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ABSTRACT Fusion of multi-source information is one of the primary methods to alleviate data sparsity in
recommender systems (RS). Hypergraphs have shown remarkable capabilities in dealing with the diversity
of multi-source information, especially in modeling high-order user-item relationships. However, most
hypergraph research focuses on constructing hypergraphs using a particular type of hyperedge, which
might not fully capture the high-order implicit associations among heterogeneous information sources.
Furthermore, existing Hypergraph Attention Networks (Hyper-GAT), mainly emphasizes on information
propagation between nodes and hyperedges, insufficiently exploring density information within complex
hyperedges. Moreover, when hypergraphs combine data from multiple heterogeneous graphs, redundant
information from different viewpoints can reduce the effectiveness of multivariate modeling hyperedges.
Thus, we propose a recommendation algorithm based on multi-source heterogeneous hypergraphs and con-
trastive learning (MHCLR), which improves recommendation accuracy through multi-source information
fusion and higher-order information correlation. First, multi-source heterogeneous hypergraphs (MHC) are
generated by combining distance, behavior, attribute, and prediction hyperedges. We mine associations
among multi-source information, enhancing high-order semantic connections among users and items. Then,
a Spatial Density Hypergraph Attention Network (SD-HGAT) is proposed based on composite hyperedges,
which enriches the user and item embedding representations by focusing on nodes and hyperedges density.
Finally, we design a multiple cross view contrastive learning (MCC) that compares views centered around
knowledge graphs with hypergraphs, improving the accuracy of multivariate relationship modeling and
enabling multi-level user profiling construction. It is observed that MHCLR outperforms the baselines in
terms of Recall, Precision, and NDCG based on the experimental results by Yelp, Last-FM, and Douban.

INDEX TERMS Multi-source heterogeneous hypergraph, hypergraph attention network, contrastive learn-
ing, recommender system.

I. INTRODUCTION
The digital age has led to an explosion of information, causing
information overload and making it hard to meet users’ per-
sonalized needs. Recommender systems help users quickly
find relevant information from vast data. Currently, recom-
mender systems have broad applications in various domains
such as session-based recommendation [1], [2], product
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recommendation [3], news recommendation [4], music rec-
ommendation [5], and social recommendation [6].

However, recommender systems frequently encounter
challenges, including data sparsity [7] and cold start prob-
lems [8]. Some algorithms like traditional collaborative
filtering typically rely on user behavior data for recommen-
dation [9]. Nevertheless, these algorithms often struggle to
achieve satisfactory results due to data sparsity, in which
users have no behavior data for most items, posing a chal-
lenge in accurately capturing user preferences. The idea of
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multi-source information fusion has been introduced [10],
[11], which adds more comprehensive information to tackle
the issues arising from data sparsity.

Multi-source information typically encompasses various
data types, including social network relationships, contextual
information, as well as attributes data. Due to the progress
in deep learning techniques, some studies have employed
deep learning models, such as Recurrent Neural Networks
(RNN), to extract high-level features from raw data to facili-
tate multi-source information fusion [12]. Additionally, there
are studies that leverage knowledge from multiple sources
for fused recommendation, offering domain knowledge and
semantic associations [13]. Graph neural networks unify data
from various sources into a single graph, capturing complex
relationships and dependencies among multi-source infor-
mation. Graph neural networks are extensively utilized in
recommender systems, with various types of graphs including
sequential graphs (Sd) [14], social network graphs (Sg) [15],
heterogeneous information networks (HIN) [16], knowledge
graphs (Kg) [17], and hypergraphs [18], [19]. Hypergraph
effectively captures complex, high-order interactions among
objects with multiple associations, overcoming information
gaps in other graph models.

Hypergraph structures often rely on a single type of
hyperedge, such as attributes or topics [20], [21]. When
dealing with multi-source information, depending solely on
a single-type hyperedge to capture complex user-item rela-
tionships within the multi-source data can lead to information
loss. To address this issue, some studies have utilized mul-
tiple types of hyperedges to capture intricate associations.
For instance, Gatta et al. [22] introduced the use of hyper-
graphs combined with machine learning on graphs in music
recommendation. They designed hyperedges for user listen-
ing sequences, music topics, albums, and so on, to uncover
potential associations between users and music. However,
this approach may still lack comprehensiveness in capturing
relationships between users and music, as it may not consider
factors such as social relationships between users or the dis-
tance in audio features of music.

Hypergraph can establish many-to-many relationships and
high-order relationships between nodes. To effectively cap-
ture these relationships, researchers have introduced the
concept of hypergraph learning, which enables models to
fully understand and utilize complex data associations [23].
Hypergraph neural networks (HGNN) [24] offer strong
learning capabilities and model flexibility, contributing to
overcoming computational complexities and the curse of
high-dimensionality associated with hypergraph learning.
Nevertheless, Yadati et al. [25] argued that HGNN mod-
els introduce excessive noise during information fusion,
potentially affecting semi-supervised learning based on
hypergraphs. To address this concern, they proposed the
HyperGCN model, which filters out potential data noise
to some extent. Additionally, Ding et al. [26] proposed
the Hyper-GAT model, which combines graph attention
networks and hypergraph neural networks to achieve greater

expressive power in text representation learning while min-
imizing computational costs. The aforementioned studies
primarily focus on information propagation between nodes
and hyperedges in hypergraphs, capturing the structural infor-
mation of hypergraphs in various ways. However, they over-
looked some valuable implicit information. Liao et al. [27]
introduced density as implicit information in hypergraph
neural networks. They enhanced hypergraph information
mining by calculating edge densities based on node den-
sities, improving the results achieved in downstream tasks.
Although the mentioned studies had integrated density infor-
mation with nodes and hyperedges in hypergraph neural
networks, they may not be suitable for capturing hidden
connections within complex hyperedges involving multi-
ple relationships or adequately learning density information
among intricate hyperedges.

When integrating multi-source information in heteroge-
neous hypergraphs, it is necessary to consider the alignment
between the same user or item from different informa-
tion sources. Additionally, modeling complex relationships
and dependencies among various variables on nodes and
edges is difficult [28]. Multi-view contrastive learning is
based on the principles of contrastive learning [29] and
can address these issues. Through multi-view contrastive
learning, information from different views can be compared
and fused, resulting in more accurate data representations.
This enhances feature representation and association learn-
ing in multivariable modeling tasks, helping recommender
systems better model relationships between users and items.
Moreover, it leverages complementary information from dif-
ferent views to overcome the limitations of a single view,
leading to richer and more discriminative feature repre-
sentations in multi-source information fusion. For instance,
Chen et al. [30] proposed heterogeneous graph contrastive
learning, which integrates semantic relationships from het-
erogeneous sources into user-item interaction modeling,
enhancing knowledge transfer through contrastive learn-
ing across different views. Wu et al. [31] proposed the
Multi-Behavior Multi-Perspective Contrastive Learning for
recommendation framework. It simultaneously considers
single-sequence views and global graph views in model-
ing multiple behaviors, capturing fine-grained differences
between user behavior.

