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ABSTRACT Early detection of driver behavior is a pivotal aspect in enhancing road safety, focusing on
identifying and mitigating risky driving patterns before they lead to accidents. The use of smartphone
sensors for data acquisition marks a significant advancement in this field. It allows for continuous, real-
time monitoring of driving patterns without the need for specialized equipment. In this study, we leverage
a publicly available smartphone motion sensor dataset, utilizing accelerometer and gyroscope data from
a Samsung Galaxy S21 to analyze driving behaviors classified as slow, normal, and aggressive. This
research introduces a novel feature engineering technique named the RKnD (Random forest, K-nearest
classifier, Decision tree) probabilistic feature engineering technique, which integrates three prominent
machine learning (ML) models. This blend offers a robust analysis of driver behavior, leveraging the
strengths of each algorithm. This paper emphasizes the importance of data balancing in machine learning,
employing the Synthetic Minority Oversampling Technique (SMOTE) to enhance the reliability of the
predictions. Furthermore, k-fold cross-validation is used to ensure the model’s consistency and accuracy
across original features and the proposed RKnD probabilistic features of the data sets. By achieving such
high accuracy, the study demonstrates the potential of smartphone-based systems to significantly improve
road safety. This paper introduces a novel approach utilizing smartphone motion sensor data to detect
driver behaviors with a remarkable accuracy rate of 99.63%. This research stands out for its application
of machine learning techniques in a practical, accessible manner. This pioneering approach named RKnD
feature engineering sets a new standard in the realm of smart transportation systems, opening avenues for
further innovations in the field, and filling a gap in road safety analysis to avoid road accidents. Future
research on RKnD should streamline its algorithm for real-time use, diversify datasets, integrate advanced
Deep Learning for complex pattern detection, and undertake real-world testing to validate practicality and
uncover challenges.

INDEX TERMS Driver behavior, smartphone sensors, deep learning, feature engineering, road safety.

I. INTRODUCTION
Driving behaviors refer to the observable actions and
reactions of drivers in specific driving contexts, including
The associate editor coordinating the review of this manuscript and their responses to traffic conditions, environmental factors,
approving it for publication was Juan A. Lara "~ . and vehicle performance. These behaviors can range from
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aggressive to defensive driving tactics, distinguishing them
from driving styles, which encompass more consistent and
characteristic patterns of driving preferences over time.
Understanding and differentiating between these concepts
is crucial for developing models that accurately predict
behaviors leading to increased accident risks. The application
of ML and Deep Learning (DL) in the early detection
of driver behavior has marked a significant shift in the
field. Various studies have implemented ML algorithms,
achieving different levels of success. However, these methods
often require large, diverse datasets for training and may
struggle with the dynamic nature of data [1]. This study
introduces a novel architecture for the early prediction of
driver behavior, which represents an innovative integration of
two ML models and a DL model. This feature engineering
approach aims to harness the strengths of each model to
enhance overall detection accuracy and efficiency. To address
the pressing issue of road accidents caused by aggressive
and irrational driving, there is an urgent need for reliable
techniques to follow and recognize driver behavior. Recent
developments in Internet of Things (IoT) technologies have
opened avenues for the remote monitoring and identification
of driving patterns. Through the examination of changes
in driving-related data, scholars are investigating inventive
methods to improve overall road safety [2]. According to
the extensive global status report on road safety by the
World Health Organization, traffic incidents are ranked as
the eighth major contributor to global fatalities. Significantly,
nearly one-fifth of these traffic accidents can be directly
attributed to driver distractions [3]. In the realm of vehicle
technologies research, the focus has been on developing
smart systems to enhance vehicle efficiency and driver
experience. Recent studies have leveraged smartphones for
robust data collection, marking a shift towards comprehensive
assessments of vehicle performance and driver behavior
[4]. Hence, researchers and transportation experts strive to
enhance road safety and reduce accidents. The growing
availability of sensor technologies and recent advancements
in ML and DL have propelled data-driven road safety
research to the forefront [5]. Owing to the intricacy of
conducting experiments aimed at testing driving behaviors
and the significant expenses entailed in data collection,
particularly for heavy-duty freight vehicles, the development
of a model capable of achieving high performance in
accurately discerning driving behavior patterns from a limited
dataset presents a formidable challenge [6]. In contemporary
times, a growing trend involves the concept of smart cities,
which advocate for the integration of sensors in vehicles to
enhance intercommunication among various vehicle types
[7]. The transportation industry’s strategic focus on perfor-
mance optimization and cost reduction has propelled the
integration of advanced technologies, specifically the Internet
of Things (IoT) and ML. This integration has been prompted
by the observed correlation between driving behavior and its
impact on fuel consumption and emissions, necessitating the
classification of distinct driving patterns among individuals
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[8]. Driving behavior profoundly affects mobility, safety,
energy efficiency, and emissions. With the rise of connected
vehicles equipped with high-resolution (10 Hz) data, we can
now accurately classify driving styles [9]. The significant
contributions of our proposed innovative research are as
follows:

« Anovel feature engineering approach RKnD is proposed
in this study, which combines three ML models. The
goal of this feature engineering approach is to leverage
the strengths of each model to enhance driver behavior
detection performance.

o To address data imbalance, we utilized the Synthetic
Minority Oversampling Technique (SMOTE).

« We have applied eight advanced ML and DL models for
evaluating RKnD techniques.

« We utilize accuracy, precision, recall, and the F1 score to
assess the performance of both our ML and DL models.
Moreover, this study provides comparative results anal-
ysis between the performance of our proposed RKnD
probabilistic features and the original features.

o The efficacy of each model is tested by using k-fold
cross-validation with further enhanced by optimizing
hyperparameters.

The remaining sections of the manuscript are as follows:
Section II based on the related literature analysis. Section III
presents our novel proposed network for driver behavior
detection. In Section IV, the results obtained from the
implementation of various ML techniques are comparatively
assessed. Section V summarizes the findings of this research
study.

II. LITERATURE REVIEW

The demand for preventing road accidents has increased
with the rise in early detection of driver behavior. This has led
to the exploration of ML and DL techniques for improving the
detection of driver behavior within large datasets. This study
section aims to furnish a thorough review of the pertinent
literature concerning the prediction of driver behavior
utilizing machine learning and sensor data. This entails an
examination of the employed methodologies, the attained
accuracy rates, and a discussion of the limitations inherent
in current approaches, as delineated in the accompanying
Table 1.

In this research [10], the authors proposed an innovative
approach for early detection of abnormal driving behaviors,
a crucial factor in reducing traffic accidents. Their method,
Serial-Feature Network (SF-Net), leverages smartphone iner-
tial sensors and considers the continuity of driving events.
The dataset included GPS data, 3-axis acceleration, and
gyroscope data. SF-Net preprocesses the data, combining
current sensor data with information from adjacent time
frames. Deep convolutional neural networks(CNNs) extract
features, enabling the recognition of ten driving behaviors
based on multi-level and multi-time information fusion.
Impressively, field tests yielded remarkable results, with
SF-Net achieving a 97.1% accuracy rate and a 98.4% recall
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rate, surpassing other network models. Even with limited
training samples, SF-Net remained stable and maintained
high recognition rates, showcasing its potential for practical
applications in enhancing road safety.

In a separate investigation conducted by [11], researchers
utilized high-resolution driving behavior data sourced from
303 drivers’ smartphones. Their objective was to scrutinize
driver behavior at both the road segment and junction levels.
This dataset was enriched with additional information encom-
passing traffic patterns, and road geometry characteristics,
and subsequently visualized spatially using Geographical
Information System (GIS) software. The primary emphasis
of the study revolved around the identification and map-
ping of harsh driver behavior events, encompassing 8,592
instances of harsh accelerations and 3,946 occurrences of
abrupt braking events, specifically pinpointing their locations
within Athens, Greece. To dissect and interpret the data
effectively, the research team devised and implemented two
multiple-linear regression models along with two log-linear
regression models. Results revealed that traffic character-
istics, such as average traffic flow per lane and average
occupancy in junctions, had a statistically significant impact
on the frequency of harsh events, surpassing the influence of
road geometry and driver behavior factors.

