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ABSTRACT Target detection technology in the field of machine vision plays a vital role in industrial
production and manufacturing. In industrial production, productivity can be improved by accurate target
detection. To implement this technology, many enterprises must manually clean and label a huge dataset.
Meanwhile, it is a huge challenge for enterprises to obtain the dataset because of enterprise data privacy
and security constraints. This paper proposes a method for rapidly generating synthetic samples based on
digital twins to address this challenge. First, the virtual environment is utilized to replicate the real detecting
environment, generating a variety of sample photos. The three-dimensional coordinates of the target object
are then extracted in the virtual scene. Subsequently, an annotation method is designed for synthetic samples
obtained from the virtual scene, utilizing principles of three-dimensional coordinate transformation and
perspective coordinate transformation. This method efficiently produces numerous labeled samples with
diverse annotations. Ultimately, the model performs detection tasks in the actual world using the synthetic
samples as training data. The experimental results show that the synthetic samples created by this method
based on digital twins can substitute real samples and effectively identify target objects during actual
detection tasks. This paper proposes a unique strategy for synthetic samples that reduces sample collection
costs and privacy risks, thereby addressing the limitations of machine vision detection technology induced
by sample limitations.

INDEX TERMS Digital twins, coordinates transformation, automatic annotation, synthetic samples, target
detection.

I. INTRODUCTION
With the advancement of artificial intelligence technology,
methods of visual examination that have been used tradi-
tionally are gradually being replaced by machine vision [1].
Within the context of the manufacturing process for industrial
generation, it contributes an increasingly significant function.
Intelligent manufacturing equipment, when integrated with
computer vision, can utilize image recognition to determine
the location of the desired object and carry out tasks such as
relocation and gripping [2]. The technology of vision inspec-
tion has a wide variety of applications in the industrial sector,
such as the application of robots for the sorting of materials
such as wood, stone, and metal [3], as well as conducting
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fault identification on the surface of steel materials [4] and
guided robot assembly [5]. An essential technique in indus-
trial machine vision is Deep Learning. The real-time object
detection feature of YOLO makes it possible to quickly iden-
tify and follow a variety of objects [6]. Tao et al. [7] employed
the YOLOmodel to conduct wafer inspection in the semicon-
ductor production process and showed that the YOLO model
outperforms other models in industrial inspection. Neural
network model detection frequently requires a large number
of labeled real data sets, comprising data under diverse situ-
ations and annotated labels, to ensure performance.

Neural network models are trained mostly on pub-
licly available datasets. The COCO dataset [8], sup-
plied by Microsoft, is a comprehensive dataset used for
object detection and recognition. The MVTecAD [9] is a
dataset dedicated to industrial anomaly detection tasks. The
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RSOD-Dataset [10] is a remote sensing object detection
dataset that containsmultiple object images. In addition, there
is a data set ITODD [11] for industrial 3D target detection.
The Cdiscount [12] for classifying commodity images in
the Kaggle competition. The presence of the aforementioned
extensive open-source datasets reduces the need for man-
ual visual examination, enhances the precision of the visual
inspection method, and simplifies the task of identifying
targets.

Domain-specific detection models are required for indus-
trial inspection, as those trained with open-source datasets are
not suitable. The model’s performance is also influenced by
the quality of the open-source dataset. The model exhibits
overfitting on these datasets, leading to inadequate general-
ization in real-world circumstances. Zhao et al. [13] imple-
mented diverse data augmentation techniques to enhance the
training of small sample target detection models and enlarge
the sample dataset. Gautam et al. [14] proposed a migration
learning strategy to tackle the issue of having insufficient
datasets for training target detection models. Additionally,
synthetic data can be employed to augment the sample size.
Generative Adversarial Networks (GANs) [15] are models
that have the ability to generate images indefinitely and
are extensively employed in computer vision applications.
Gao et al. [16] introduced an integrated GANs for image
identification. They employed an unconditional GANs to
enhance the diversity of generated images in conjunction
with a conditional GANs. Recently there have been advance-
ments in diffusion models in the domain of sample-generated
data, leading to intense discussions in the field of com-
puter vision. These models have demonstrated remarkable
outcomes, particularly in scenarios with limited samples. Dif-
fusion Models [17] offer greater visual diversity compared to
GANs, and their training process ismore stable. In their study,
Pang and Cheng [18] adopted a target identification method
that incorporated a diffusion model in order to accomplish
precise detection of small targets. Taking advantage of GANs
or Diffusion Models to create synthetic datasets somewhat
mitigates the issue of limited sample sets. However, these
models are expensive to train, necessitate substantial compu-
tational resources for executing intricate tasks in industrial
settings, and yield synthetic data with subpar performance.