To address the challenges of modeling multi-variable
relationships in multi-source heterogeneous information
and mining complex density information within compound
hyperedges, we present a method based on multi-source
heterogeneous hypergraphs and contrastive learning. Specif-
ically, we comprehensively fuse multi-source information,
including user-item bipartite graphs (Bg), social network
graphs, behavioral sequence graphs, and knowledge graphs,
by leveraging compound hyperedges to generatemulti-source
heterogeneous hypergraphs. In the process of hypergraph
learning representation, we incorporate density information
with Hyper-GAT and propose the SD-HGAT. This net-
work delves into the structural information intertwined
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between compound hyperedges and nodes, strengthening
user and item representation learning while incorporating
Gated Recurrent Unit (GRU) networks to capture users’
short-term preferences. Additionally, we design a multi-view
contrastive learning framework with the knowledge graph as
the central component to serve as auxiliary training tasks.
This helps alleviate errors in multivariate modeling within
heterogeneous views, enabling a multi-faceted learning of
user and item feature representations, thereby enhancing rec-
ommendation performance.

The main contributions of this study are as follows:
(1) A method is proposed that utilizes hypergraphs for

multi-source information fusion. By employing compound
hyperedges, we comprehensively generate multi-source het-
erogeneous hypergraphs. This approach facilitates the inte-
gration of diverse multi-source heterogeneous information,
establishing hidden associations between data and enhancing
the representation of high-order correlations among the data.

(2) We establish the SD-HGAT model, which incor-
porates density embedding into the hypergraph attention
network. This model is combined with GRU networks to fur-
ther explore implicit density structural information between
compound hyperedges and nodes, thereby expanding the
embedding space for users and items.

(3) Multiple cross views have been designed to facilitate
the process of contrastive learning. By combining infor-
mation across multiple views and contrasting it with the
hypergraph-based information, we obtain more discrimina-
tive feature representations. This helps in reducing errors in
multivariable modeling within the hypergraph, improving the
accuracy of user-item feature representations, and enabling
precise identification of user preferences and demands.

The paper is organized as follows: Section II discusses
related research in multi-source fusion for recommenders,
hypergraph construction and learning. Section III outlines
our method for constructing a heterogeneous hypergraph
and the MHCLR model, along with cross-view contrastive
learning. Section IV provides experimental results, model
comparisons, and ablation studies. Section V concludes the
paper with contributions and future research suggestions.

II. RELATED WORK
This paper focuses on data sparsity, high-order user relation-
ship modeling, and comprehensive user preference explo-
ration. The current strategies to tackle these challenges
include multi-source information fusion, such as utilizing
hypergraphs to fuse multi-source information for model-
ing user-item relationships and feature extraction and using
multi-view contrastive learning to mitigate data sparsity,
enhance multivariable modeling accuracy. The following
summarizes the related research.

A. MULTI-SOURCE INFORMATION FUSION IN
RECOMMENDER SYSTEMS
Multi-source information fusion is currently a significant
research direction in recommender systems. However, with

the abundance of auxiliary information and the diversifica-
tion of user demands, the recommendation performance of a
single data source gradually becomes limited. Approaches for
multi-source information fusion strive to integrate multiple
data sources, combining rich auxiliary information such as
geographical location, context, social networks, attributes,
etc., into the recommendation task to enhance recommenda-
tion accuracy and personalization.

For example, Khelloufi et al. [32] improved context-aware
service recommendation by leveraging social relationships
among device owners. Sun [33] incorporated textual reviews,
location-based Points of Interest (POI), and user latent factors
to model deep user preferences in the sparse POI scenario.
Yu [34] addressed issues in personalized travel recommenda-
tion, such as data sparsity and low recall, by mining context
information in unstructured text, semantic and sentiment
information in review text, and the impact of geograph-
ical locations. Wang et al. [35] proposed a multi-source
information fusion recommendation approach that integrates
social trust information, reviews, and other information into
a unified model using Collaborative Filtering. However,
feature-based multi-source information fusion often relies on
domain experts with extensive experience and knowledge,
requiring substantial time and effort for feature selection,
extraction, and transformation.

Graph neural networks are capable of modeling con-
nections between multiple sources of data, particularly in
modeling item-to-item and user-to-user relationships, as well
as handling explicit and implicit information. They enable
effective fusion of multi-source data and enhance recommen-
dation accuracy. Wang et al. [36] utilized a Heterogeneous
Information Network to adaptively fuse rich content infor-
mation, including metadata, tags, lyrics, and music text
content, as well as contextual data to create a personal-
ized music recommender system. Sun et al. [37] applied
a knowledge graph to introduce various modal information
as separate entities into the original knowledge graph and
utilized aggregated embedding representations for recom-
mendation. In complex recommendation scenarios, many
research efforts have proposed using hypergraphs to model
multi-source information [38], [39]. While ensuring informa-
tion integrity, hypergraphs can effectively model high-order
relationships, thus achieving better information fusion. The
HEMR model [22] was proposed to model the associa-
tion between user behavior information and music metadata
through hypergraphs. It utilizes an improved random walk
algorithm and Word2Vec to learn nodes embedding informa-
tion, further mining user preferences, and had a significant
improvement over the baseline.

Existing research highlights the advantages of hyper-
graph fusion for multi-source information integration and
establishing user-item relationships in recommender sys-
tems. In general, recommendation performance based on
hypergraphs depends on the construction of the hypergraph
and hypergraph representation learning algorithms. This
paper introduces a hypergraph structure based on composite
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hyperedges to integrate multi-source heterogeneous graphs,
enabling in-depth exploration of high-order semantic corre-
lations between data and facilitating improved accuracy in
subsequent recommendation tasks.

B. HYPERGRAPH CONSTRUCTION METHODS
Regular graphs are typically used to describe a set of objects
with binary relationships. The main distinction between
hypergraphs and regular graphs lies in the number of nodes
connected by each edge. In hypergraphs, each edge can
connect multiple nodes, representing associations that are
not limited to pairwise relationships, thus capturing more
complex higher-order connections, as illustrated in Figure 1.

As a means to effectively explore and establish data
relationships, hypergraphs are applied including image pro-
cessing tasks and recommender systems. In general, the core
idea of existing hypergraph construction methods is to mine
connections from data to generate hyperedges. For exam-
ple, Jin et al. [40] used a specific class feature buffer in
computer vision tasks and selected features from the cor-
responding class-specific feature buffers based on k-nearest
neighbors to further generate hypergraph feature hyperedges.
On the other hand, Zhang et al. [41] predicted whether hyper-
edges exist within node groups based on the pseudo-distance
between hypergraph node embeddings. Wang et al. [42] uti-
lized a representation-based hypergraph generation method
to determine relationships between vertices through feature
reconstruction for hypergraph generation. However, meth-
ods based on feature distances require a certain level of
accuracy in feature extraction representation for unstructured
data. Moreover, hypergraph construction methods based on
attributes [43] and network structures like social networks
simplify the hypergraph construction process by utilizing
user or item attributes and existing network structure rela-
tionships. Recently, Gao et al. [44] employed an adaptive
hyperedge group fusion strategy on top of graph repre-
sentation and feature distance-based hyperedge construction
methods, to effectively fuse different hyperedge groups
and construct hypergraphs. Unlike various hypergraph con-
structions mentioned above, multiple hyperedge groups can
preserve more associated information. This multi-hyperedge
group approach can mine hidden information, enhancing the
accuracy of downstream tasks.

