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ABSTRACT Thiswork presents the Feature extractionCascadedBloomFilter (FeCBF), a novel probabilistic
data structure formed by cascading multiple Bloom filters in an optimum sequence. The FeCBF’s distinctive
design of alternating positive and negative filter layers effectively suppresses False Positive/Negative Rates
(FPR/FNR), enabling exact filtering with reasonable resource cost. Compared to other state-of-the-art
designs on the same experimental dataset, FeCBF demonstrates significant memory space savings of 45% to
76%while maintaining the best FPR in its class. The proposed model also includes a closed-form expression
for determining the sub-optimal FeCBF configuration based on desired filter performance metrics, offering
the potential for automatic design flow. The FeCBF architecture, designed for hardware implementation,
holds promise for many applications. It can be readily deployed as an accelerator in various computing
problems, including massive content filtering, network traffic filtering, and online malware/virus detection.

INDEX TERMS Bloom filter, feature extraction, pattern matching, big-data filter, probabilistic filter,
hardware acceleration.

I. INTRODUCTION
Bloom filter (BF), a well-known hash data structure for
approximate filtering with modest memory space, was first
proposed by Bloom [1]. Initially, it was described as a
compact probabilistic data structure representing words in a
dictionary. However, due to the lack of technological avail-
ability, there was little interest in using BFs for networking
until 1995. After this point, the use of BFs for network-
ing gained widespread interest in academia and industry,
marking a significant turning point in the evolution of this
field.

In recent years, BFs and their variants have been widely
used in applications related to networking (routing [2],
Named Data Networking [3], network security [4]), database
(duplicate detection [5], content synchronization [6]), and
biometric identification [7]. Today, BFs appear in popular
browsers like Microsoft Bing and Google Chrome. Microsoft
Bing search engine uses multilevel hierarchical BFs for the
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BitFunnel search index [8], which provides a lower cost than
the previous Bing search index. Google Chrome preliminar-
ily identifies malicious URLs using the local BF [9]. Most
recently, in the context of the widespread Coronavirus on a
global scale, a BF solution was used to detect and warn users
about close contact with suspected infected individuals [10],
achieving almost zero FPR (∼10−15) with a small memory
cost.

In the previous study [11], we used a co-design platform:
a software-based BF using Python and a hardware-based
BF using FPGAOur co-design platform works based on
extracting features from input data, thereby designing the
subsequence filter layers to achieve a lower error rate than
the conventional standard BF. However, the BF solutions
published in [11] are limited in a few case studies without
explicit design methodology and exhibit only moderate error
rate improvement. This work significantly extends our study
in [11], aiming for a more general and effective filter design
methodology to fit a wide range of real-world data filtering
problems. The main contributions of this study are summa-
rized as follows.
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• A novel architecture of a high-precision Bloom-based
filter constructed by cascading data-dependent subfilters
that is capable of aggressively suppressing the misclas-
sification with significant resource-saving;

• A complete design methodology based on a closed-form
analytical model to predict and locate the sub-optimal
solutions for the proposed BF design under specific
boundary constraints.

The rest of this work is as follows. Section II introduces
the background of BF and related works. Section III presents
a novel concept of the FeCBF structure and its design flow
based on a sub-optimal analytical design model that gives
insights into the relationship and trade-off between the major
FeCBF design and performance metrics. Section IV practi-
cally verifies the FeCBF analytical design model. Section V
discusses the efficiency and performance of the sub-optimal
FeCBF compared to other prior-art Bloom-based filters.
Section VI concludes this study.

II. PRELIMINARY
A. BACKGROUND OF BLOOM FILTER
A BF composes a member set {a1, a2, . . . , an}, a hash func-
tion set {h1, h2, . . . ,hk}, and an array of m-bit elements
initialized with all bits ‘0’. In the BF construction phase,
for adding a member ai to BF, the set of k hash functions
is used to calculate k addresses

{
hj (ai) , j = S1, k

}
and write

bits ‘1’ into corresponding memory cells in the m-bit array.
In working mode (querying), an element qi belongs to the
constructed filter only if all memory cells located at hashed
addresses correspond to qi store bits ‘1’. Examples of adding
and querying operations are illustrated in Fig. 1. Assuming
the BF size m = 32 bits, the number of member elements
n = 3, and the number of hash functions k = 3. The elements
a1, a2, and a3 after the adding are represented by the triples
of bits ‘1’ at addresses (0, 6, 13), (8, 16, 22), and (16, 25, 31),
respectively. In the querying, BF uses three hash functions
to determine three corresponding addresses for the query ele-
ments q1, q2, and q3 in them-bit array. Element q1 is a case of
‘‘True Positive,’’ in which all the cells of BF that correspond
to this element are bits ‘1’. Element q2 corresponds to ‘‘True
Negative’’ when at least one cell contains a bit ‘0’. Element q3
is ‘‘False Positive,’’ where all the cells corresponding to this
element are bits ‘1’ but intrinsically q3 does not match any
element in the member set. A standard BF (SBF) of finite size
may have a non-zero False Positive Rate (FPR), but does not
allow a False Negative Rate (FNR = 0), i.e., a query returns
either ‘‘element is possibly in BF’’ or ‘‘element is truly not in
BF’’ results.

The theoretical FPR (FPRtheo) is calculated by the follow-
ing equation when the filter size m is large enough.

FPRtheo ≈ (1− e−kn/m)
k

(1)

Given n and m, the optimal number of hash functions kopt
to achieve the minimum value of FPRtheo is determined by

FIGURE 1. An example of the standard BF with two basic operations:
adding and querying.

the following equation.

kopt =
m
n
ln2 ≈ 0.6931

m
n

(2)

where the minimum FPRtheo corresponding to the optimal
value kopt in (2) is calculated by the following equation.

