval Information
repository provided by the Federal Roads Office (ASTRA)
[41] and the Vehicles Expert Partner [42]. It is important to
note that we used CO2 emissions based on the average type
approval values provided in the ASTRA database (measured
CO2 according toWLTP) [33]. The data cleaning and prelim-
inary analysis are conducted using Python [34]. Our primary
objective revolved around partitioning the dataset into a
meticulously crafted training set and a robust testing set, with
the former comprising 312,377 newly registered passenger
cars in the year 2019. Out of this total, 192,430 were diesel-
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FIGURE 4. The daily travel distances by fuel type, Data Source: BFS (statistics/mobility-traffic).

powered passenger cars, and 76,618 were gasoline-powered
passenger cars, representing the collective share of diesel and
gasoline vehicles in the dataset. Following a stringent filtering
process to remove the vehicles that do not meet the standard
definitions of passenger cars, we proceeded to categorize
the remaining automobiles into distinct types based on
their make, model, and manufacturer code, resulting in the
identification of 378 unique passenger car types. These types
were systematically grouped into specific classes, presenting
the diversity within the passenger car mathematical segment,
including the micro class, small class, middle class, upper
middle class, and large and luxury class. Given the inherent
constraints of the unsupervised Fuzzy C-means (FCM)
clustering algorithm [30], our methodology necessitated the
exclusive utilization of labeled data exhibiting precise labels
and a high membership degree exceeding 0.95. This metic-
ulously constructed central dataset functioned as the pivotal
element for deriving precise categorizations and establishing
the foundational framework for ensuing training procedures.
In addition, a deliberate random sampling approach was
utilized, designating 10% of data from each category as
labeled training samples. Subsequently, we elaborate on the
process of estimating the actual power output and its effect
on CO2 emissions assessment based on the average traveled
distance and determining the average daily trips in urban and
rural area.

B. STATE-OF-THE-ART METHODS
Semi-supervised clustering aims to boost cluster accuracy by
identifying superior clusters compared to those obtained via

unsupervised learning algorithms [43], [44], [45]. Tradition-
ally, semi-supervised clustering methods deliver suboptimal
outcomes in the original feature space. To enhance the
efficacy of semi-supervised clustering, incorporating deep
feature learning is a logical step [29], [46], [47]. The
framework of the proposed clustering approach is illustrated
in Fig. 5.

In contrast to prevalent methodologies in semi-supervised
clustering that hinge on feature extraction techniques, our
approach integrates three types of information (diffusion
labels, core data extraction, and feature vector extraction) to
enhance prediction accuracy and address issues like imbal-
anced class distribution and class overlap. Our framework
comprises three key layers, with the initial layers discussed
in a previous study [33]. In the first layer, we segregate
labeled data into distinct training and testing sets for building
and evaluating classifiers, respectively. The second layer
involves using the training set and unlabeled data as inputs
for the feature learning process. The outcome of this step
generates cluster centroids, which act as a foundation for
projecting data from both training and testing sets into a
newly acquired space. This projection further facilitates the
extraction of feature vectors during the subsequent feature
extraction phase. In the second layer of the study, models
are constructed RF, SVR, and DFCM algorithms based on
the feature vectors extracted from the training dataset. These
models are subsequently leveraged to forecast labels for
the corresponding feature vectors within the testing dataset.
In algorithm 1, RF employs parallel learning and utilizes
bagging during data training to reduce both variance and
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FIGURE 5. Overall Structure of the proposed deep learning approach.

bias in the model. This technique generates multiple decision
tree ensembles from the original data while ensuring that
these trees remain independent of each other throughout the
parallel learning process.