Object detection technology is widely used in scientific
and technological life, which have great significance for sus-
tainable development to reduce the consumption of resources
in the field of machine vision. However, it is a great chal-
lenge to obtain a valid dataset for training in object detection
technology. The use of publicly accessible datasets or the
generation of synthetic datasets through the construction
of diffusion models in previous research can alleviate this
problem to some extent. Taking into account the precision
of industrial inspection models, it is typically necessary
for sample datasets in the industrial domain to encompass
photographs captured in diverse locations, varying lighting
conditions, and from many perspectives. The performance

of the detection model during the collection of real sample
datasets will be affected by many camera characteristics. The
limitations of samples gathered in the actual world can result
in a reduction in the precision of model identification. This
paper presents a methodology that utilizes digital twin tech-
nology to generate samples for target detection. The method
utilizes the digital twin to recreate an authentic scenario,
leveraging the simulated scene to rapidly and effectively
synthesize sample photos. This process results in the creation
of a synthetic sample dataset, complete with labels, which can
be used for target detection in the actual scene. This method
of generating samples can be applied to the testing fields
of industrial robotic arm grasping, object sorting, product
inspection, and autonomous driving. The suggested method
in this work incorporates digital twins into the target detection
model, enhancing the effectiveness of the detection process
and reducing the implementation cycle of the target detection
model. The following are the research’s primary contribu-
tions: 1) This paper present a method that enables the quick
creation of labeled sample datasets for target item detection.
The method efficiently retrieves the positional data of the
target object from the sample image and produces a useful
sample set. This set includes the synthesized sample images
and a related TXT file that contains labeling information
for target detection. 2) The paper introduces a technique for
simulating authentic target detection settings using digital
twins. The technique leverages the attributes of digital twins
to efficiently produce a diverse range of samples with varying
angles, distances, and circumstances, hence enhancing the
effectiveness of the detection model. 3) This paper conducted
research studies to assess the accuracy of target detection
models trained using synthetic and actual sample datasets in
a real target detection environment. This comparative exper-
iment confirms that the synthetic samples utilized in this
investigation can successfully substitute actual samples for
the purpose of testing.

II. RELATED WORK
A. DIGITAL TWINS
The digital twin, initially introduced in a draft outlined by
the United States in a technological roadmap for the space
program [19], refers to a virtual and digitized entity that con-
trasts with the physical reality. The system can employ several
techniques to acquire real-time data for the analysis of the
physical model, monitoring, and operation and maintenance
of the system [20]. The digital twin simulation scene is not
limited by human senses, the virtual three dimensional(3D)
model in the digital twin is easier to use and more intuitive
than industrial machinery in actual industrial settings [21].
Digital twin technology is extensively employed in various
domains such as the Internet of Things [22], Autonomous
Driving [23], Manufacturing [24], Healthcare, and other
sectors [25]. With the ongoing expansion of digital twin
technology in several sectors, organizations are effectively
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lowering production expenses and enhancing equipment uti-
lization during the manufacturing process.

B. SYNTHETIC SAMPLES
Bymukashev et al. [26] utilized SolidWorksCAD software to
generate three dimensional models of the desired objects. The
method employs this approach of constructing a bounding
box around 3D objects in order to produce synthetic samples.
These synthetically generated samples effectively enhance
the accuracy of object detection. Damian et al. [27] employed
Unreal-Engine-5 to transform real-world scene items into
3D virtual objects. They subsequently utilized the Unity
Perception package [28] to produce synthetic data for the
purpose of training the model. The findings demonstrate that
models trained on synthetic data can be successfully extrap-
olated to practical real-world scenarios. Unity is a digital
twin simulation program that provides a Collision volumes to
GameObjects, where the Mesh Collider creates a tetrahedral
mesh for any 3D model [29]. Károly et al. [30] created
segmentation datasets for robotic arm vision in an automated
manner. They achieved this by attaching a camera to the arm
of an industrial robot and generating an object mask for each
image using the camera’s projection model.

III. METHOD
A. AN ARCHITECTURE FOR DETECTING SYSTEMS BASED
ON DIGITAL TWIN TECHNOLOGY
This research presents a rapid and effective approach for
creating accurately annotated synthetic datasets based on
digital twins. The precise sequence of steps for implementing
this approach is illustrated in Fig.1. The initial step involves
generating a virtual testing environment of the actual testing
environment. Take advantage of 3D vision sensor scanner to
capture a comprehensive representation of the actual envi-
ronment and obtain the point cloud model in RCP format.
Next import the point cloud model into 3Dmax and sub-
sequently crop it to generate OBJ model of the examined
object and the genuine inspection environment. The integra-
tion of object models from various objects inside a physical
environment to create a virtual environment for detecting
purposes. The second step involves generating random sam-
ple photos with varying lighting conditions and perspectives.
The digital twin’s attributes are utilized to manipulate the
virtual inspection environment. This involves adjusting light-
ing conditions, as well as the shooting angle and distance of
the sampling camera. The objective is to generate a diverse
collection of samples of the target object under various con-
ditions. The third component is the automated labeling of
desired objects within the generated sample photos. Acquire
the coordinate data of the identified items in the simulated
environment, then promptly generate the labeled synthetic
dataset by manipulating and analyzing the coordinate data.
Ultimately, the processed synthetic sample set is employed
to train the target detection model, and the resulting model
is subsequently utilized in an actual detection environment.

FIGURE 1. Framework of a detection system based on digital twins.

Integrating digital twins with vision inspection technology
effectively addresses the problem of conducting industrial
vision inspection when acquiring sample datasets is difficult
or costly due to security and privacy concerns. Simultane-
ously, this approach can effectively circumvent the issue
of imprecise labeling data for the target object resulting
from dependence on manual subjective judgment for sample
labeling in the detection technology. This accelerates the
implementation process of inspection technology and encour-
ages the transition of inspection instruments from theoretical
simulation to quick deployment in the field of industrial
automation.