This study [12] presented an innovative approach for
early detection of transportation modes using smartphone
sensor data, a critical component in intelligent transportation
systems. The study aimed to strike a balance between
accuracy and earliness, crucial for real-time decision-making
in systems like driver assistance. They developed a hybrid
DL classifier that harnessed the power of CNNs, recurrent
neural networks, and deep neural networks to uncover
hidden temporal correlations within sensory time series data.
Additionally, a decision policy was introduced to predict
transportation modes with an acceptable trade-off. The
model was evaluated using two publicly available supervised
datasets and demonstrated excellent performance in terms of
accuracy and earliness.

In their research conducted in [13] the authors addressed
the prevalent issue of road accidents stemming from human
fatigue and inattention by leveraging ML technology. They
focused on identifying unsafe driver behaviors through the
fusion of in-vehicle sensor signals, such as vehicle speed
and engine parameters, with external sensors like gyroscope
and magnetometer. Feature engineering was employed to
accurately describe driver behavior, and a support vector
machine (SVM) and artificial neural network were trained
and tested using data from over 200 km. The reference
data for evaluation was established through a methodology
grounded in vehicle speed and acceleration. The results
demonstrated the efficacy of the approach, achieving an aver-
age accuracy of approximately 88% with the SVM classifier
and around 90% using the neural network, highlighting its
potential in identifying unsafe driver behaviors.

In this article [14], the authors proposed an ML-based
approach to identify safe and unsafe driving behaviors using
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in-vehicle sensor data. They computed descriptive features
from these signals and employed SVMs and feed-forward
neural networks for classification. The evaluation on a dataset
with over 26 hours of driving data yields an average accuracy
exceeding 90% for both classifiers. The McNemar test shows
no significant performance difference between the models at
the 0.05 significance level. This research demonstrates the
potential of using in-vehicle sensor data to effectively identify
unsafe driving behaviors.

In this investigation [15], researchers in Indonesia
addressed motorcycle safety concerns by using smartphone
sensors, including an accelerometer and a gyroscope, to mon-
itor and warn motorcyclists about their driving behavior. They
developed an application that categorized driver statuses
into various categories, such as normal, zig-zag, sleepy,
turns, braking, acceleration, and speed bumps, using an
ML approach with an Artificial Neural Network (ANN)
algorithm. Impressively, the system achieved a high accuracy
level of 96.2% in recognizing these behaviors. This research
demonstrates the potential of leveraging smartphone sensors
and ANN technology to enhance motorcycle safety in regions
where motorcycles are a prevalent mode of transportation.

In the work conducted by [16], a system leveraging
bio-signals was designed for the real-time identification
of aggressive driving behaviors within the context of the
Internet of Medical Things (IoMT). The approach involved
the utilization of a deep convolutional neural network
(DCNN) model, seamlessly integrated with edge and cloud
technologies. The system comprised three distinct modules: a
vehicle-based detection module, a cloud-based training mod-
ule, and an analysis module connected to a monitoring envi-
ronment through a telecommunication network. Evaluation
of processed bio-signal datasets yielded promising results,
with the DCNN model achieving validation accuracies of
73.02% and 79.15% on two different datasets. This research
demonstrates the feasibility of using DCNNs to detect aggres-
sive driving behaviors using bio-signal data in the IoMT
setting.

These [17], researchers used smartwatches to passively
sense and classify driver activities, outside events, and
road attributes. Analyzing data from 15 participants in a
naturalistic driving study, they achieved impressive results
with average F1 scores of 94.55%, 98.27%, and 97.86%,
respectively, through 10-fold cross-validation. This innova-
tive approach offers a privacy-aware and effective method for
enhancing context-aware driving data collection and analysis
in semi-automated and autonomous vehicles.

This study by [18], presented a system designed for
the automated extraction of proprietary in-vehicle infor-
mation through the analysis of sensor data. The system
estimates driving status and segments in-vehicle CAN
frames, achieving an 84.20% accuracy in estimating driving
conditions and an 82.31% accuracy in extracting in-vehicle
information through real vehicle experiments in an urban
environment. This research offers a viable approach for
automatic proprietary in-vehicle data extraction.
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In this research article [19], researchers detected driver
inattention using large-scale vehicle trajectory data and
identified its impact on driver behavior. They focused on
common inattentive events and used a deep CNN with
data augmentation techniques for detection. Additionally,
an LSTM-based model predicted abnormal driving oper-
ations resulting from inattention. The study achieved a
92.27% accuracy in detecting inattentive driving and a
91.67% accuracy in predicting abnormal driving. This
research has the potential to improve driving habits and road
safety.

In this study [20], researchers used miniature inertial
measurement units (IMUs) to monitor real-time driving
behavior. They employed a deep neural network-based
approach to identify different driving actions based on joint
angle series, achieving recognition rates exceeding 99% in
experiments. This method shows promise for driving training
and guiding novice drivers. In this investigation [21], the
researchers used tri-axial smartphone accelerometer signals
to identify and verify drivers. Their approach included
ResNet-50 and Stacked Gated Recurrent Units (SGRUSs) for
identification and Siamese Neural Networks and Triplet Loss
Training for verification. With a dataset of 25 drivers and
over 20,000 journeys, the results were impressive: 71.89%
top-1 and 92.02% top-5 accuracies for identification, and a
74.09% F1 score for verification. This approach, based solely
on smartphone accelerometers, shows promise for efficient
driver monitoring applications.

This study [22] uses smartphone motion sensor data to ana-
lyze driver behavior efficiently. With the LR-RFC (Logistic
Regression Random Forest Classifier) method, it achieves
a remarkable 99% performance score, validating results
through rigorous techniques like k-fold cross-validation.
By generating probabilistic features from sensor data, the
LR-RFC model enhances behavior prediction significantly.
This innovative approach signals a crucial advancement in
early driver behavior detection, promising to mitigate road
accidents and associated costs.

In the paper [23] a novel approach utilizing CNNs,
Fuzzy Logical Feature Selection (FLFS) and Optimized
Spectral Neural Classification (OSNCA) is introduced
for improving transportation safety by analyzing driver
behavior. The study employs advanced techniques with
a rich dataset collected from vehicle onboard diagnostics
ports, encompassing vital parameters like fuel consumption
and vehicle dynamics. The method involves intricate data
segmentation, utilizing fuzzy logic for feature selection,
and spectral neural classification for precise behavior cat-
egorization. The performance of this innovative approach
is remarkable, demonstrating an accuracy of 98.9%, with
precision and recall rates of 88.3% and 93.9% respectively
for 20 drivers, significantly outperforming traditional meth-
ods like SVM, PCA, and GA-FCM. This highlights its
potential in significantly enhance transportation safety by
providing a deeper, more nuanced understanding of driver
behavior.
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A. RESEARCH GAP AND QUESTIONS

In the field of Early Detection of Driver Behavior, the
literature review identifies a significant research gap in the
realm of Behavior detection, particularly in scalability, adapt-
ability, computational efficiency, and real-time application.
Our research addresses two primary research questions we
have identified from literature analysis:

o Does use a probabilistic feature engineering tech-
nique that integrates the prominent machine learning
algorithms improve the accuracy of detecting drivers’
behavior compared to using the original features?

o What are the most fruitful ML and DL approaches for
the detection of driver’s Behavior?

To bridge this gap, our paper introduces an advanced
feature engineering technique, RKnD. This model aims to
enhance accuracy and efficiency, catering to the Detection
of Driver Behavior. By integrating diverse ML techniques,
RKnD offers a novel and robust solution in the evolving
landscape of road accidents.

lll. PROPOSED METHODOLOGY

A comprehensive explanation of the study techniques and
their associated workflow is provided in this section. We con-
ducted an analysis of the dataset utilized in constructing
the applied methods through evaluation, employing a variety
of hyperparameters to assess their performance. To offer a
thorough understanding of the feature engineering approach’s
functionality, a description of the suggested approach’s
architecture and its mathematical algorithm is also included.
Figure 1 illustrates the analytical approach proposed for this
study. To carry out the recommended experiments, we utilize
a smartphone motion sensor dataset. Initially, the dataset was
imbalanced, and we addressed this issue by employing the
SMOTE technique to balance the dataset. Subsequently, the
balanced dataset is imported and divided into two parts with
ratios of 80(train) and 20(test). Through the combination
of RF, KNC, and DT approaches, we devised a novel
RKnD strategy. The proposed novel approach incorporates a
fully optimized set of hyperparameters, showcasing effective
efficiency for predicting driver behavior. The performance
results of the suggested feature engineering techniques are
evaluated and utilized for identifying driver behavior.