In recommendation tasks, hypergraphs are capable of
modeling complex relationships and connection patterns,
extending beyond simple user-item pairs. Xia et al. [45]
aligned social network graphs with user-item bipartite graphs
to discover semantic relationships and generate hyper-
graphs. In real-world scenarios with multiple data sources,
as opposed to structured data, the existence of unstructured
data such as audio, video, images, and text poses a challenge
for existing methods to represent multi-source information in
a unified manner. Some researchers have attempted to handle
multi-source data using methods that involve multiple hyper-
graphs. For example, He et al. [46] created three hypergraphs

FIGURE 1. Illustrates examples of regular graphs and hypergraph
structures.

to integrate multimodal data from user-item relationships
and associated attributes, aiming to enhance recommenda-
tion accuracy by learning perceptual representations of users
and item representations based on multiple hypergraphs.
Kim et al. [47] developed a hypergraph attention network
to balance information levels across different modalities of
multi-source information, constructing a common semantic
space using symbolic graphs from each modality. However,
building multiple hypergraphs to address multi-source infor-
mation fusion may lead to missing connections between
nodes with multivariate relationships, thus impacting the per-
formance of recommender systems.

In hypergraph-based recommendation approaches, exist-
ing research relies on social graphs and bipartite graph
alignment to construct hypergraphs through a single method,
such as distance-based methods, resulting in certain limi-
tations related to missing multi-source information associa-
tions. Based onmulti-source data fusion, we connect multiple
heterogeneous graphs through composite hyperedges. This
method not only facilitates the modeling of high-order asso-
ciations but also aids in the extraction of both explicit and
implicit user-item information.

C. HYPERGRAPH LEARNING
Hypergraph learning aims to capture the topological structure
of a graph, relationships between nodes, and information
related to graphs, subgraphs, and nodes by mapping hyper-
graph data into low-dimensional dense vectors. Traditional
hypergraph learning often transforms hypergraphs into ordi-
nary graphs through techniques like sampling expansion and
uses graph processing methods such as Graph Convolutional
Networks (GCN) [48] to learn graph embeddings. How-
ever, this approach often leads to the loss of nodes and
structural information. Carletti et al. [49] introduced a hyper-
graph random walk algorithm driven by a Laplacian operator
directly on the hypergraph model. They experimentally
demonstrated that such non-expansion-based random walks
preserve high-order structural information more effectively
in hypergraphs. Gao et al. [20] designed tensor represen-
tations to flexibly represent dynamic hypergraph structures
and introduced a method for effectively learning dynamic
hypergraphs known as Tensor-Based Dynamic Hypergraph
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Learning. In contrast to employing an adjacency matrix, opti-
mizing tensor representations enables adjustments in both
weights and the number and order of hyperedges.

Currently, hypergraph learning modules utilizing deep
learning techniques have gained significant attention.
HGNN [24] was proposed based on GCN and hyper-
graph Laplacians, which enables spectral convolution on
hypergraphs for fine-grained feature extraction of nodes
and hyperedges. More recently, Gao et al. [44] defined
two hypergraph convolutions from spectral and spatial
perspectives, respectively, to further improve the HGNN.
Due to the flexible application of attention mechanisms,
Bai et al. [50] combined hypergraph convolutional networks
with an attention mechanism to recompute adjacency matri-
ces for hypergraphs, enhancing representation learning, albeit
limited to uniform hypergraphs. Yi and Park [51] attempted to
combine RNN networks with hypergraph convolutional net-
works to learn temporal dependencies in sequence data with
fewer parameters, and proved that the HGC-RNN accurately
captures the data’s spatial and time-based progression.

In the application of hypergraph learning to recommenda-
tion tasks, Karantaidis et al. [52] proposed an optimization
method spanning multiple stages using hypergraphs. By the
optimization of hypergraph ranking, hypergraph updates, and
adaptive edge weight, accurate ranking vectors generated
for image and label recommendation. Wang et al. [53] con-
structed a hypergraph model for users and evaluation items
and introduced the constructed hypergraph by dynamic clus-
teringmethod. Thismethod clustered highly related users into
the same interest communities to learn users’ dynamic pref-
erences. However, Ji et al. [54] created a hypergraph model
for users and items separately called dual-channel hypergraph
model (DHCF) and combined them with collaborative filter-
ing principles to complete recommendation tasks. Similarly,
Yuan et al. [55] went a step further by establishing hyper-
graph models for users and items, then improving hypergraph
convolutional networks using contrastive learning and feature
cross methods to achieve the final embeddings.

Hypergraph neural networks predominantly focus on infor-
mation propagation between nodes and hyperedges, with less
emphasis on interactions between nodes and hyperedges or
the spatial density information interwoven between hyper-
edges. Additionally, there is a notable absence of attention
towards combining hypergraph convolutional networks with
GRU networks to explore issues related to the evolution of
user preferences over time. Thus, this study introduces spatial
density information and proposes an SD-HGAT model that
combines GRU networks to delve deeper into hypergraph
information and extract users’ short-term preferences.

D. GRAPH CONTRASTIVE LEARNING
Graph contrastive learning has excellent performance in
solving complex relationship modeling and data missing
in recommender systems. Through contrastive learning,
recommendation models can generate more discriminative
representations of users and items, discover latent shared

features, and utilize them for better data modeling and pre-
diction. Contrastive learning has shown promising results in
various fields, including graph representation learning [56],
[57], [58] and recommender systems [59], [60]. Among
them, multi-view contrastive learning allows for richer and
more comprehensive information extraction from different
views or data sources, making it suitable for handling diverse
sources of heterogeneous information and facilitating per-
sonalized knowledge transfer tailored to individual user
preferences.

Recent research in recommender systems employing
graph-based contrastive learning aims to enhance informa-
tion sharing across various hierarchical levels. For instance,
Yu et al. [61] established a hypergraph model to mine
user relationships and leveraged multi-channel hypergraph
convolutional networks and self-supervision to enhance
social recommendation. Moreover, Xia et al. [62] introduced
Hypergraph Contrastive Collaborative Filtering (HCCF)
that combined contrastive learning with recommender sys-
tems. HCCF utilizes an improved cross-view contrastive
architecture to mine different levels of collaborative rela-
tionships. Zou et al. [63] designed global-level structure
views, local-level collaboration views, and semantic views.
They implemented contrastive learning across three different
perspectives, encompassing both local and global levels,
to capture a comprehensive range of graph information. Addi-
tionally, they introduced a project-project module to mine
important semantic relationships that are often overlooked in
previous research.

