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ABSTRACT Traffic management systems have primarily relied on live traffic sensors for real-time traffic
guidance. However, this dependence often results in uneven service delivery due to the limited scope of
sensor coverage or potential sensor failures. This research introduces a novel approach to overcome this
limitation by synergistically integrating a Physics-Informed Neural Network-based Traffic State Estimator
(PINN-TSE) with a powerful Natural Language Processing model, GPT-4. The purpose of this integration
is to provide a seamless and personalized user experience, while ensuring accurate traffic density prediction
even in areas with limited data availability. The innovative PINN-TSE model was developed and tested,
demonstrating a promising level of precision with a Mean Absolute Error of less than four vehicles per
mile in traffic density estimation. This performance underlines the model’s ability to provide dependable
traffic information, even in regions where conventional traffic sensors may be sparsely distributed or
data communication is likely to be interrupted. Furthermore, the incorporation of GPT-4 enhances user
interactions by understanding and responding to inquiries in a manner akin to human conversation. This not
only provides precise traffic updates but also interprets user intentions for a tailored experience. The results
of this research showcase an AI-integrated traffic guidance system that outperforms traditional methods in
terms of traffic estimation, personalization, and reliability. While the study primarily focuses on a single
road segment, the methodology shows promising potential for expansion to network-level traffic guidance,
offering even greater accuracy and usability. This paves the way for a smarter and more efficient approach
to traffic management in the future.

INDEX TERMS AI-integrated traffic information system, physics informed neural network (PINN),
traffic state estimation (TSE), traffic data processing, GPT-4, prompt engineering, natural language
processing (NLP), large language models (LLM), foundation models.

I. INTRODUCTION
The escalating need for effective traffic management systems
has become a matter of global urgency. As reported by the
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US Department of Transportation, more than 370,000 people
lost their lives in transportation-related incidents over the last
decade in the United States, with road incidents accounting
for over 350,000 fatalities [1]. Globally, the issue extends
beyond just safety; it is also an environmental concern.
The World Bank in 2023 reports that the transportation
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sector contributes to a significant 20% of global greenhouse
gas emissions [2]. Moreover, the safety of road users
remains a pressing issue, with over 1.35 million lives
claimed annually by road crashes, leading to serious injuries
for an additional 50 million individuals [2]. In light of
these statistics, the importance of accurate, real-time traffic
predictions cannot be overstated. Current systems, despite
their reliance on advanced monitoring technologies like
surveillance cameras and GPS trackers, face considerable
challenges in reliable traffic reading due to sensor failures and
coverage scarcity [3]. Thus, the pursuit of a more robust and
resilient traffic guidance system that can accurately predict
traffic density even in the absence of real-time data is of
paramount importance.

This is where the potential of neural networks comes into
play. These complex algorithms designed tomimic the human
brain can learn from historical traffic data, distinguishing
patterns that might be unnoticeable to human observers [4].
By learning from past traffic scenarios, the methods could
provide insightful predictions, specifically when real-time
traffic sensors are not operational. However, standard neural
networks often lack the ability to incorporate physical
laws [5]. Moreover, this models struggle to learn complex
traffic dynamics unless they are provided with extensive
amount of training data [6].
On the other hand, the integration of language models with

domain-specific machine learning models have witnessed a
surge in the utilization across diverse domains. However, its
potential remains largely uncharted territory, particularly in
the context of traffic information dissemination [7], [8], [9].

To address these challenges, our research aims to develop
a physics-informed neural network (PINN) model for traffic
prediction. This approach uses historic traffic data to predict
traffic density based on factors such as the position on a
highway and the time of day. To enhance the user experience,
we integrate this model with a Generative Pretrained
Transformer 4 (GPT-4) API. GPT-4 serves as an interface
between the user and the neural network model, interpreting
the user’s traffic inquiries and providing real-time responses
based on the model’s predictions. Thus, this novel approach
combines the strengths of artificial intelligence and physics-
based modeling, offering a potential solution to the current
limitations of traffic management systems.

The integration of PINN and a GPT-4 interface into traffic
guidance systems has broad implications. In addition to
improving traffic prediction accuracy, this approach could
also enhance the user experience of real-time navigation
systems and applications. Currently, these apps heavily
rely on live GPS feeds to provide guidance, which can
be compromised during sensor failures or unexpected road
conditions [3]. Our proposed solution could offer a reliable
backup system when such sensors fail for providing traffic
information, significantly improving the systems’ reliability.

This paper is organized as follows: Section II provides an
overview of the previous works in similar research avenues.
Section III details the methodology used in developing

our model. Section IV presents the results, while Section V
offers a comprehensive discussion of these results. Lastly,
Section VI concludes the paper, highlighting the limitations
of our study and providing recommendations for future
research in this exciting field.

II. RELATED WORK
Traffic guidance systems are fundamental to modern trans-
portation networks, serving as the backbone for managing
and regulating traffic flow [10]. They include a wide range
of methods, from static traffic signage to complex real-time
traffic guidance systems, enhancing the road user experience
and ensuring the smooth traffic flow. Real-time navigation
apps like Google Maps and Waze are examples of such
systems, leveraging GPS data to provide real-time traffic
updates and optimized routing [3].
A significant source of data for these real-time navigation

apps are the extensive traffic sensor networks such as the
GPS feeds from mobile devices. These sensors have become
increasingly prevalent with the ubiquity of smartphones
and in-vehicle GPS systems. The data from these sensors
helps make traffic predictions more dynamic and accurate.
By tracking the speed and location of a large number of
vehicles, these systems can estimate current traffic conditions
and even predict future congestion or delays [3].