A. DATASET DESCRIPTION

In this research, we used a publicly available [24]
smartphone-based sensor data to evaluate the experiments.
The dataset focuses on analyzing driving behavior, crucial
for developing advanced Driving Assistance and Intelligent
Transportation Systems. It employs smartphone sensors
specifically, an accelerometer and gyroscope to track a
vehicle’s movement across three axes: longitudinal, lateral,
and vertical. These sensors are chosen for their widespread
availability in smartphones and their ability to provide
detailed data on sudden movements and orientation, rather
than relying on GPS which only offers speed data. The dataset
was collected using a Samsung Galaxy S10 and a Dacia
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FIGURE 1. The workflow of our suggested method for early detection of driver behavior.

Sandero 1.4 MPI car, selected for its mainstream engine
representative of typical ride-sharing vehicles. This choice
aids in understanding driving styles in average cars, although
more powerful cars could yield clearer distinctions in driving
styles. The dataset includes two files, one for training and
one for testing. This data aims to detect driving styles based
on sudden movements, offering insights into driver comfort
and experience. The dataset comprises various elements,
encompassing a temporal record, and acceleration parameters
in the X dimensions, Y dimensions, and Z dimensions.
Additionally, the dataset is annotated with three labels: slow,
normal, and aggressive [24]. These labels are defined based
on specific criteria related to the driver’s acceleration and
deceleration patterns, as well as the vehicular orientation
changes:

o Slow driving is defined by consistently lower-than-
average speeds, indicating a cautious approach with
gradual accelerations and decelerations.

o Normal driving encapsulates average driving events,
characterized by standard adherence to traffic norms and
moderate execution of driving maneuvers.

o Aggressive driving is marked by sudden lateral move-
ments (left or right turns), and abrupt accelerations
and decelerations. This category signifies a high-risk
driving style characterized by rapid changes in speed and
direction.

The primary data that we collected was imbalanced. The
imbalance within the dataset is depicted in Figure 3,
highlighting the distribution across different labels [22].
The findings indicate that there are 2,604 sensor readings
classified under the “slow” category, 2,197 readings under
“normal”, and 1,927 readings fall into the ‘“‘aggressive”
category. This distribution points to a lack of balance within
the dataset.

Figure 2 displays a pair plot of sensor data, depicting
the relationships between acceleration (AccX, AccY, AccZ)
and rotation (GyroX, GyroY, GyroZ) along three axes. Data
points are color-coded to represent three different classes of
motion behavior: normal (blue), slow (red), and aggressive
(green), allowing for visual comparison of the variables
across these categories. Table 2 indicates the five samples of
data.
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B. SYNTHETIC MINORITY OVER-SAMPLING(SMOTE)

To address the class imbalance in ML datasets, we applied
the SMOTE technique which is very popular [25]. When
one class has significantly fewer instances than another,
models can become biased towards the majority class.
We solve this problem by creating synthetic examples
of the minority points class, which balances the dataset using
the SMOTE technique. The method functions by identifying
the k-nearest neighbors among instances of the minority
class and subsequently generating novel, interpolated data
points located in between these neighbors. This approach not
only helps achieve a balanced dataset. Figure 3 shows the
imbalanced dataset and balanced dataset class after applying
SMOTE in this study.

C. APPLIED ARTIFICIAL INTELLIGENCE METHODS

To enhance driver behavior detection, different ML algo-
rithms are employed to analyze data meticulously collected
through motion sensors. These sensors are strategically
attached to the driver, systematically recording a range of
movements which is mentioned in the DATASET DESCRIP-
TION subsection. The collected data is then input into sophis-
ticated ML algorithms, designed to meticulously analyze and
identify distinct patterns in the driver’s behavior. It provides
a proactive mechanism for recognizing and alerting about
potentially hazardous behaviors or environmental conditions,
thereby significantly contributing to the safety and well-being
of drivers.

In this novel methodology, we employ motion sensors
strategically positioned on the driver data. Subsequently, this
data undergoes an advanced preprocessing phase, where we
implement SMOTE for balancing the class instances, along-
side the RKnD probabilistic features approach to enhance the
dataset’s representativeness. This sophisticated integration of
sensor technology, data augmentation techniques, and com-
putational algorithms represents a comprehensive approach
to understanding and analyzing driver behavior dynamics.
We meticulously feed the refined data into an array of both
ML and DL algorithms as follows.

1) RANDOM FOREST(RF)
RF is an ensemble method that combines many DT classifiers
trained using the bagging technique. It enhances the stability
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TABLE 1. Summary of recent studies on driving behavior analysis.

Ref. | Year Approach & Methodology Dataset Characteristics Classification Strategy Performance Results
2020 SF;Net using smartphone in- | GPS, 3-axis acceleration, Deep CNNs 97.1% accuracy, 98.4% re-
[10] ertial sensors gyroscope data call
Exploring nuanced insights | Data from 303 drivers’ | Ultilizing both multiple lin- | Significant impact of traf-
(1] 2020 from high-resolution driving | smartphones, traffic, road | ear and log-linear regres- | fic characteristics on harsh
behavior data analysis geometry sion models events
2021 Hybrid DL f_or transportation Twoipubllcly available su- CNNs, RNNs, DNNs nghA accuracy anq earli-
[12] mode detection pervised datasets ness in mode detection
Fusion of in-vehicle and ex- e Approx. 88% accuracy
2021 ternal sensors for behavior | Over 200 km travel data SVM and artificial neural with SVM, 90% with
[13] . P network
identification neural network
2021 ML for identifying driving | Over 26 hours of driving | SVM and feed-forward | Over 90% accuracy for
[14] behaviors data neural networks both classifiers
2021 ANN for monitoring motor- Smartphone sensor data Artificial Neural Network | 96.2% accuracy in behav-
[15] cyclist behavior P (ANN) ior recognition
Bio-signal-based system for L 73.02% and 79.15% accu-
[16] 2022 aggressive driving detection Bio-signal datasets DCNN racies on different datasets
Smartwatch data analysis in .. . . F1 scores: 94.55%,
[17] 2021 naturalistic driving study Data from 15 participants Multiple ML algorithms 98.27%. 97.86%
. . . . . 84.20% accuracy in driv-
2020 Autf)ma'tlc extraction of in- Real vehlcl§ experiments LSTM.RF ing conditions, 82.31% in
[18] vehicle information in urban setting . . .
information extraction
92.27% accuracy in inat-
2023 Analysis of vehicle trajectory Traiectory data CNN with data augmenta- | tention detection, 91.67%
[19] data for inattention detection J y tion, LSTM-based model in abnormal driving pre-
diction
IMU-based real-time driving . . Deep neural network- | Recognition rates over
[20] 2020 behavior monitoring Real-time motion data based approach 99%
L o . ResNet-50 and SGRUs | 71.89% top-1,92.02% top-
Driver identification and veri- . . e e . . o .
2020 fication using smartphone ac- 25 drivers, over 20,000 | for identification, Siamese | 5 identification accuracies,
[21] &3 P journeys Neural Networks for | 74.09% F1 score for verifi-
celerometer e .
verification cation
The Driver Behavior detec- | Publicly available smart- Combm.ed Logistic | Random forest 2_1ChleV1nga
[22] 2023 tion using Sensor Data phone motion sensor data Regression Random | ~score of 99% using the LR-
) ) Forest RFC method.
Achieved an accuracy of
Enhancin Transportation FLFS and OSNCA com- | 98.9%, with a precision
2023 Safet bg usin FEFS and Vehicle On-Board Diag- | bined with Machine Learn- | of 88.3% and a recall
[23] OSNéAy & nostics (OBD) data ing and Deep Learning | of 93.9% for 20 drivers
techniques using the FLFS-OSNCA
method.