Presently, most approaches to constructing multi-view
contrastive learning for hypergraphs are based on node
perturbations, hyperedge perturbations, and subgraph gener-
ation [64]. Cai et al. [65] enriched data representations by
extracting nodes and hyperedges from hypergraphs to gener-
ate different views. A hierarchical self-supervised model [66]
was proposed, which further cross-matches different views to
capture the contrast between information within and between
various topics. They demonstrated that directly performing
contrastive representation on multi-channel data makes the
information highly homogeneous, causing a loss of unique-
ness. Such a contrastive method has a negative impact and
reduces recommendation performance.

In summary, to address the challenges of modeling
complex relationships and sparse data in multi-variable rela-
tionships, this study designs a multi-view contrastive learning
approach centered around a knowledge graph. Additionally,
considering the uniqueness of features across multiple views,
we cross match the knowledge graph with bipartite graphs,
sequence graphs, and social graphs, and use the local prop-
erties of the four views and the global nature of multi-source
heterogeneous hypergraphs to complete contrastive learning.

III. METHOD
The overall architecture of the proposed recommendation
algorithm, named Multi-source Heterogeneous Hypergraph
Contrastive Learning for Recommender System, is depicted
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FIGURE 2. The overall framework of MHCLR.

FIGURE 3. Construction of multisource heterogeneous hypergraph.

in Figure 2. The process is split into four steps: (1) The
process of fusing composite hyperedges is utilized to gen-
erate multi-source heterogeneous hypergraphs, which are
constructed upon the foundations of various graph types,
including Bg, Sd, Sg, and Kg; (2) SD-HGAT and GRU
networks are employed to extract user and item features,
facilitating an in-depth exploration of user preferences;
(3) Developing a multi-view cross-contrast learning module
improves feature extraction precision, refining multivariate
relationship modeling and enriching multi-perspective fea-
ture information; (4) A feature cross-network is utilized to
compute high-order features for users and items. Similarity
calculations between users and items are performed at dif-
ferent feature scales, resulting in the generation of a Top-k
recommendation list.

A. HYPERGRAPH CONSTRUCTION
Integrating multiple information sources makes hypergraph
models more complex, but it also improves the compre-
hensiveness of user profiling and the accuracy in revealing
both explicit and implicit preferences. This paper proposes a
method for generating attribute hyperedges on both the user
and item sides, which is based on the alignment of user-item

attributes Bg, Sg, Sd and Kg. We design behavior hyperedges
with sequential information, derived from the analysis of
user-item interaction data. The KNN algorithm is utilized
to aggregate closely related features, which are then used
to construct distance hyperedges. Prediction Hyperedges are
employed to assess the associations between global and local
nodes, forming additional hyperedges. We fuse these com-
posite hyperedges to generate a comprehensive multi-source
heterogeneous hypergraph.
Definition 1 Multi-Source Heterogeneous Hypergraph:

The hypergraph is denoted as Gm= (V,E,W), where
V = {v1, v2, · · · ,vm}, E = {e1, e2, · · · ,en}, and
W = {w1,w2, · · · ,wn} represent the sets of nodes, hyper-
edges, and weights, respectively. The hypergraph Gm can be
represented by an |V| × |E| incidence matrix H , defined as:

H (v, e) =

{
1, if v ∈ e
0, if v /∈ e

(1)

In recommendation tasks, we consider the user set
U = {u1, u2, · · · ,um} and the item set I = {i1, i2, · · · ,in},
where U is the set of individual users, and I is the set of
individual items. In fact, hypergraphs also encompass node
types such as user and various attributes related to items.
V= U ∪ I is the set of all nodes in the system. Based onmulti-
source data, we utilize a composite hyperedge construction
method to generate the hypergraph, as illustrated in Figure 3.
The specific process of hypergraph construction is as follows:
Definition 2 Composite Hyperedge E:

E =
{
Eattribute,Ebehavior,Edistance,Egl

}
(2)

(1) Attribute Hyperedge Set Eattribute: Based on users and
items attribute information, such as time information, geo-
graphic location, etc. relevant nodes are connected through
attribute hyperedges denoted by ‘‘a’’. The vertices in hyper-
edge ‘‘a’’ share the same attribute type, andVatt (a) represents
the set of nodes included in hyperedge ‘‘a’’. A represents the
collection of all attribute hyperedges.

Eattribute = {Vatt (a) |a ∈ A} (3)

(2) Behavioral Hyperedge Set Ebehavior : Based on the
user-item historical interaction records, such as a collection of
all interactions between a user and a specific item. Behavioral
hyperedges denoted by ‘‘b’’ are defined to connect user and
item nodes. Vbe (b) represents the set of nodes that includes
user and item information, and B is the collection of all
behavioral information.

Ebehavior = {Vbe (b) |b ∈ B} (4)

(3) Distance Hyperedge Set Edistance: In the context of het-
erogeneous networks with multiple sources of information,
for a given node v, we can define a distance hyperedge e in the
feature space, which connects node v to its k nearest neighbor
nodes in the feature space with a distance metric. We can
define a distance hyperedge denoted by ‘‘d’’ that connects the
node to its k nearest neighboring nodes. Vdis (d) represents
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feature nodes information, and D is the aggregation of all
distance hyperedges.

Edistance = {Vdis (d) |d ∈ D} (5)

Definition 3 Prediction Hyperedge: This is achieved
through a designed computational method aimed at obtaining
pseudo-distances between node local and global embeddings,
thereby predicting the probability of the existence of hyper-
edges among groups of nodes [41]. Unlike dynamic-static
node embeddings, we focus more on updating the local
information of nodes. Nodes within the first-order neigh-
borhood of the target node have strong correlations, and
pseudo-distances between global node embeddings can better
reflect the similarity within the node group.

The computation process of SAGGL: (1) Local
Nodes: Given the input m nodes group representation
{v1, v2, · · · , vm}, the GNN network is used to update the
information of the target node vi based on its first-order neigh-
borhood. This results in the local embedding li. (2) Global
Nodes: Utilizing a self-attentionmechanism layer to calculate
the connections between the target node vi and other nodes
in the input node group representation {v1, v2, · · · , vm},
providing a representation of global information denoted as
gi. (3) Using the power Hadamard product of the difference
between the local embedding and global embedding vectors
for each node, followed by a neural network with ReLU
as the activation function, to obtain a probability score pi.
The average of all probability scores yields P, representing
the probability of the existence of hyperedges within that
group of nodes. oi can be seen as the squared weighted
pseudo-Euclidean distance between the local embedding li
and global embedding gi, with σ denoting the ReLU activa-
tion function.

oi = WT
o

(
(gi − li)o2

)
+b (6)

P =
1
m

∑m

i=1
pi =

1
m

∑m

i=1
σ (oi) (7)

(4) Prediction Hyperedge Group Egl : Using the SAGGL
algorithm to predict potential hyperedges denoted as s,
enhancing the information within the multi-source heteroge-
neous hypergraph. S represents the collection of all predicted
hyperedges, and Vgl comprises the nodes contained within
such hyperedges.

