
Received 10 April 2024, accepted 5 May 2024, date of publication 8 May 2024, date of current version 21 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3399101

Enhancing Software Co-Change Prediction:
Leveraging Hybrid Approaches for
Improved Accuracy
MOHAMMED ZAGANE 1 AND MAMDOUH ALENEZI 2, (Member, IEEE)
1Department of Computer Science, Mustapha Stambouli University, Mascara 29000, Algeria
2Department of Software Engineering, Prince Sultan University, Riyadh 12435, Saudi Arabia

Corresponding author: Mohammed Zagane (m_zagane@univ-mascara.dz)

This work was supported by the College of Computer and Information Sciences, Prince Sultan University, Riyadh, Saudi Arabia.

ABSTRACT Accurate prediction of co-changes in software systems is crucial for efficient development and
maintenance, especially as systems grow in complexity. While deep learning-based approaches have shown
promise, they often struggle with diverse and complex data. In this paper, we present a novel hybrid approach
that combines traditional software engineering methods with deep learning techniques to improve co-change
prediction accuracy. Our approach leverages software metrics and deep learning models, incorporating
the unique characteristics induced by naming conventions, such as PascalCase and camelCase, used by
developers for naming consistency. By utilizing char n-gram embedding and sub-token context, we enrich
the vector representations of source file names, capturing relationships and dependencies between files.
We comprehensively evaluate our hybrid approach using three open-source software projects. The findings of
this study have significant implications for the development of more effective software co-change prediction
tools and techniques, enabling better decision-making in software development and maintenance processes.
Our approach outperforms traditional software engineering methods and deep learning-based approaches,
demonstrating its potential to significantly improve software development and maintenance efficiency.

INDEX TERMS Co-change prediction, change impact analysis, change prediction, code metrics, neural
embedding model, char n-gram embedding, recommendation systems.

I. INTRODUCTION
In the realm of software development and maintenance, accu-
rately predicting co-changes has become increasingly crucial
as software systems grow in complexity [1]. Co-change
prediction involves identifying the modules or components
that are likely to change together in the future [2]. Pre-
cise co-change prediction can assist developers in antic-
ipating potential changes, prioritizing testing efforts, and
reducing the overall time and cost required for software
maintenance [3].
While traditional software engineering methods, such

as statistical analysis and modelling, have been widely
employed for co-change prediction [1], they have limitations
when it comes to handling diverse and intricate data such

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana .

as changelogs data. Deep learning-based approaches have
shown promise in addressing these limitations by leveraging
extensive data to learn complex patterns and relationships.
However, these approaches often face challenges in interpret-
ing the learned patterns and require substantial amounts of
labelled data, which can be difficult to acquire.

To overcome these limitations, this paper introduces a
novel hybrid approach that combines the strengths of tradi-
tional software engineering methods with the power of deep
learning techniques. Our approach incorporates a combina-
tion of code metrics and a char n-gram embedding model to
significantly enhance co-change prediction accuracy. By inte-
grating the interpretability of traditional methods with the
learning capabilities of neural-based embedding models, our
approach effectively leverages co-change patterns induced by
both the source code and the changelogs data which provides
a more effective and efficient way to predict co-changes.

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 68441

https://orcid.org/0000-0003-2508-0265
https://orcid.org/0000-0001-6852-1206
https://orcid.org/0000-0003-3264-185X

M. Zagane, M. Alenezi: Enhancing Software CCP: Leveraging Hybrid Approaches for Improved Accuracy

FIGURE 1. Co-changed source files often share similar naming patterns and convention.

Previous studies that utilized changelogs data in co-change
prediction have demonstrated that the context provided by
co-change instances, as captured by dependency networks [4]
or word embedding techniques [5], offers valuable insights
into source files that tend to change together. Word embed-
ding techniques enable the creation of low-dimensional
representations of sets of tokens or words (source file names),
placing co-occurring tokens closer together in the resulting
vector space [5]. However, prior studies overlook an impor-
tant characteristic induced by naming conventions, such as
PascalCase and camelCase, which developers adopt to main-
tain naming consistency throughout projects. Source file
naming often signifies relationships, particularly when files
are interconnected or dependent (Figure 1). For example,
consider three Java files: ‘BookRepository.java’ implies a
class handling database operation specific to books, ‘Book-
Service.java’ indicates a higher level of business logic
related to books, likely utilizing the repository, and ‘Book-
Controller.java’ denotes a controller managing book-related
requests, likely interacting with ‘BookService’ for opera-
tions. Here, the names themselves suggest relationships and
dependencies. In our analysis of the Spring Frame-work and
Elasticsearch projects used in the experimental evaluation,
we observed that more than 28.80% in Spring Frame-work
and 35% in Elasticsearch of co-change instances contain
identical parts in all file names, with no instances foundwhere
file names lack identical parts. To leverage this characteristic,
our approach incorporates char n-gram embedding [7], which
relies on sub-token context. In this technique, the vector
representation of each token (source file name) is enriched by
the vector representations of its sub-tokens which is better,
in the context of our study, than the hole-token embedding
used in related work.

The contribution of this study is two-fold:

• Proposing a novel hybrid approach that combines the
strengths of code metrics in quantifying co-change
attributes from the source code and the power of char
n-gram embedding to effectively learn co-change pat-
terns from the changelogs data,

• Proposing and making publicly available a hand-curated
dataset of co-change instances and code metrics
extracted from three well-known open-source projects,
we also propose pre-trained models. These materials can
be used to replicate our study and also, they can be used
by other researchers in future works.

The rest of this paper is organized as follows: in section II,
we present the most relevant related works, in section III,
we describe the proposed approach and the methodology
to establish and evaluate it, in section IV, we present
the experimental setups, in section V, we present and
discuss the obtained results and highlight the limita-
tions of the work and in section VI, we summarize the
work done in this study and indicate perspectives for
future works.

II. RELATED WORK
Given the crucial role of change management in the software
maintenance task, huge research efforts have been devoted to
developing effective approaches to software change impact
analysis (SCIA) and co-change prediction (CCP). For the
sake of brevity, we will focus on presenting the most relevant
research works that leverage code metrics and changel-
ogs data. For more details about techniques and methods
employed in the field, please refer to the systematic literature
reviews done such as [8] and [9].