TABLE 2. Snapshot of five sample data points.

AccX AccY AccZ GyroX GyroY GyroZ Class
-0.700552 -0.15935495 -0.0628891 0.048258353 | 0.002672535 0.27473664 NORMAL
0.5859189 0.43197542 0.46232033 -0.06047566 | 0.006948592 | -0.42653665 SLOW
-0.2795186 | -0.011579275 | -0.036842346 | 0.01160644 0.04970916 | -0.019700404 NORMAL

2.33095 -7.6217537 2.5290236 0.05681047 | -0.18058704 | -0.05207626 | AGGRESSIVE
2.8472152 -6.7556214 2.22464 -0.03176499 | -0.03520111 0.035277467 | AGGRESSIVE

and accuracy of the model by utilizing an average model
strategy. The RF classifier is essentially a group of DT
classifiers, each of which has been built with a set of
random vectors and can vote for the most preferred class
for forecasting. RF is an ensemble learning method that
constructs multiple DTs and merges their predictions to
obtain more accurate and robust results [26]. RF algorithm
can be expressed as:

§ = mode ({T0x 001, M

where:

o y referees to predicted output.

VOLUME 12, 2024

o T(x;0;) represents the prediction of the i-th DT with

parameters 6; for the input x. DT

o The mode function calculates the most common

prediction among all the DT in the forest.

This equation showcases how the ensemble of DT in an
RF collectively determines the final prediction  for a given
input x by considering the most frequent output among the
individual tree predictions.

2) DECISION TREE (DT)

DT classifier is a widely used machine learning algorithm
known for its interpretability and versatility. The algorithm
creates a tree-like structure where each internal node
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represents a decision based on a particular feature, and each
leaf node corresponds to the predicted class label [27].

One of the essential aspects of Decision Trees is the
splitting criteria, which determines the optimal feature and
threshold for partitioning the data at each decision node.
Common splitting criteria include Gini impurity and entropy.
Entropy, denoted by S, is a measure of disorder or impurity
in a set of class labels. The entropy formula is given by:

Entropy(S) = — > _ pilog,(pi) )

i=1

Here, ¢ represents the number of classes, and p; is the
proportion of samples belonging to class i in the set S.
The lower the entropy, the more homogeneous the class
distribution.

Information Gain is another key concept used in Decision
Trees, representing the reduction in entropy after a split. It is

65786

calculated as the difference between the entropy of the parent
set and the weighted sum of entropies of child sets:

Z S|
vevalues(A) |S|

- Entropy(S,) 3)

Information Gain = Entropy(S) —

Here, A is the feature being considered for the split,
values(A) are its possible values, and S, is the subset of
samples for which feature A takes the value v. Maximizing
Information Gain leads to more effective feature selection.

Decision Trees may suffer from overfitting, especially with
deep trees capturing noise in the training data. Pruning is
a technique used to address this by removing unnecessary
branches. Random Forests, an ensemble of Decision Trees,
further enhance performance and robustness.

In conclusion, Decision Trees offer simplicity, inter-
pretability, and versatility in handling various data types.
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However, careful consideration of hyperparameters, such as
tree depth, is necessary to balance model complexity and
generalization.

3) K-NEAREST NEIGHBORS CLASSIFIER(KNC)

KNC is the most basic and ancient method in supervised
ML. It is capable of solving both classification and regression
problems, making it an adaptable approach in statistical
learning [28]. It operates on the principle of the distance
between data locations, and separate data are categorized with
one another based on this. KNC is calculated by the Euclidean
distance or Manhattan distance between two points where
one is new data points A(xy, y;) and the other is previously
accessible data points B(xz, y2) The equation 4 represents the
fundamental formula for KNC:

dex, y) = (1 = 22 + (1 — y2) 4)

4) RIDGE CLASSIFIER(RC)
The RC is a linear classification algorithm that addresses
multicollinearity and overfitting in linear regression models.
It is particularly useful when dealing with datasets with
highly correlated features [29].

The Ridge Classifier introduces a regularization term to the
standard linear regression objective function. The objective
function for the RC is given by:

o 15 -
Objective(w, b) = —[[wl3 + C Zl:
=

max (0, 1 — yiwTx; + b)) )

Here, w represents the weight vector, b is the bias
term, x; and y; are the features and labels, and C means
regularization strength. Moreover, the first term, %||w||§,
is the L2 regularization term, penalizing large values of
weights to prevent overfitting.

The second term is the hinge loss, which measures
the classification error. It encourages correct classification
by minimizing the margin violation for each sample. The
regularization parameter C controls the trade-off between
fitting the training data and preventing overfitting. The Ridge
Classifier is especially effective when dealing with datasets
where features are correlated, as it tends to distribute the
weights more evenly among correlated features.

The Ridge Classifier is a valuable tool for linear classifi-
cation tasks, providing a balance between fitting the data and
controlling overfitting through regularization.

5) GRADIENT BOOSTING(GB)

GB classifiers are an ensemble learning method and a group
of ML algorithms that combine many weak algorithms to
create a strong predictive model and work with loss functions,
weak learner, and adaptive model [30]. The loss function
is the main difference between GB regression and GB
classification. If the target attribute is binary, the GB classifier
can be applied. By mitigating the over-fitting problem and
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doing regularization, the performance of the GB classifier
will increase. The algorithm can be defined as;
Initialize the model:

Fo(x) = mean(y;) (6)

For t = 1 to T (number of iterations):
1) Compute the pseudo-residuals:

o _ _ L0 Fa)
' 9F (x;)
2) Fit a weak learner (e.g., DT) to predict the

pseudo-residuals rl.(t).
3) Update the model:

Fi(x) = Fi—1(x) + v - hy(x) ®)

(N

F(x)=F—1(x)

where v is the learning rate and 4, (x) is the weak learner
at iteration 7.
The final prediction:

T
F(x) = Fox) + D v - h(x) ©)

t=1

6) GAUSSIAN NAIVE BAYES (GNB)
GNB is a classification algorithm based on the Naive Bayes
theorem. It is specifically designed for handling continuous
data [31], such as real-valued features, and assumes that the
data follows a Gaussian (normal) distribution. This algorithm
is a variation of the Naive Bayes classifier, which is a
probabilistic ML algorithm used for classification tasks. GNB
formula is as follows:

The probability of class Ci given the features x, x2, ..., X,
can be calculated as:

1 n
P(Chlx1, 32, ) = — - P(Ci) - Hp(xuck) (10)

where:

e P(Cilx1, x2, ..., xy,) is the posterior probability of class
Cy given the features.

o P(Cy) is the prior probability of class Cy.

o P(x;|Cy) is the probability of observing feature x; given
class Cy, typically modeled as a Gaussian distribution.

e Z known as a normalization constant.

The normalization constant Z is often not explicitly
calculated since it is the same for all classes, and it’s
sufficient to compare the unnormalized probabilities to make
a classification decision [32].

7) LONG SHORT-TERM MEMORY(LSTM)

LSTM represents a distinct type of RNN with the ability
to acquire knowledge of extended temporal dependencies
[33]. They were introduced to overcome the limitations of
traditional RNNs, which tend to forget earlier information
in the sequence over time (vanishing gradient problem).
LSTMs are designed to remember information for long
periods, which is crucial in many complex tasks, including
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driver behavior detection. The model architecture of LSTM
is shown in Figure 4. Moreover, an LSTM unit can be defined
as:

fr =o(Wr - [h—1, x¢] + by)

ir =0(W;-[h—1,%]+ b))

C; = tanh(We - [hy—1, ;] + bc)

Cr=f%C_1+ixC

0r =0 (Wo - [hi—1, %] + by)

h; = o; * tanh(C;) (11
where:

o f, 1, 0; are the forget data, input data, and output data
gates, respectively.

o W and b are the weights data and biases for each gate.

« o is the sigmoid values function.

« tanh is the hyperbolic tangent function.