Egl =
{
Vgl (s) |s ∈ S

}
(8)

Considering the differences in information among var-
ious types of hyperedge groups and within the same
type of hyperedge group, simple equal-weight hyperedge
fusion cannot fully leverage the high-order correlations
among multiple sources of information. Therefore, in this
paper, we utilize an adaptive hyperedge weight fusion
method [44], defined as: wk= copy (sigmoid (wk) ,Mk),
the weight parameter for each type of hyperedge group,
W = diag

{
wka
att,w

kb
be,w

kd
dis,w

kgl
gl

}
∈ RM×M is a diagonal

matrix representing the weight matrix of the hypergraph,

where each wie represents the weight of the corresponding
hyperedge. wkaatt ,w

kb
be,w

kd
dis,w

kgl
gl represent the weight matrices

for the attribute hyperedge group, behavior hyperedge group,
distance hyperedge group, and prediction hyperedge group,
respectively. Sigmoid is an element-wise normalization func-
tion. H = {H1||H2|| · · · ||Hm} is the adjacency matrix of the
multi-source heterogeneous hypergraph formed by connect-
ing the composite hyperedge groups with ‘‘||’’. To emphasize
user preferences for certain items, we extract the interaction
frequency matrix for each user-item pair and use it as the
initial weight matrix for the behavior hyperedge to enhance
the model performance.

B. HYPERGRAPH LEARNING
In order to better handle multi-source heterogeneous hyper-
graphs and obtain accurate features, we propose SD-HGAT,
which combines spatial density information with hypergraph
attention networks as shown in Figure 4. To simplify the
efficiency of SD-HGAT operations, we design a single-layer
hypergraph convolution to obtain refined feature repre-
sentations hl−1

j for complex multi-source heterogeneous
hypergraph nodes. We then fuse node density information
with spatial density information to obtain hyperedge density
information, which is used to obtain the node embedding
features hlj for the next layer. Through the SD-HGAT network
layers, we obtain user/item feature embeddings as input to the
GRU network, where we learn user preference information to
enhance recommendation accuracy.
Hypergraph learning primarily deals with the effective

propagation of information among adjacent nodes and struc-
tural information. HGCN focuses on aggregating node
information into hyperedges and aggregating hyperedge
information into nodes. The hypergraph convolution layer is
defined by the formula f(X,W, θ):

X(l+1)
= σ

(
D−1/2
v HWD−1

e HTD−1/2
v X(l)θ

)
(9)

The symbol σ represents a non-linear activation function.
Where De and Dv represent the diagonal matrices for hyper-
edge degrees and vertex degrees, respectively. θ is a trainable
weight matrix. Here, X (l) represents the signal at the l-th layer
of the hypergraph, with X (0) denoting the initial nodes input.
Definition 4 Node-Level Density Attention: Node-level

density attention associates density information for each ver-
tex to obtain representations of hyperedges. First, we define
the density of each node, which can be defined as the sum of
similarities between adjacent nodes whose similarity to the
target node exceeds a predefined threshold. The density of
node xi can be expressed as:

ρxi =

∑
xk∈N(xi)

{
sim (xi, xk) , if sim (xi, xk) > δ

0, if sim (xi, xk) ≤ δ

(10)

where xi represents the feature vector of vi and N (xi) repre-
sents the neighborhood of node xi. δ is a predefined threshold.
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FIGURE 4. Hypergraph learning module.

sim is a similarity measure function, typically cosine sim-
ilarity can be used. We utilize Hyper-GAT to obtain the
hyperedge representation of node vi. Since the contribution of
nodes to the hyperedge ej varies, an attention mechanism is
used to highlight those nodes that are important for the hyper-
edge. These nodes are aggregated to obtain the representation
of the hyperedge:

flj= σ

(∑
vk∈ej

(
αjk + ρxi

)
W1h

l−1
k

)
(11)

where σ is a nonlinear function, such as ReLU, and W1 is
a trainable weight matrix. αjk represents the attention coef-
ficient for node vk in hyperedge ej, which can be calculated
using the following formula:

αjk =
exp

(
aT1uk

)∑
vp∈ej exp

(
aT1up

) (12)

uk = LeakyReLU
(
W1h

l−1
k

)
(13)

Among them, aT1 is the weight vector. up refers to the
correlation degree of node p on the hyperedge ej.
Definition 5 Hyperedge-Level Density Attention: After

obtaining the aggregation results for all hyperedges, we apply
the attentionmechanism again to highlight meaningful hyper-
edges and learn the representation of the next layer of nodes
xi. First, we need to define a density for each hyperedge.
The difference lies in that the density of each hyperedge is
defined as the sum of the densities of all nodes connected by
that hyperedge, weighted by certain values, plus the ratio of
nodes shared between hyperedges in space to all nodes of the
hyperedge. This can be formulated as:

ρek = a1

∣∣V (ei) ∩ V
(
ej

)∣∣∣∣V (ei) ∪ V
(
ej

)∣∣ + a2
∑

xi∈N(ei)
ρei (14)

where a1 and a2 are the weight coefficients for spatial den-
sity and hyperedge density, respectively. V (ei) represents all

FIGURE 5. Diagrams illustrating node and hyperedge density.
(a) Node-level density, where S1

v and S2
v represent regions of node

density under the threshold δ, and S3
v represents a sparse region.

(b) Hyperedge-level density diagram, whereS1
e represents the intersection

density region between two types of hyperedges, and S2
e represents the

sum of node densities.

nodes on the hyperedge ei. For all hyperedge representations
{flj|ej∈εi}, we once again apply the hyperedge-level attention
mechanism to emphasize the hyperedges containing informa-
tion relevant to learning the next-layer representation of node
vi. This process can be expressed as:

hlj= σ

(∑
ej∈εi

(
βij + ρek

)
W2flj

)
(15)

In which, hlj represents the output representation of node xi,
W2 is the weight matrix. βij denotes the attention coefficient
of hyperedge ej on node xi, and it can be calculated using the
following formula:

βij =
exp

(
aT2xj

)∑
ep∈εj

exp
(
aT2xp

) (16)

xj = LeakyReLU
([

W2flj||W1h
l−1
k

])
(17)

Among them, aT2 is another weight vector used to measure
the importance of hyperedges.
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FIGURE 6. Contrastive learning module.

The SD-HGAT proposed in this paper integrates node
density and hyperedge density into node-level attention and
hyperedge-level attention networks, highlighting different
granularity of key information in the node representation
learning process, as shown in Figure 5. In order to compre-
hensively capture user preferences, GRU is utilized to extract
the latent interest states of users from their historical behavior
sequences. Through SD-HGAT and GRU, we obtain refined
feature vector representations for users, denoted as uhm, repre-
senting the m-th user vector after hypergraph-based learning,
and ihn representing the n-th item vector after hypergraph-
based learning.