Code metrics were widely leveraged to solve challenging
problems in the field of software engineering such as defect
prediction [10], [11], [12], [13], [14], [15], [16] and vul-
nerability prediction [17], [18], [19], [20], [21], [22], [23].
This is motivated by the fact that code metrics are known
for their ability to quantify software attributes such as size,
complexity and coupling which are proven in practice to
be correlated with defects and vulnerabilities [24]. Moti-
vated by similar intuition, several research works in the
field of SCIA and CCP have used different code met-
rics types to propose approaches and methods. Especially,
the metrics that directly quantify dependency and coupling
between software modules gained more researchers’ inter-
est. In [25], researchers have investigated the relationship
between object-oriented coupling and ripple effects. They
used metrics such as Coupling Between Object (COB) and
Data Abstraction Coupling (DAC) to propose a SCIA model.
Researchers have reported that these metrics can indicate
class pairs with higher ripple effect probability. They have
also recommended focusing on all sorts of requirements and
design documentation that provide additional information for
coupling aspects that cannot be captured by source code only.
Code metrics that indirectly quantify coupling and depen-
dencies were also investigated. Researchers in [26] have
investigated the ripple effects in non-object-oriented software

68442 VOLUME 12, 2024

M. Zagane, M. Alenezi: Enhancing Software CCP: Leveraging Hybrid Approaches for Improved Accuracy

projects. They used four variations of McCabe’s complexity
metric and an approximated algorithm to assess the SCIA
for C programs. Researchers in [27] have investigated the
correlation of the cohesion metrics with the impact of write
interactions between class members. They have proposed
revisions to the existing cohesion metrics to consider the
impact of the write interactions. Code metrics were also
used as features with machine learning techniques to build
prediction models of SCIA. Abdi et al. in [28] proposed pre-
diction models built using object-oriented coupling metrics
and several classification algorithms.

To address the lack of code metrics in particular and
all source code-based techniques in general, in captur-
ing some aspects of dependencies and coupling between
the software modules, researchers have leveraged external
sources of information in SCIA and CCP. Significant parts
of these works have investigated the usefulness of using
changelogs provided by version-controlling systems (VCS)
to capture co-change patterns between software modules
and also combine them with information extracted from the
source code to propose hybrid approaches that improve accu-
racy. Researchers in [29] found that contextual information,
such as commit metadata and developer communication, can
significantly enhance prediction models and reduce false
recommendations. Similarly, researchers in [30] reviewed
hybrid techniques for SCIA, highlighting their potential to
enhance accuracy. These studies and other such [31], [32]
that leveraged hybrid approaches to change-prone pre-
diction collectively underscore the potential of hybrid
approaches in improving the accuracy of software co-change
prediction.

The success of deep learning in the field of natural
language processing especially neural model-based word
embedding techniques such as word2vec [33], FastText [7]
and BERT [34] that provide text vector representations; has
motivated researchers in the field of software engineering to
explore similar techniques for source code analysis. Inspired
by word2vec, researchers in [35] have proposed code2vec
a source code representation model that is based on the
notion of AST paths and the attentionmechanism. Thismodel
aims to transform source code into numerical vectors that
preserve semantic and syntactic characteristics of the code,
enabling deep learning models to effectively analyze and
classify code for various software engineering tasks such as
semantic labelling of code snippets, captioning a block of
code, generating code to complete a missing piece of a larger
program and defect prediction. In the field of co-change pre-
diction, a promising model, FCP2Vec, inspired of Code2vec
is proposed in [5]. FCP2Vec (File-level Change Propagation
to Vector) aims to represent file names in co-change instances
extracted from the changelogs of a software project to vector
representations that preserve co-change patterns. Researchers
proposed a recommendation system based on unsupervised
nearest neighbors that can suggest for developers the source
files that may need modification based on the file being
presently worked on.

The drawbacks of this approach lie in two key aspects:
firstly, it is based on word2vec embeddings, which cannot
leverage the rich information offered by the naming con-
ventions employed in software projects. It only captures
semantic information induced by the context of each file in
its co-change context. Secondly, the proposed recommenda-
tion system is limited only to changelogs data and does not
consider the source code of the software entities (packages,
files, or classes), missing very important information related
to software attributes (complexity and coupling) that can give
insight into the likelihood of co-change occurrences. In this
paper, we proposed a hybrid approach that aims to improve
co-change prediction by addressing these drawbacks.

III. METHODOLOGY
In this section, we present a hybrid approach to predict
software co-changes, which combines the strengths of both
machine learning and software engineering techniques. Our
proposed approach aims to address the research gap identified
in the previous section, by providing a more accurate and
effective way of predicting co-changes in software systems.

A. APPROACH OVERVIEW
In this work, we propose a novel approach to software
co-change prediction that leverages both changelogs and
source code information to enhance prediction accuracy at
the file level. Our approach is designed to be implemented
as a plugin in an Integrated Development Environment (IDE)
or as a standalone tool that can help in change management
tasks such as change impact and propagation analysis.

Our approach builds upon the previous work of Lee and
Hong [4], [5], who treated the co-change prediction problem
as a recommendation system problem. In this context, the
goal is to recommend the top K elements (source files) that
are likely to co-change with the currently edited source file
(the query element). The key contribution of our work lies
in the use of both changelogs and source code information
to improve co-change prediction performances. We extract
co-change instances from changelogs, which provide valu-
able insights into source files that tend to change together.
We then harness this information using a char n-gram embed-
ding technique that captures relationships induced by the
context within co-change instances, as well as insightful
information related to files’ sub-names induced by naming
conventions. This technique avoids the problem of Out-
of-Vocabulary (OOV) and enables the model to capture
nuanced relationships between files. In addition to leveraging
changelogs, our approach integrates code metrics to improve
prediction accuracy. Code attributes such as coupling and
complexity have been proven to be correlatedwith co-change,
and integrating them into the prediction task can provide
valuable insights into the relationships between software
modules. By incorporating code metrics into our model,
we can quantify these attributes and improve the accuracy of
our predictions.