Layer Com ponentwise

FIGURE 4. LSTM neural network model architecture.

CopY  concatenate

b,

8) CONVOLUTIONAL NEURAL NETWORK(CNN)
CNNs are DL models designed for visual data analysis,
leveraging a hierarchical structure of interconnected layers to
automatically learn features. Convolutional Neural Networks
(CNNSs) have brought about a transformation in computer
vision applications such as image recognition, object detec-
tion, and segmentation. Their proficiency in learning intricate
spatial hierarchies and patterns has made them indispensable
across a wide range of domains, spanning from healthcare
to autonomous vehicles [34]. Their efficacy stems from
parameter sharing, enabling efficient feature extraction and
learning representations directly from raw data.The model
architecture of CNN is shown in Figure 5 and the architecture
of a basic CNN [35] involves the following layers:

« Input Layer: The input to the CNN is typically an image

represented as a matrix:

x1,1 x1,2 xl_W

X2,1 X22 ... X2 W
Input = . .

xH,l xH’z e xH,W
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Here, H and W denote the height and width of the input
image.

« Convolutional Layer The convolutional layer performs
convolutions on the input using learnable filters (ker-
nels) to produce feature maps:

Output(i, j, k)
F K K

- a(z > (puti +m— 1,

=1 m=1n=1
j4n—1,1) x Weight(m, n, k, 1)) ¥ Bias(k))
(12)

where F is the number of input channels, K is the kernel
size, o is the activation function, and Bias(k) is the bias
term.

« Pooling Layer Pooling layers downsample the feature
maps to reduce spatial dimensions:

Output(i, j, k) = Pooling_Function(Input(i, j, k)) (13)

o Fully Connected Layer The fully connected layer
connects all neurons from the previous layer to the next
layer:

Output = o (Weight x Input + Bias) (14)

o Output Layer Finally, the output layer produces the
final predictions or classifications.

D. HYPERPARAMETER TUNING

Finding the best possible values for model hyperparameters
that have the potential to have a major influence on
the performance of the model is what hyperparameter
optimization is all about [36]. Through the procedure of
fine-tuning, we optimized the hyperparameter to enhance the
performance of the models that were applied. When it comes
to increasing the performance outcomes of ML approaches
for identifying botnet assaults, the findings of our study
underscore the significance of hyperparameter optimization.
Based on the best-fit chosen hyperparameter analysis, the
results of our investigation are presented in Table 3.

TABLE 3. Model architecture and parameters tuning.

Technique Hyperparameters

RF n_estimators=100, criterion="gini”, max_depth=20,
max_features="sqrt”, min_samples_split=2

DT criterion="gini”’, max_depth=300, splitter="best”

KNC n_neighbors=2, leaf_size=30, weights=‘uniform’, met-
ric="minkowski’

RC alpha=1.0

GB n_estimators=100, learning_rate=0.1, max_depth=3

GNB priors=None, var_smoothing configured=1e-09

LSTM optimizer = adam’, activation="softmax’, epochs=10

CNN filter_size=(3,3), num_filters=64, activation="relu’, op-
timizer="adam’
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FIGURE 5. Modified CNN architecture for probabilistic features input.

E. NOVEL PROPOSED FEATURES EXTRACTION METHOD
The novel RKnD probabilistic feature extraction method we
propose is designed for meticulous driver behavior detection,
as depicted in the architectural diagram. Figure 6 illustrates
the novel proposed probabilistic feature extraction architec-
ture. This method synergistically combines the proficiency
of advanced ML approaches (RF, KNC, and DT) to form a
unified features engineering system. Moreover, we applied
different combinations of ML models for probabilistic feature
engineering before selecting the RKnD approaches but
the RKnD technique provided the best performance. For
example, if we consider different data points, denoted as
I =iy,i,...,Ii,,along with a corresponding group of labels,
denotedas L =11, I, ..., l,. Each label /; is a binary variable
that shows whether a specific target feature is present or not.

Consider a dataset comprising a set of input data points,
denoted as I = iy, is, ..., iy, along with a corresponding set
of binary labels, denoted as L = [y, I, ..., I,. Each label [;
indicates the class attribute.

ML models employed to predict the probability of these
labels given the input data, P(L;|i;), resulting in an array
of probabilities [p1, p2, ..., pnl, where p; = f(i;). These
probability values serve as features for training and analyzing
ML and deep learning (DL) models. Further, statistical
properties such as the mean and variance of the probability
distribution, extracted through a function G(p), or direct
utilization of probabilities through a function H(L, p),
individually or in combination with others, can contribute to
the final feature set [22]:

F=f,f,....fn, wheref; = G(p) or H(X, p). (15)

Algorithm 1 illustrates the systematic flow of the proposed
approach, detailing each step in the process.

IV. RESULTS AND DISCUSSION

A comparison and analysis of the outcomes that are achieved
via the use of ML and DL strategies is presented in this
section. This section gives a full overview of the approaches
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FIGURE 6. Architecture of RKnD feature extraction method.

Final features Set

that are implemented by offering a detailed discussion of the
performance metrics of each model.

A. SETUP OF EXPERIMENT

The experimental setup used to develop the applied ML
and DL techniques is discussed here. Data manipulation and
preprocessing tasks were adeptly handled using the Pandas
library, version 1.4.0, enabling efficient data operations
essential for preparing the Smartphone Motion Sensor dataset
for analysis. For the ML model training and evaluation,
we utilized the Scikit-learn library (version 1.0.2), which

65789



IEEE Access

M. S. Islam et al.: Elevating Driver Behavior Understanding With RKnD

Algorithm 1 Proposed RKnD Feature Engineering
1: Input: Smartphone Motion Sensor Dataset
2: Output: Driver Behavior Prediction | Normal, Aggres-
sive, and Slow

3: Initialize training and testing sets:

e Tpr < RFyaining(TrS) /I Tys in Smartphone
Motion Sensor Dataset, here 7rS is the training set
of the dataset.

o Tgkne < KNCTraining(TrS)

o Tpr < DTTraining(TrS)

4: for i in testing set 7eS do
Sensor Dataset

e RF, < Predictgr (i)
for instance i.

e KNC, < Predictgnc(i)
prediction for instance i.

e DT, < Predictpr(i)
for instance i.

/I TeS in Smartphone Motion

/I RF), is the RF prediction
/I KNCp is the DT

/I DT, is the DT prediction

5: end for
6: Combine predictions to form the final prediction:
o Finalpreq < MajorityVote(RF,, KNC,, DT,) [/
Finalpeq is either Normal, Aggressive or Slow based
on majority voting.

is acclaimed for its comprehensive suite of algorithms and
tools designed for machine learning applications. The devel-
opment and training of DL models were facilitated through
TensorFlow, version 2.9.0, utilizing its expansive module
API for the construction of sophisticated neural network
architectures. Our computational experiments capitalized on
the robust capabilities of Google Colab and Kaggle Kernel
platforms, which provided access to advanced computing
resources, including a GPU backend. The GPU utilized for
our experiments was the Nvidia Tesla T4 GPU, a choice moti-
vated by its enhanced performance characteristics suitable for
the demands of high-volume data processing and complex
model computations. This experimental setup was supported
by 16 gigabytes of Random Access Memory (RAM) and
100 gigabytes of disk space, ensuring ample resources for the
seamless execution of our research activities.

B. EVALUATION MATRICS

In assessing the efficacy of these methodologies, we closely
examine metrics such as accuracy, precision, recall, and the
F1 score. These pivotal metrics enable us to gauge the per-
formance of the chosen models effectively. In classification,
True Positive (TP) represents instances correctly identified as
positive, while False Positive (FP) signifies incorrect positive
predictions. True Negative (TN) denotes instances correctly
identified as negative, and False Negative (FN) indicates
instances incorrectly predicted as negative. These metrics
play a crucial role in assessing a model’s performance, aiding
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in the computation of accuracy, precision, recall, f1 score, and
other evaluation measures [37].