Algorithm 1 Random Forest
Input: Training set (S), number of decision trees in the forest
(B), subsample size (µ), maximum iteration number (T)
Output: Set K = ∅
1. Initialize the iteration number t ϵ {1, . . . , T} do
2. For each decision tree index b ϵ {1, . . . , B} do the following
steps:

a) Sample µ instances from S with replacement,
creating a subsample set St

b) construct a decision tree Kt using decision tree b on the
subsample set St

c) Add the trained decision tree classifier Kt to set K
3. Return the set K

In algorithm 2, SVR is a favorable choice in machine
learning for addressing intricate regression tasks with non-
linearity. It predicts continuous target variables by identifying
the hyperplane that optimally maximizes the margin between
data points and the hyperplane. Unlike the sequential

Algorithm 2 Support Vector Regression
Input: Data X whose number of elements N, training set (S),
Kernel function (K ), regularization parameter (C), epsilon
insensitive loss parameter (ε), max iteration number (T )
Output: Set Q = ∅
1. for t ϵ {1, . . . , T} do
2. Initialize α, b, and Q
3. for each training instance xi:
4. Calculate the prediction error εi = yi - (6j αj K(xj, xi) +
b)
5. Update αj according to the rule:

αi← αj + η(εi - εb)K(xb, xb)
6. Update b: b← b + εi
7. if convergence criterion is satisfied, then stop
9. Update the set Q
10. Return the set Q

creation of decision stumps, SVR centers on grasping the
connections between input variables and the continuous
target variable by utilizing support vectors during the training
phase.
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FCM is a widely used soft clustering algorithm known for
its overlapping clusters [29]. It assigns partial membership
values to data points, indicating their likelihood of belonging
to each cluster on a scale from 0 to 1. However, due
to the non-convexity of its objective function, FCM may
converge to local optima during optimization. To tackle
this challenge, In algorithm 3, we propose a DFCM that
incorporates deep feature learning to enhance its effectiveness
and eliminate redundant information [44], [48]. To enhance
prediction accuracy and performance, we employ the random
oversampling (ROS) technique for feature selection. ROS
aims to strike a balance between the feature subsets of labeled
classes and unlabeled data elements, thereby improving the
prediction process [49], [50].

Algorithm 3 Semi Supervised Deep Fuzzy C-Means
Input: N data elements X ={X1,X2,. . . ,XN} with minimum
features in any subset (s), set of the centroid (V s

iL ,V
s
UNL) of

selected features
Output: Predicted labeled data (Q= {qL+1, qL+2,. . . , qL+N })
Set Q = ∅
1. For each centroid index i ϵ {1, . . . , c} do
2. For each data element index j ϵ {1, . . . , N}, do the following
steps:

a) Employ V s
iL to calculate max Simi

b) If maximum average of max Simiϵ ith labeled class,
then

c) Append Xj to ith labeled class
d) Update the set Q if a labeled class is achieved
e) For all V s

iLϵV
s
L do

3. Return the set Q

In the final layer of the process, we assess the performance
metrics of the distinct models (RF, SVR, DFCM) through the
utilization of the confusionmatrix. Additionally, we employ a
fusion model to gauge their efficacy in data classification and

prediction. The fusion model is a sophisticated deep learning
approach where diverse prediction algorithms, each assigned
specific weights, are trained, and amalgamated to enhance
overall performance. This method proves to be a robust meta-
classifier as it integrates various prediction models using a
majority voting classifier, thereby mitigating the limitations
of individual classifiers, and achieving heightened prediction
accuracy [22], [51]. Subsequently, the findings from the
experiments are applied to a dataset for deeper scrutiny and
validation.

IV. EXPERIMENTS
A. EXPERIMENTAL SETUP AND RESULTS
This section delves into comparing the robustness and
performance of three machine learning algorithms (RF, SVR,
and DFCM) for predicting ICE power output for each vehicle
segment. The approach employed in this study to evaluate
the capability of machine learning algorithms in predicting
engine performance involves conducting the engine simu-
lation with diverse engine inputs including spark ignition,
spark timings, engine capacity, engine speed, load, and
torque, and recording the resulting performance outcomes.
The engine input parameters sourced from the simulation
package database serve as inputs for the algorithms. The
majority of the pre-existing data within the database has
been validated through dyno tests, leading to the anticipation
that the simulation outcomes accurately reflect actual engine
performance. To assess their robustness, the models were
trained and validated multiple times, and the resulting data
was analyzed for its impact on CO2 emissions. Initially, a sta-
tistical analysis indicated a strong correlation between CO2
emissions, vehicle segments, sub-segments, and key influenc-
ing factors. During the feature learning process, both labeled
and unlabeled data were utilized along with core dataset
labels, ensuring common features across datasets. Principal
component analysis was employed to tackle multicollinearity
before feature extraction to reduce dimensionality. Cluster
centroids defined features which were then transformed into
feature vectors. The random oversampling technique was
used to balance minority group features with the majority
group, selecting optimal features based on Euclidean distance
to minimize redundancy. Pseudo labels from labeled data
were assigned to unlabeled data for training, and the resultant
pseudo-labeled data was used to pre-train the algorithms
by extracting discriminative features. Model fusion was
undertaken using labeled data with true labels. The results
revealed that the DFCM algorithm achieved the highest
accuracy (Table 1). The features extracted from model fusion
were then used to reevaluate individual algorithms and
choose the best prediction model. The experimental findings
demonstrate the superior capability of the DFCM algorithm
in extracting valuable insights from the vehicle dataset,
resulting in enhanced recognition accuracywhen compared to
alternative prediction algorithms. The underlying assumption
of feature extraction is that it leads to improved prediction
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TABLE 1. Comparison of performance of the prediction algorithms with labeled rate of 10% from training dataset.

