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ABSTRACT Deep learning has witnessed significant advancements in various tasks and has displayed
exceptional performance. However, traditional deep learning techniques often necessitate the utilization of
extensive labeled data for training, a requirement that is challenging to fulfill in many real-world scenarios.
This limitation has given rise to the field of few-shot learning (FSL). In this paper, we introduce a Distribution
Calibration Prototypical Network (DCPNet), aiming to address the limitations of prototypical networks in
terms of their weak feature extraction capabilities and the inability of their classifier boundaries to align
with the dataset. DCPNet incorporates a parallel hierarchical feature extraction module and a few-shot
differentiation loss function to fine-tune the metric learning for better feature representation. This approach
employs a parallel approach to extract features based on the semantic depth of image hierarchical extraction
and incorporates contrastive learning to achieve feature vector fusion. Furthermore, DCPNet incorporates
an improved distribution calibration method that leverages information from the base class dataset to align
classifier boundaries with the dataset. To validate our approach, we conducted comparative experiments
on datasets such as Mini-Imagenet, Omniglot, and CUB using classical baseline methods. In additional,
we conducted ablation experiments on the Mini-Imagenet to assess the performance effectiveness of
each component of the model. The results demonstrate that the proposed method presented in this paper
outperforms other approaches and offer new insights into the field of few-shot image classification.

INDEX TERMS Improved distribution calibration, few-shot learning, prototypical network, image
classification, computer vision.

I. INTRODUCTION
Image classification is a fundamental task of computer vision
and is of great significance for automatic driving, intelligent
security, and medical image analysis, which refers to the
process of identifying the category to which a given image
belongs. Traditional neural networks require a large amount
of labeled image data to solve image classification problems,
but a large amount of labeled data is not available in
practical situations; therefore, the study of few-shot learning
methods is particularly important. To address the scenario of
traditional image classification methods with a small amount
of labeled sample data, scholars have proposed the few-shot
image classification methods.

The associate editor coordinating the review of this manuscript and

approving it for publication was Massimo Cafaro .

To align with the intricacies of few-shot learning, scholars
have categorized their proposed research methods into
three distinct categories: those rooted in metric learning,
optimization-based learning, and data augmentation tech-
niques. This paper presents an improvement based on the
prototypical network inmetric learning. This network ismade
by extracting the image data into feature vectors and then
clustering them into prototype centers. Then, it can calculate
and compare the distance between the query samples and pro-
totype centers for category discrimination. However, based
on the design of the prototypical networks, we observe two
important factors that affect their classification performance.
One is that the embedding learning of the prototypical
network is based on the distribution of support vectors across
the class, which may not capture the subtle relationships
between support vectors, such as their correlations. The
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FIGURE 1. The difference of images classification and few-shot classification.

second factor is that the self-learning capabilities of themodel
are easily disrupted by errors in the measurement method and
feature extraction. The distribution of samples across classes
can affect the performance of the prototypical networks.
The performance of prototypical networks can deteriorate
if the distributions of samples from different classes are
too similar. We suggest implementing a parallel hierarchical
feature extraction module and a few-shot differentiation loss
function to address the limitations of incompleteness and
lack of detail in feature extraction. Additionally, we proposed
an improved distributional calibration method to incorporate
prior knowledge into the classifier to make it more appro-
priate for a given dataset to address the limitations of the
classifiers.
• Our method addresses the problems of weak feature

extraction and incomplete extracted information in prototype
networks by proposing a parallel hierarchical feature extrac-
tion module and few-shot differentiation loss function.
• Our approach proposes an improved distribution calibra-

tion for problems in which prototype network classifiers have
rigid boundaries and cannot be better adapted to new datasets.
• To verify the experimental performance of our method,

we conducted experiments on three public datasets in
comparison with some baselines and the results show that
our method can be roughly optimal compared with other
methods, and only one dataset fails to reach the optimally,
but the results are similar.

The remainder of this paper is organized follows. Section II
presents related work on image classification. Section III
describes the proposed DCPNet method. Section IV presents
the experimental results. Finally, section V provides a
summary of this study.

II. RELATED WORK
A. FEW-SHOT LEARNING
Machine learning and deep learning excel in scenarios with
abundant labeled data and deliver remarkable performance.

Nevertheless, as technology and society progress, numerous
real-life situations struggle to generate substantial labeled
sample data, thereby posing significant challenges for
model training. The emergence of few-shot learning has
considerably mitigated this issue. According to the definition
of the few-shot problem provided by Wang et al. [1] in 2020,
a computer program segment can learn from experience E
and enhance its performance P on a given task T, considering
a specified performance metric P. In the context of few-shot
learning, experience E is acquired through a limited number
of supervised samples related to task T, thereby facilitating
learning in data-scarce environments.