B. PROCESSING METHOD FOR VIRTUAL
SCENE MODELING
1) CONSTRUCTION OF VIRTUAL SCENE SIMULATIONS
The virtual testing experimental environment is constructed
using the Unity engine, which includes two parts: background
environment modeling and object modeling. The purpose of
this environment is to detect screws and nuts on industrial
parts placed on a real experimental table.

The stages of modeling the backdrop environment include:
utilizing high-precision 3D scanning tools to scan environ-
ments in actual inspection environments. The scanning tool
captures data from actual inspection environments and gen-
erates point cloud models in RCP format, which are easily
accessible and include realistic colorful materials. At the
moment, the point cloud model is often disorganized. So we
can adjust the point cloud density to display the most accurate
representation of the actual detection environment. The point
cloud model in RCP format is imported into 3dMax to create
the digital twin model of the experimental platform. The
point cloud model in RCP format is imported into 3dMax
to generate the digital twin model of the actual experimental
platform. The polygon clipping is refined to only display the
necessary area for the actual detection experimental setup.
In order to create a geometric image, the cut area segmenta-
tion point cloud is used. The colorful layer has been chosen to
build a simulated inspection environment. In 3dMax, a virtual
inspection environment is constructed. Then the detection
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FIGURE 2. Processing of point cloud models.

FIGURE 3. Three-dimensional model of workpieces.

environment is exported as an FBX or OBJ format of the
digital twin model of the experimental bench. Subsequently,
this model is imported into Unity to combine with the real
inspection laboratory. The point cloud model processing flow
is shown in Fig.2.

The following are the modeling steps for the object that
was detected: SolidWorks is used to construct the digital twin
model of the screw and nut of the observed object, creating
three-dimensional textured models in the OBJ format for
various workpieces. Import the model into Unity to establish
hierarchical connections between objects in the inspection
environment model. Assign material attributes to each indi-
vidual model. Construct a mesh and construct the smallest
bounding box for the 3D representation of the target object in
the inspection scene. Fig.3 shows a 3D model map of various
workpieces.

Once the 3Dmodel of the detected object and the detection
backdrop have been created, the detected object is positioned
in the virtual detection environment by the real detection envi-
ronment. To enhance the fidelity of the detected object’s real
context, one can incorporate additional cameras for capturing
multiple angles, optimize the ambient lighting conditions,
introduce realistic shadows, and implement other visual
enhancements within the virtual detection environment.

2) PROCESSING OF VIRTUAL SCENE ENVIRONMENTS
Industrial target detection usually necessitates the collec-
tion of numerous samples under various circumstances. The
model is trained using the sample set under varying lighting
conditions and camera angles exhibits distinct performance.
Typically, the greater the number of collected samples, the
greater the accuracy of the trained detection model and the
more precise the model’s performance. The processing of
virtual scenes in Unity can efficiently provide a varied sample
set. This processing mostly involves modifying the lighting
conditions, camera shooting angle, camera shooting position,
and the position of the target object.

Algorithm 1 Obtain Diverse Synthetic Samples
Input: Initial position and lighting information
Output: Location and lighting information after changes
1 Update()
2 Timer + = time.delatime
3 If timer >= interval
4 RandomLightIntensity()
5 RandomcameraPosition ()
6 RandomtargetPosition ()
7 Timer = 0.0f
8 RandomLightIntensity()
9 a = LightIntensityChange
10 newLightIntensity=initialLightIntensity+
Random.Range(-a, a)
11 RandomcameraPosition ()
12 b = cameraRotationChange
13 c = cameraPositionChange
14 newcameraAngle=initialcameraRotation+
Random.Range(-b, b)
15 m = Random.Range(-b, b)
16 Vector3random=newVector3(Random.Range(m,m,m))
17 newcameraPosition=initialcameraPosition +Vector3 ran-
dom
18 RandomtargetPosition ()
19 d = targetPositionChange
20 n = Random.Range(-d, d)
21 Vector3random=newVector3(Random.Range(n,n,n))
22 newtargetPosition=initialtargetPosition+Vector3random
23 end for

To render light in Unity, you can assign an initial value to
the scene (initialLightIntensity). Configure a variety of light
alterations (LightIntensityChange) and designate a consistent
time interval for each period(interval),allowing for random
changes between light and darkness within the specified
range.

Similar to this, the sampling camera’s parameter settings in
unity are modifiable. Customizing the initial shooting angle
(initialcameraRotation) and position (initialcameraPosition).
The camera’s change in angle (cameraRotationChange) and
change in position (cameraPositionChange) can be adjusted
in three dimensions, specifically around the camera’s x, y, and
z axis. Additionally, setting a fixed timestamp interval to con-
trol the random changes in the sampling camera’s shooting
angle and position based on your specific requirements.

Furthermore, it is feasible to enhance the sample set by
randomly altering the location of the target object. This can
be achieved by given an initial position (initialtargetPosition)
and a customisable range of change (targetPositionChange),
allowing for random adjustments within the specified range
as needed.