VOLUME 12, 2024 68443

M. Zagane, M. Alenezi: Enhancing Software CCP: Leveraging Hybrid Approaches for Improved Accuracy

FIGURE 2. Overview of our proposed approach for co-change prediction in software systems. (N is the number of filenames to be selected in the first
step, and K is the number of final filenames recommended to developers for co-change).

Figure 2 shows how the approach leverages both changel-
ogs and source code information to generate recommenda-
tions for co-changed files. The input to the system is a source

file under edition, and the output is a list of recommended
files that are likely to co-change with the edited file. Over-
all, our approach offers a novel and effective solution to

68444 VOLUME 12, 2024

M. Zagane, M. Alenezi: Enhancing Software CCP: Leveraging Hybrid Approaches for Improved Accuracy

the software co-change prediction problem, leveraging both
changelogs and source code information to improve predic-
tion accuracy at the file level. By integrating codemetrics into
the model, we can provide valuable insights into the relation-
ships between software modules and enhance the accuracy of
our predictions. The approach consists of several steps, which
are described in detail in the following sub-sections.

B. PREDICTION
In our approach, the process of co-change prediction involves
two steps: initial prediction and prediction refinement.

During the first step, we utilize a char n-gram embedding
model to generate the initial N (where N > K) co-change file
names (a list of N file names) based on the query file name.
This capability stems from the model’s capacity to suggest
file names whose vector representations closely match that of
the query file name or the vectors of its sub-tokens. In [5], the
authors utilized the K ranking score using unsupervised near-
est neighbor (UNN) [36]. They adopted a uniform interface
for three different neighbor algorithms: ball tree, KDT tree,
and brute force. In our approach, we opted for a simple rank-
ing based on cosine similarity [37], which avoids additional
computational load without compromising performance.

This is achieved by following these sub-steps:

1. Vector representation: retrieve the vector representa-
tion for the query file’s name from the model’s learned
embeddings,

2. Cosine similarity calculation: calculate the cosine
similarity between the vector representation of the
query file name and all other file names in the model
vocabulary,

3. Sorting: sort the file names based on their cosine sim-
ilarity scores in descending order,

4. Returning Top-N closely file names: returns the
top-N file names (co-change file names) with the high-
est cosine scores as the query file name.

In the second step, we refine the first prediction and gen-
erate the final K co-change file names. This is achieved
by incorporating code metrics calculated from the first N
source files selected in the first step. This integration involves
recalculating the similarity scores and reordering the initial N
files predicted by the embedding model, to select the top K
co-change files (Algorithm 1).

C. DATA PREPARATION
As with any data-driven approach, to train and validate our
framework, we need to collect and prepare data from the
repositories of the studied software projects.

The final used data consists of two parts, changelogs data
and codemetrics data. The changelogs data is used to train the
char n-gram embedding model which makes the first predic-
tions and the metrics data is used to refine the first predictions
to generate the final predictions. In the following subsections,
we describe each data and the processes of collecting and
preparing them.

Algorithm 1 Prediction;
Inputs:

QueryFileName // the file under edition
EmbeddingModelPath
N,K

Outputs:
FinalPrediction // list of file nameswith hybrid similarity scores

Begin
//First step
Model = LoadModel (EmbeddingModelPath);
FirstPrediction = Model.GetTopNSimilar(QueryFileName, N);
//Second Step
Foreach FileName, SimilarityScore In FirstPrediction Do

Metrics = CalculateMetrics(FileName);
HybridSimilarityScores [FileName] = Mean (Metrics) +

SimilarityScore;
End Foreach;
Sort (HybridSimilarityScores);
For i =0 To K Do// select the first k file names

FinalPrediction.Add (HybridSimilarityScores [i]);
End For;
Return FinalPrediction ;

End.

1) CHANGELOGS DATA
Each instance in the changelog data consists of the file names
of the co-changed source files in a commit. Algorithm 2,
shows the steps followed to prepare this data.

Algorithm 2 ChangeLogDataPreparation;
Inputs:

RepositoryURL
Outputs:

CoChangeInstancesList
Begin

Repo = CloneRepository (RepositoryURL);
CommitsList = ExtractAllCommit(Repo);
Foreach Commit In CommitsList Do
ChangedFiles = getCommitChangedFiles(Commit);
If (50 < Count (ChangedFiles) < 2) Then
Continue; // ignore commit

Else
Clear(CoChangeInstance);
Foreach ChangedFile In ChangedFiles Do
FileName = ExtractFileName (ChangedFile);
CoChangeInstance + = FileName + ‘ ’;

End Foreach;
CoChangeInstancesList.Append (CoChangeInstance);

End Foreach;
Return CoChangeInstancesList;

End.

After cloning the repository, we parse it to extract the list
of all commits done on the project and filter them, as rec-
ommended in [5] by removing commits that involve less than
two source files and commits that involvemore than 50 source
files. After that, we form the co-change instances by extract-
ing file names of the co-changed files from each commit.

VOLUME 12, 2024 68445

M. Zagane, M. Alenezi: Enhancing Software CCP: Leveraging Hybrid Approaches for Improved Accuracy

FIGURE 3. Example of the final changelogs data.

A portion of 19 co-change instances from the final changel-
ogs data used in the experimental evaluation is shown in the
Figure 3.

2) CODE METRICS DATA
Each instance in the code metrics data consists of a source
file name and the values of the used code metrics. Any file-
level, class-level or method-level code metrics can be used.
Since we deal with co-changes in file level, the code metrics
for a file can be calculated as follows: the method-level or
class-level metrics for all the methods or classes in a file are
aggregated to compose the final metrics of the file. In this
study we evaluated the metrics described in the Experiments
section.

3) DATA PREPROCESSING
When feeding changelog data to the char n-gram embed-
ding model for training, a simple data preprocessing step
is required. This step consists of removing the file exten-
sions (e.g., .java) from file names. We remove extensions
because they can be considered stop words, similar to words
like ‘of,’ ’the,’ and ‘and’ in natural text classification prob-
lems. Additionally, since the code metrics data are combined
with the similarity scores returned by the char n-gram embed-
ding model (which range from 0 to 1) to calculate the hybrid
similarity score (as shown in Algorithm 1), a normalization
preprocessing step is applied to the metrics data.