However, these methods have several limitations. Mainly,
they are heavily dependent on the availability and accuracy
of sensors’ data, requiring extensive sensor networks and
constant data feeds. This dependency can pose challenges
when there are data insufficiencies, such as in areas with
low traffic sensor coverage or low smartphone penetration
rates [11]. Furthermore, these systems can also falter in the
case of sensor failures, potentially resulting in ineffective
traffic management and exacerbating congestion. These limi-
tations highlight the need for more robust and resilient traffic
prediction methodologies capable of operating seamlessly
within existing systems, even in case of inconsistent and
intermittent traffic sensor data [12].

Neural networks have emerged as a powerful tool in traffic
management, offering the ability to process and analyze vast
amounts of data, pattern recognition from historical data and
improved prediction accuracy [13], [14]. Neural networks,
mirroring the human brain’s structure, allow computers to
learn from data, making them ideal for prediction and pattern
recognition tasks [4], [15]. Yasdi, for instance, delves into
the use of Recurrent Jordan networks, a specific type of
neural network system, for forecasting short-term traffic
flow based on time-series data [16]. This approach is
echoed by More et.al, who apply Jordan sequential networks
to predict future traffic volumes [17]. These networks,
trained with real-time data, aim to optimize traffic flow and
manage congestion. Building on this concept, Loumotis et.al
proposed a novel system that blends the use of Artificial
Neural Networks (ANNs) to predict road traffic [18]. This
system employs ANNs to estimate vehicle speed, thereby
offering a congestion indicator.
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The exploration of neural networks in traffic prediction is
further expanded by Abbas et.al. They investigate short-term
traffic prediction using Long Short-Term Memory (LSTM)
neural networks [19]. With the objective of enhancing
Intelligent Transport Systems’ proactive response abilities,
their research introduces and juxtaposes three LSTM-based
models, offering a comprehensive view of road traffic density
prediction. This shows the increasing versatility and efficacy
of neural networks in traffic prediction.

However, traditional neural network models have limita-
tions. While they can learn complex patterns from data, they
often struggle with scenarios that involve complex physical
dynamics or when data is insufficient to learn the physical
pattern. This has led to the development of more sophisticated
models, such as PINNs [6].

PINNs integrate physical laws intomodel training, enhanc-
ing prediction accuracy and reliability [20]. Compared to tra-
ditional neural networks, PINNs offer advantages in scenarios
with complex physical dynamics or insufficient data, as they
leverage inherent physical principles to supplement data-
driven learning [21]. The versatility of PINNs is evident in
their applications across various scientific and computational
domains. They have been employed as valuable tools in
solving complex problems, from traffic state estimation, fluid
dynamics and image reconstruction to material science and
beyond [21], [22], [23], [24], [25], [26], [27].
In the context of traffic prediction, the integration of

physical laws into PINNs can be particularly beneficial. For
example, traffic flow follows certain physical laws such as
the conservation of cars (analogous to the conservation of
mass in fluid dynamics), which can be incorporated into
the PINN model. This allows the model to make reasonable
predictions even in the limited or absence of extensive traffic
sensors, offering a potential solution to one of the main
challenges faced by traditional traffic prediction methods.
Accordingly, PINNs excel at ‘‘filling in the gaps’’ when
data is incomplete, ensuring reliable traffic information [20].
Thus, this hybrid approach can potentially allow PINNs to
overcome the limitations of traditional models, making them
more robust in scenarios where data is sparse or noisy.

Another main limitation with current traffic management
systems is data accessibility and interpretation especially
by non-technical users. Recently, Large Language Models
(LLM) such as GPT-4 have been employed to act as a bridge
between the user and the domain specific information [7],
[8], [9], [28]. The integration of GPT-4 chat interfaces with
domain specific data and models enhances user interaction
and accessibility. Large language models such as GPT-4 acts
as a bridge between the user and the domain specific informa-
tion. This integration enhances the accessibility and usability
of the domain knowledge, making it more approachable for
everyday users [8], [9], [28]. On the other hand, it improves
the user experience by providing personalized results based
on the user’s specific inquiries [29], [30], [31].
In summary, despite the considerable progress made in

the field of traffic prediction, several research gaps persist.

One notable gap is the lack of comprehensive models for
predicting traffic density under varied conditions, crucial for
traffic guidance systems [32], [33]. Many rely on traffic
sensor data, posing significant limitations in scenarios where
such sensors are unavailable or unreliable [34]. The current
study aims to fill these gaps by developing a PINN model
that predicts traffic density based on position and time data.
By integrating this model with a user-friendly pre-trained
GPT-4 interface, the study aims to provide a more accessible
and reliable traffic prediction tool. This novel approach not
only addresses the limitations of existing models but also
expands AI’s potential in traffic prediction and management.