As demonstrated in Fig.4, various kinds of samples can
be acquired by altering the lighting conditions of the scene
or adjusting the shooting angle, position, and target object
position of the sampling camera. By randomly combining
changes in scene lighting, shooting angle, shooting position,
and target object position through algorithm 1, it is feasible to
acquire multiple combinations of sample photographs, which
can be used to enlarge the overall sample set.
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FIGURE 4. Samples under various conditions.

TABLE 1. Export data directory.

3) EXPORTING VIRTUAL SCENE DATA
Numerous samples with varying conditions can be generated
in a short amount of time by processing the virtual inspection
environment that is modeled in Unity. A sample image export
and a virtual information export are the two components that
make up the acquisition of the detection sample set.

Developing programs in C# that may be attached to sample
cameras. Customizing the sample image export storage path
in the script, and the storage format is PNG. Every time
there is a change in the environmental conditions, the virtual
detection scene in Unity is able to generate a new sample
image.

After exporting the sample image, as shown in Table.1.
The parameter information of the target object and the sam-
pling camera in the virtual scene can be read, according to
the Inspector component in Unity. The custom information
exports the storage path in the C# script and produces an
identical timestamp text file for every example image. The
information of the current target detection object in the virtual
scene is derived. This information includes the coordinates

of the center point of the target object, the angle of the
target object in the x, y, and z directions (α, β, γ ), as well as
the length, breadth, and height of the target object (l,w, h).
The information of the current sampling camera contains the
coordinates of the center point Pc (xc, yc, zc), and the angle
in the x, y, and z directions (αc, βc, γc). It also involves the
field of view of the camera(FOV), the aspect ratio of the cam-
era’s cone of vision(Aspect), the value of the camera’s Near
plane(Near), and the value of the camera’s Far plane(Far).
The FOV is the angle at which the camera’s cone of vision
gets th PW (xw, yw, zw) e picture of the object.

C. FAST LABELING METHOD FOR SYNTHETIC SAMPLES
1) ANNOTATION METHOD IMPLEMENTATION FRAMEWORK
The image processing platform processes and transforms
coordinates based on the text file exported information
after receiving the sample images in PNG format generated
by the unity engine and the text file that corresponds to
them. Following this, the target objects are labeled in the
sample images for annotation. When using different refer-
ence coordinate systems, 3D object coordinate values are
different.

Therefore, the processing of the coordinate of the
target object is divided into two modules. First, the
transformation of the target object coordinates between
the three-dimensional coordinate system is done. Next,
transforming the coordinates of the target item from
three-dimensional space to a two-dimensional plane. The
specific conversion process is shown in Fig.5. Every
three-dimensional model of target detection in the digital
twin has a minimal outer enclosing box that can completely
encapsulate the object. The coordinate system for the target
object can be established using its length, width, and height
as the x, y, and z axes. The center point of the target object
can serve as the coordinate origin. The eight corner of the
enclosing box of the target object can be determined using
the target object coordinate system. Transforming the target
object coordinate system’s eight corner point coordinates to
the world coordinate system. Subsequently, converting the
target object’s world coordinate system center point and eight
corner points to the camera coordinate system coordinates.
As a result, the conversion of the target’s coordinates from
the target’s own coordinate system to the camera’s coordinate
system has been successfully completed. The target object’s
eight corner coordinates and center point coordinates were
then mapped to the pixel coordinates on the two-dimensional
imaging plane using the idea of perspective transformation.
Proportionately changing pixel coordinates to image view-
port coordinates. Locate the corner in the picture that has
the largest x, y coordinate and the smallest x, y coordinate
among the eight corner viewport coordinates, and then label
the object that you are looking for. The sample collection of
labeled target objects includes a variety of example images
as well as information regarding the labeling of target objects
that corresponds to these sample images.
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FIGURE 5. Flowchart of coordinate conversion.

FIGURE 6. Schematic of coordinate conversion.

2) CONVERSION OF THREE-DIMENSIONAL
COORDINATE SYSTEMS
As can be seen in Fig.6, the coordinates of the center point of
the target object, denoted as PW (xw, yw, zw), are considered
to be the coordinate origin of the target object coordinate
system. The x, y, and z axes of the target object coordi-
nate system are the length, width, and height of the target
object. Finding out the coordinates of the eight corners of the
box that surround the three-dimensional model of the target
object in the virtual scene. These coordinates should be found
under the coordinate system of the target item. According to
equation:

yi =

(
±
l
2
, ±

w
2

, ±
h
2

)
, i = 1, 2, 3, 4, 5, 6, 7, 8 (1)

The coordinates of the eight corner points of the target
object box should be converted from the coordinates used
in the target object coordinate system to the coordinates
used in the world coordinate system. In the first step of the
process, the coordinate origin of the target coordinate system
is transformed with the origin of the world coordinate system.
The translation matrix is as follows:

Tw = (xw, yw, zw)T (2)

Then rotate the x-axis, y-axis, and z-axis of the target object
coordinate system to coincide with the world coordinate sys-
tem, and the rotation matrix is:

Rw =


cosβ cos γ+

sinα sinβ sin γ

sinα sinβ cos γ−

sin γ cosβ
sinβ cosα

sin γ cosα cosα cos γ − sinα

sinα sin γ cosβ
sinβ sin γ+

sinα cosβ cos γ
cosα cosβ


(3)