FPRtheo =

(
1
2

)kopt
≈ 0.6185m/n (3)

The number of bits m of the SBF that responds to a given
element number of member set n and a specific target of error
rate FPRtarget is calculated by the following equation.

m = −
n · ln(FPRtarget)

(ln2)2
(4)

A detailed explanation of (1)–(4) can be found in [3]. In an
example illustrating (4), to ensure that the FPRtheo is not more
than 1%, using the optimal number of hash functions kopt, the
average number of bits per BF member has to be approxi-
mately 9.6. Depending on the problems and priority criteria,
the fundamental design parameters (n, m, k , FPRtarget) must
be appropriately adjusted and accordingly compromised.

B. RELATED WORKS
In the following, we summarize some recent studies on BF
design, categorized by optimization method, including hash
optimization, applying Machine Learning (ML) techniques,
and filter structure modification.

Several interesting hash optimization methods have been
proposed in [12], [13], and [14]. Lumetta and Mitzen-
macher [12] proposed employing two or more independent
groups of hash functions (HF) for adding and querying oper-
ations, thus reducing the FPR by 43.5% compared to SBF.
Hao et al. [13] proposed a partitioned hashing approach
by dividing the member set into disjoint subsets and using
different appropriate combinations of HFs for each of them.
Unlike the approach in [12], where each query has to use all
groups of HFs, in [13], each query incurs one additional hash
operation compared to the SBF. By carefully partitioning the
member elements and selecting combinations of HFs, the fill
factor of the ‘1’ bits in [13] is reduced, thus reducing the
FPR by 54.6% compared to that of SBF. However, solutions
in [12] and [13] have high computational complexity and
lack flexibility in responding to changes in the BF member
set. Recently, Xie et al. [14] proposed a BF approach that
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supports the customization of HFs for positive elements in the
two-round membership query with customized HFs stored in
an additional hash table. Compared to the solutions proposed
in [12] and [13], the solution in [14] achieves a significant
improvement in FPR so this model will be selected as the
representative of the hash optimization method for further
comparison in our work.

Based on the optimization method using ML techniques,
Kraska et al. [15] have shown that combining ML tech-
niques can improve index structures and related structures
such as BFs. The first proposed ML technique is Learned
BF (LBF), which comprises a classifier block of Learning
functions serving as the pre-filter and a backup BF playing
the role of the post-filter. If the classification score of a
query element determined by the pre-filter is higher than
a threshold level, the element is treated as a member; oth-
erwise, the element is queried by the post-filter, thereby
reducing the number of hash operations. The LBF model
proposed by Kraska et al. [15] serves as the foundation
design for the subsequent proposed variants of the LBF.
Mitzenmacher et al. [16] are the first to propose a reasonably
accurate mathematical model for evaluating the effectiveness
of the LBF. Furthermore, the authors proposed an enhanced
model for LBF, namely ‘‘Sandwiched LBF,’’ in which an
initial BF is added before the classifier BF and the backup
filter. Dai and Shrivastava [17] later proposed the ‘‘Adaptive
LBF,’’ in which the classifier BF divides the input data into
more than two groups, which permits the HFs for each group
to be adapted and optimized to specific contexts. In [14],
Xie et al. independently evaluated the Sandwiched LBF
and Adaptive LBF models. They showed surprising results
where the Adaptive LBF model exhibited the worst classi-
fication accuracy compared to all other designs, i.e., LBF,
Sandwiched LBF, and even SBF. Also, from that study, the
Sandwiched structure [16] was proven the best and is selected
as a representative LBF for comparison in this work.

Chazelle et al. [18] proposed modifying the SBF struc-
ture, which is called the Bloomier filter. Dietzfelbinger and
Pagh [19] described a modified Bloomier filter that could
respond to approximate membership queries. Graf et al. [20]
further proposed an implementation solution of the approach
in [19]. They named it the Xor filter and announced that
it could be faster than SBF and have more minor memory
utilization. Thus, the Xor filter [20] represents a BF variation
used for comparison.

All the Bloom-based filter structures classified according
to the above design ideas have certain limitations. For exam-
ple, hash optimization in [12], [13], and [14] or applied ML
techniques in [15] and [16] typically leads to higher compu-
tational complexity, while the proposed modified structure
BF in [19] and [20] only considers the single-layer design.
Furthermore, none of these prior works pay attention to the
characteristics of the input data to improve Bloom filter
performance. The major shortcomings of the f-HABF [14],
SLBF [16], and Xor filter [20] motivate the FeCBF filter
structure proposed in this study.

FIGURE 2. The generic structure of FeCBF includes a first layer for Feature
extraction (FEBF), a second layer for False Positive suppression (FPBF),
and a third layer for False Negative suppression (FNBF).

III. FeCBF GENERIC DESIGN
Our proposed FeCBF is inspired by the ‘‘Feature extraction’’
idea introduced by [11] and further improved in this study.
The term ‘‘Feature extraction’’ could be understood as the
design of subsequent filter layers considering the characteris-
tics of the previous filter layers. The characteristic extraction
requires intensive computing power, but as we will show,
it is feasible and can be done at a reasonable time cost using
modern computing devices. In particular, based on the design
methodology and error prediction model presented in this
study, FeCBF could be tuned to achieve the target error rate
with sub-optimum cost in resources.

The design of the proposed FeCBF structure includes an
Extraction phase and a Tuning phase, as depicted in Fig. 2.
The FeCBF consists of three cascaded filter layers: FEBF
(Feature extraction BF), FPBF (False Positive BF) and FNBF
(False Negative BF), each filter layer is designed reversely to
the previous layer. For example, suppose the first FEBF filter
layer causes False Positive elements, so the next filter layer
should ideally suppress these unexpected elements but, on the
other hand, generate False Negative elements. To proceed in
such a way, the following filter layer collects (maximumly
possible) the erroneously filtered elements of the previous
filter layer as its own member set. Thus, the number of
input elements and False Positive/False Negative ratio will
decrease exponentially as the number of layers increases, and
the filter will also rapidly shrink in size at the subsequent
layers. To eliminate FeCBF’s filtering errors, multiple pairs
of small-size cascaded subfilters for False Positive/False Neg-
ative elimination might be theoretically required, or a pair
of such subfilters with correspondingly large enough sizes
might be employed. However, cascading multiple subfilters
increases the complexity of the filtering structure and can
cause extra lookup latency. Therefore, in the proposed FeCBF
structure, we apply cascading of 3 subfilters, i.e., a Feature-
extraction subfilter and a pair of subfilters for False Positive
and False Negative suppression, with their size ratios opti-
mized based on a mathematical analytical model presented
in Section IV-A. The structure of FeCBF, consisting of three
functionally specialized cascading subfilters, is sufficient for
various filtering scenarios and requirements, as will be exper-
imentally demonstrated in Section IV-D.