D. PERFORMANCE EVALUATION
To assess the effectiveness of our co-change prediction
approach, we employ two well-established metrics com-
monly used for evaluating top-K recommendation systems:
Hit Ratio (HR) and Normalized Discounted Cumulative
Gain (NDCG). These metrics are particularly relevant in this

context as our approach aims to recommend the most likely
co-changing source files (relevant items) at the top of a ranked
list for a given query file (currently edited file). [38], [39]:

• Hit Ratio (HR@K): Measures the proportion of queries
where the truly co-changing file appears within the top
K recommendations. A higher HR@K indicates that our
approach successfully identifies relevant co-changing
files within the top K positions of the recommendation
list. The HR@K can be calculated by the following
formula,

• Normalized Discounted Cumulative Gain (NDCG@K):
This metric not only considers whether the relevant
co-changing file is present in the top K recommenda-
tions but also takes into account its ranking position.
Relevant files ranked higher in the list contribute more
to the overall score, emphasizing the importance of
prioritizing the most likely co-changing files. A higher
NDCG@K reflects our approach’s ability to not only
identify relevant files but also position them prominently
within the recommendation list for developers.

HT@K is calculated by the formula (1) where NH@K (num-
ber of hits @ K) represents the number of source file names
present in each top-K list and TNI (total number of test items)
represents the total number of source file names in each test
list (test instances in the dataset).

HR@K =
NH@K
TNI

(1)

NDCG@k is calculated by the formula (2) where rsi
represents the relevance score which can be binary (1 for
truly co-changing files, 0 for others). The logarithmic term
(log2(i + 1)) in the formula applies a discounting factor
that diminishes the contribution of lower-ranked items, fur-
ther emphasizing the importance of placing highly relevant

68446 VOLUME 12, 2024

M. Zagane, M. Alenezi: Enhancing Software CCP: Leveraging Hybrid Approaches for Improved Accuracy

co-changing files at the top of the recommendation list [39].

NDCG@k =

∑k

i=1
(

2rsi − 1
log2(i+ 1)

) (2)

IV. EXPERIMENTS
To carry out the experimental evaluation of our approach,
we prepared a dataset following the data preparation
described in the previous section. We used three well-known
and open source Java projects available on GitHub. Two of
them are already used in related work. Spring Framework
is a comprehensive framework for building enterprise Java
applications, offering features such as dependency injection
and aspect-oriented programming to streamline development
processes. Elasticsearch, an open-source distributed search
engine, provides powerful indexing and search capabilities,
making it ideal for large-scale data analysis and search appli-
cations. Apache Cassandra, a distributed NoSQL database
management system, excels in handling vast amounts of data
across multiple nodes with high availability and fault toler-
ance. These projects represent diverse domains within the
Java ecosystem, offering valuable insights into the effective-
ness and applicability of the proposed co-change prediction
approach across different software development contexts.
Table 1 shows some statistics about the dataset used in the
experimental evaluation.

TABLE 1. Statistics of the dataset (size of software projects in terms of
total number of commits and the extracted co-change instances).

A. EVALUATION PROTOCOL
To accurately evaluate the performances of our approach,
in our experiments, we adopted a cross-validation protocol.
For each co-change instance in the dataset, we select one file
name as the query item, and the remaining file names are
used as recommendations. This process is repeated so that all
file names in each co-change are used as the query item and
also as part of the recommendation. The final performance
results are then calculated by averaging the results of all the
iterations [40].

B. SETUP AND PARAMETER TUNING
To implement all operations related to the experimental eval-
uation, we used the following Python libraries:

• Char n-gram embedding: we utilized the Facebook
FastText [7] implementation provided in Gensim
version 4.3.2,

• Evaluation metrics: we employed the implementation
of the HR and the NDCG provided in scikit-learn
version 1.4.1,

For code metrics calculation, we used the CK open-source
tool [41]. CK allows the calculation of 35 class-level and
method-level code metrics in Java projects (refer to the CK
reference for the complete list). As mentioned before, since
we work at the file-granularity level, a metric for a file is
calculated by summing the values of that metric across all
the file’s methods/classes. To select the metrics relevant to
our task, we implemented a custom selection method and
experimentally tuned the list of metrics to use. The final
metrics evaluated in our experiments are shown in Table 2.

TABLE 2. Code metrics used in the experimental evaluation.

When training the embedding models and to mitigate
extensive computational loads and time required for auto-
matic parameter tuning techniques such as grid search,
random search, and Bayesian optimization, we experimen-
tally tuned our hyperparameters. We initiated this process
with initial values recommended in related work specifically
in [5]. For hyperparameters specific to char n-gram embed-
ding, such as the minimum size (min_n) and the maximum
size (max_n) of sub-tokens, we commenced with default
values. The final values used in our experiments are the
following: vector size = 37, window size = 12, min_n = 3,
max_n = 20, and epochs = 1000. All the experiments and
related operations are caried out on a laptop with the fol-
lowing characteristics: i7-4500U CPU, 8.00 GB of RAM and
Windows 10 OS.

V. RESULTS AND DISCUSSION
This section presents and discusses the results obtained
from the experimental evaluation designed to validate our
co-change prediction approach. We focus on the impact of
two key adjustable parameters (N and K) on the effec-
tiveness of our approach, as measured by Hit Ratio at K
(HR@K) and Normalized Discounted Cumulative Gain at K
(NDCG@K), where higher values indicate better perfor-
mance. As a reminder, our approach can be implemented to
operate as an IDE plugin and predicts co-changing source
files (recommendations) based on the currently edited file

VOLUME 12, 2024 68447

M. Zagane, M. Alenezi: Enhancing Software CCP: Leveraging Hybrid Approaches for Improved Accuracy

FIGURE 4. Performance in terms of HR@K and NDCG@K vs. length of final prediction (K filenames).