C. MULTIPLE CROSS VIEW CONTRASTIVE LEARNING
In response to the challenges of data sparsity and the com-
plexity of modeling complex relationships in real-world
recommendation scenarios with hypergraph structures, this
paper proposes a multi-view cross-fusion contrastive learning
module to improve recommendation accuracy and diversity
through multi-level features. The contrastive learning mod-
ule, as shown in Figure 6, consists of two specific modules:
multi-view cross-fusion and contrastive learning modules.
Definition 6 Multi-View Cross-Fusion: Multi view con-

trastive learning is crucial for recommendation performance.
This article adopts a cross fusion approach, exploring the
inherent connections between different views to avoid the
problem of information redundancy in multi-source hetero-
geneous graphs that may not be effectively solved by direct
fusion, ensuring that the model can more accurately distin-
guish subtle differences between different views. This type of
cross view contrastive learning can avoid homogenization of
information between multiple views, enhancing the model’s
comprehensive understanding and prediction of user prefer-
ences. By encouraging the model to learn more independent
and discriminative feature representations, the accuracy of
recommendation results has been further improved. In the
construction of the multi-source heterogeneous hypergraph,
we utilize the generated knowledge graph, bipartite graph,
social graph, and sequential graph as multiple views of the

hypergraph data. We use LightGCN [67] to capture represen-
tations of the four views: knowledge graph, bipartite graph,
social graph, and sequential graph. We fuse the representa-
tions of the four views using an attention mechanism and then
perform contrastive learning with the final embeddings of the
multi-source heterogeneous hypergraph. In the graph encod-
ing module, given these multiple views, we utilize graph
convolutional neural networks to encode themulti-views. The
graph convolutional neural network is defined as follows:

Vfusion = α1V1 + α2V2+α3V3 (18)

αi =
ai∑3

j=1 exp(aj)
(19)

Among them, ai is the calculated Vi of the view. The
attention score is obtained through conventional attention
calculation. Vfusion represents the fused nodes representation,
Vi represents the fusion of Kg and Bg, Sd, or Sg, using feature
vector concatenation.

L(u)
s =

∑I

i=0

∑L

l=0
−log

exp(s(M(u)
i,l ,

P(u)
i,l
τ
)∑I

i′=0 exp(s(M
(u)
i,l ,

P(u)
i,l
τ
)

(20)

where s(·) represents the cosine similarity function, and τ is
a tunable hyperparameter that adjusts the softmax scaling.

We perform contrastive learning between the multi-view
cross-fusion embeddingMi,l and the hypergraph-guided rep-
resentation Pi,l . This allows local and global dependency
views to mutually supervise each other, enhancing the repre-
sentations of users and items. Node feature information from
multiple perspectives can be obtained, thereby improving
their accuracy in downstream tasks.

D. RECOMMENDATION GENERATION
To capture more implicit interaction information between
users and items, we design a feature cross layer to perform
feature cross between the user vectors uhm and item ihn from the
hypergraph learningmodule and the nodes representations ucm
and icn generated by the contrastive learningmodule.We intro-
duce {uhm, i

h
n, u

c
m, icn} into the DCNV2 [68] model to facilitate

feature co-occurrence and enhance the model non-linearity.
This enables the recommendation task module to leverage
the data features learned in the contrastive learning module
and enriches the semantic features of the node representation
vectors generated in this module, thus improving the model’s
recommendation performance and diversity of results. Con-
sidering that suboptimal results from the feature cross layer
may negatively affect the semantic features of the nodes
representation vectors generated by the recommendation task
module, we add standard residual connections in the network
to preserve the node feature representations learned from both
contrastive learning and hypergraph learning. This enhances
the generalization capability of the node representation vec-
tors. The formula for the feature cross network is as follows:

xl+1 = xk⊙ {Wl (xk + xm) + bl} (21)

xout = xl+1+WResx0 (22)
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where x0 represents the original features, xk and xm represent
the joint input from the l-th layer of hypergraph learning and
contrastive learning, xl+1 indicates the output of the l+1-
th layer, Wl is the weight matrix to be learned, bl is the
bias vector, and WRes is a projection matrix for dimension
mismatch situations.

The feature cross layer results in high-order user represen-
tation ufcm and item representation ifcn . Finally, we calculate
the similarity between them using the cosine function to
predict the probability of a user choosing a particular item.
To effectively utilize high-order feature combinations and
hypergraph learning nodes feature information, we design
two rounds of similarity calculations: the first round y1 is
based on the node representation from hypergraph learning,
and the second round y2 is based on the high-order feature
representations obtained from feature cross. The two similar-
ity calculation results are then softmax-normalized to obtain
the final prediction. The Top-k items based on the predicted
probabilities form the recommendation list.

y1 = cos
(
uhm, ihn

)
(23)

y2 = cos
(
ufcm, ifcn

)
(24)

Final probability prediction:

Y = softmax
(
z1y1 + z2y2

)
(25)

Among them, z1, z2 are the adaptive weight for two recom-
mended predictions.

E. COMPLEXITY ANALYSIS
The main computational cost of the MMCLR model is
composed of multi-source heterogeneous hypergraph con-
struction, hypergraph density attention network, contrastive
learning, and feature crossover. In hypergraph construction,
nodes and hyperedges are the main influencing factors, with
a complexity of O(N ||C), where N is the number of nodes
in the hypergraph and C is the number of hyperedges in
the hypergraph. After passing through an L-layer hypergraph
density attention network, the model consumption is less than
O(N 2

| |K| dL), where N 2 is the number of common nodes in
density attention calculation and K is the number of attention
heads, where K has a lower number of heads. Contrastive
learning is the comparison between multi view fusion and
hypergraph, with a complexity of O = (L × (D+M) × d).
Among them, D + M is the sum of positive and negative
samples constructed. The complexity of the feature crossover
layer is O(

∑
Ld dl+1dl), dl is the size of the l-th feature

intersection layer. So, the overall complexity of our model is
O(N ||P+N 2

| |K| dLh+Lc×(D+M)×d)+O(
∑

Ld dl+1dl).

IV. EXPERIMENT
In this section, we will present the experiments conducted on
a demonstration dataset to evaluate the performance metrics
of the proposed method. We will also analyze the obtained
results and compare them with other state-of-the-art models
in the field of recommender systems.

TABLE 1. Dataset statistics.

A. EXPERIMENTAL SETUP
1) DATASETS
We utilized three publicly available datasets related to rec-
ommender systems, namely Last-FM, Douban, and Yelp,
to evaluate the MHCLR model. The dataset statistics are
summarized in Table 1. (1) Last-FM Dataset: This dataset
includes information about users’ social networks, tags,
and their frequently listened-to music artists; (2) Douban
Dataset: The Douban dataset, which has been widely used
for various recommendation tasks, contains 2,848 users and
39,586 movies; (3) Yelp Dataset [69]: The Yelp dataset com-
prises business-related information, including businesses,
user reviews of businesses, and users’ social networks.