In the descriptions below, we use the following notations:
IBF, NBF are the input set and the member set of a filter;
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TPBF, FPBF, FNBF are the sets of True Positive, False Positive
(if any), and False Negative (if any) elements of the filter,
respectively; function s (T) returns the number of elements of
the set T. In the specific case of FeCBF, assuming that FeCBF
has a member set NFeCBF with s (NFeCBF) = ni and the input
set IFeCBF that does not include NFeCBF with s (IFeCBF) =
χ · ni, typically χ ≫ 1. The query elements are L bit vectors.
For example, if the member set has ni = 1 million elements
and the input covers the space of data strings L = 32 bits,
then χ = (232 − 106)/106 ≈ 4294.

A. EXTRACTION PHASE
As shown in Fig. 2, the Extraction phase uses an SBF with a
member set NFEBF = NFeCBF and performs query operations
of the input space IFEBF = IFeCBF to capture the majority of
FEBF’s False Positive elements in the FPFEBF set. This set
reflects the unique relationship with the member set NFEBF,
the input space IFEBF, the filter size m, and the hash type
Htype of FEBF. In other words, FPFEBF could be considered
as a ‘‘Feature set’’ of FEBF with the NFEBF member set
in response to the IFeCBF input set. FPFEBF hence bears the
characteristic of the first filter layer results; any changes
to the input and structure of FEBF will immediately reflect
on the FPFEBF. Because FEBF is the first filter layer, it can
be chosen solely based on available allocated resources (i.e.,
memory). The theoretical error rates of this filter layer are
calculated as follows. FPR1layer = FPRFEBF =

s(FPFEBF)
s(IFeCBF)

=
np

χ · ni
FNR1layer = FNRFEBF = 0

(5)

where np = s(FPFEBF) is the number of False Positive
elements at the first FeCBF’s filter layer; s(IFeCBF) is the
FeCBF’s inputs which are not filter members and χ times
larger than the number of filter members ni, i.e., equal to χ ·ni;
hence, χ is called the input-to-member scaling factor.

B. TUNING PHASE
The Tuning phase is performed after the Extraction phase.
It will use the information extracted from the input space of
FEBF to select appropriate design parameters for subsequent
filters FPBF and FNBF to achieve maximum filtering effi-
ciency. At this point, the design of FPBF and FNBF has to
consider the results of the previous Extraction phase rather
than a random structure for the best optimization. This phase
is divided into the following two substeps.

1) FALSE POSITIVE SUPPRESSION STEP
This filtering step is performed by the FPBF, also known as
the inverting filter, because it allows FEBF’s False Positive
elements to pass through but blocks the members of FEBF.
The input to this filter includes the elements that pass through
FEBF, i.e., the member set NFEBF, and the False Positive ele-
ment set FPFEBF of the previous filter layer. In this way, the
queried elements that first pass through FEBF and again pass
through FPBF have a high probability of being present in the

FPFEBF set. If FPFEBF is fully defined, and FPBF is an ideal
filter, then all False Positive elements of FEBF (so is FeCBF)
would be theoretically identified and, hence, be blocked at
this layer. On the other hand, the element that passes FEBF
but could not pass FPBF, under that ideal assumption, belongs
to NFeCBF.

However, the imperfection of FPBF leads to the phe-
nomenon that a small proportion of True Positive elements
come from the NFEBF member set can pass through FPBF as
the False Positive elements of this subfilter. These elements
are classified as the False Negatives of FeCBF. Additionally,
in cases where 100% of the elements in the FPFEBF set
cannot be identified, the possibility of FEBF’s False Positive
elements still exists, although this possibility is very low. The
theoretical error rates at the output of the second filter layer
are calculated as follows.

 FNR2layers =
s(FPFPBF)
s(IFeCBF)

=
nn

χ · ni
FPR2layers ∼= FNRFPBF = 0

(6)

where nn = s(FPFPBF) is the number of FPBF’s False Positive
elements.

Equation (6) shows that eliminating FeCBF’s False Pos-
itive elements by the two filter layers, FEBF and FPBF,
is feasible at the cost of generating FeCBF’s False Negative
elements. However, considering that the input set of FPBF
has been largely suppressed after the first filter layer, it can
be predicted that FPBF will not consume as much memory as
FEBF.

2) FALSE NEGATIVE SUPPRESSION STEP
After the second filter layer, False Negative elements are
the source of 2-layer FeCBF’s filtering error. Although they
could be relatively small, they can become undesirable for
some specific applications. Therefore, we propose to use a
third filter layer called FNBF to remove those.

The input to the third filter layer FNBF consists of the
member set NFPBF of the second filter layer FPBF, where
s (NFPBF) = s (FPFEBF) = np and the False Positive set
FPFPBF of this second layer FPBF, where s (FPFPBF) = nn.
If we use nn elements of FPFPBF as the member set of the third
layer FNBF, we could, similarly, almost remove those False
Negative elements of FeCBF. As a result, the alternate use of
False Positive (FPBF) and False Negative (FNBF) subfilters
in the FeCBF structure can substantially remove unwanted
elements at the final output. However, a similar effect occurs
due to the imperfection of FNBF that leads to false identifica-
tion of some elements belonging to FPFEBF and causing False
Positive elements of FNBF itself. The false identification rate
at this step is theoretically very small because the number of
FNBF’s input and member elements has been significantly
reduced compared to the FeCBF’s input elements. The error
rates at the output of the third filter layer are expressed as
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TABLE 1. Summary of FeCBF query result.

follows.  FPR3layers =
s(FPFNBF)
s(IFeCBF)

=
no

χ · ni
FNR3layers ∼= FPRFPBF = 0

(7)

where no = s(FPFNBF) is the number of FNBF’s False
Positive elements and the FeCBF’s output False Positive
elements.