(query element). The prediction process involves two steps:
an initial selection of N source file names based on the
similarity score calculated from the vector representations
obtained by theDLmodel, followed by refinement using code
metrics to generate the final K recommendations from the
initial pool of N candidate source files.

A. INFLUENCE OF K (NUMBER OF CO-CHANGE FILE
NAMES TO CONSIDER)
In the evaluation of recommendation systems, the selection
of K (the number of recommendations to consider) is influ-
enced by various factors, including the specific characteristics
of the dataset and the objectives of the recommendation
system. In many research studies, the value of 10 is com-
monly chosen, with results reported in terms of HR@10
and NDCG@10. This practical choice reflects the typical
number of recommendations presented to users in real-world
scenarios.

To understand how performance varies with K, we con-
ducted evaluations of our approach using different values
of K. In this series of experiments, the parameter N is

set to 80, a value that yielded promising results in our prelimi-
nary investigations. The results are shown in Figure 4. As can
be seen, the best performance in both HR@K and NDCG@K
indicators was observed when K was set to 5 and 10. Notably,
performance consistently declined with increasing values of
K across all three studied projects: Spring Framework, Elas-
ticsearch, and Apache Cassandra. Additionally, it is evident
that the hybrid approach, incorporating code metrics, consis-
tently outperforms the DL-only approach in terms of both
HR@K and NDCG@K across all scenarios.

As expected, we observed a notable correlation between
the performance of our approach and the size of training
data (number of co-change instances. Specifically, we found
that the performance tended to improve with the size of the
project. Indeed, performances in the cases of Spring Frame-
work and Elasticsearch were better than performances in the
case of Apache Cassandra which have the smallest number
of co-change instances. This can be interpreted by the fact
that char n-gram embedding, in particular, and all neural and
DL-based approaches, in general, tend to perform better with
cases that involve more training data than cases with less
training data.

68448 VOLUME 12, 2024

M. Zagane, M. Alenezi: Enhancing Software CCP: Leveraging Hybrid Approaches for Improved Accuracy

FIGURE 5. Performance in terms of HR@10 and NDCG@10 vs. length of first prediction (N filenames).

B. INFLUENCE OF N (LENGTH OF THE FIRST PREDICTION)
To investigate the influence of the initial prediction length (N)
on the final prediction accuracy, we conducted experiments
using various N values. We fixed K at 10, which is a com-
monly used value in related work. The results in terms of
HR@10 and NDCG@10 are summarized in Figure 5.

As shown in Figure 5, we observe a consistent improve-
ment in both HR@10 and NDCG@10 for the Spring
framework and Elasticsearch projects as the initial prediction
length (N) increases from 12 to 100. This indicates that
considering a larger pool of candidate files in the initial
prediction stage leads to more relevant and better-ranked
recommendations. However, there seems to be a diminishing
return beyond N=100, with both HR@10 and NDCG@10
showing a slight decline. This suggests an optimal range
for N where the approach achieves its best performance.

In our case, the range between 80 and 120 appears to be
critical, as both HR@10 and NDCG@10 peak within this
range. An interesting observation is the behaviour for the
Apache Cassandra project (small-scale). Unlike the other
two projects, the performance metrics for Apache Cassandra
continue to improve even beyond N=120. This suggests that
the Apache Cassandra project, with less training data, might
benefit from a larger initial prediction length to achieve best
performances. This highlights the potential impact of the
training data size on the effectiveness of the chosen initial
prediction length and we can conclude that when the training
data is small a higher value of N is suggested.

C. COMPARISON WITH RELATED WORK
As mentioned earlier (see approach overview for more
details), this study addresses co-change prediction as a

VOLUME 12, 2024 68449

M. Zagane, M. Alenezi: Enhancing Software CCP: Leveraging Hybrid Approaches for Improved Accuracy

FIGURE 6. Comparison with baseline method.

recommendation system problem. Our hybrid approach
draws inspiration from the work presented in [5]. However,
our work offers key advancements by integrating code met-
rics and leveraging co-change data through a char n-gram
embedding technique. For a more comprehensive under-
standing of the improvements introduced by our approach,
we compared it directly with [5]. We ensured a fair compar-
ison by using the same software projects (Spring framework
and Elasticsearch), performance indicators (HR@10 and
NDCG@10), and granularity level (file-level) as in the base-
line method [5]. As shown in Figure 6, our approach outper-
forms FCP2vec in terms of NDCG for both projects: Spring
framework and Elasticsearch. Specifically, our approach
achieves an NDCG improvement of 19% for the Spring
framework and 10% for Elasticsearch. A higher NDCG
indicates that our approach prioritizes the most relevant
co-changing files at the top of the recommendation list, poten-
tially due to the combined influence of code metrics that
quantify characteristics of the source code that might influ-
ence co-change behaviour and the char n-gram embedding

technique which captures file name semantics by consid-
ering character n-grams and potential naming conventions
that can reveal relationships between co-changing source
files. Interestingly, while our approach achieves a significant
improvement in NDCG for both projects, the Hit Ratio (HR)
results show a different trend. In the case of Spring framework
project, our approach surpasses the baseline method in HR
as well, indicating a higher likelihood of recommending at
least one truly co-changing file at the top of the recommen-
dation list. However, in the case of the Elasticsearch project,
the baseline method outperforms our approach in HR. This
contrasting outcome for HR between project sizes is in line
with what we found earlier about the performance tended
to improve with the size of the project. It’s important to
remember that HR focuses solely on whether the top recom-
mendation is a true co-change, while NDCG considers the
ranking quality of all recommendations. Our approach’s con-
sistent improvement in NDCG suggests it prioritizes the most
relevant co-changing files throughout the recommendation
list, even if the very top recommendation might occasionally

68450 VOLUME 12, 2024

M. Zagane, M. Alenezi: Enhancing Software CCP: Leveraging Hybrid Approaches for Improved Accuracy

differ between the approaches in the Elasticsearch project.
Given the importance of NDCG in capturing the overall
quality of recommendations, our approach demonstrates a
more robust performance across all scenarios.