The coordinates ywi of the eight corner points in the
world coordinate system are obtained after the mutual

transformation of the coordinate system:

ywi = Rwyi + (xw, yw, zw)T , i = 1, 2, 3, 4, 5, 6, 7, 8 (4)

To determine the camera coordinate system, the center
point coordinates Pc (xc, yc, zc) of the sample camera are
used as the coordinate origin. The length, width, and height
of the camera are used to determine the x-axis, y-axis, and
z-axis directions of the camera coordinate system, respec-
tively. The center point of the target object in the world
coordinate system with coordinates PW (xw, yw, zw) and the
eight corner points of its enclosing box in the world coor-
dinate system with coordinates ywi should be converted to
the coordinates in the camera coordinate system, and then
the resulting coordinates should be converted in accordance
with the three-dimensional coordinate system conversion
described above.

Initially, the origin of the camera coordinate system is
converted into the origin of the boundary coordinate system,
and the translation matrix is:

Tc = (xc, yc, zc)T (5)

Then align the camera coordinate system’s the x-axis, y-
axis, and z-axis angles (αc, βc, γc) with the world coordinate
system. The rotation matrix is:

Rc =


cosβccosγc+
sinαcsinβcsinγc

sinαcsinβccosγc−
sinγccosβc

sinβccosαc

sinγccosαc cosαccosγc − sinαc

sinαcsinγccosβc
sinβcsinγc+
sinαccosβccosγc

cosαccosβc


(6)

The coordinates of the eight corner points yciin the camera
coordinate system are obtained after the mutual transforma-
tion of the coordinate system:

ywi − (xc, yc, zc)T = Rcyci, i = 1 ∼ 8 (7)

The coordinates of the center point of the target object yc0
are obtained after the mutual transformation of the coordinate
system:

yw − (xc, yc, zc)T = Rcyc0 (8)

Fig.6 illustrates that it is possible to obtain the coordinates
of the target object’s center point and the coordinates of the
eight corner points of the enclosing box of the target object in
the camera coordinate system taking advantage of the inverse
transformation between the three coordinate systems after the
three three-dimensional coordinate systems are established.

3) THREE-DIMENSIONAL COORDINATES INTO
TWO-DIMENSIONAL COORDINATES
Objects within the eye’s field of view in the physical world
exhibit a visual phenomenon known as ‘‘near big and far
small’’. Generally speaking, when the eye is closer to the
target item, the object seems larger but when the eye is farther
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FIGURE 7. Schematic diagram of near big and far small.

FIGURE 8. Schematic of perspective transformation.

away, the object appears smaller. Analogously, the aforemen-
tioned phenomenon arises when a camera captures an image
of a certain object and subsequently acquires data from it
within the unity engine. Due to the limitations of the sample
camera property in Unity, the sampling range of the sample
camera is actually a cropped view cone. Fig.7 illustrates the
range of the sample camera, which extends from the near
plane to the far plane. This range represents the actual visual
range of the sampling camera in Unity. The near plane of the
sampling camera can be approximated as the imaging plane
of the camera.

Fig.8 demonstrates that the three-dimensional coordinates
of the midpoint of the target object can be converted into
two-dimensional plane coordinates. This conversion occurs
when the target object, within the viewing range of the sam-
pling camera, is compressed from the cropped view cone to
the standard cube via perspective transformation.

The formula of perspective transformations is based on the
perspective principle of OpenGL:


ẋ
ẏ
ż
w

 =


cot Fov2
Aspect 0 0 0
0 cot Fov2 0 0
0 0 Far+Near

Far−Near −
Far×Near
Far−Near

0 0 −1 0



x
y
z
1



=


x
cot Fov2
Aspect

y cot Fov2
−zFar+NearFar−Near −

2×Far×Near
Far−Near

−z

 (9)

The coordinates (x, y, z) represent the three-dimensional
positions of the points on the target object in the camera
coordinate system. The coordinates (x, y, z, 1) represent the
transformed three-dimensional positions of the points on
the target object after applying the homogeneous coordinate
transformation approach in the camera coordinate system.
The coordinate (ẋ, ẏ, ż,w) represents the position of the
points on the target object in the visual range after the position
of target object through perspective projection. (ẋ, ẏ, ż,w)

divided by the perspective viewpoint:(
ẋ
w

,
ẏ
w

,
ż
w

, 1
)

,w = −z (10)

The homogeneous coordinates (ẋ/w, ẏ/w, ż/w, 1) refer to
the points of the target object in the standard cube after under-
going the perspective projection transformation. By using
the aforementioned transformation, the coordinates of the
eight corner points and the center point of the target object
can be translated from three-dimensional coordinates to two-
dimensional pixel coordinates inside the imaging coordinate
system.