2) CONSTRUCTION OF HYPERGRAPH SOURCE DATA
(1) In the Last-FM dataset, three types of structures—social
graphs, bipartite graphs, and knowledge graphs—were uti-
lized. They were combined to construct a hypergraph using
adaptive fusion through distance hyperedges, attribute hyper-
edges, and prediction hyperedges.

(2) In the Douban dataset, three types of structures—
social graphs, bipartite graphs, and knowledge graphs—were
employed. They were integrated to construct a hypergraph
through adaptive fusion using distance hyperedges, attribute
hyperedges, behavior hyperedges, and prediction hyper-
edges.

(3) In the Yelp dataset, four types of structures—social
graphs, sequence graphs, bipartite graphs, and knowledge
graphs—were used. These structures were combined to con-
struct a hypergraph through adaptive fusion with the aid
of distance hyperedges, attribute hyperedges, and prediction
hyperedges.

3) BASELINE ALGORITHMS
To demonstrate the effectiveness of MHCLR, we compared
it with four recommendation system methods: Collabora-
tive Filtering (BPR), Graph Neural Network-based methods
(LightGCN, GraphRec), Hypergraph Neural Network-based
method (DHCF), and Contrastive Learning-based methods
(MHCN, SGL). These are described as follows:

• BPR [70]: A commonly used recommendation algorithm
that leverages implicit user feedback to rank items by max-
imizing the posterior probability obtained through Bayesian
analysis of the problem.

• LightGCN [67]: Simplifies the framework by removing
nonlinear projections and embedding transformations during
message passing.
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TABLE 2. Overview of baseline methods.

TABLE 3. Performance comparison (%).

FIGURE 7. Top-k recommendation on Yelp dataset NDCG@k performance comparison.

• GraphRec [71]: A GNN-based social recommendation
model that simultaneously models user-item and user-user
interactions to capture user-item relationships and user opin-
ions on items.

• SGL [72]: Augments LightGCN by generating multiple
views through data augmentation using random walks and
feature dropout, enhancing it with self-supervised contrastive
learning.

•MHCN [61]:Maximizes themutual information between
node embeddings and global readout representations to regu-
larize representation learning in interaction graphs.

• DHCF [55]: A novel hypergraph-based recommendation
approach that models high-order relevance information using
hypergraphs.

For fair comparison, we referred to the best parameter set-
tings reported in the original papers of the baseline methods
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TABLE 4. Contrastive learning performance on yelp.

and then fine-tuned all hyperparameters of the baseline meth-
ods through grid search to ensure their optimal performance.
The general settings for the models were empirical, with
embedding dimensions set to 64 and a regularization coef-
ficient of 0.001. Adam optimization was used for model
training. The value of δ is set to 0.3. Detailed overviews of
the baseline methods are provided in Table 2.

4) PERFORMANCE METRICS
The primary focus of this study is to provide Top-k recom-
mendations to users. Therefore, commonly used recommen-
dation system evaluation metrics, including Precision@K,
Recall@K, and NDCG@K were employed. Precision@K
measures the proportion of the Top-k recommended items
that are actually liked by each user. It is calculated using the
following formula:

Precision@K =

∑
u∈U |R(u) ∩ T(u)|∑

u∈U |R(u)|
(26)

where R(u) represents the recommended list for user u based
on their behavior in the training dataset, and T(u) corresponds
to the list of user interactions in the test dataset.

The Recall describes the proportion of items in the rec-
ommended list that the user has previously interacted with,
relative to the total number of items in the test dataset. The
formula for Recall rate is as follows:

Recall@K =

∑
u∈U |R(u) ∩ T(u)|∑

u∈U |T(u)|
(27)

NDCG@K is an evaluation indicator that considers the
return order, with a value range of [0 1]. The formula is as
follows:

NDCG@K =
DCG@K
IDCG@K

(28)

DCG is a measure of the ranking quality of recommenda-
tion results, while IDCG is themaximum cumulative gain that
can be achieved by ranking from high to low according to
correlation in an ideal state.

B. EXPERIMENTAL PERFORMANCE
In this section, we validate whether MHCLR outperforms
existing recommendation baselines. The performance com-
parison of all methods on the Last-FM, Douban, and Yelp
datasets is presented in Table 3.

Based on the results, we can draw the following
conclusions:

(1) MHCLR demonstrates excellent performance in gen-
eral recommendation tasks. Compared to LightGCN and
DHCF, the MHCLR algorithm takes into account hypergraph
density information. Additionally, contrastive learning signif-
icantly enhances MHCLR, alleviating dataset sparsity.

(2) In general recommendation tasks, GNN-based methods
like GraphRec and LightGCN outperform BPR, especially
with a noticeable improvement in NDCG@10. SGL, utilizing
graph self-supervised learning, achieves better performance
than LightGCN. Hypergraph-based recommendation method
MHCN surpasses most GNN-based recommendation meth-
ods (GraphRec, LightGCN).

C. ABLATION EXPERIMENTS
In this section, we conduct ablation studies to investigate the
interactions between different components of MHCLR and
verify whether each component contributes positively to the
final recommendation performance.

(1) Hypergraph Spatial Density Attention Network Inves-
tigation

This subsection aims to delve into the performance dif-
ferences between SD-HGAT, Hyper-GAT, and HGNN on
hypergraph data by conducting ablation experiments on the
hypergraph structure. To validate the effectiveness of spatial
density information, we removed the contrastive learning
module and solely utilize the original HGNN and Hyper-
GAT, comparing their performance differences intuitively,
as shown in Figure 9.

(2) Multi-View Contrastive Learning Performance Exper-
iments

To assess the impact of the contrastive learning mechanism
on recommendation performance, we attempt to remove the
multi-view contrastive learning phase and evaluate its effect
on performance throughMulti-Source Heterogeneous Hyper-
graph Recommendation (MHR). We chose the Yelp dataset,
which is closer to practical applications and involves multiple
aspects of information, and it provides richer data on the
interaction between users and items. Additionally, we test the
influence of directly fusing multi-views and hypergraphs for
contrastive learning (MHR+NF) to validate the importance
of cross-view contrastive learning.

D. EXPERIMENTAL ANALYSIS AND DISCUSSION
In this paper, we proposed the MHCLR model to provide
accurate and personalized recommendation lists for recom-
mender systems. We conducted experiments on the Last-FM,
Douban, and Yelp datasets to demonstrate the effectiveness
of the model. The results in Table 3 show that our MHCLR
algorithm outperforms baseline models across all evaluation
metrics. Specifically, on the Last-FM dataset, our algorithm
improved P@10, R@10, and N@10 by 0.615%, 0.896%,
and 0.74%, respectively, compared to the popular recom-
mendation model LightGCN. It also outperforms the DHCF
model based on hypergraph recommendation with improve-
ments of 2.943%, 3.245%, and 3.388% in the mentioned
metrics. On the Douban dataset, our algorithm achieved
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FIGURE 8. Parameter sensitivity impact.