D. LIMITATIONS AND OPEN RESEARCH PROBLEMS
We are aware that our work may have the following limita-
tions that represent an interesting open research problem to
be addressed in future works:

• Programing Language Applicability: While our evalua-
tion focused on Java projects, a potential limitation of the
current implementation is its restriction to a single pro-
gramming language. However, it’s important to note that
our approach is built upon language-agnostic aspects.
Changelogs data, which tracks file modifications, and
code metrics, which can be calculated using established
tools, are not inherently tied to specific programming
languages. This suggests that the core principles of
our approach could potentially be extended to support
co-change prediction in projects written in different
languages. Future work could explore the generalizabil-
ity of the approach by evaluating its effectiveness on
software projects developed with various programming
languages beyond Java,

• AdvancedDLModels Exploration: Char n-gram embed-
ding model, which can be considered a shallow neural
network architecture. While effective in our approach
(no need to huge computing power and training data),
some researchers argue that shallow architectures may
not be considered as full DL models. To potentially
enhance even more the effectiveness of co-change pre-
diction, future work could investigate the integration
of more advanced DL models such as: RNNs which
are well-suited for sequential data and Transformers
for their ability to model long-range dependencies and
relationships between elements which could be partic-
ularly beneficial for capturing intricate patterns within
changelogs data.

VI. CONCLUSION
In this work, we tackled the complex challenge of co-change
prediction in software engineering, proposing a novel hybrid
approach that combines the strengths of both changelogs
data and code metrics. Our two-step prediction process lever-
ages Char n-gram embedding to generate initial predictions,
which are then refined using code metrics to provide accurate
co-change recommendations.

Our experimental evaluation demonstrated the effective-
ness of our approach, achieving significant improvements
in co-change prediction accuracy compared to a baseline
method. The integration of code metrics into the prediction
refinement stage proved to be a key factor in enhancing the
accuracy of our co-change predictions, providing valuable
insights into the relationships between software modules.

The final K co-change file names generated by our
approach have the potential to support various software engi-
neering tasks, such as change impact analysis and code
review, and can be used to improve the efficiency and effec-
tiveness of software development processes.

While our approach has shown promising results, there are
still some limitations and open research problems that need to
be addressed. Future research works could focus on explor-
ing new techniques to improve the accuracy of co-change
predictions, such as incorporating additional data sources
or developing more sophisticated machine learning models.
Moreover, investigating the applicability of our approach to
different software systems and evaluating its impact on soft-
waremaintenance and evolutionwould be interesting avenues
for further research.

Our work represents a significant step forward in the
field of co-change prediction, demonstrating the potential of
hybrid approaches that combine the strengths of different data
sources and techniques. We believe that our findings will
inspire and support further research in this area, ultimately
leading to the development of more effective and efficient
software engineering tools and techniques.

ACKNOWLEDGMENT
The authors would like to acknowledge the support of
Prince Sultan University for paying the article processing
charges (APC) of this publication. They also thank the anony-
mous reviewers for their insightful comments, which have
helped them to improve the quality of this work.

REFERENCES
[1] A. Agrawal and R. K. Singh, ‘‘Predicting co-change probability in soft-

ware applications using historical metadata,’’ IET Softw., vol. 14, no. 7,
pp. 739–747, Dec. 2020, doi: 10.1049/iet-sen.2019.0368.

[2] W. Jin, D. Zhong, Y. Cai, R. Kazman, and T. Liu, ‘‘Evaluating the
impact of possible dependencies on architecture-level maintainability,’’
IEEE Trans. Softw. Eng., vol. 49, no. 3, pp. 1064–1085, Mar. 2023, doi:
10.1109/TSE.2022.3171288.

[3] Y. Huang, Z. Tang, X. Chen, and X. Zhou, ‘‘Towards automatically identi-
fying the co-change of production and test code,’’ Softw. Test., Verification
Rel., vol. 34, no. 3, Jan. 2024, doi: 10.1002/stvr.1870.

[4] J. Lee and Y. S. Hong, ‘‘Data-driven prediction of change propagation
using dependency network,’’ Eng. Appl. Artif. Intell., vol. 70, pp. 149–158,
Apr. 2018, doi: 10.1016/j.engappai.2018.02.001.

[5] H. A. Ahmed and J. Lee, ‘‘FCP2 Vec: Deep learning-based approach
to software change prediction by learning co-changing patterns from
changelogs,’’ Appl. Sci., vol. 13, no. 11, p. 6453, May 2023, doi:
10.3390/app13116453.

[6] T. Mikolov, K. Chen, G. Corrado, and J. Dean, ‘‘Efficient estimation
of word representations in vector space,’’ in Proc. 1st Int. Conf. Learn.
Represent. ICLR Workshop Track, 2013.

[7] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, ‘‘Enriching word
vectors with subword information,’’ Trans. Assoc. Comput. Linguistics,
vol. 5, pp. 135–146, Dec. 2017, doi: 10.1162/tacl_a_00051.

[8] S. Lehnert. (2011). A Review of Software Change Impact Analysis.
[Online]. Available: https://api.semanticscholar.org/CorpusID

[9] M. Kretsou, E.-M. Arvanitou, A. Ampatzoglou, I. Deligiannis, and
V. C. Gerogiannis, ‘‘Change impact analysis: A systematic mapping
study,’’ J. Syst. Softw., vol. 174, Apr. 2021, Art. no. 110892, doi:
10.1016/j.jss.2020.110892.

[10] V. Singh, V. Bhattacherjee, and S. Bhattacharjee, ‘‘An analysis of depen-
dency of coupling on software defects,’’ ACM SIGSOFT Softw. Eng. Notes,
vol. 37, no. 1, pp. 1–6, Jan. 2012, doi: 10.1145/2088883.2088899.

VOLUME 12, 2024 68451

http://dx.doi.org/10.1049/iet-sen.2019.0368
http://dx.doi.org/10.1109/TSE.2022.3171288
http://dx.doi.org/10.1002/stvr.1870
http://dx.doi.org/10.1016/j.engappai.2018.02.001
http://dx.doi.org/10.3390/app13116453
http://dx.doi.org/10.1162/tacl_a_00051
http://dx.doi.org/10.1016/j.jss.2020.110892
http://dx.doi.org/10.1145/2088883.2088899

M. Zagane, M. Alenezi: Enhancing Software CCP: Leveraging Hybrid Approaches for Improved Accuracy

[11] B. Turhan, A. Bener, and T.Menzies, ‘‘Nearest neighbor sampling for cross
company defect predictors,’’ in Proc. Workshop Defects Large Softw. Syst.,
Jul. 2008, p. 26, doi: 10.1145/1390817.1390824.