In the 3-layer FeCBF structure, it is worth noting that
the input and member sets of the last filter layer FNBF
are expected to be very small; hence, this filter layer will
consume an insignificant amount of resources and could be
aggressively optimized for suppressing the final error rate.

C. WORKING MODE
To ensure normal operations, each FeCBF’s subfilter is
designed with four basic ports: a QI input port that receives
any query element qx ; an EN (ENABLE) port that allows
filters to operate; a QR (Query Result) port to return the query
result of the qx (QR = ‘0’/‘1’ indicates qx not belong/belong
to filter member set), and a QO output port is designed to
forward the query element qx to the next filter layer in case
QR = ‘1’. The QR signals from the filter layers, specifically
QRFEBF, QRFPBF, and QRFNBF, are used as input data for
the decision circuit to synthesize the final query result of qx
through the match signal (i.e., QRFeCBF). QRFeCBF equals
‘0’/‘1’, which indicates that qx is not present/present in the
NFeCBF member set.

Table 1 lists the results of all possible query cases for
the input element qx by the 3-layer FeCBF filter structure.
Column 1 is the ground truth information about the pres-
ence of qx in the NFeCBF member set, and columns 2-5 list
the query results of the subfilters and FeCBF, respectively.
Column 6 describes whether the query results are True or
False about the presence (Positive) or absence (Negative) of
qx based on complete information. FeCBF does not know
in advance about the existence of qx in the member set and
can only conclude as accurately as possible based on query
information from all subfilters (columns 2-4). For example,
FeCBF can cause a False Positive query result (see column 6
- row 3), i.e., qx is not in the NFeCBF member set, but the
match signal QRFeCBF = ‘1’, where the corresponding FPR
is calculated according to (7).
The application circuit of FeCBF is shown in Fig. 3, which

includes the query circuit, decision circuit, and application

FIGURE 3. Practical application model of the proposed FeCBF structure.

(optional). At the input, a query element qx is fed to the
query circuit and, in another path, fed directly to the appli-
cation, which will wait for the match signal to make the
appropriate decision about FeCBFmembership. The decision
circuit determines its outputmatch signal, i.e., QRFeCBF, from
the input signals QRFEBF, QRFPBF, and QRFNBF shown in
Table 1, and this circuit can be synthesized based on the
minimization of the QRFeCBF output logic function (e.g.,
using the Karnaugh map). The query circuit provides the
application with an output set n0 of non-suppressed FeCBF’s
False Positive elements to use as a checklist for error correc-
tion of the decision circuit if the match signal of this circuit
is not True. The software handles this optionally if accurate
filtering is required.

IV. SUB-OPTIMAL FeCBF DESIGN ANALYTICAL MODEL
Filter design optimization is a process of reducing the
FPR/FNR of FeCBF under the limited filter size or minimize
the filter size with a specific FPR/FNR target. The FeCBF
model analysis and evaluation will be implemented on the
software. In addition, all time-consuming pre-processing
tasks are performed offline. For example, using a typical PC
configuration,1 the Feature extraction process with the entire
32-bit input space, i.e., 4 billion elements, could be performed
in approximately 3 hours.

A. FeCBF MATHEMATICAL MODEL
For the convenience of mathematical expressions, we assume
the memory sizes of the FeCBF’s subfilters to be mFEBF,
mFPBF, andmFNBF, respectively. The size constraint of FEBF,
FPBF, and FNBF relative to their total size M is described as
follows. 

mFEBF = α ·M

mFPBF = β ·M

mFNBF = (1− α − β) ·M

(8)

where α and β are, respectively, the size ratios of FEBF and
FPBF compared to the total size M of FeCBF, their values
need to satisfy the condition: 0 ≤ α + β ≤ 1.

1Intel(R) Core(TM) i5-12500 3.0 GHz, RAM 16Gb DDR4 2667 MHz,
SSD 512Gb NVMe; OSWindows 10 Pro v.22H2; IDE Pycharm Community
2023.2, Python 3.9.
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The error rate of each subfilter FEBF, FPBF, and FNBF
(according to (3)) is calculated as follows.

FPRFEBF =
np

χ · ni
≈ 0.6185

mFEBF
ni

FPRFPBF =
nn
ni
≈ 0.6185

mFPBF
np

FPRFNBF =
no
np
≈ 0.6185

mFNBF
nn

(9)

Thus, the number of False Positive elements np, nn, and no
recorded at the output of each FeCBF layer is as follows.

np ≈ χ · ni · 0.6185
α·M
ni

nn ≈ ni · 0.6185

 β·M

χ ·ni·0.6185
α·M
ni


no ≈ np · 0.6185

(1−α−β)·M
nn

(10)

Let C = 0.6185Mnorm , where Mnorm = M/ni is the
normalized size of FeCBF, meaning the average number of
memory bits provided per element of the NFeCBF member set.
Equation (10) can be rewritten as follows.

np ≈ χ · ni · Cα

nn ≈ ni · C

(
β

χ ·Cα

)

no≈ χ · ni · Cα
· C

 (1−α−β)

C

(
β

χ ·Cα

)
 (11)

Finally, we define the normalized error rate of (3-layer)
FeCBF, which can be simplified as follows.

FPRFeCBF =
no

χ · ni
≈ C

[
α+(1−α−β)·C

−
β

χ ·Cα

]

FPRnorm =
FPRFeCBF

FPREqSBF
≈ C

[
α+(1−α−β)·C

−
β

χ ·Cα
−1

]

(12)

where FPREqSBF ≈ 0.6185Mnorm = C is the theoretical
FPR(calculated according to (3)) of SBF with the same size
M and input set NFeCBF. The FPRnorm represents the reduc-
tion (optimization) level in the FeCBF’s error rate compared
to that of SBF at iso-memory utilization. The smaller the
achievable value of FPRnorm, the better the quality of the
FeCBF design.