FIGURE 9. Performance comparison of HGNN, Hyper-GAT, and SD-HGAT.

improvements of 1.833%, 0.005%, and 1.261% in P@10,
R@10, and N@10, respectively, compared to LightGCN, and
outperformed DHCFwith improvements of 2.742%, 0.497%,
and 2.487%. On the Yelp dataset, our algorithm shows
improvements of 0.142%, 0.577%, and 0.714% in P@10,
R@10, and N@10, respectively, compared to LightGCN, and
outperformed DHCF with improvements of 0.43%, 1.116%,
and 1.002%. MHCLR algorithm outperforms LightGCN and
SGL in recommendation performance, indicating that mining
deeper user-item associations in the context of hypergraphs
and contrastive learning can enhance the recognition of user
preferences.

From this, we can conclude the following:
(1) As shown in Figure 7, when K is less than 5, the

proposed MHCLR algorithm has slightly lower P, N, and
R values than the optimal algorithm, which may be due
to the impact of information loss. Compared to traditional
graph structures, hypergraphs are more complex. When the
k-value of the recommendation list is small, the number

of nodes in the hypergraph may be fewer, which makes it
difficult for hypergraph density attention networks to fully
utilize the hypergraph structure. When generating recom-
mendations, only a few candidate items are considered,
which may lead to some potentially valuable recommenda-
tions being ignored and lacking sufficient recommendation
coverage. As K increases, the performance of the MHCLR
algorithm surpasses other algorithms, and the Precision
and Recall gradually reach their peaks, achieving optimal
algorithm performance. The MHCLR algorithm contributes
to mining high-order relationships between users and items,
enabling more accurate semantic descriptions of users and
items. It delves deeper and comprehensively into user and
item features, ultimately predicting user preferences more
effectively.

(2) In this study, we constructed multiple SD-HGAT lay-
ers to simulate high-order information propagation among
users in a hypergraph with high-order connections. This can
be viewed as high-order information diffusion. We stacked
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hypergraph attention network layers from 1 layer to 5 layers.
As shown in Figure 8(b), the performance of MHCLR is
optimal when the number of SD-HGAT network layers is
2. With an increase in the number of SD-HGAT layers, the
performance of MHCLR decreases. This may be attributed
to the excessive number of layers, which increases model
complexity, leading to longer training times and requiring
more computational resources. The 2-layer hypergraph atten-
tion network is relatively shallow, contributing to reducing
the risk of overfitting and improving model generalization.
Based on this analysis, the model achieves the best recom-
mendation performance when the SD-HGAT network has
2 layers. Furthermore, we analyzed the embedding dimension
d of the model. We set d to vary among {20, 50, 100, 150}.
Figure 8(a) displays the performance metrics P@10, R@10,
and N@10 on the Yelp dataset for different values of dimen-
sion. In general, as the embedding dimension increases, the
model’s performance initially rises and then declines. Signif-
icantly improved performance is observed when increasing
the embedding dimension from 20 to 50. However, when the
embedding dimension exceeds 50, the model’s performance
starts to decline. Our research suggests that smaller embed-
ding dimensions may reduce model performance, while
overly large dimensions may lead to overfitting.

(3) TheMHCLRmodel proposed in this paper outperforms
other recommendation system models on three datasets.
The performance of the MHCLR algorithm is consistently
superior to that of BPR, GraphRec, LightGCN, and SGL
algorithms, indicating that hypergraph-based models have
better expressive capabilities compared to graph-based mod-
els. Although the DHCF algorithm based on hypergraphs
does not perform well in recommendation, this may be due
to the inappropriate construction of hyperedges in the model,
resulting in high matrix density or suboptimal experimental
results. Combining the above analysis, the strong perfor-
mance of MHCLR can be attributed to three main factors.
First, the assistance of multi-source heterogeneous net-
works in the recommendation system, utilizing hypergraphs
to establish high-order relationships, taking into account
social relationships, sequence relationships and so on. Sec-
ond, on the foundation of capturing complex high-order
user relationships with Hyper-GAT, we focus on the den-
sity information relationships among different hyperedges,
fully leveraging the implicit information within multi-source
heterogeneous hypergraphs. Additionally, we design a multi-
view cross-contrast learning module that combines with
hypergraph learning, compensating for potential multivariate
modeling information loss during the alignment process and
further enhancing accuracy.

In the ablation experiments, as shown in Figure 8 and
Table 4, we can draw the following conclusions:
(1) Replacing the SD-HGAT module in our algorithm

with traditional HGNN and Hyper-GAT modules results in
a decrease in algorithm performance across all three datasets.
This indicates that the SD-HGAT module has significant
potential in extracting graph features.

(2) When the contrastive learning module is not used
to enhance multivariate modeling accuracy, and only the
SD-HGAT module is employed for recommendation, the
performance of the MHCLR algorithm slightly decreases.
Additionally, when recommending using direct fusion of
multiple views, the performance is lower compared to cross-
view fusion. This is because cross-view fusion handles
heterogeneity among different views effectively, utilizing the
characteristics of each view to a greater extent. Therefore, the
multi-view cross-contrast learning module proposed in this
paper has a positive effect on preserving heterogeneity and
improving accuracy in modeling multivariate relationships.

V. CONCLUSION
This paper mainly focuses on enhancing the performance
of recommender systems through multi-view contrastive
learning guided by multi-source heterogeneous hypergraphs.
We propose the MHCLR algorithm, which includes a hyper-
graph attention network learning module with hypergraph
structures and density information, as well as a multi-view
encoding contrastive mode. Specifically, by using hyper-
graphs to fuse multi-source heterogeneous graph informa-
tion, we can capture high-order correlations between items
or users, achieve high-quality information integration, and
model high-order feature interactions. The spatial density
hypergraph attention network module is introduced to fully
exploit node density information and composite hyperedge
density information in multi-source heterogeneous hyper-
graphs, enhancing user and item feature representations.
In terms of contrastive learning, we enhance the accuracy
of modeling multi-variable specific relationships at differ-
ent levels by fusing multi-view information and hypergraph
contrasts, reducing redundancy. We demonstrated the effec-
tiveness of our approach in terms of Precision, Recall, and
NDCG metrics through experiments, achieving significant
improvements in recommendation accuracy.

While the hypergraph data structure is a relatively new
development in recommender systems and has a positive
impact on performance improvement, hypergraph neural net-
works still face some of the shortcomings of traditional graph
neural networks, such as lack of interpretability and inability
to directly model causal relationships. Future research direc-
tions should focus on discovering more fine-grained causal
relationships. This can be achieved by establishing coun-
terfactual learning in hypergraphs to eliminate false factors
caused by confounding factors, uncovering the underlying
reasons for user feedback behaviors, and accurately capturing
true user preferences hidden in the noisy feedback data to
further improve recommendation effectiveness.
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