[12] E. Sreedevi, Y. Prasanth, E. Sreedevi, and Y. Prasanth, ‘‘A novel multi-
ensemble based feature selection and defect prediction model on software
defect projects,’’ Int. J. Control Theory Appl.vol. 9, no. 40, pp. 827–836,
2016.

[13] T. Menzies, J. Greenwald, and A. Frank, ‘‘Data mining static code
attributes to learn defect predictors,’’ IEEE Trans. Softw. Eng., vol. 33,
no. 1, pp. 2–14, Dec. 2007, doi: 10.1109/TSE.2007.10.

[14] C. Tantithamthavorn, ‘‘A review of process metrics in defect prediction
studies,’’ Methods Appl. Comput. Sci., vol. 1, no. 5, pp. 133–145, 2015,
doi: 10.1007/978-3-319-26285-7.

[15] B. Turhan and A. Bener, ‘‘A multivariate analysis of static code attributes
for defect prediction,’’ in Proc. 7th Int. Conf. Quality Softw. (QSIC), 2007,
pp. 231–237, doi: 10.1109/qsic.2007.4385500.

[16] C. Manjula and L. Florence, ‘‘Deep neural network based hybrid
approach for software defect prediction using software metrics,’’ Clus-
ter Comput., vol. 22, no. S4, pp. 9847–9863, Jul. 2019, doi: 10.1007/
s10586-018-1696-z.

[17] P. Morrison, K. Herzig, B. Murphy, and L. Williams, ‘‘Challenges with
applying vulnerability prediction models,’’ in Proc. Symp. Bootcamp Sci.
Secur., Apr. 2015, pp. 1–9, doi: 10.1145/2746194.2746198.

[18] X. Du, B. Chen, Y. Li, J. Guo, Y. Zhou, Y. Liu, and Y. Jiang, ‘‘LEOP-
ARD: Identifying vulnerable code for vulnerability assessment through
program metrics,’’ in Proc. IEEE/ACM 41st Int. Conf. Softw. Eng. (ICSE),
May 2019, pp. 60–71, doi: 10.1109/ICSE.2019.00024.

[19] I. Kalouptsoglou, M. Siavvas, D. Tsoukalas, and D. Kehagias, ‘‘Cross-
project vulnerability prediction based on software metrics and deep
learning,’’ in Proc. Comput. Sci. Appl. (ICCSA), vol. 12252, 2020,
pp. 877–893, doi: 10.1007/978-3-030-58811-3_62.

[20] K. Z. Sultana, B. J. Williams, and A. Bosu, ‘‘A comparison of nano-
patterns vs. software metrics in vulnerability prediction,’’ in Proc. 25th
Asia–Pacific Softw. Eng. Conf. (APSEC), Dec. 2018, pp. 355–364, doi:
10.1109/APSEC.2018.00050.

[21] S.Moshtari andA. Sami, ‘‘Evaluating and comparing complexity, coupling
and a new proposed set of coupling metrics in cross-project vulnerability
prediction,’’ in Proc. 31st Annu. ACM Symp. Appl. Comput., Apr. 2016,
pp. 1415–1421, doi: 10.1145/2851613.2851777.

[22] M. Zagane, M. K. Abdi, and M. Alenezi, ‘‘A new approach to locate
software vulnerabilities using code metrics,’’ Int. J. Softw. Innov., vol. 8,
no. 3, pp. 82–95, Jul. 2020, doi: 10.4018/ijsi.2020070106.

[23] M. Zagane, M. K. Abdi, and M. Alenezi, ‘‘Deep learning for
software vulnerabilities detection using code metrics,’’ IEEE
Access, vol. 8, pp. 74562–74570, 2020, doi: 10.1109/ACCESS.2020.
2988557.

[24] M. Zagane and M. K. Abdi, ‘‘Evaluating and comparing size, complexity
and coupling metrics as web applications vulnerabilities predictors,’’ Int.
J. Inf. Technol. Comput. Sci., vol. 11, no. 7, pp. 35–42, Jul. 2019, doi:
10.5815/ijitcs.2019.07.05.

[25] L. C. Briand, J. Wust, and H. Lounis, ‘‘Using coupling measurement
for impact analysis in object-oriented systems,’’ in Proc. Int. Conf.
Softw. Maintenance (ICSM) Softw. Maintenance Bus. Change, Jun. 1999,
pp. 475–482, doi: 10.1109/ICSM.1999.792645.

[26] S. Black, ‘‘Computing ripple effect for software maintenance,’’ J. Softw.
Maintenance Evol., Res. Pract., vol. 13, no. 4, pp. 263–279, Jul. 2001, doi:
10.1002/smr.233.

[27] G. Woo, H. S. Chae, J. F. Cui, and J.-H. Ji, ‘‘Revising cohesion measures
by considering the impact of write interactions between class mem-
bers,’’ Inf. Softw. Technol., vol. 51, no. 2, pp. 405–417, Feb. 2009, doi:
10.1016/j.infsof.2008.05.014.

[28] M. K. Abdi, H. Lounis, and H. Sahraoui, ‘‘Predicting change impact
in object-oriented applications with Bayesian networks,’’ in Proc. 33rd
Annu. IEEE Int. Comput. Softw. Appl. Conf., Jul. 2009, pp. 234–239, doi:
10.1109/COMPSAC.2009.38.

[29] I. S. Wiese, R. Ré, I. Steinmacher, R. T. Kuroda, G. A. Oliva,
C. Treude, and M. A. Gerosa, ‘‘Using contextual information to pre-
dict co-changes,’’ J. Syst. Softw., vol. 128, pp. 220–235, Jun. 2017, doi:
10.1016/j.jss.2016.07.016.