The initial strategy aims to improve sample diversity in
few-shot learning scenarios by utilizing data augmentation,
given the limited size of the available samples. Data aug-
mentation primarily encompass three categories: those based
on unlabeled data, those based on data synthesis, and those
based on feature enhancement. Notable examples include
MEDA [2], Label Hallucination [3] and other techniques
for few-shot classification. In a study by Wang et al. [4],
virtual data were generated to enhance the diversity of
samples using a data generation model. This approach
combined with meta-learning allowed for the training of
generative models and classification algorithms in an end-to-
end manner, resulting in promising outcomes. Xian et al. [5]
proposed a unified learning framework for inductive and
transductive feature generation in any-shot learning. They
introduced a conditional generative model that combined
the strengths of VAE [6] and GAN [7]. In addition, the
authors utilized an unconditional discriminator to learn the
edge feature distributions of the unlabeled images. This
approach offers a versatile framework for feature generation
in a few-shot learning settings.

The second methodological approach for addressing the
few-shot problem is rooted in optimisation-based learning.
This approach defines a general optimization technique that
can be applied to all models, optimizing all potential classes
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using the algorithm, rather than solely optimizing for a
specific dataset. Prominent examples include MAML [8],
RelationNet [9], CovaMNet [10], ANIL [11], Free lunch
[12], and others, which train models using meta-training
datasets composed of multiple small tasks to facilitate rapid
adaptation to new tasks. Zhang et al. [13] presented MRA-
GNN, a novel network that utilizes multi-granularity graphs
to achieve few-shot learning with improved generalization
ability. Furthermore, there are algorithm-based few-shot
learning algorithms, which are based on prior knowledge
to modify the search for optimal hypotheses within a given
hypothesis space. Zhang et al. [14] developed a few-shot
image classification method from a novel perspective,
utilizing optimal matching between image regions. To adopt
this approach, they designed a cross-reference mechanism
that effectively mitigates the adverse effects of background
clutter and large intra-class appearance variations. So the
method of using Earth Mover’s Distance to calculate the
similarity between images is proposed. Wang et al. [15]
proposed a selective attack module that consists of trainable
adapters. Each adapter generates a spatial attention map of
the image used to guide attacks on category-independent
image regions to capture key features and correct the
visual distribution of image features. Secondly, they also
utilised Earth Mover’s Distance in order to optimise the
prototype and derive an upper bound for the Earth Mover’s
Distance. Again, they also used an augmentation strategy to
prevent overfitting in few-shot learning. In few-shot learning,
tasks in the meta-training dataset can involve learning new
categories with limited samples. After the meta-training
phase, the model can quickly adapt to novel few-shot tasks.
Finn et al. [8] developed MAML, a meta-learning-based
few-shot learning strategy that optimizes the model using
a meta-parameter and fine-tunes it for each task, giving
the model superior generalization ability. Another few-shot
learning approach involves graph neural networks, which
leverage the power of graph representation learning for data
such as images and texts. This method has shown strong
performance in few-shot learning. Dai et al. [16] proposed
PFEMed, which is the extraction of general and special
features from medical images using a dual encoder structure,
in addition to a priori guided auto-variance encoder that is
used to enhance the robustness of the target features. The
target query set features and support set features are then
matched to select for query set category prediction.

The final category encompasses the methods that rely on
metric learning. These techniques leverage prior knowledge
of high similarities within the same category and between
different categories to simplify complex models into ones
that can measure the similarity between different samples.
Notable examples include Matching Networks [17] and
Prototypical Networks [18] and others. Prototypical Net-
works [18] translates the support samples of each class
into a D-dimensional embedding space and computed the
prototype embedding for each class. Then, by computing the