The scale transformations are able to make converting
two-dimensional pixel coordinates to picture viewport coor-
dinates. The image’s top left corner is located at pixel
coordinates (0, 0), while the bottom right corner is located
at pixel coordinates (pixelWidth, pixelHeight). The top left
corner of the image in the viewport is also at coordinates
(0, 0), while the bottom right corner is at coordinates (1, 1).
Converting two-dimensional pixel coordinates in the range
of 0 to 1 to viewport coordinates. From the value(Aspect)
captured by the sampling camera in Unity, the screen display
resolution value is known as pixelWidth × pixelHeight , The
scaling formula for the x and y coordinates of points in the
target object:

xsi =
ẋ × pixelWidth

2 × w
+
pixelWidth

2
(11)

ysi =
ẏ× pixelHeight

2 × w
+
pixelHeight

2
(12)

Following the process of scaling the center point and eight
corner point coordinates to the appropriate viewport range,
determine the corner points’ two-dimensional coordinates the
max xsi,min xsi,max ysi,min ysi and the automatic labeling
frame of the target item can be obtained by using parallel lines
passing through the four corner points.

The target item in the sampled picture automatically draws
the labeled box in the composite sample effect image by
using the unity engine to extract the information processing.
Fig.9 illustrates the consequences of the unity-based sample
labeling method on frame labeling for four distinct shapes
of target objects: nut, multimeter, toolbox, coke, coffee and
book.

IV. EXPERIMENTAL SECTION
A. DATASETS
Synthetic datasets: The dataset is a crucial factor in industrial
target detection since it greatly influences the accuracy of the
detection model. In the real experimental bench, there is a
pile of workpiece screws and nuts, and the objective of this
experiment is to differentiate and identify the nut from the
rest of the pile. A synthetic sample dataset consisting of one
thousand workpiece screws and nuts that were labeled was
produced by the unity-based automatic annotation method,
which was used to construct the training set data. Among
the one thousand sample photographs that were chosen, there
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FIGURE 9. The effect demonstration diagram of the annotation.

are examples of the target item captured from a variety of
perspectives and under a variety of lighting situations. Addi-
tionally, the sample images have diverse pixel resolutions.
The synthetic samples that have been labeled are separated
into three categories: eighty percent are classified as training
datasets, 10 percent are classified as validation datasets, and
10 percent are classified as test datasets.

Real datasets: To evaluate the detection capabilities of
the model trained using synthetic data in a real-world target
detection scenario, we captured 1000 photos of target objects
in an actual laboratory setting using a camera. Taking advan-
tage of the LabelImg labeling method to manually annotate
the target object and obtain 1000 accurately labeled real sam-
ples. Similar to the synthetic sample set, the real sample set
also includes photographs of the target object captured from
various perspectives and under varying lighting conditions.
A dichotomous divide of the dataset is also included in this
real sample, just like it was in the synthetic dataset. Eighty
percent of the dataset is classified as the training dataset, ten
percent is the validation dataset, and ten percent is the test
dataset.

In order to investigate the consequence of using the syn-
thetic sample set, the detection effect of the model that was
trained on the actual sample set is used as an example of
reference. Following the training of several target detection
models using synthetic and actual sample sets, the trained
models are evaluated using the same real sample test set
consisting of 100 sheets. It is necessary to evaluate the per-
formance of model detections and the efficacy of synthetic
samples for real detection tasks.

B. EXPERIMENTAL SETTINGS
For the purpose of determining the impact of the synthetic
sample set, the YOLOv8 model was utilized in this inves-
tigation. The YOLOv8 model is a deep learning model that
integrates the most recent basic version of the YOLO family
of models and introduces improvement points in order to
enhance the performance of the model. A new loss function,
a new detection header, and a new backbone network are all

included in the YOLOv8 release. The fact that it is able to
detect numerous types of objects in real-time on a variety of
GPU hardware has led to this model being frequently made
use of in the industrial field. The pre-training model used
for all model training in this paper is yolov8 nano, which
belongs to the yolov8 family of models and is known for its
lightweight nature. This experiment makes use of the stan-
dard metrics for evaluating target detection models, which
include precision (P), recall (R), and mean average precision
(mAP). These metrics are used to describe the performance
of the model:

P =
TP

TP+ FP
(13)

R =
TP

TP+ FN
(14)

mAP =

k∑
j=1

APj

k
(15)

Ture positive(TP) represents the count of positive sam-
ples correctly identified as positive by the model, false
positive(FP) represents the count of negative samples incor-
rectly identified as positive, false negative(FN) represents
the count of positive samples incorrectly identified as nega-
tive, and average precision(AP) represents the area under the
precision-recall curve.

In order to avoid overfitting the model, the value for
PATIENCE is configured to 50 for each training session. If the
model performance does not show significant improvement
after 50 rounds of iterations during the model training phase,
the training is halted. The training epochs are configured to
200, the batch size is 32, and the size of the input sample
images is 640 pixels ×640 pixels. Additionally, to enhance
the accuracy of the model, the mosaic enhancement feature
was disabled during the final 10 epochswhile performing data
augmentation for training. This study relies on the Pytorch
inference framework for experimental training. The training
and inference settings consist of Pycharm, python3.9, and
CUDA11.6, and the training and inference are executed on
an NVIDIA RTX 3090.