B. FeCBF DESIGN FLOW
The formula to predict the error rate improvement of FeCBF
proposed compared to SBF in (12) through the FPRnorm
resemble itself a complex multilevel exponential function,
hence calculating multilevel derivatives to find the optimum
values is feasible in theory but not very practical. Therefore,
we use a numerical approach to locate the sub-optimal design
configuration for FeCBF under certain input constraints.
Based on the FeCBF analytical model in Section IV-A,
we developed Python scripts that calculate the sub-optimal

FIGURE 4. Reduced design flow for determining the sub-optimal
parameters of the FeCBF structure to meet the target requirements.

FIGURE 5. The dependence of FPRnorm on the size ratios α, β of FeCBF’s
subfilters in decimal logarithmic scale with the specific normalized size
Mnorm = 23 and input-to-member scaling factor χ = 4294.

required memory to achieve an expected target error rate (the
algorithm can be found in Appendix A) or calculate the best
possible error rate under the constraint of the memory (the
algorithm can be found in Appendix B). The output data of
the scripts are the optimal size ratios of the subfilters FEBF,
FPBF, and FNBF, predictably calculated according to α and
β parameters. The FeCBF design flow based on a specific
member set NFeCBF and input-to-member scaling factor χ to
achieve the target parameters is depicted in Fig. 4.

The heatmap plotted in Fig. 5 illustrates a case study
of optimizing the FeCBF’s sub-filter design with the input
parameters Mnorm = 23, and χ = 4294. For each Mnorm,
the FEBF, FPBF, and FNBF size ratios to their total size
are α, β, and (1 − α − β). Since (α + β) ≤ 1, the points
representing FPRnorm are populated only in the upper left
half of the triangle. In this domain, we could estimate the
values of FPRnorm (expressed in decimal logarithmic scale)
corresponding to the annotations shown on the color bar of
the heatmap. The sub-optimal point of FPRnorm is located in
a highlighted area in the heatmap; note that its location can
vary depending on the specific values of Mnorm and χ . In this
example, the region where FPRnorm < 1 corresponds to the
range β < 0.20, the region where 10−4 < FPRnorm < 10−2

corresponds to the ranges 0.80 < α < 0.95 and 0.03 < β

< 0.20, the region where FPRnorm ∼ 10−6 corresponds to
the ranges 0.86 < α < 0.92 and 0.08 < β < 0.12, and the
sub-optimal value of FPRnorm in this particular example (∼
10−6.7), reached at the point with coordinates (α = 0.89, β =
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FIGURE 6. The dependence of FPRnorm on (a) the absolute error rate
FPRFeCBF (b) the normalized filter size Mnorm at fixed input-to-member
scaling factor χ = 100, 500, and 1000, respectively.

0.09) with an accuracy of size ratios α, β is 10−2, which could
be adjusted in scripts. These values may change according to
the boundary conditions of the design problem (member set,
input set, etc.). However, the general trend is very consistent,
where the size of the post-filter is typically significantly
smaller than the size of the pre-filter. These additional filter
layers, however, could bring tremendous improvement in the
filtering accuracy, as discussed in the following Subsection.

C. IMPACTS OF FeCBF DESIGN PARAMETERS
1) DEPENDENCE OF ERROR RATE ON THE FILTER SIZE
Based on the design analytical model and the support of the
developed Python scripts, we evaluated the dependence of
the absolute and normalized FPRs according to the allocated
memory space of FeCBF (Fig. 6). The experimental data were
taken corresponding to typical values of the input-to-member
scaling factor, varying from χ = 100 up to χ = 1000. The
graph of FPRnorm in Fig. 6(a) shows that for each value of
χ , there is a corresponding threshold level of Mnorm, from
which the error reduction effect of FeCBF compared to SBF
is becoming significant.

Specifically, at small values ofMnorm, FeCBF does not give
better accuracy than SBF, i.e. FPRnorm≈ 1. OnceMnorm starts
to surpass a particular threshold value (from Mnorm≈12, 16,
and 17 corresponding to χ = 100, 500, and 1000), but as soon
as it exceeds that threshold, FPRnorm decreases rapidly, and
the filtering accuracy of FeCBF is getting much superior to
that of SBF. To acquire more generic data, we conducted a
deeper analysis of how FPRnorm is dependent onMnorm under
a broader range of χ from 10÷ 4294, i.e., covering the entire

32-bit space. These data are skipped in Fig. 6(a) (for clarity),
but the general trend of the FPRnorm dependency on Mnorm
is quite similar. Specifically, the threshold levels of Mnorm
increase proportionally from about 7 to 21, corresponding to
the change of χ from 10 to 4294.

Fig. 6(b) presents the difference in the absolute error rate
of FeCBF compared to the normalized, with a slight decrease
in the absolute error rate when the normalized size gradu-
ally increases but does not exceed its threshold. In contrast,
the normalized error rate (see Fig. 6(a)) remains almost
unchanged under the same memory constraints, i.e., the error
rate reduction of FeCBF is more rapid than SBF. Fig. 6(a) and
Fig. 6(b) show that the error rate of FeCBF could be hundreds
of times smaller (∼1E-02) compared to SBF at small filter
sizes, i.e., not yet exceeding the threshold.

Overall, without changing the input-to-member scaling
factor χ , the error rates of FeCBF are significantly reduced
compared to SBF as soon as its normalized size of FeCBF
exceeds specific threshold values, which comes with only
an insignificant cost of memory resources. For example,
in Fig. 6(a), to reduce the FPR of FeCBF compared to SBF
from 1%, i.e., FPRnorm = 1E-02 to approximately zero,
i.e., FPRnorm = 1E-10, the additional normalized memories
allocated for FeCBF corresponding to χ = 100, 500, and
1000 are almost equal and approximately 0.8.