similarity between the query embedding and each prototype
embedding using Euclidean distance, each query sample is
assigned the class with themost similar prototype embedding.
To obtain the prototype embedding for a class, the prototype
networks compute themean of the support embedding vectors
within that class in the support set. Gao et al. [19] identified
the challenges associated with obtaining stable large-scale
supervised training datasets, noting that existing methods
for relationship classification primarily rely on distant
supervision. As few-shot learning typically focuses on low-
noise images, it can be challenging to directly handle diverse
text information. They introduce a hybrid attention-based
prototype network to address the noisy few-shot relation
classification problem. This prototype network incorporates
instance-level and feature-level attention mechanisms to
highlight important instances and features, respectively. Fort
[20] proposed the integration of a Gaussian process into a
prototype network. In this approach, each image is mapped
to an embedding vector and an estimate of image quality.
A Gaussian covariance matrix is then used to predict and
characterize a confidence interval. Liu et al. [21] improved
the loss function by considering the balance between the
discriminative and migratory aspects of the few-shot model.
They introduced a margin-based softmax loss to enhance
performance. Nguyen et al. [22] introduced SEN, an improve-
ment in Euclidean distance, which eliminates the need for
significant normalization but still achieves normalization.
A novel variational inference network called TRIDENT was
introduced by Singh et al. [23]. They separated images into
latent variables for image semantics and labels, inferring
them in an alternating manner. They employed an internal
attention-based feature extraction module called AttFEX to
foster task perception, effectively utilizing information from
both query and support images. Hu et al. [24] conducted
extensive research on few-shot learning, focusing on dataset,
architecture, and fine-tuning strategy. The experimental
results highlighted the significance of the source dataset
and neural network structure on the few-shot learning
performance. Furthermore, data enhancement for fine-tuning
the feature backbone is essential when domain divergence
occurs between the training and testing sets. Ma et al. [25]
studied the few-shot classification problem from a geometric
perspective and they found that the essence of a prototype
network can be regarded as a Voronoi Diagram in the
feature space. Based on this perspective, they proposed
Cluster-induced Voronoi Diagram to improve the accuracy
and robustness of the few-shot image classification. SetFeat
[26] was proposed by Afrasiyabi et al. They constructed
an image representation of the base class in terms of a
set representation and used a shallow attention mechanism
to improve model accuracy. Hiller et al. [27] used Vision
Transformer to establish region semantic relationships in
images and also provide interpretability of images, learning
a more general statistical structure of the data to overcome
supervised collapse.
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B. CONTRASTIVE LEARNING
Contrastive learning [28] is a supervised learning approach
that compares data points to understand similarities and
differences within a given model. Unlike traditional classifier
learning, contrastive learning considers not only the similarity
within the same class but also the dissimilarity between differ-
ent classes. To train the model, contrastive learning primarily
focuses on optimizing the distance between encoder vectors.
By bringing similar samples closer together and negative
samples further apart, the model could learn more effectively.
Furthermore, by reducing the reliance on labeled data,
contrastive learning enables accurate data representation even
without explicit labels. Currently, several contrastive learning
methods are available. These methods can be broadly
categorized into negative example-based contrastive learning,
contrastive clustering, asymmetric network structures, and
methods based on redundancy removal loss functions to pre-
vent overfitting. SimCLR [29] is a negative example-based
contrastive learning framework that does not require any
special architecture or memory banks. Li et al. [30] proposed
a clustering algorithm based on contrastive learning that can
simultaneously perform representation learning and cluster-
ing analysis, making it suitable for streaming data clustering.
The BYOL approach, introduced by Grill et al. [31], uses
an asymmetric network structure and achieves excellent
classification accuracy on datasets like ImageNet [32] that
lack negative samples. This distinguishes it fromMoCo [33].
In addition, Zbontar et al. [34] introduced a loss function
based on redundancy elimination, effectively preventing
model collapse and ensuring the appropriate design of the
loss function. Liang et al. [35] designed a new hierarchical
contrast learning strategy to capture the correlation and dif-
ference between target-invariant and feature-specific features
and used it to achieve good performance in few-shot image
classification task in an up-zero-shot scenario.

In the research of Schroff et al. [36], triplet loss was
proposed in the field of contrastive learning, the basic idea is
that the samples with the same labels and their feature vectors
are as close as possible to each other in the embedding space
and the samples with different labels and the distance of their
feature vectors are as far as possible from each other in the
embedding space. First, the samples are classified into three
categories: anchor, positive and negative samples, where
anchor means randomly selected samples, positive means
samples with the same category as the anchor samples, and
negative means samples with different categories from the
anchor. Finally, the expression for the calculation is entered,
the expression is as follows:

Loss = max (d (a, p)− d (a, n)+ margin, 0) (1)

where, a denotes a random sample in a category randomly
selected from among the data categories is called an anchored
sample. p denotes a randomly selected sample in the same
category as the anchored sample a that different from
anchored sample is called positive sample. n denotes a
randomly selected sample in a category different from the

anchored sample is called negative sample. d(x, y) denotes
distance function, often used as a euclidean distance function.
The goal of minimizing the loss is that d(a, p) is close to 0 and
d(a, n) is greater than d(a, p) + margin, where the margin
denotes an artificially set constant greater than 0.

III. METHODOLOGY
A. PROBLEM DEFINITION
We followed a typical few-shot image classification setting.
Given a labeled dataset D = (xi, yi) where xi ∈ Rn is
the feature vector of images sample and yi ∈ C where
C denotes the set of label classes. We can spilt the label
into the base classes Cbase and novel classes Cnovel .Where
Cbase ∩ Cnovel = ⊘ and Cbase ∪ Cnovel = C . Our
approach is to train a model based on the data, which can
generalize from the basic classes to the novel classes; in
fact, we can sample few-shot tasks randomly. The most
common way to build a task called N-way K-shot task, which
means N classes are randomly sampled from the novel set
and K such as 1 and 5 labeled samples from each class
in one task, in which the few-shot available data can split
two sets called support set and query set. The support set
contains kn samples and the query set contains kq samples.
Thus, the performance of the model was evaluated as the
average accuracy on tasks randomly sampled from the novel
classes.