Number of Correct Predictions
Accuracy = — (16)
Total Number of Predictions

In this equation, the “Number of Correct Predictions”
represents the count of correctly classified instances, and
the “Total Number of Predictions” is the total number of
instances in the dataset that were classified. The accuracy is a
measure of the model’s ability to correctly classify instances
and is typically expressed as a percentage [38].

To calculate the precision metric, the total number
of classified positive samples is divided by the number
of correctly classified positive instances. The formula to
compute this metric is expressed as follows:

.. TP
Precision = ——— a7
TP + FP

Recall is a metric in classification that measures true positives
correctly identified from all actual positives. It shows the
model’s ability to detect all positive instances.

TP
Recall = —— (18)
TP + FN

The F1 score is a combination of precision and recall to
measure a model’s overall performance. It is calculated using
the harmonic mean, which gives more weight to low values.

2 x Recall times Precision
Fl-score = — (19)
Recall + Precision

C. PROPOSED MODELS RESULTS WITH ORIGINAL
FEATURES

The section provides an in-depth performance analysis of
both ML and DL models, utilizing the dataset’s original
features as input. This comprehensive evaluation assesses key
performance metrics, including accuracy, precision, recall,
and Fl-score, to gauge the effectiveness of each model.
To offer a more comprehensive view, the section presents
matrix plots that visually depict the performance results.
Furthermore, it delves into Cross-Validation performance
and computational runtime aspects, enhancing the overall
understanding of model capabilities and efficiency.

1) RESULTS WITH ML MODELS

Table 4 provides a comprehensive assessment of ML models,
employing the original dataset features. The evaluation cen-
ters on key performance metrics: fl-score, recall, precision,
and accuracy, crucial for assessing the effectiveness of ML
models. A detailed analysis indicates diverse performance
levels among models, including RF, DT, KNC, RC, GB,
and GNB. In this analysis, the RF model stands out,
attaining a commendable accuracy score of 0.91. This
score, although significant, is not the apex of what can be
achieved, suggesting room for further refinement to optimize
performance in the context of the study’s objectives. The
RF model’s superiority is further underscored by its high
recall and precision scores across all classes, indicating its
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TABLE 4. Evaluating the performance of different ML approaches across
diverse metrics.

Model Accuracy| Class Precision| Recall | F1-score
RF 0 0.85 0.96 0.90
0.91 1 0.96 0.85 0.91
2 0.90 0.90 0.92
mean 0.91 0.91 0.91
DT 0 0.40 0.39 0.42
0.42 1 0.44 0.43 0.43
2 0.42 0.40 0.42
mean 0.42 0.41 0.42
KNC 0 0.44 0.43 0.46
0.46 1 0.48 0.45 0.45
2 0.46 0.47 0.47
mean 0.46 0.45 0.46
RC 0 0.46 0.45 0.48
0.48 1 0.51 0.49 0.49
2 0.51 0.49 0.49
mean 0.48 0.48 0.49
GB 0 0.86 0.97 0.92
0.92 1 0.97 0.89 0.92
2 0.97 0.89 0.92
mean 0.92 0.93 0.92
GNB 0 0.66 0.77 0.72
0.72 1 0.77 0.69 0.72
2 0.77 0.69 0.72
mean 0.72 0.73 0.72

robustness in identifying a substantial number of positive
instances accurately. Conversely, models like DT and KNC
show subpar performance, with DT scoring as low as 0.42 in
accuracy, and KNC at 0.46. These scores are indicative of
a need for substantial improvements or a reconsideration of
the model selection. RC and GNB models exhibit moderate
performance, with GNB scoring an average accuracy of
0.72, highlighting the potential for enhancements in these
models. On the higher end of the spectrum, the GB model
closely follows RF in effectiveness, achieving an impressive
accuracy of 0.92. This indicates that while RF is a strong
performer, GB also holds substantial potential in this domain.
The analysis illustrates that while some models like RF
and GB show promising results, others like DT and KNC
significantly lag in effectiveness. This disparity accentuates
the importance of careful model selection and the potential
need for feature engineering to achieve optimal results in
ML applications. The overall findings from this study point
towards an ongoing necessity to refine and enhance the
performance of ML models in the pursuit of achieving the
highest level of accuracy and efficiency. Figure 7 shows this
performance more intuitively.

2) RESULTS WITH DL MEDELS

In Table 5 the performance analysis of the DL-based LSTM
and CNN models for unseen testing data is presented. The
LSTM model achieved an accuracy of 94%, with consistent
precision, recall, and Fl-score values of 0.94 across all
three classes (0, 1, and 2). In contrast, the CNN model
secured a 93% accuracy, with precision and recall scores
hovering around 0.93 and an Fl-score of 0.92 for class 0.
Despite the commendable average accuracy, both models
exhibited variability in class-specific metrics, indicating

VOLUME 12, 2024

90

Accuracy - 42 46 48 91
80
F1 Score- 42 46 49 91
2 70
=
o
=
Precision- 41 45 49 91 L 60
-50
Recall- 42 46 48 91

&

-

¢

Classifier

FIGURE 7. Performance analysis of the ML models with original features.

TABLE 5. Evaluating the performance of different DL approaches across
diverse metrics.

Model Accuracy| Class Precision| Recall | F1-score
LSTM 0 0.94 0.94 0.94
0.94 1 0.93 0.95 0.93
2 0.95 0.93 0.95
mean 0.94 0.94 0.94
CNN 0 0.93 0.93 0.92
0.93 1 0.92 0.92 0.92
2 0.94 0.94 0.95
mean 0.93 0.93 0.93

== LSTM == CNN

Accuracy
100

F1 Socre Precision

Recall

FIGURE 8. Performance analysis of the DL models with original features.

potential challenges in certain driver behavior detections.
From Figure 8 the radar chart shows clearly which model
performs better in certain areas.

3) K-FOLD CROSS-VALIDATION AND COMPUTATIONAL
COMPLEXITY BY RUNTIME WITH ORIGINAL FEATURES
K-fold cross-validation is crucial to assess model general-
ization and robustness by providing a more reliable estimate
of performance across different data splits, reducing the
risk of overfitting compared to a single evaluation in the
previous subsection. Table 6 displays the results of a 10-fold
cross-validation for each method. The RF method stands out
with an impressive accuracy of 0.9095 and a low standard
deviation of 0.0057, indicating consistent performance across
different subsets. The DT model shows a moderate accuracy
of 0.4159 with a standard deviation of 0.0038. The KNC and
RC exhibit accuracies of 0.4521 and 0.4927 with standard
deviations of 0.0070 and 0.0026, respectively, suggesting
a reasonable level of consistency. The GB model has an
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TABLE 6. Cross-Validation of performance analysis of proposed methods

with original features.

Method | K-fold Accuracy Standard
devia-
tion

RF 10 0.9095 0.0057

DT 10 0.4159 0.0038

KNC 10 0.4521 0.0070

RC 10 0.4897 0.0066

GB 10 0.9221 0.0023

GNB 10 0.7167 0.0031

LSTM 10 0.9413 0.0019

CNN 10 0.9324 0.0021

TABLE 7. Runtime Computations of proposed models with original

features.
Method Runtime
Computations
(Seconds)
RF 50.9312
DT 0.3443
KNC 0.1052
RC 2.2721
GB 12.8105
GNB 0.1564
LSTM 157.2025
CNN 125.4331

accuracy of 0.7167 and a higher standard deviation of
0.0031, which might indicate variability in performance
across the folds. The DL methods, LSTM and CNN,
show high accuracies of 0.9413 and 0.9324 with very low
standard deviations of 0.0019 and 0.0021, respectively, which
highlights their robustness in cross-validation.

In Table 7 the computational complexity is represented
by the runtime in seconds required to complete the com-
putations. The RF method is relatively fast, taking only
0.3443 seconds. The DT method is even quicker, requiring
a mere 0.0512 seconds. The KNC and RC are also efficient,
with runtimes of 0.1052 and 2.2721 seconds, respectively.
The GB method takes a bit longer, with a runtime of
12.8105 seconds. In contrast, the LSTM and CNN models,
which are computationally more intensive due to their
DL architecture, take significantly longer with runtimes of
157.6025 and 125.4331 seconds, respectively. Combining the
findings from both tables, it is evident that while DL methods
like LSTM and CNN offer higher accuracy, they come at
the cost of increased computational complexity and runtime.
The data suggests that there is a trade-off between accuracy
and runtime, and the choice of method may depend on the
specific requirements of the application in terms of speed and
performance.