III. METHODOLOGY
Our traffic information system’s methodology is organized
into six primary components. The initial segment is dedicated
to data preprocessing. In this phase, we address the methods
applied to manage and refine the data for subsequent analysis.
The next segment details the architecture of the PINN Traffic
State Estimator (TSE) neural network. Here, we delve into
the PINN-TSE model, examining both the data-driven aspect
and the physical law aspect. Furthermore, we shed light on
the synergy between these two facets of the model explaining
the training process followed by the view of the entire system
architecture. The next part of this section is centered around
the integration of the GPT-4 interface. In this part, we discuss
howGPT-4 is utilized to interpret user queries and the outputs
generated by the PINN-TSE network. Lastly, we provide a
holistic perspective on the approach we used in system testing
and validation. Thus, this section elucidates each component
of the system and illustrates how they interact to ensure the
efficient operation of the traffic information system.

A. PRE-PROCESSING
The initial phase of our methodology is data preprocessing,
an essential step that guarantees the validity and reliability
of our traffic information system. This phase encompasses
several primary procedures.

The first procedure is data cleaning, a method that ensures
the data’s quality and accuracy. This is accomplished by
detecting and correcting any errors or inconsistencies in the
data, such as missing or duplicate entries.

Once the data is cleaned, we delineate the spatial and
temporal resolution of the data. This involves classifying
the data into distinct spatial and temporal bins, facilitating
a breakdown of the data into more manageable segments for
detailed analysis.

Subsequently, we compute the average traffic density and
speed within each spatial and temporal bin. This process
offers a comprehensive overview of the traffic conditions
within each bin, enabling a more focused analysis.

The concluding procedure in the data preprocessing phase
involves employing regression analysis to discover the
relationship between traffic speed and density, as well as
between traffic density and traffic flux. Regression analysis
is a powerful tool in this context, helping us to discern
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FIGURE 1. PINN-TSE architecture.

the underlying patterns and trends in our traffic data. This
understanding, in turn, assists us in defining the maximum
and optimum traffic density for the road section, along with
the free flow speed. These are the main parameters required
to characterize the test road section traffic dynamics and are
used in defining the traffic state equation. This enhances the
predictive capacity of our system, ensuring it can provide
accurate and trustworthy traffic forecasts.

B. PHYSICS INFORMED NEURAL NETWORK TRAFFIC
STATE ESTIMATOR (PINN-TSE)
The component of our traffic information system that
estimates traffic patterns is constructed on a neural network
model. This model is specifically engineered to leverage
the processed data, learn traffic patterns, and check its
estimations with the physical laws that govern traffic flow.
A detailed explanation of each segment of the full architecture
of the PINN-TSE model, represented in Figure 1, is provided
in the subsequent sections.

1) DATA COMPUTATION ASPECT
In order to learn traffic patterns from the data, we employ a
multi-layer perceptron (MLP). This type of neural network,
known for its capacity to handle complex data patterns,
incorporates an input layer, several hidden layers, and an
output layer is used.

The input layer is designed to receive the processed
independent variables input data, including position and time

that determine the density and speed of the traffic. This data is
then passed through the hidden layers, each consisting of a set
number of neurons. These neurons apply various weights and
biases to the data, and each layer’s output becomes the input
for the next layer. The final layer, the output layer, provides
the predicted traffic density.

The MLP incorporates nonlinear activation functions to
better capture the complex relationship between the different
inputs. Each layer’s number of neurons and the type of
activation function used were determined through a series of
experimental iterations to optimize the model’s performance.

The architecture of the neural network is crucial for the
accurate prediction of traffic density, which serves as the
foundation of our traffic information system. By fine-tuning
the structure and hyper-parameters of the network, we were
able to create a model that can effectively learn from the
historic traffic data and make accurate predictions.

2) PHYSICS COMPUTATION ASPECT
In addition to observed traffic pattern, our to traffic pre-
diction leverages the power of physics-informed learning.
By integrating physical laws into the neural network model,
we ensure that our predictions adhere to real-world traffic
behavior, enhancing the reliability and accuracy of our
system.

The PINNuses the fundamental laws of traffic flow,mainly
the conservation of vehicles, to guide its learning process.
In traffic flow theory, the conservation of vehicles states that
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the number of vehicles in a given section of roadway is equal
to the number of vehicles that entered minus the number of
vehicles that exited. Incorporating this law allows the neural
network to better understand the relationship between traffic
density and speed, leading to more accurate predictions.

To implement this, the Lighthill-Whitham-Richards
(LWR) model is used. The LWR model is a macroscopic
traffic flow model used in transportation engineering to
describe the evolution of traffic density on a roadway. While
the LWR model assumes that all drivers behave identically
and that traffic conditions are homogeneous across lanes,
which may not always be the case. Despite its limitations, the
simplicity of the LWRmodel has significantly influenced the
field of traffic flow theory and continues to be a key reference
point for researchers and practitioners alike.

The LWR model is mathematically represented by a first-
order, nonlinear partial differential equation, a conservation
law that describes how the density of traffic evolves over time
and space. The equation reflects the principle that the rate of
change of vehicle density within any segment of road depends
on the difference between the flow rates entering and exiting
the segment. The basic form of the LWR PDE is:

∂ρ

∂t
+

∂

∂x
(ρ · v(ρ)) = 0 (1)

Here, (ρ(x, t)) represents the traffic density at position (x)
and time (t), and (v(ρ)) is the velocity of traffic, which is a
function of density.