2) DEPENDENCE OF ERROR RATE ON THE NUMBER OF
QUERY ELEMENTS
The graph in Fig. 7(a) represents the dependence of FPRFeCBF
and FPRnorm on the input-to-member scaling factor χ , varied
from 100 ÷ 4294. For this analysis, Mnorm is set to be
constants with fixed values 20, 21, and 22, considering those
are the moderate ranges for the typical filter size (according
to our numerical analysis). As can be seen from the plots,
an upper bound of χ exists for each fixed value of the Mnorm.
Below this, the error rate of FeCBF remains much superior to
that of SBF at iso-size, i.e., FPRnorm≪ 1. In addition, in an
extreme case with a small input-to-member scaling factor
(∼ 10), which is not presented on the graph, the value of the
Mnorm needs to be no lower than a threshold level (∼=7) to
ensure that FeCBF’s error rate is better (lower) than SBF’s.

A similar trend can be observed in Fig. 7(b), which
represents how the absolute error rate FPRFeCBF changes con-
cerning χ . With a large input set, the error rate has an intrinsic
upper bound, which is the FPR of the SBF. At small and
moderate ranges of χ , we could observe the rapid decrease
of FPR by reducing the input set size. Nonetheless, these
upper-bound values of χ are typically quite large to meet
practical requirements, i.e., thousands of times larger than
the member set, and could be tuned at a reasonable cost of
resources (by increasing the normalized size).

3) DEPENDENCE OF FILTER SIZE ON THE NUMBER OF
QUERY ELEMENTS
Fig. 8(a) shows the dependence of the Mnorm on the scaling
factor χ when fixing the target FPRnorm to 10−1, 10−5, and
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FIGURE 7. The dependence of FPRnorm on (a) the absolute error rate
FPRFeCBF (b) the input-to-member scaling factor χ at a fixed normalized
filter size Mnorm = 20, 21, and 22, respectively.

10−10. The predictive analytical model shows that Mnorm
increases non-linearly with χ . Still, the difference is insignif-
icant at various fixed values of the target FPRnorm. Again, this
confirms that a reasonable increase of Mnorm could substan-
tially improve the filtering accuracy. For example, FPRnorm
reduces up to 1,000 times (10−1 to 10−5) when increasing
Mnorm to about 0.887 ÷ 0.888 (bit/element), and it is almost
independent of χ as long as this factor is large enough (i.e.,
from ∼ 500 and above).

Overall, FeCBF offers a significant FPR reduction com-
pared to SBF at a small cost of resources. This could be
achieved by adjusting the filter parameters based on our
proposed model in (9)–(12).

4) DEPENDENCE OF FILTER SIZE ON THE DESIRED TARGET
ERROR RATE
Fig. 8(b) shows the dependence of Mnorm on the desired
target FPRnorm, varying from 1E+00 to 1E-10 when fix-
ing χ = 500, 1000, and 1500. From the plot, the FeCBF’s
normalized sizes must reach minimum approximate values
of 15, 16.5, and 17.3 bit/element, respectively, to ensure an
absolute error rate lower than or equal to SBF, i.e., FPRnorm
≤ 1E+00. To reach 10x better, i.e., FPRnorm = 1E-01, the
additional normalized bit/element allocated for FeCBF needs
to be increased by approximately 2.5 and is weakly dependent
on χ . From FPRnorm = 1E-02 until FPRnorm = 1E-10, the
additional memory for FeCBF is almost independent of its
query element number and incurs only insignificant memory
resources. Specifically, to achieve levels of error reduction

FIGURE 8. The dependence of Mnorm on (a) the input-to-member scaling
factor χ at the fixed normalized error rate FPRnorm = 1E-01, 1E-05, and
1E-10 (b) the desired target FPRnorm at fixed χ = 500, 1000, and 1500.

1E-02, 1E-03, and 1E-04, the additional normalized memory
for FeCBF are approximately 0.41, 0.22, and 0.15, respec-
tively. Until the highest FPRnorm = 1E-10, the additional
memories for FeCBF are very small, approximately equal to
0.05, which could be considered negligible. This is partially
because the error rate has already been reduced to a saturated
level.

D. PRACTICAL VERIFICATION OF THE FeCBF MODEL
1) EXPERIMENTAL SETUP
The model presented in the preceding Section is a predictive
model based on the closed-form expression for related filter
parameters. In this Section, we conduct an actual filter design
using some generic random datasets and filter configuration
to verify the correctness of the proposed model and design.
Specifically, we consider the data set of 32-bit length ele-
ments randomly distributed.2 The Feature extraction of input
datasets is the most time-consuming task but is a one-time
operation, i.e., performed in offline mode. We practically
show that the average time for the Feature extraction of
entirely 32-bit input datasets, i.e., the input space of 232 =
4, 294, 967, 296 elementsmight take 3 hours, asmentioned in
Section III. The sizes of FeCBF’s subfilter are pre-determined
by the predictive model according to the sub-optimal con-
figuration and have been evaluated with additional HFs
selection and optimization (see the following Subsection).

2We intentionally choose query elements of 32 bit-length, considering it
can fit, for example, the patterns of IPv4 in the network filtering application.
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TABLE 2. The HF pairs and the corresponding Htype parameter.

This confirms that the proposed approach is feasible for a
practical problem (limited input of a few thousand million
members). However, a faster computing hardware system or
distributed filtering approachmay be neededwhen expanding
the input space, but this is not the primary focus of this work.

2) HF SELECTION
For all the subfilters of FeCBF, the number k of HFs is
optimally calculated according to (2).Moreover, to reduce the
volume of the hash computation without increasing the FPR,
we adopted the algorithm proposed by Kirsch and Mitzen-
macher [21], in which the set of k HFs is generated from a
base HF pair. Each base HF pair (HF1, HF2) corresponds to
a hash type and is denoted as Htype, which takes the integer
values. The specific base HF pairs and the corresponding
values of the Htype are listed in Table 2.