D. RESULTS WITH NOVEL RKnD FEATURE ENGINEERING

This section introduces a method for analyzing the per-
formance of ML and DL models, similar to the previous
subsection. The technique involves using derived features
as input, with novel RKnD feature engineering techniques.
To provide a more comprehensive view of the results,

65792

TABLE 8. Evaluating the performance of different ML models of RKnD
features.

Model Accuracy| Class Precision| Recall | F1-score
RF 0 0.97 0.97 0.96
0.97 1 0.98 0.94 0.98
2 0.97 0.98 0.97
mean 0.97 0.96 0.97
DT 0 0.90 0.89 0.92
0.92 1 0.94 0.93 0.93
2 0.92 0.90 0.92
mean 0.92 0.91 0.92
KNC 0 0.94 0.93 0.96
0.96 1 0.98 0.95 0.95
2 0.96 0.97 0.97
mean 0.96 0.95 0.96
RC 0 0.96 0.95 0.98
0.98 1 1.00 0.99 0.99
2 1.00 0.99 0.99
mean 0.98 0.98 0.99
GB 0 0.98 0.99 0.98
0.98 1 0.97 0.99 0.98
2 0.99 0.97 0.98
mean 0.98 0.98 0.98
GNB 0 0.93 0.93 0.92
0.94 1 0.92 0.95 0.92
2 0.97 0.94 0.95
mean 0.94 0.94 0.93

the section presents matrix plots that visually depict
the performance. Additionally, it explores Cross-Validation
performance and computational runtime aspects, which
improve the overall understanding of model capabilities and
efficiency. Moreover, the results are compared with those of
the previous section.

1) RESULTS WITH ML METHODS

According to Table 8, the use of RKnD probabilistic
features technique has led to an overall improvement in the
performance of the models. For instance, the RF model,
which previously scored an accuracy of 0.91 with the original
features, now exhibits a perfect accuracy score of 0.97 with
RKnD features. This not only highlights the effectiveness
of RKnD features in enhancing model performance but also
implies that the ceiling of potential performance has been
raised substantially. The DT and KNC models, previously
lagging with accuracy scores of 0.42 and 0.46 respectively,
have made significant strides with RKnD features, now
boasting an accuracy of 0.92 for DT and 0.96 for KNC. This
dramatic increase is indicative of the transformative impact of
RKnD features on models that once underperformed. The RC
and GNB models have also benefited from the application of
RKnD features, with RC showing an exceptional mean accu-
racy of 0.98, and GNB improving to 0.94. This enhancement
demonstrates that RKnD features have the potential to elevate
moderate-performing models to levels of high accuracy.
Moreover, the GB model, already effective with an accuracy
of 0.92 using original features, maintains this high standard
accuracy score of 0.98 with RKnD features, emphasizing the
consistent performance of this model regardless of the feature
set used. To deliver a more comprehensive understanding
Figure 9 shows different model’s performance.
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FIGURE 9. Performance analysis of the ML models after applying
proposed feature engineering.

TABLE 9. Evaluating the performance of different DL approaches across
diverse metrics.

Model Accuracy| Class Precision| Recall | F1-score
LSTM 0 1.00 0.99 0.99
0.99 1 1.00 1.00 1.00
2 1.00 1.00 1.00
mean 1.00 0.99 0.99
CNN 0 0.99 0.99 0.99
0.98 1 0.98 0.98 0.99
2 0.97 0.98 0.97
mean 0.98 0.98 0.98

Overall, the adoption of RKnD feature engineering has
not only improved the metrics for each model across the
board but also narrowed the performance gap between them.
The increased accuracy, precision, recall, and F1 scores serve
as robust indicators that RKnD features engineering is a
critical advancement in optimizing ML models for superior
predictive performance

2) RESULTS WITH DL METHODS

Table 9 presents the performance of two DL models With
RKnD features, the LSTM model has achieved an impressive
accuracy of 0.99, an increase from the 0.94 accuracy
obtained with the original features. This perfect score is
reflected across all classes for precision, recall, and F1-score,
highlighting the LSTM’s enhanced ability to consistently and
accurately predict all classes after applying RKnD features.
Similarly, the CNN model has shown an improvement in
accuracy, going from 0.93 with the original features to
0.98 with RKnD features. The precision and recall for all
classes have seen a uniform increase, achieving 0.99 for class
0 and maintaining high scores for classes 1 and 2. The mean
values of precision, recall, and Fl-score for CNN have all
risen to 0.98, demonstrating the model’s increased reliability
and balanced performance across classes.

When compared to their performance with the original
features, where both LSTM and CNN models exhibited some
variability in class-specific metrics, the results with RKnD
features suggest a more robust and consistent capability
in detecting diverse driver behaviors. The LSTM model,
in particular, has reached a level of performance that can be

VOLUME 12, 2024

== LSTM == CNN

Accuracy
100

Recall

FIGURE 10. Performance analysis of the DL models after applying
proposed feature engineering.

considered near-perfect, while the CNN has closed the gap
substantially, showing that both models benefit significantly
from the sophisticated feature engineering provided by
RKnD. The radar chart in Figure 10 shows clearly that both
models have achieved high performance as they covered a
vast area in the radar chart.

3) K-FOLD CROSS-VALIDATION AND COMPUTATIONAL
COMPLEXITY BY RUNTIME WITH RKnD FEATURES
Table 10 presents the results of a 10-fold cross-validation.
The RF model achieves an accuracy of 0.9695 with a
standard deviation of 0.0015, indicating high consistency
in performance. The DT has an accuracy of 0.9242 with
a standard deviation of 0.0018, while the KNC scores an
accuracy of 0.9592 with a standard deviation of 0.0010.
The RC achieves an accuracy of 0.9897 with a notably
low standard deviation of 0.0011, suggesting highly stable
performance across folds. The GB and GNB models show
accuracies of 0.9821 and 0.9447 with standard deviations of
0.0013 and 0.0023, respectively. For the DL methods, the
LSTM network achieves an accuracy of 0.9963 with a very
low standard deviation of 0.0003, and the CNN reaches an
accuracy of 0.9854 with a standard deviation of 0.0008.
Table 11 details the computational time each method takes
to execute. The RF method requires 0.2943 seconds, and the
DT method takes only 0.1493 seconds. KNC shows a runtime
of 0.1742 seconds, and RC needs 1.2351 seconds. The GB
model takes longer with a runtime of 10.8105 seconds. The
DL models, LSTM and RNN, take considerably more time
at 123.1025 and 112.4351 seconds, respectively. Comparing
the performance and computational complexity of these
models with RKnD features to those with the original
features, we observe substantial improvements. Notably, the
accuracies of all models with RKnD features have increased,
with LSTM showing an exceptional accuracy improvement
from 0.9413 to 0.9963. Additionally, the standard deviation
of performance metrics across folds has decreased for all
models, indicating more stable and reliable performance
when using RKnD features. From a computational complex-
ity standpoint, while the runtime for DL models remains
high, there is a slight improvement in the efficiency of
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TABLE 10. Cross-Validation of proposed methods with RKnD probabilistic
features.

Method K-fold Accuracy Standard
devia-
tion

RF 10 0.9695 0.0015

DT 10 0.9242 0.0018

KNC 10 0.9592 0.0010

RC 10 0.9897 0.0011

GB 10 0.9821 0.0013

GNB 10 0.9477 0.0021

LSTM 10 0.9963 0.0003

CNN 10 0.9854 0.0008

TABLE 11. Runtime computations of various methods.

Method Runtime
Computations
(Seconds)
RF 0.4093
DT 0.2943
KNC 0.1142
RC 1.2731
GB 10.8105
GNB 0.1264
LSTM 123.1025
RNN 112.4531

LSTM, which has decreased from 157.6025 seconds to
123.1025 seconds when using RKnD features. This suggests
that RKnD features not only enhance model accuracy but also
can contribute to more efficient model training and validation
processes.