To simplify the relationship, Greenshield’s model that pos-
tulates a linear relationship between traffic density and speed,
can be employed [35]. This relationship is expressed as:

v = vmax

(
1 −

ρ

ρmax

)
(2)

where v represents the space mean speed, vmax is the
maximum attainable speed, ρ is the traffic density, and ρmax
is the maximum traffic density.

By utilizing these relationships, we can substitute Green-
shield’s equation into the Lighthill-Whitham-Richards (LWR)
conservation law (equation 1) to solve it for traffic density,
as presented here:

∂ρ(x, t)
∂t

+ vmax

(
1 −

2ρ(x, t)
ρmax

)
∂ρ(x, t)

∂x
= 0 (3)

It’s worth noting that this equation is a hyperbolic partial
differential equation (PDE), which poses certain challenges
in finding strong solutions. To address this, a second-order
diffusion term with user defined small numbers, ϵ, can be
introduced to the equation (equation 4), transforming the PDE
into a parabolic form as in [27]. This modification helps
ensure the existence of a strong solution and enhances our
ability to study and model traffic flow dynamics accurately.

∂ρ(x, t)
∂t

+ vmax

(
1 −

2ρ(x, t)
ρmax

)
∂ρ(x, t)

∂x
= ϵ

∂2ρ(x, t)
∂x2

(4)

By rearranging the terms, we can introduce a regularization
factor, denoted as R, which serves to enforce compliance with
the underlying physics of traffic flow:

∂ρ(x, t)
∂t

+ vmax

(
1 −

2ρ(x, t)
ρmax

)
∂ρ(x, t)

∂x
− ϵ

∂2ρ(x, t)
∂x2

= R

(5)

This regularization factor, R in equation 5, plays a crucial
role in ensuring that the neural network adheres to the
principles governing traffic flow. Using R, we formulated
a loss function that combines the data driven standard
mean squared error and R, a physics-informed term. This
term penalizes predictions that violate the conservation law,
guiding the network to generate results that align with
real-world traffic patterns. The weights and biases in the
neural network are then updated using a gradient descent
algorithm, balancing the need for accurate data fitting and
adherence to physical laws.

The integration of physics-informed learning into the
neural network architecture is a key feature of our approach,
bridging the gap between data-driven machine learning
models and physics-based traffic prediction.

C. PINN-TSE TRAINING
As illustrated in Figure 1, the PINN-TSE training unfolds in
two main steps:

1) DATA-DRIVEN TRAINING
During the first epoch, we utilize observed position and time
data (xo and to) as input to the neural network to compute the
estimated-traffic density, represented as ρ̂o, while employing
randomly initialized parameters. This estimated density is
compared against the observed density (ρo). This comparison
is quantified by computing the mean square error (MSE),
constituting a vital component of the data-driven loss. Thus,
the data driven loss function serves as a guide, steering
the model towards minimizing the disparity between its
predictions and the ground truth data sourced from the
NGSIM dataset.

2) INTEGRATION OF PHYSICAL LAWS
In the second phase of our process, we utilize the collocation
position (denoted as xc) and time (denoted as tc) points
to derive the density at these arbitrary points, as shown
in Figure 7.
These points are inputted into the neural network to

compute an estimated density, represented as ρ̂o. Simulta-
neously, the differential network uses these data points and
the corresponding density (ρ̂c) to solve the partial differential
equation, yielding the regularization factor (R). Under ideal
circumstances where the model fully complies with the
physical laws, R should be zero. With each iterative step,
the value of R quantifies the degree to which the neural
network deviates with the fundamental conservation law,
with the network’s design aiming to reduce this factor at
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each iteration. This factor regulates the total loss, steering
the model to respect the physical conservation law and
ensuring the network adheres to the principles of traffic
flow theory. By incorporating the regularization loss into the
data-driven loss, we create a comprehensive loss framework
that ensures the model learns from both the observed data
and the physical conservation law. This integrated learning
framework significantly enhances the accuracy and efficiency
of our AI-integrated traffic guidance system in real-time
traffic estimation and assistance.

D. USER INTERACTION AND STREAMLINED
SYSTEM WORKFLOW
Our AI-empowered traffic guidance system is designed to
provide a seamless journey from user input to insightful,
contextually appropriate responses. This journey is facilitated
through a well-structured series of steps, ensuring an accurate
understanding of the user’s query, precise traffic predictions,
and delivery of easily understandable responses (Figure 2).
The journey begins with the interpretation of the user’s

traffic-related query. Using Spacy NLP and regular expres-
sion techniques, the system deciphers whether the query is
time-specific or requires a more comprehensive response,
based on the time and location input values provided.

Once the user’s intent is understood, the system tailors
input parameters for the PINN-TSE model according to the
nature of the query. For specific queries, the model precisely
extracts temporal and location values. For broader inquiries
covering multiple inputs, the system assembles a coherent
timeline, relative to when the traffic model was initiated, and
pairs it with the corresponding spatial data.

Maintaining the system’s integrity is paramount, hence,
we’ve implemented a rigorous cleaning process. This process
employs Spacy and regular expression techniques to elimi-
nate any non-numerical values, rectify errors, and standardize
the input format into time and location pairs.