C. EXPERIMENTAL RESULTS
1) TIME COMPARISON FOR OBTAINING SAMPLE SETS
The purpose of this research is to suggest a method for the
rapid acquisition of synthetic samples that can also serve as
a substitute for actual sampling. The experiment included
evaluating the time it took to acquire the synthetic sample
set, which was generated and diversified using a sample
generation method, different from the time it took to acquire
the sample set through real sampling. This was done in order
to determine how well the method performed. A sample
generationmethod can produce a sample set of approximately
2000 labelled synthetic samples in aminimum of tenminutes.
In the same interval of time, manual annotation can only
generate about 200 labelled real sample images. Meanwhile,
if manual annotation were to produce the real samples that
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FIGURE 10. The model was trained with synthetic samples.

FIGURE 11. The model was trained with actual samples.

has same number of synthetic samples, it would take much
longer than ten minutes. In terms of the quantity of time
required to acquire a sample set, the acquisition of a gen-
uine sample set takes significantly more time and is more
challenging than the acquisition of a synthetic sample set.
Furthermore, acquiring authentic samples poses challenges
and incurs labor expenses.

2) PERFORMANCE EVALUATION OF DIFFERENT
DETECTION MODELS
Evaluating the synthetic samplemodel’s performance in com-
parison to real samples during the training process: When the
synthetic samples that were created by the automatic labeling
method were utilized for the purpose of pre-training the target
detection model, the accuracy and recall were above 95%
which is basically close to 1 after 100 rounds of model train-
ing, and the precision gradually improves with the increase
of mAP 50-95 under different intersection over union(IOU)
thresholds. The training process is depicted in Fig.10, and it
can be seen that the loss decreases continuously as the train-
ing iteration rounds increases continuously. Furthermore, the
performance parameters gradually stabilize.

The target identification model is trained on manually
labeled real samples. The training process is illustrated in
Fig.11. As the number of training rounds grows, the loss
curve of the model exhibits fluctuations in the early stage,
which then settle after 100 rounds. The target model trained
by manually labeled real samples behaves normally during
training.

It is possible to draw the conclusion that the performance
of the model trained by the synthetic samples is essentially
the same as the performance of the model trained by the
real samples during the training process and that there is

FIGURE 12. Performance of the model trained with synthetic samples.

no gradient explosion phenomenon. This conclusion can be
reached by analyzing the parameter change curves that occur
during the training process and displaying them in Fig.10 and
Fig.11. The precision (P) and the recall (R) are getting closer
to 1.

Comparison of models are trained with synthetic samples
and real samples on real datasets: For the purpose of train-
ing the detection model, the YOLOv8 model makes use of
synthetic samples that are produced using an automatic anno-
tation method that is created based on the Unity engine. After
being trained with synthetic data, a target detection model
is then used to recognize target objects in real experimental
contexts. This method allows us to accurately evaluate the
model’s performance in detecting target objects in real-life
scenarios. As can be seen in the left panel of Fig.12, the
screws and nuts that are located on the experimental bench
in the actual experimental environment are positioned at a
variety of angles and in a variety of directions. All the tar-
get detection models that were trained with the synthesized
samples are able to properly determine the precise location
of the target object nut, and they are also able to construct
bounding boxes for the discovered target object based on its
location. Fig.12 illustrates that the YOLOv8 model employs
a target detection model trained with the equal number of real
and synthetic samples from the training set. Additionally, the
position detection of the target object and the drawing of the
bounding box in themodel tests are performed using the same
batch of test sets as the synthetic samples.

In order to investigate the performance of target detection
models that have been trained using synthetic data in real
detection situations in a manner that is both more thorough
and intuitive, we not only investigated the ability of models
trainedwith synthetic and real samples to recognize objects in
real detecting contexts but also evaluated the performance of
these models under varying illumination circumstances in the
experiment. These results of detection parameters of models
trained with an equal number of synthetic and actual samples
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TABLE 2. Accuracy analysis of obtaining samples with equal quantities.

TABLE 3. Accuracy analysis of obtaining samples with equal time.

on a batch of 100 real test sets are displayed in Table.2. The
target detection model trained on a sample set consisting of
800 synthetic samples achieves precision (P) is 0.934, recall
(R) is 0.876, mAP is 0.941 in a normal light detection envi-
ronment. The target detection model trained on a sample set
consisting of 800 real samples achieves P is 0.99, R is 0.892,
and mAP is 0.96 in a normal light detection environment. The
target detection model trained on synthetic samples achieved
P is 0.849, R is 0.85, andmAP is 0.788 in a low-light detection
environment. The target detection model trained on real sam-
ples achieved P is 0.875, R is 0.808, and mAP is 0.8 in the
same low-light detection environment. The target detection
model trained using synthetic samples achieved P is 0.872,
R is 0.85, and mAP is 0.808 in a high-intensity light detection
environment. Conversely, the target detection model trained
using real samples achieve P is 0.903, R is 0.743, and mAP
is 0.851 in the same light detection environment.

In the same time period, when manual annotation can
get two hundred genuine samples that have been labeled,
the sample fast annotation method can almost obtain two
thousand synthetic samples that have been labeled using the
same method. An actual test set is being used to test the iden-
tification of target detection models that have been trained
on a variety of samples at the same time. The results of the
tests are presented in Table.3, where the synthetic samples
that were collected at the same time as the real samples are
subjected to the identical test set. The precision (P) of the
target detection model that was trained on a sample set that
contained two hundred real samples is 0.959, the recall(R) is
0.822, and mAP is 0.88 when it was used in a real detection
environment. The precision(P) of the target detection model
that was trained using a sample set that had two thousand syn-
thetic samples is 0.981, R is 0.906, and mAP is 0.965 when
it was tested in a real detection scenario.