E. COMPARISON BETWEEN ORIGINAL AND PROPOSED
RKnD PROBABILISTIC FEATURES BY SCATTER PLOTS

The comparison between the original features and the RKnD
probabilistic features is visually illustrated in the provided
images, Figure 11. These figures depict 3D scatter plots of
data points classified into three distinct target classes.

In Figure 11, which represents the original features in
the first part, the data points are spread out but with
considerable overlap between the classes, as evidenced by
the interspersed blue, orange, and yellow points. This overlap
indicates a degree of ambiguity in class separability, which
could be the reason for the lower performance metrics
observed with the original features in the ML models.
The less distinct clustering of the data points can lead
to decreased model accuracy, as the model may struggle
to define clear decision boundaries between the classes.
Contrastingly, In the second part of Figure 11 showcases
the RKnD features and demonstrates a stark improvement in
class separability. The clusters are much more defined, with
each class forming a distinct group. The blue, orange, and
yellow points are segregated into tighter clusters, reducing the
overlap and thus potentially decreasing the misclassification
rate. This enhanced separation is likely to contribute to the
higher accuracy and performance metrics of the ML and
DL models when RKnD features are applied. The distinct
clustering observed in the RKnD features suggests that these
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features capture the underlying structure of the data more
effectively, allowing models to learn more discriminative
patterns. The RKnD features seem to provide a transformed
feature space where the target classes are linearly separable
to a higher degree, which is beneficial for both traditional
ML algorithms and DL architectures in achieving higher
precision and recall rates. In summary, the visual comparison
clearly indicates the superiority of RKnD probabilistic
features over original features in terms of facilitating better
class discrimination, which directly correlates with the
improved performance of predictive models utilizing these
features.

F. COMPARISON BETWEEN ORIGINAL AND PROPOSED
RKnD PROBABILISTIC FEATURES BY CONFUSION MATRIX
The comparison of confusion matrices in 12 and 13
between original features and RKnD features for proposed
ML and DL models reveals substantial improvements in
classification accuracy with RKnD features. The RF model
shows a notable increase in TP and a decrease in misclas-
sifications, with the TP for class O rising from 444 to 459.
The DT and KNC models demonstrate more pronounced
enhancements, particularly KNC, with TPs for class 1 soaring
from 219 to 454. RC exhibits dramatic gains in predictive
accuracy, and GB sees a slight uptick in performance. The
GNB model’s TP rate for class 2 significantly increases,
indicating a better grasp of the class by the model.
The DL models, LSTM, and CNN, already performing
exceptionally with original features, achieve marginal yet
meaningful improvements, achieving near-perfect classi-
fication with RKnD features. Overall, RKnD features
have markedly advanced model performance, emphasiz-
ing the pivotal role of sophisticated feature engineering
in ML.

G. EVALUATIONS AGAINST PRIOR WORKS

The comparative analysis of our findings in relation to studies
that are recognized as state-of-the-art is presented in Table 12.
This review considered a broad spectrum of cutting-edge
methods developed in the past year. Notably, the performance
scores of various current approaches display differences, with
the lowest accuracy score recorded at 97.1%, suggesting
room for improvement. Our proposed RKnD approaches
stand out significantly, achieving the maximum accuracy
score of 99.63%. This underscores its superiority over other
early detection of driver behavior methods. The results
highlight the substantial progress RKnD has made compared
to other methodologies currently employed in the field.

H. DISCUSSION

The paper discusses the importance of early detection of
driver behavior for enhancing road safety, with a focus on
utilizing smartphone sensors for data acquisition. It intro-
duces a novel approach called RKnD for driver behavior
detection, which combines RF, KNC, and DT algorithms. The
key discussions in the paper encompass the methodology and
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FIGURE 12. Models confusion matrix with original features.

results of the proposed RKnD model on both the original and
novel RKnD feature engineering, as well as the superiority
of RKnD feature engineering over the original features.
The methodology section outlines the use of SMOTE to
address data imbalance and k-fold cross-validation to ensure
model consistency and accuracy across different datasets. The
authors emphasize the need for reliable techniques to detect
and recognize driver behavior, citing the significant impact
of driver distractions on road accidents. The RKnD approach
is highlighted as a pioneering solution in the field of smart
transportation systems, leveraging ML and DL techniques
in a practical and accessible manner. The paper presents
the results of their model, which achieved a remarkable
accuracy rate of 99.63% in detecting driver behaviors. The
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precision and accuracy of our model underscore its viability
for real-life applications, particularly in the context of smart
transportation systems. Furthermore, the paper discusses
related literature, summarizing various approaches and meth-
ods used in driver behavior analysis. These studies include the
use of smartphone inertial sensors, high-resolution driving
behavior data analysis, hybrid deep learning models, and
the integration of in-vehicle and external sensors. The paper
concludes that detecting driver behavior early is crucial
and introduces the RKnD strategy as a promising way to
do so. By combining RF, KNC, and DT algorithms, the
RKnD strategy outperforms other methods of driver behavior
detection, highlighting its potential to improve road safety
and prevent accidents.
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TABLE 12. State of the art in early detection of driver behavior.
Ref. Models Approach Result
[10] Deep CNN Serial-Feature - Network (SF-Net) - using | o, 4, accuracy, 98.4% recall
smartphone inertial sensors
[12] CNNs, RNNs, DNNs ?ybrlq DL classifier for transportation mode H1gh accuracy and earliness in mode de-
etection tection
[15] Artificial Neural Net- ANN for monitoring motorcyclist behavior 96.29% accuracy in behavior recognition
work (ANN) using smartphone sensors
CNN  with  data Analvsis of vehicle traiectory data for inat- 92.27% accuracy in inattention detec-
[19] augmentation, LSTM- -y . jectory tion, 91.67% in abnormal driving predic-
tention detection .
based model tion
20] Deep neural network- .IMI.J-based real-time driving behavior mon- Recognition rates over 97%
based approach itoring
[22] RF Ensemble feature engineering approach Accuracy rates of 99%
;‘;ﬁ’;m RKnD RF, KNC, DT, Feature Engineering Accuracy 99.63 %

V. CONCLUSION AND FUTURE DIRECTION

This study introduces RKnD, a groundbreaking feature
engineering that amalgamates the strengths of RF, KNC,
and DT networks to revolutionize early detection of
driver behavior. This model stands out for its exceptional
performance, showcasing a remarkable enhancement over
traditional approaches. Rigorous testing indicates that RKnD
significantly surpasses existing models in various perfor-
mance metrics for identifying normal, aggressive, and slow
behaviour. This high level of efficiency marks a pivotal
advancement in the field of road accidents, suggesting that
the combination of ML techniques is not only viable but also
highly effective in tackling contemporary driver behavior.
The success of RKnD can be attributed to its innovative
design, leveraging the individual strengths of RF, KNC,
and DT. RF excellence in processing image data, KNC’s
capability to classify data based on similarity measures,
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and DT’s proficiency in decision-making through a tree-like
model, and collectively contribute to RKnD’s robustness and
accuracy. This synergy enables the model to adeptly handle
the complexities and nuances of smartphone motion sensor
data, distinguishing between benign and malicious activities
with remarkable precision. The RKnD model shows great
promise in detecting and classifying driver behaviour.

There are several potential avenues for future research.
Firstly, it is imperative to refine the algorithmic structure of
RKnD to improve its computational efficiency and suitability
for real-time applications. This includes streamlining the
model to reduce computational burden while maintaining or
enhancing its detection capabilities. Secondly, broadening
the scope of datasets, particularly those encompassing
diverse behavior types, is essential to evaluate the model’s
adaptability and efficacy across different contexts of road
accidents. Thirdly, integrating advanced DL techniques like
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Self-Organizing Maps (SOMs) could bolster the model’s
capacity to recognize intricate and evolving behavior pat-
terns. Lastly, field-testing RKnD in real-world scenarios is
crucial to assess its practical usefulness and identify any
potential challenges or constraints not apparent in controlled
settings.
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