With the refined input, the PINN-TSE model steps
in, delivering real-time traffic density predictions. These
predictions are informed by traffic flow conservation laws,
capturing the dynamic nature of congestion and the complex
mechanics of traffic shockwaves.

Subsequent to generating traffic density predictions, the
system categorizes the traffic state. Here, traffic density is
evaluated against predefined thresholds to provide a succinct
description of the current traffic condition, preparing the
system for the final user response generation step.

In the concluding phase, traffic density predictions and
traffic state categorizations are handed off to the GPT-4
interface. This interface crafts precise, informative, and
contextually rich responses, bridging the gap between the
system’s analytical prowess and the user’s comprehension.

In essence, our AI-integrated traffic guidance system
harmoniously blends the strengths of the GPT-4 interface
and the PINN-TSE model. This blend ensures accurate
traffic estimations and personalized user assistance, facili-
tated by a seamless workflow of user input interpretation,

FIGURE 2. AI-integrated traffic information system’s architecture.

PINN-TSE integration, and response composition. This
streamlined process guarantees a user-friendly experience.

E. GPT-4 INTERFACE DEVELOPMENT
The Language Learning Model (LLM), GPT-4, interface
serves as the communicative bridge between the user and
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our AI-integrated traffic guidance system. It’s responsible for
interpreting user inquiries, linking them to the neural net-
work’s predictions, and generating understandable responses.

The interaction between the user and our AI-Integrated
Traffic Guidance System starts with the user’s query, which
is stored in a payload. This payload provides the GPT-4
with the necessary information to understand and interpret
the intent and context of the user query. It also reserves
a slot for the output from the PINN-TSE model and the
categorized information regarding traffic conditions, thus
facilitating context-aware assistance.

To implement the GPT-4 interface, we use Azure’s AI
Studio API, with the model being a pre-trained GPT-4.
To tailor themodel to function as a traffic information system,
we leverage the prompt engineering technique. The prompt,
which is integral to the payload, guides the model on its
function, purpose, and the compilation of the user query.
It includes the role, persona, and background information,
providing clarity and instructions specifying the role-playing
requirement of it. The prompt used is: ‘‘I am an AI assistant
designed to assist in predicting traffic conditions within a
2100ft long portion of I-80. My role involves receiving time
and location information from users, along with calculated
traffic density results, and then providing the result to users
along with an explanation.’’

The NLP models prepare and infuse the input values into
the PINN-TSE model, facilitating system response genera-
tion. After receiving the numeric traffic density predictions
and traffic category insights from the PINN-TSEmodel, these
results are integrated into the payload. Now enriched with
user query, PINN-TSE’s estimations, and traffic category
details, this payload is directed towards an LLM instance. Uti-
lizing the information from the enhanced payload, the LLM
generates a response that merges physics-driven predictions
with the sophistication of natural language understanding.

This integration results in a harmonious blend of intelli-
gence. The linguistic proficiency of the LLM, intertwined
with the precision of the PINN-TSE’s estimations, creates
a user experience that surpasses the capabilities of each
individual component. The outcome is a streamlined user
experience, where users are presented with clear, contextually
relevant responses that decode the complex dynamics of
traffic.

F. SYSTEM VALIDATION
Ensuring the reliability and accuracy of our AI-integrated
traffic information system is of utmost importance. There-
fore, we implemented a rigorous system validation process
to assess its performance.

The validation process involves two key steps: PINN-TSE
model performance test and overall system interaction expe-
rience test. In the PINN-TSE performance test, we partitioned
the I-80 dataset into training and testing subsets. The neural
network was trained on the training subset and then evaluated
on the testing subset. This process was repeated several times,
each time with a different partitioning of the data. Suchmodel

validation provides an unbiased estimate of model prediction
performance and helps prevent overfitting.

To quantify the system’s performance, we used several
metrics including accuracy, precision, and recall. These
metrics provided a comprehensive evaluation of the system’s
prediction capabilities, considering both the number of
correct predictions and the proportion of relevant instances
among the predicted ones.

Following cross-validation, we conducted the chat perfor-
mance testing. In this step, we tested the system using live
user interaction with GPT-4. This allowed us to assess the
system’s performance in understanding user query and its
ability to compose tailored responses.

IV. IMPLEMENTATION AND RESULTS
A. TRAFFIC MODELING
The foundation of our traffic modeling lies in the implemen-
tation of the PINN-TSE traffic predictor. The essence of this
system is the harmonious fusion of historic traffic data and
the principles of physics to predict traffic density.

The model development leverages data from the Next
Generation Simulation (NGSIM) program. Our focus was on
the dataset from the I-80 eastbound freeway between Powell
Street and Ashby Avenue in Emeryville, California. This
dataset provides tenth-second vehicle trajectories for a 2,100-
foot-long section of the freeway with five lanes, collected
over three consecutive 15-minute periods on April 13, 2005.

The raw data was thoroughly cleaned and adjusted for
spatial and temporal resolution to 20 feet and 1 second,
respectively, during the preprocessing phase. This resolution
adjustment was achieved after testing different combinations,
and it resulted in a manageable data size and acceptable level
of input data detail. We calculated traffic density by summing
up the vehicle count across all five lanes and averaging the
speed within the spatial and temporal bins (Figure 3 and 4).
Then, we used regression analysis to establish the relationship
between density and speed based on the average traffic
density and vehicle speed data, as shown in Figure 5.