results in comparison to the initial classifier’s predictions
with the original features.

Fig. 6a to 6c present the outcomes of comparing actual
values with predicted outputs obtained from the RF, SVR,
and DFCM algorithms using 378 distinct sets of training
data tailored for passenger cars. The X and Y axes represent
the predicted and actual power output values derived from
the measured technical features, including spark ignition,
spark timings, engine capacity, engine speed, load, and
torque, across various vehicle categories. The high value
of R2 signifies an accurate prediction. Examination of the
error lines, set at ±5% and ±10%, reveal that the data
points produced by the SVR algorithm closely adhere to
the diagonal line. DFCM trails closely behind, while the
RF algorithm displays the most significant deviation. Both
DFCM and SVR classifier exhibit robust R2 values exceeding
97%. Additionally, both DFCM and SVR exhibit higher
precision rates compared to the RF classifier, suggesting
improved prediction accuracy after training. Overall, all
three prediction classifiers display high R2 values, indicating
their understanding of the relationship between engine
performance and input parameters, with DFCM and SVR
outperforming the RF classifier.

Transitioning to Fig. 6d to 6f, these illustrations present
a comparison between anticipated power output and actual
values for the validation dataset utilizing the three algorithms.
The resemblances in statistical metrics between the validation
and training datasets for each algorithm indicate minimal
fluctuations in R2 values, signaling the absence of overfitting
and a reliable capacity to predict unseen data. The validation
dataset displays R2 values of 0.982, 0.978, and 0.968 for
DFCM, RF, and SVR classifiers correspondingly. R2 values
surpassing 0.98 for both DFCM and SVR denote high
accuracy in their predictive abilities. Notably, the prediction
errors for the SVR algorithm predominantly fall within the
5% margin in the validation dataset, whereas for the DFCM
algorithm, errors hover within 10%, with only a scarce
number of points exceeding the 10% errors. Conversely,
the RF classifier present more conspicuous prediction errors
surpassing the 10%. The experimental results affirm that the
DFCM classifier exhibits the closest alignment with actual
values in its prognostications, with SVR following, while the
RF classifier displays relatively higher errors compared to the
DFCM and SVR classifiers.

Consequently, the inter-class classification outcomes
derived from the DFCM algorithm are applied to a dataset

consisting of passenger cars [30]. This analysis reveals the
presence of seven distinct classes, each characterized by their
predicted power output and corresponding engine capacity.
These class distinctions, documented in detail in Table 2,
provide valuable insights into the segmentation and char-
acterization of passenger cars based on their attributes and
performance metrics. Moreover, the visualization depicted in
Fig. 7 illustrates the spatial distribution of predicted power
output within diverse urban and rural settings. Analysis of the
data discerns that rural and urban cantons exhibit a prevalence
of passenger cars with power output levels situated within
the lower quartile range. Conversely, urban and semi-urban
regions present a notably higher concentration of vehicles
in the upper quartile power output segment among small
vehicle classifications, accounting for over 44%, with the
upper-middle class sector contributing significantly at 30%.
Furthermore, middle quartile power output predominates
among the upper-middle class in semi-rural and rural
regions, exceeding 40%. Furthermore, the examination of
drivetrain technologies in vehicles classified into five distinct
classes (micro, small, midsize, upper midsize, large and
luxury) reveals that over two-thirds of SUVs utilize four-
wheel drive (4WD), while the majority of not-SUV models
utilize front-wheel drive (FWD) or rear-wheel drive (RWD).
Among the unique training data across the five main
inter-class categories, only 156 samples fulfill the 4WD
criteria. Subsequently, based on dataset assessment, SUVs
encompass merely 96 samples, with not-SUVs accounting
for 282 samples. The DFCM achieves 91% accuracy in
intra-class vehicle classification with just 10% labeled data.
An observable trend surfaces, indicating a higher prevalence
of SUVs in the central and southern regions.