According to the results of the aforementioned experi-
ments, the detection outcomes of the target detection model
trained using synthetic samples and the target detection
model trained using an equal number of real samples for

real industrial part detection are as follows: mAP exhibited
a disparity of 1.9% under normal lighting conditions and
1.2% under dimmer lighting conditions. The model trained
on synthetic data collected outperforms the target detection
model trained on real samples, resulting in an 8.5% increase
in mAP for accurate detection. The comparison of the data
indicates that the actual detection performance of the tar-
get detection model, which trained with synthetic samples,
is essentially equivalent to the model trained with the equal
number of actual industrial part samples. Under the assump-
tion that the same amount of time is spent, the target detection
model which trained with the synthetic samples that have
been collected has a greater accuracy and a better detec-
tion effect than the model trained with the actual samples.
This indicates that synthetic samples can take the place of
genuine samples when it comes to carrying out activities
related to industrial detection. In the trials described above,
acquiring an equivalent quantity of synthetic samples requires
significantly less expenditure and time compared to collect
an equivalent quantity of real samples. It is noteworthy that
there is a difference in the execution effect between the model
trained with synthetic samples and the model trained with
real samples when it comes to actual industrial detection.
When there is a slight disparity between the simulated virtual
detection environment and the actual detection environment,
the model trained with synthetic samples and the model
trained with real samples exhibit similar performance when
conducting real detection. When spending the same time and
cost, themodel trainedwith synthetic samples performs better
than the model trained with real samples. The experimental
results demonstrate that the method proposed in this paper
to produce synthetic samples is convincing and efficient in
minimizing the costs associated with collecting samples dur-
ing the target detection task. Different from other methods
like GANs or Diffusion Models which generate datasets
through manual labelling, the method proposed in this paper
realistically replicates the actual detection environment to
generate rich annotated datasets. Enterprises can control their
data, create their own efficient models, reduce carbon dioxide
emissions, save computational costs and time, and achieve
sustainable business economics through the method to gener-
ate synthetic datasets proposed in this paper.

V. CONCLUSION
In this paper, we propose a method to generate synthetic
datasets based on digital twins. The Unity engine is being
introduced to imitate the actual detection environment by
creating three-dimensional digital twins through modeling.
The proposed method utilizes the features of the Unity engine
in the virtual detection scenario to efficiently create annotated
detection samples. The effectiveness of the synthetic sample
set in the detection task is then demonstrated by comparing
with the experimental data obtained from the actual dataset.
The results of the experiments indicate that there will not
be significant a distinction in accuracy between synthetic
samples and real samples when it comes to performing the
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target detection task in actual detection environment. Fur-
thermore, the cost of collecting synthetic samples is low
which indicates that synthetic samples can be used in taking
place of real samples to fulfillment the detection task in
actual industrial inspection. When actual samples cannot be
acquired because of privacy concerns or cannot be obtained
due to safety concerns and accident risks in some specialized
testing tasks in industrial areas, the significance of synthetic
samples is particularly pronounced. During industrial pro-
duction, enterprises often have trouble in obtaining a wide
range of diverse samples due to limitations in their production
processes. As a result, they are unable to collect a significant
number of samples and the efficiency in acquiring samples
is limited. Nevertheless, synthetic samples can manipulate
the environmental conditions in the digital twins to produce
diverse categories of samples. These synthetic samples can
serve as a limited set of real samples to supplement the train-
ing data and enhance the model’s performance. Additionally,
synthetic samples can help reduce the expenses spending
in acquiring real samples. Digital twins can replicate gen-
uine inspection settings for virtual inspection scenarios. The
proposed sample production method can rapidly produce
numerous annotated synthetic samples. This efficient target
detection system not only cuts down on the expenses and
time associated with industrial inspection but also accelerates
the execution of inspection tasks. Meanwhile, it addresses
the issue of accuracy degradation in the model caused by
imbalanced and insufficiently diverse samples in inspection
tasks, resulting in improving benefits for the enterprises in
terms of production execution.

This system also have a few restrictions within it. Dif-
ficulties in the modeling accuracy may arise when virtual
scenarios attempt to replicate real scenarios, resulting in
discrepancies between the model and the actual inspection
scenario during the actual detection environment. In partic-
ular, the accuracy of the models designed for performing
industrial inspection tasks is insufficient such as detecting
defects in simulated samples. To enhance the resemblance
between synthetic and real samples, we can explore the
utilization of data augmentation techniques in conjunction
with Generative Adversarial Networks (GANs) to augment
the samples used in experiments in future research. Apart
from this, we can consider employing more precise scanning
equipment to model the virtual detection scene, ensuring a
high level of similarity to the real scene. This approach will
enable us to align the characteristics of the target objects in the
synthetic samples with those in the real samples. Last but not
least, while reviewing the effectiveness of a target detection
system, it is possible to take into account a wider variety of
count test set data for the purpose of testing model.
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