Using Greensheild’s speed-density relationship, we com-
puted the free-flow speed to be approximately 47 ft/sec and
the maximum density to be around 37 vehicles per 20 feet
of roadway. This calculation provided critical input for the
PINN model. We then determined the traffic flow for each
data point using the formula q = ρ ∗ v and established
the traffic density-traffic flow relationship, as depicted in
Figure 6.
The PINN model, defined using the PyTorch framework,

was trained through a meticulous process involving testing
of various hyper-parameters. The training process was moni-
tored through the propagation of training and validation loss
curves, which provided insights into the model’s performance
at each step. The principle of random search was used to
explore a range of hyper-parameters, including learning rates,
batch sizes, the number of hidden layers, and the number
of neurons in each layer. The goal was to identify the

VOLUME 12, 2024 65875



T. S. Gebre et al.: AI-Integrated Traffic Information System

FIGURE 3. Traffic density map at 1 sec-20 ft resolution.

FIGURE 4. Average traffic density map at 1 sec-20 ft resolution.

FIGURE 5. Density vs space mean speed plot.

optimal model configuration that offers a balance between
computational efficiency and accuracy.

The I-80 dataset was partitioned into training and testing
subsets to evaluate the performance of the traffic estimator.
The model was trained on the training subset, and then

FIGURE 6. Density vs traffic flow plot.

FIGURE 7. Boundary and collocation points (Red dots represent observed
values(xo, to) and blue dots represent collocation values (xc , tc ).

evaluated on the testing subset to compute the data loss.
Simultaneously, random collocation inputs, given in Figure 7,
were utilized to derive the density at arbitrary points. These
values are used to quantify the physics loss, given by R
(equation 5), measuring the model’s deviation from the
underlying traffic flow principles. Both losses were used to
optimize the network. This process was repeated multiple
times, with different partitioning of the data each time, while
noting the model’s hyper-parameters.

The testing platform used was a desktop computer
equipped with an Intel XEON @ 2.40GHz × 24 CPU,
an NVIDIA Quadro M4000 GPU, and a 32GB RAM for data
processing.

Accordingly, the implementation of the PINN-TSE
involved extensive data preprocessing, meticulous training,
and rigorous testing to ensure accuracy and compliance with
traffic flow principles.

B. SYSTEM VALIDATION RESULT
The validation process involves two key steps: PINN-
TSE model performance test and overall system interaction
experience test.

1) PINN-TSE MODEL PERFORMANCE RESULT
Our assessment of the PINN-TSE model’s effectiveness
involved two key performance metrics. The Mean Absolute
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FIGURE 8. Training loss for epoch [26000, 31100].

Error (MAE) and Mean Squared Error (MSE) were used
particularly in quantifying the average deviation of predicted
traffic density from the observed values.

The Mean Absolute Error (MAE) obtained for the
PINN-TSE model is 0.0188, representing the average abso-
lute difference between the predicted traffic density and the
actual observed data. A lower MAE indicates a higher degree
of proximity between the model’s predictions and the ground
truth values, reflecting its accuracy and precision.

Furthermore, the Mean Squared Error (MSE) of
0.0007 quantifies the average squared difference between the
model’s predicted traffic density and the observed values.
Thismetric offers valuable insights into the overall magnitude
of errors present in the model’s estimations.

The results obtained with these performance measures
attest to the robustness and reliability of the PINN-TSE
model in accurately predicting traffic density. TheMAEvalue
of 0.0188 for normalized traffic density corresponds to a
deviation of approximately 4 vehicles per mile per lane. This
demonstrates the model’s ability to bridge data gaps along a
2100-feet road stretch, further reinforcing its effectiveness.
Additionally, the low MSE value of 0.0007 highlights the
model’s consistent alignment with observed data, emphasiz-
ing its efficacy in capturing and interpreting complex traffic
dynamics.

In addition, the training and validation loss curve for the
PINN-TSE model steadily decreases over time, indicating
effective learning from the training data (as illustrated
in Figure 8). This graph visually depicts the model’s
convergence during the training process, with a final MSE
loss of 0.00021, showcasing its ability to make accurate
traffic density predictions.

In line with the model accuracy measure, the optimal
model configuration of the PINN-TSE model that led to
the reported MAE and MSE values, and best met our
performance objectives, is outlined in Table 1. This table
summarizes the hyper-parameters of the PINN-TSE model
developed in this study.

In identifying these system configuration values through a
random search, we prioritized minimizing both the model’s

TABLE 1. Optimum hyperparameters of the experiment.

FIGURE 9. System response: specific time and location input.

complexity and the computational costs while monitoring
models accuracy. As such, we employed a phased approach,
initiating with simpler configurations and progressively
advancing to more complex ones, all within the adaptable
framework of PyTorch.

2) SYSTEM INTERACTION EXPERIENCE
Following PINN-TSE quantitative evaluations validation,
the AI-Integrated Traffic Information System was assessed
qualitatively through user interactions and the responses
generated through text chat. These experiments aimed to
assess the system’s ability to provide customized, user-
oriented responses, its comprehensiveness in conveying key
insights derived from the PINN-TSE model, and its capacity
to handle scenarios with incomplete queries.