B. DISCUSSIONS
The experiment results have demonstrated that there is a
significant variation in the CO2 emissions between inter and
intra classes. The cumulative CO2 emission levels from Swiss
passenger cars are notably influenced by alterations in the
fleet’s composition over time, both between vehicle classes
(e.g., upper-middle class to large and luxury classes) and
within each class (e.g., not-SUV to SUV). Fig. 8 presents the
average CO2 emissions for each vehicle category based on
our prediction methods. The outcomes for each vehicle class
are depicted using interquartile range distributions of engine
power output. A comparative analysis of different vehicle
segments highlights a substantial variance in CO2 emissions
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FIGURE 6. A comparative analysis of the predicted power output against actual values using the proposed algorithms. It includes visual
representations of the performance for the training dataset by (A) DFCM, (B) SVR, and (C) RF. Additionally, a validation process was carried out
using 10% of the training dataset samples for model training, presenting the predicted performance for the validation dataset by (D) DFCM, (E)
SVR, and (F) RF.

within and between classes. There is a tendency for CO2
emissions to increase with the size of the vehicle, ranging
from approximately 100 g CO2/km for micro-class vehicles

to around 200 g CO2/km for large and luxury-class vehicles.
Specifically, SUVs exhibit higher CO2 emissions compared
to not-SUVs, with the most significant variance noted in
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FIGURE 7. Spatial distribution of the power range in kW for each area and car segmentation in 2019.

FIGURE 8. Average CO2 emissions intensity based on the interquartile power range.

micro-class SUVs as indicated in Fig. 9. Additionally,
our related observations revealed that the average mileage
of SUVs tends to increase as vehicles age. This notable
finding highlights that the SUV fleet in Switzerland covered
an extensive distance of 12.6 billion kilometers in 2018,
resulting in the unnecessary production of CO2 emissions
with each kilometer traveled [34].

The findings indicate that transitioning from a mid-class
not-SUV to a micro-class SUV could lead to an increase
in CO2 emissions. Therefore, while transitioning the fleet

towards smaller vehicles may reduce CO2 emissions, a more
effective reduction in emissions intensity could be achieved
by adjusting the proportion of vehicles within each class
based on the interquartile range of engine power, for instance
shifting from SUVs to not-SUVs or selecting lower-power
vehicles within the same vehicle class, as indicated in Fig. 8.
Furthermore, as discussed in the preceding section, the

analysis of CO2 emissions is greatly influenced by driving
distances and vehicle classes. Hence, the utilization of
driving distances derived from statistically averaged data
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TABLE 2. Power output quartile analysis of the clustering results derived from the DFCM classifier.

FIGURE 9. The box plot depicts the average CO2 emissions fluctuation among different segments
of SUV passenger cars, representing median and 25/75% quartiles, and the mean (×) of the CO2
emissions.

sources is imperative to accurately evaluate the comparative
CO2 emission levels across different vehicle classes within
the respective region. In the context of 2021, passenger