[30] Y. Shakirat, A. Bajeh, T. O. Aro, andK. Adewole, ‘‘Improving the accuracy
of static source code based software change impact analysis through hybrid
techniques: A review,’’ Int. J. Softw. Eng. Comput. Syst., vol. 7, no. 1,
pp. 57–66, Feb. 2021, doi: 10.15282/ijsecs.7.1.2021.6.0082.

[31] X. Zhu, Y. He, L. Cheng, X. Jia, and L. Zhu, ‘‘Software change-proneness
prediction through combination of bagging and resampling methods,’’ J.
Softw., Evol. Process, vol. 30, no. 12, Dec. 2018, Art. no. e2111, doi:
10.1002/smr.2111.

[32] R. Malhotra and M. Khanna, ‘‘An exploratory study for software change
prediction in object-oriented systems using hybridized techniques,’’
Automated Softw. Eng., vol. 24, no. 3, pp. 673–717, Sep. 2017, doi:
10.1007/s10515-016-0203-0.

[33] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, ‘‘Distributed
representations of words and phrases and their compositionality,’’ 2013,
arXiv:1310.4546.

[34] J. Devlin, M. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ 2018,
arXiv:1810.04805

[35] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, ‘‘code2vec: Learning
distributed representations of code,’’ Proc. ACM Program. Lang., vol. 3,
pp. 1–29, Jan. 2019, doi: 10.1145/3290353.

[36] T. Cover and P. Hart, ‘‘Nearest neighbor pattern classification,’’ IEEE
Trans. Inf. Theory, vol. IT-13, no. 1, pp. 21–27, Jan. 1967, doi:
10.1109/TIT.1967.1053964.

[37] G. Sidorov, A. Gelbukh, H. Gómez-Adorno, and D. Pinto, ‘‘Soft similarity
and soft cosine measure: Similarity of features in vector space model,’’
Computación Y Sistemas, vol. 18, no. 3, pp. 491–504, Sep. 2014, doi:
10.13053/cys-18-3-2043.

[38] S. Brin and L. Page, ‘‘The anatomy of a large-scale hypertextual Web
search engine,’’ Comput. Netw. ISDN Syst., vol. 30, nos. 1–7, pp. 107–117,
Apr. 1998, doi: 10.1016/s0169-7552(98)00110-x.

[39] M. Li, K. Tei, and Y. Fukazawa, ‘‘An efficient adaptive attention
neural network for social recommendation,’’ IEEE Access, vol. 8,
pp. 63595–63606, 2020, doi: 10.1109/ACCESS.2020.2984340.

[40] M. Zagane, M. Alenezi, and M. K. Abdi, ‘‘Hybrid representation to locate
vulnerable lines of code,’’ Int. J. Softw. Innov., vol. 10, no. 1, pp. 1–19,
Jan. 2022, doi: 10.4018/ijsi.292020.

[41] M. Aniche, ‘‘Java code metrics calculator (CK),’’ Tech. Rep., 2015.

MOHAMMED ZAGANE received the engineer
degree in computer science from the University
of Mascara, in 2007, the magister degree in com-
puter science from the Higher School of Computer
Science, Algiers, in 2010, and the Ph.D. degree in
computer science from Université Oran 1, Oran,
Algeria, in October 2020. From 2009 to 2012,
he was a Computer Engineer in the administration
services of the state of Mascara. He is currently
an Associate Professor with the Department of

Computer Science, Mustapha Stambouli University, Mascara, Algeria. His
research interests include applying machine learning and deep learning
techniques to solve challenging problems in software engineering.

MAMDOUH ALENEZI (Member, IEEE) received
the master’s degree in software engineering from
DePaul University and the Ph.D. degree in soft-
ware engineering from North Dakota State Uni-
versity. He is currently a Distinguished Software
Engineering Expert and the Dean of the Quality
Assurance and Development, Prince Sultan Uni-
versity. He is also a Full Professor and has made
significant contributions to the academic and sci-
entific community. He has also served in various

roles, including the Chair of the Computer Science Department, the Chief
Information Technology Officer, and the Dean of Educational Services. With
a strong focus on software engineering and security. He has authored more
than 100 research articles. His research interests include software engineer-
ing, digital transformation, higher education, and intelligent transportation.
He is a respected figure in the field, known for his exceptional research and
professional experience.

68452 VOLUME 12, 2024

http://dx.doi.org/10.1145/1390817.1390824
http://dx.doi.org/10.1109/TSE.2007.10
http://dx.doi.org/10.1007/978-3-319-26285-7
http://dx.doi.org/10.1109/qsic.2007.4385500
http://dx.doi.org/10.1007/s10586-018-1696-z
http://dx.doi.org/10.1007/s10586-018-1696-z
http://dx.doi.org/10.1145/2746194.2746198
http://dx.doi.org/10.1109/ICSE.2019.00024
http://dx.doi.org/10.1007/978-3-030-58811-3_62
http://dx.doi.org/10.1109/APSEC.2018.00050
http://dx.doi.org/10.1145/2851613.2851777
http://dx.doi.org/10.4018/ijsi.2020070106
http://dx.doi.org/10.1109/ACCESS.2020.2988557
http://dx.doi.org/10.1109/ACCESS.2020.2988557
http://dx.doi.org/10.5815/ijitcs.2019.07.05
http://dx.doi.org/10.1109/ICSM.1999.792645
http://dx.doi.org/10.1002/smr.233
http://dx.doi.org/10.1016/j.infsof.2008.05.014
http://dx.doi.org/10.1109/COMPSAC.2009.38
http://dx.doi.org/10.1016/j.jss.2016.07.016
http://dx.doi.org/10.15282/ijsecs.7.1.2021.6.0082
http://dx.doi.org/10.1002/smr.2111
http://dx.doi.org/10.1007/s10515-016-0203-0
http://dx.doi.org/10.1145/3290353
http://dx.doi.org/10.1109/TIT.1967.1053964
http://dx.doi.org/10.13053/cys-18-3-2043
http://dx.doi.org/10.1016/s0169-7552(98)00110-x
http://dx.doi.org/10.1109/ACCESS.2020.2984340
http://dx.doi.org/10.4018/ijsi.292020