In four distinct scenarios, we presented the model with
varying prompts related to traffic density queries. The
responses generated by the system were prompt-based and
tailored to the user’s query. These scenarios involved users
posing traffic-related queries, and the system’s responses
demonstrated its ability to provide accurate and user-oriented
information.
Scenario 1: Specific Time and Location:
In scenario 1, the system is queried about a specific

time and location. The user asks, ‘‘What will be the traffic
density at 4:05 PM, 101 ft upstream of the test section of
I-80?’’ The system responds with a clear and precise answer,
stating that the predicted traffic density at the given time and
location is 1846 vehicles per mile, classifying the traffic as
‘‘uncongested.’’, as shown in Figure 9.
The system’s response in this scenario demonstrates its

capability to accurately interpret and respond to specific
queries about traffic density at a given time and location.
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FIGURE 10. System response: No location input, generalization over
distance (response 1).

FIGURE 11. System response: No location input, generalization over
distance (response 2).

It also shows the system’s ability to contextualize this
information by classifying the traffic state, providing a more
comprehensive response to the user’s query. Scenario 2:
Specific Time, Generalized Location:

In this scenario, the system is challengedwith a prompt that
specifies a time but leaves out details on the location. The
user asks, ‘‘What is the traffic condition at 4:10 PM?’’ The
absence of a specific location in the query is an opportunity
to examine the system’s capability to generalize over distance
and provide a comprehensive understanding of the traffic
progression over various locations.

Two separate instances of system execution, denoted as
Response 1 and Response 2, are provided for the same
prompt (Figure 10 and 11). This helps in evaluating the
system’s flexibility and its ability to convey similar traffic
predictions in diverse ways. Response 1 indicates that
the traffic condition at 4:10 PM, upstream of the road
section, is uncongested. It provides additional details on the

FIGURE 12. System response: No time input, generalization over time
(response 1).

range of vehicles per mile as one moves upstream, thus
presenting a dynamic picture of the traffic situation over
distance.

System response 2, on the other hand, offers a slightly
different interpretation of the same traffic prediction. It pro-
vides a comprehensive overview of the traffic condition at
various points along the I-80 section at the specified time.
The detailed description of traffic volume at different points
upstream emphasizes the traffic’s smooth flow.

In both instances, the system successfully conveys the
traffic’s progression over an unspecified distance at a specific
time. It demonstrates a commendable ability to generalize
over distance and provide a comprehensive understanding of
traffic conditions, despite the absence of a precise location in
the prompt. Moreover, the system responses in this scenario
showcase the system’s flexibility in interpreting and elabo-
rating on the same traffic prediction in different manners,
underlining the traffic information system’s potential to assist
users in understanding traffic by composing responses with
varying degrees of specificity and presenting the same traffic
information in different ways.
Scenario 3: Specific Location, Generalized Time:
Scenario 3 tests the system’s ability to handle inquiries

about a specific location but with a generalized time. The
prompt given is ‘‘What will be the traffic density 205 ft away
from the I-80 test road portion?’’

In response to this prompt, both response 1 and response 2
provide detailed traffic density predictions for the spec-
ified location, albeit with slightly varied interpretations
(Figure 12 and 13).

Response 1 gives a comprehensive response by providing
projected traffic density at various time points for the given
location 12. It predicts a similar trend of uncongested
traffic at 4:00 PM, 4:05 PM, 4:10 PM, and 4:15 PM,
providing the user with a clear picture of the traffic pattern
over time.

System response 2 also provides a detailed response,
predicting traffic density at the specified location as uncon-
gested 13. It, however, adds a warning that these predictions
are based on historical data and that unforeseen events
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FIGURE 13. System response: No time input, generalization over time
(response 2).

FIGURE 14. System response: generalization over time and location
(response 1).

like accidents or road closures can affect the actual traffic
conditions.

It is shown that both system responses have effectively
interpreted and responded to the inquiry about a specific
location but with a generalized timeframe. This scenario
showcases the system’s capacity to generate traffic predic-
tions for a specific location over a range of times, providing
valuable insights to the user about the traffic pattern and
potential fluctuations.
Scenario 4: Generalized Traffic Inquiry:
In Scenario 4, the system is presented with a generalized

traffic inquiry: ‘‘What will be the general traffic density of
the I-80 test road portion?’’ 14. This scenario is designed to
evaluate the system’s ability to generalize over both time and
location, providing users with an overarching perspective of
the traffic conditions.

System’s response 1 offers a general outlook on the
traffic density at the I-80 test road portion, indicating
it as relatively low. It provides a range of vehicles per
mile and classifies the traffic as uncongested, suggesting
a smooth traffic flow with minimal delays or congestion.
However, it fell short in specifying the time and location
range over which the traffic density was generalized. This
lack of specificity might leave users uncertain about the
time and location range parameters of the provided traffic
condition.

FIGURE 15. System response: generalization over time and location
(response 2).

To address this issue, we modified and tested the prompt
used for interacting with GPT-4 multiple times, with the aim
of refining the system’s ability to handle traffic predictions
and compose responses. The revised and optimized prompt
was as follows: ‘‘I am anAI assistant specialized in predicting
traffic conditions along a 2100 ft segment of I-80.My primary
function is to assist users in understanding and anticipating
traffic scenarios. 1) I will share time and location information
If the user prompt has a specific time or location; If either time
or location is not provided, I will provide the general start,
end or a specific time or location information at which the
traffic is low or high. 2) Format of Response: The response
will include traffic density results, an explanation of the
prediction, and a summary.’’