3) EXPERIMENT RESULT
From the FeCBF’s design parameters predicted using our
developed scripts and represented on graphs in Fig. 6, Fig. 7,
and Fig. 8, some representative results are selected for exper-
imental evaluations on real datasets to verify the correctness
of the proposed FeCBF design model. Specifically, the ver-
ification experiments performed include the dependence of
FPRnorm on Mnorm at fixed χ = 100 (Fig. 9(a)), the depen-
dence of FPRnorm on χ at fixed Mnorm = 20 (Fig. 9(b)),
the dependence of Mnorm on χ at fixed FPRnorm = 1E-01
(Fig. 9(c)), and the dependence of Mnorm on FPRnorm at fixed
χ = 500 (Fig. 9(d)).
The member set of FEBF has a standard number of 1 mil-

lion randomly generated 32-bit elements, from which the
member sets of FPBF and FNBF are collected by extracting
False Positive elements of the corresponding previous subfil-
ters. As can be seen, the actual filtering results of FeCBF in
all test cases relatively match the predicted ones. The detailed
numerical data shows that the average deviation between
expected and actual FPRnorm in Fig. 9(a), Fig. 9(b), Fig. 9(c),
and Fig. 9(d) is about 1.6%, 2.3%, 0.1%, and 0.3% respec-
tively, with a tendency for the actual filtering efficiency to be
slightly better than predicted. The improvements of FeCBF in
practical implementations were achieved by careful selection
of the optimized hash type for each subfilter from the entire
set of the 12 hash types listed in Table 2, some of which such
asHtype 2, Htype 4, andHtype 7 are themost frequently used
for minimizing the FPR of subfilters, as shown in Fig. 10.
A critical parameter affecting the choice of a hash type is the
subfilter’s size, where a hash type might be the most efficient

FIGURE 9. Practical verification of FeCBF design model (a) Dependence of
error rate on the filter size, (b) Dependence of error rate on the number of
query elements, (c) Dependence of filter size on the number of query
elements, and (d) Dependence of filter size on the desired target error
rate.

for a particular subfilter; however, it is not necessarily the best
when the size of this filter changes. Nonetheless, optimizing
the HF selections only has a minor extra impact (0.18 ÷
1.17% on average), which could be considered an optional
design step, the complexity of an HF could be a more critical
design consideration for practical hardware implementation.

V. COMPARISON TO STATE-OF-THE-ART FILTERS
A. EVALUATION DATA AND PARAMETERS
In Section IV-D, we demonstrated the superiority of FeCBF
over SBF in classification accuracy. In some case studies, the
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FIGURE 10. The hash type effectiveness is evaluated based on their
utilization frequency in real-world FeCBF tests.

experimental results show that FeCBF could suppress filter-
ing errors with the nearly empty output sets of False Positive
elements, i.e., no ∼= 0. In this Section, we compare FeCBF
to three other selected state-of-the-art filters introduced in
Section II-B, including f-HABF [14], SLBF [16], and Xor
filter [20]. The experimental setup for FeCBF is entirely
similar to other representative filters in terms of member
sets and input datasets. We use the same dataset generated
in [14] by the open-source tool YCSB (Yahoo! Cloud Serving
Benchmark [22]) for experiments with f-HABF, SLBF, and
Xor filter as the common dataset for evaluations in this work.
Thus, the experimental dataset for FeCBF, f-HABF, SLBF,
and Xor filter consists of 24, 074, 812 elements of 96-bit,
in which 12, 500, 611 elements are positive (members of the
filter), and the remaining 11, 574, 202 elements are negative,
i.e., do not belong to the member set; thus χ = 11, 574, 202
/ 12, 500, 611 ≈ 0, 925891.

The filter sizes in all the Xor filter, SLBF, and f-HABF
experiments in [14] were the same and varied from 100Mb
to 260Mb. The lowest FPR was frequently achieved with
f-HABF; however, their specific values were reported only
in the two extreme cases corresponding to the lower-bound
size (100Mb) and upper-bound size (260Mb) of the eval-
uated filters, equal to 3.46E−03 and 3.63E−06. We take
these values as the desired targets of FPRFeCBF to determine
the sub-optimal FeCBF parameters based on the proposed
design flow. The FeCBF’s input parameters are as follows:
ni = 12,500,611; χ ≈ 0.926; FPRtarget1 = 3.46E-03, and
FPRtarget2 = 3.63E-06. The FeCBF’s output parameters are
the optimized values of subfilter size ratios α, β, and the
FeCBF total size to achieve the smallest memory spaces and
meet the input requirements.

B. IMPLEMENTATION RESULTS AND COMPARISON
The optimized design parameters of FeCBF are depicted
in Fig. 11, including the sizes of FeCBF’s sub-filters and
their corresponding numbers of member elements. The actual
sub-optimal sizes of FeCBF to achieve the pre-defined upper
and lower bounds of target error rate FPRtarget1 and FPRtarget2
are M1 = 55.36 Mb (size ratios of FEBF, FPBF, and FNBF
are 0.43, 0.41, and 0.16, respectively) and M2 = 62.22 Mb

TABLE 3. Comparison of FeCBF with state-of-the-art bloom-based filters.

FIGURE 11. The sub-optimal configurations of the FeCBF with the actual
dataset of 24,074,812 elements, including 12,500,611 member elements,
to achieve the desired target FPRFeCBF equals (a) 3.46E-03 and
(b) 3.63E-06.

(size ratios of FEBF, FPBF, and FNBF are 0.51, 0.39, and
0.16, respectively). Compared with SBF of the same size,
the corresponding values of FPRnorm equal 3.3E−02 and
4.4E−05 in actual FeCBF evaluations.

In the following, we compare FeCBF with other data filter
structures proposed in [14], [16], and [20] for some major
design and performance metrics, which include the filter size,
the filtering error rate, the filter construction time, and the
query time (Table 3). The latter is the offline time spent on the
designing step, such as Feature extraction/hash optimization
and adding the member set. Note that all the time metrics
are normalized to that of SBF for fair comparison since the
hardware configurations in each work are not the same.