cars were driven almost three-quarters more than other
transportation alternatives. Diesel-powered passenger cars
exhibiting slightly longer annual distances traveled (12,782
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km) compared to gasoline-powered counterparts (9,010 km),
partly attributed to the relative age differences of the vehicles
within each fuel category [33]. Moreover, highest percentage
of registered SUVs is observed in four urban and mid-urban
cantons (Zug, Schwyz, Genèva and Valais) in compared to
the lowest percentage of registered SUVs which is observed
in rural and mid-rural cantons (Thurgau, Freiburg, Neuchâtel,
and Jura). Our analysis of the environmental impact of SUV
transportation in cantons Genèva and Freiburg, as presented
in Fig. 10, revealed some insightful findings. Despite there
being no technical differences between the vehicles analyzed
in each setting, it is possible to highlight that an average
kilometer trip made by registered SUVs with ICE in Genèva
brings approximately 166 g CO2/km with 5.8 km average
travel distance per person per day. Conversely, for SUVs
operating in canton Freiburg, where the average travel
distance per person per day is 4.7% lower than in canton
Genèva, the emissions are slightly reduced to 161 g of CO2
per kilometer. Despite this, canton Freiburg boasts the highest
average daily travel distance per person among the 26 cantons
considered, leading to significant variations in CO2 emissions
both within and between vehicle classes. Consequently, the
integration of inter-class and intra-class distinctions, coupled
with the consideration of the interquartile range of engine
power provides invaluable insights for the formulation of
strategies aimed at overhauling the passenger vehicle fleet
and advancing decarbonization efforts. It worth noting that
the lower distances observed in the border regions may be
influenced by residents who tend to travel slightly longer
distances abroad in their daily routines, and this analysis
specifically considers distances within the country.

By leveraging an established estimation-based model from
a different country [52], a comparative analysis was carried
out using actual data from Switzerland. It’s important to
note that direct comparisons between countries with different
driving fleets, behaviors, road infrastructures can be complex.
However, such comparisons offer valuable insights into key
differences. The findings reveal that vehicles in Switzerland
significantly exceed the targeted CO2 emissions levels.
This study suggests that as the transition to alternative
fuels progresses slowly, there is an opportunity to mitigate
CO2 emissions by optimizing power range and vehicle
classes. By strategically matching power range with vehicle
classifications, a more immediate reduction in CO2 emissions
can be achieved, paving the way for a smoother transition
towards sustainable fuel sources. For instance, two variants
of the gasoline-powered Golf TSI, both sharing the same
base engine and speed but with power outputs of 96 kW
and 110 kW, respectively exhibited CO2 emissions of
approximately 111 g/km and 119 g/km. It is worth noting
that analogous middle-class vehicle models from other
manufacturers with the similar power output of 96 kW and
maximum speed of 210 km/h displayed considerably higher
CO2 emissions, such as the BMW 118i with 140 g CO2/km
and the Peugeot 308 with 124 g CO2/km [19].

V. CONCLUSION
Numerous research has employed machine learning algo-
rithms to predict and optimize engine parameters in address-
ing global climate change. These studies have demonstrated
the effectiveness of integrating machine learning techniques
in engine performance domain tasks. Nevertheless, a com-

FIGURE 10. A comparison of CO2 emissions in selected urban and rural areas.
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mon trend among researchers has been the singular focus
on assessing the predictive capabilities of individual models,
overlooking the value of comparing outcomes derived from a
range of models. In this study, an exploration encompassing
three distinct machine learning algorithms – SVR, RF, and
DFCM – has illuminated the potential for AI to proficiently
predict engine performance across an array of geometries
and operational scenarios while evaluating their impact on
CO2 emissions utilizing engine technical inputs as principal
parameters. The comparison revealed that both DFCM and
SVR exhibited similar levels of prediction accuracy and
effectiveness, surpassing the performance of RF within the
context of this investigation. Among the classifiers evaluated,
the DFCM algorithm emerged as the most precise, achieving
a classification accuracy of 98% in validation assessments.
This study primarily delved into assessing the influence
of engine power range on CO2 emissions through inter-
class and intra-class classification based on metrics such
as average traveled distance and average daily trips in
urban and rural settings. The findings underscored notable
disparities in average CO2 emissions across various vehicle
classes. While transitioning the vehicle fleet towards smaller
vehicle classes may lead to reduced CO2 emissions, a more
substantial decrease in emission intensity could be attained
by reconfiguring the distribution of vehicles within each
class towards the lower interquartile engine power range
or by interchanging vehicle classes based on power output
thresholds, such as converting SUVs to not-SUVs. Hence, the
proposedmethodologies offer crucial insights for formulating
strategies to shift the passenger vehicle fleet towards decar-
bonization while enabling precise automated classification
of large vehicle databases, facilitating the analysis of fleet
modifications. A promising direction for future research
involves integrating CO2 estimates derived from real-world
measurements to provide a more precise evaluation of fleet
CO2 emissions from a life-cycle emissions perspective.
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