Following these adjustments, System’s response 2 demon-
strated a significant improvement, Figure 15. It offered
a more comprehensive traffic density prediction, detailing
specific time points for the I-80 test road portion. This
response effectively represented the evolution of traffic
conditions over time and accurately classified the traffic as
uncongested.

Examining all four scenarios, the traffic information
system has shown remarkable proficiency in addressing
a variety of traffic inquiries. In Scenario 1 to 3, the
system adeptly handled specific traffic inquiries, providing
precise traffic density predictions for distinct times and
locations. However, in Scenario 4, while the system man-
aged to provide a comprehensive response to a complex
query, it exhibited minor limitations in providing time
and location parameter information while providing traffic
predictions. Accordingly, adjustments were made in Sce-
nario 4, where the system was tasked with generalizing
traffic density over time and location. Due to subsequent
prompt modifications, significant improvements on lack of
specificity in time and location parameters were fixed. Thus,
response 2 provided detailed traffic density predictions,
showcasing an understanding of traffic progression over time
and correctly classifying traffic conditions. In conclusion,
the system has proven its capability in providing both
specific and generalized traffic predictions, demonstrating
its potential as an effective tool for users seeking traffic
information.
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V. DISCUSSION
The research conducted on the traffic information system
built upon PINN for traffic prediction and GPT-4 for
user interaction highlighted several key findings. First and
foremost, the PINN-TSE model exhibited a remarkable
ability to fill data gaps in traffic information. The model
achieved aMeanAbsolute Error (MAE) of 0.0188, equivalent
to a deviation of less than 4 vehicles per mile per lane.
This finding serves as a strong indicator of the signifi-
cant potential of PINN in modeling traffic pattern in the
field of traffic management. The results underscores the
model’s capability to offer traffic estimates, particularly in
regions where the availability of traffic detectors is limited,
thereby paving the way for improved traffic management
solutions.

The success of the PINN-TSE model in filling data
gaps can be attributed to its incorporation of physics-based
principles into neural network training. By leveraging
the underlying physics of traffic flow, the model can
make informed predictions even when data is missing.
This aligns with previous studies in the field that have
emphasized the potential of PINNs in various scientific
domains [22].

Hence, our system’s ability to bridge data gaps and
estimate traffic conditions in areas between available data
points is a significant breakthrough. This feature ensures
the possibility that drivers receive comprehensive traffic
information, not solely dependent on live data sources,
which is often inconsistent. This aligns with the goals of
intelligent transportation systems (ITS) aiming for robustness
and adaptability [36].

Furthermore, the qualitative evaluation of ourAI-integrated
traffic guidance system revealed that the prompt design
effectively laid the groundwork for the LLMs to comprehend
user intentions and compose personalized responses that
seamlessly integrated the PINN-TSE results. This synthesis
of AI capabilities allows our system to not only provide
accurate traffic predictions but also cater to the specific
needs and queries of users, enhancing the overall user
experience.

Our qualitative analysis also highlights the critical role
played by the prompt design in user interactions. The ability
of the LanguageModel to understand user intent and generate
contextually relevant responses is reminiscent of recent
advancements in NLP [37] and underscores the importance
of natural language understanding in human-AI interactions.

Compared to previous studies, this research stands out for
its innovative application of PINN-TSE for forecasting traffic
trends, coupled with the utilization of GPT-4 to facilitate
user engagement [20], [27], [38], [39], [40]. This research
has successfully integrated GPT-4 and it has enhanced user
interaction by serving as an intermediary, interpreting the
model’s output in response to user queries [].

The findings of this research have significant implications
for the field of traffic information systems. The system’s

ability to predict traffic density and enhance user interaction
suggests potential for its application in traffic management,
route planning, and other related areas. Future research
could focus on improving the system’s capacity to handle
additional and enhanced physical laws in estimating traffic
and expanding its application to larger geographical areas.

VI. CONCLUSION
Our research demonstrates the effectiveness of the
AI-integrated traffic information system, which combines
the strengths of the PINN-TSE model and advanced natural
language processing. It has the potential to revolutionize
real-time traffic estimation and assistance, making it more
accurate, user-centric, and robust.

The outcomes of this research will have the potential
to revolutionize real-time traffic estimation and assistance,
enhancing urban mobility and navigation. Additionally, the
study contributes to the broader field of AI integration in
urban infrastructure management, showcasing the benefits of
combining different AI techniques to tackle complex real-
world challenges.

However, it’s important to acknowledge the limitations of
our study. The experiment focused on a single 2,100 feet
road segment, at US I-80. To expand the system’s utility,
future research could explore network-level implementations
to guide drivers across a broader geographical area and
various traffic conditions.

Furthermore, recommendations for future work include
exploring the integration of real-time data sources, such as
traffic cameras and sensor networks, to further enhance the
accuracy of traffic predictions. Additionally, the system’s
scalability and deployment in diverse geographical and traffic
scenarios should be investigated to ensure its applicability
beyond the current scope.

In conclusion, our research not only presents an
AI-integrated traffic information system but also offers a
promising avenue for future developments in the field of
intelligent transportation systems.
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