Regarding the filter size, the optimal M1 and M2 sizes of
FeCBF are 55% and 24% of the f-HABF, SLBF, and Xor
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Algorithm 1 Pseudo Code for Calculating the
Sub-Optimal Size of FeCBF to Achieve a Desired
Target Error Rate
Input: target FPRFeCBF or FPRnorm, scaling factor
χ , increment steps αstep, βstep, Mstep

norm of α, β,
and Mnorm.
Output: sub-optimal size ratios αopt, βopt,
and sub-minimum normalized size Mmin

norm.
1: Mnorm ← M init

norm [Initial estimated Mnorm]a

2: NumLoopOfAlpha← 1/αstep [Loop number of α]
3: NumLoopOfBeta← 1/βstep [Loop number of β]
4: while FPRb is greater than TargetErrorRate do
5: Mnorm ← Mnorm +Mstep

norm
6: C ← 0.6185Mnorm [Re-Calculate the value of C]
7: α← 0 [Re-Initialize the value of α to 0]
8: for i from 1 to NumLoopOfAlpha do
9: β ← 0 [Re-Initialize the value of β to 0]

10: for j from 1 to NumLoopOfBeta do
11: TempVar← FPRmodel

c

12: if FPR is greater than TempVar do
13: FPR← TempVar
14: αopt ← α
15: βopt ← β
16: end if
17: β ← β + βstep

18: end for
19: α← α + αstep

20: end for
21: end while
22: Mmin

norm ← Mnorm
————––———––––———–———————––––––––––––—-–—-

a The initial value of Mnorm is estimated based on the FeCBF design analytical model
presented in Subsection IV-C.3.bFPR is the current value (haven’t reached the desired target) of FeCBF’s error rate,
which could be FPRFeCBF or FPRnorm.
cFPRmodel is the predicted value of FeCBF’s error rate, which could be FPRFeCBF or
FPRnorm, and is calculated according to (12).

uniform sizes, respectively, with the same experimental setup.
Note that with that sizing, the FPR of FeCBF is achieved
in the same as that of f-HABF and is the best in the class
for the FPR. This FPR is about one order of magnitude less
than those of Xor filter and SLBF. The SLBF based on ML
techniques achieves a medium level of FPR, which might
be reduced in cases where the input elements have more
correlations.

SLBF is much slower than other filter structures regarding
filter construction time since building ML models is not
best supported on non-GPU machines. FeCBF takes slightly
longer for construction time compared to f-HABF and Xor.
Note that with a larger input set, FeCBF would take much
longer for the Feature extraction task, though this metric is
just the offline time (i.e., one-time) at the filter design step,
which is not important in practice.

A similar trend could be observed regarding the query
time, where SLBF is the worst because of the computational
complexity related to ML models. At the same time, the Xor
filter exhibits the fastest. In this specific implementation, the
query time of the proposed FeCBF is slightly greater than
f-HABF and about 3− 4x of Xor. The query time of FeCBF
highly depends on the filtering context and could be lower

Algorithm 2 Pseudo Code for Optimizing the Error
Rate of FeCBF With a Fixed Total Filter Size
Input: normalized size Mnorm, scaling factor χ ,
increment steps αstep, βstep of α, β.
Output: sub-optimal size ratios αopt , βopt , and
sub-optimal error rates FPRopt

FeCBF or FPRopt
norm.

1: C ← 0.6185Mnorm [Calculate the value of C]
2: NumLoopOfAlpha← 1/αstep [Loop number of α]
3: NumLoopOfBeta← 1/βstep [Loop number of β]
4: α← 0 [Initialize the value of α to 0]
5: for i from 1 to NumLoopOfAlpha do
6: β ← 0 [Initialize the value of β to 0]
7: for j from 1 to NumLoopOfBeta do
8: TempVar← FPRmodel

a

9: if FPR is greater than TempVar do
10: FPR← TempVar b

11: αopt ← α
12: βopt ← β
13: end if
14: β ← β + βstep

15: end for
16: α← α + αstep

17: end for
18: end while
19: FPRopt

← FPR b

————––———––––———–———————––––––––––––—-–—-
aFPRmodel is the predicted value of FeCBF’s error rate, which could be FPRFeCBF or
FPRnorm, and is calculated according to (12).
bFPR is the current value (non-optimized) of FeCBF’s error rate, which could be
FPRFeCBF or FPRnorm.

than that of SBF. Specifically, the query time of FeCBF’s
experiments in Section V-A. compared to SBF ranges from
0.83x to 1.13x. The variations in query time of FeCBF in
different filtering contexts are mainly caused by the variation
of α, β, and χ corresponding to FeCBF configurations.

Based on the evaluation results presented in Table 3,
FeCBF outperforms the rest in memory saving, especially in
resource-utilization efficiency. Finally, it is worth noting that
excluding SBF, only SLBF and FeCBF come with explicit
predictive models and design procedures to determine the
sub-optimal filter parameters. This could be important for
deploying the filter in practice, especially in the case of
dynamically changing targets and boundary conditions.

VI. CONCLUSION
This paper presents a novel filter structure, FeCBF, and its
design methodology, which can achieve high accuracy with
lowmemory requirements. FeCBF uses ‘‘Feature extraction’’
from the input dataset to record potential false-queried ele-
ments and cascade interleaved positive/negative subfilters for
error correction.We presented a sub-optimal analytical model
for the filtering error rate prediction based on fine-tuning the
fundamental FeCBF’s design parameters. Compared to the
representative filters employingML techniques (SLBF), hash
optimization (f-HABF), and improved variation of Bloom
filter (Xor filter), FeCBF outperforms these filters in either
error rate reduction capability or level of memory saving.
Specifically, in experimental evaluations with the same input
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and member sets, FeCBF and f-HABF show the best reduc-
tions of FPR targets from 81% to 87%, compared to SBF.
Moreover, FeCBF achieved the smallest memory space, only
about 24% to 55%, compared to the uniform size of SBF,
SLBF, Xor filter, and f-HABF. The evaluated effectiveness
of FeCBF is the basis for implementing this filter model
on hardware accelerators to enhance accuracy and minimize
resource utilization for big-data filtering applications.

APPENDIX A
SCRIPT FOR OPTIMIZING FeCBF’S MEMORY SIZE
See Algorithm 1.

APPENDIX B
SCRIPT FOR OPTIMIZING FeCBF’S ERROR RATE
See Algorithm 2.
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