B. OVERVIEW OF METHOD
Next, we delve into the parallel hierarchical feature extraction
module and the few-shot differentiation loss function. These
components demonstrate how the model prototype center’s
representatives can be refined. Subsequently, we elaborate on
how the improved distribution calibration can fine-tune the
model classification surface, ensuring that it is better suited
to the new dataset.

During the training phase, we meticulously organized
the data into triplet and few-shot support set forms and
subsequently inputted them into the parallel hierarchical
feature extraction module. This process yields the feature
vector, which is we then used to calculate both the triplet
loss and cross-entropy loss in comparison with the ground
truths. These losses are weighted to formulate the few-shot
differentiation loss, facilitating back-propagation and model
training. Our innovative parallel hierarchical feature extrac-
tion module, along with the few-shot differentiation loss
function, represents an advanced metric-learning approach
rooted in prototype networks. By harnessing deep and
shallow semantic separation, splicing techniques, and con-
trastive learning, we cultivate a more nuanced metric
learning model that adeptly distances dissimilar samples
while drawing similar ones closer together. Once the loss
value stabilizes, we transition into the testing phase. Here,
we employ an improved distribution calibration strategy to
refine the classification boundaries and evaluate the classifier
performance through rigorous testing.
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FIGURE 2. DCPNet: the structure of DCPNet method.

C. PARALLEL HIERARCHICAL FEATURE
EXTRACTION MODULE
As we introduced the problem definition before, the support
and query images are first converted into feature vectors. The
proposed approach employs a two-branch encoder structure.
We transferred the most common Resnet18 given the simplic-
ity and lightness of the model. We designed two branches
as the feature extraction encoders, one branch followed
the model for training, maintaining gradient propagation to
extract specific deep semantic image features. The other
branch freezes the gradient and does not follow the model for
training to extract general shallow semantic features for the
model. Subsequently, the final output of the feature extraction
encoder is used by merging two features and resizing them to
the appropriate size using a Fully-Connected layer.

Suppose that a single image data is xi, which is f1(xi) after
the first branch encoder and f2(xi) after the other encoder.
Then, the feature extracted from this single image data can
be represented as:

f (xi) = FullyConnect(Cat(f1(xi), f2(xi))) (2)

where, Cat(x, y) denotes tensor affine operator and (x, y)
denotes a pair of tensors. This can be done with torch.cat in
Python.

D. FEW-SHOT DIFFERENTIATION LOSS
In this subsection, we introduce the proposed few-shot
differentiation loss function to address the problem of
inaccurate representation of prototype networks prototypes.
We first divide the implementation process of completing the
task into four stages: Feature extraction, Prototype represen-
tation, Distribution calibration, Completion of classification.
In feature extraction we use a two-brunch approach to get the
initial prototype vectors, in order to make the model more

portable, we abandoned the use of deeper and more complex
neural networks and directly migrated the Resnet18.

In the prototype representation stage, we are still analogous
to prototype networks for prototype-centred representation
learning. However, to obtain a better prototype representa-
tion, we use the triplet loss function of contrastive learning
and weight it with the cross-entropy loss function to get the
final loss function:

TotalLoss = λ
{
max

[
d

(
xai , x

p
i

)
− d

(
xai , x

n
i
)
+ margin

]
, 0

}
(3)

+ (1− λ)

[
−

∑
i

pilog (qi)

]
(4)

where xai denotes the anchor sample selected in the support
set, xpi denotes the positive sample selected in the support
set with the same category as the anchor sample, xni denotes
the negative sample selected from the support set with a
different category than the anchor sample, margin denotes the
artificially set hyper-parameter controlling the difference in
the distance between the samples. In the cross-entropy loss
function, pi denotes the true value and qi denotes the predicted
value. λ denotes the weighted weight that controls the two
sets of loss functions.

Our starting point is to increase the distance between
dissimilar samples and decrease the distance of similar
samples in the triplet loss of contrastive learning, so as to get
a prototype representation that is easier to classify.

E. IMPROVED DISTRIBUTION CALIBRATION
First, we assumed that the feature vectors obtained by
the encoder followed a Gaussian distribution. Statistical
calculations were performed based on the data of the base
categories and the mean and variance of each category were
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calculated, where the mean and covariance are expressed as
follows:

µi =
1
ni

∑ni
j=1xj (5)

∑
i =

∑ni
j=1(xj − µi)(xj − µi)T

ni − 1
(6)

As our statistics are based on the sample estimation of the
whole, the sample covariance is used instead of the overall
covariance.

Similar to in the method proposed by Shuo Yang et al [12],
we used the same training technique for the prototype net-
work. Based on previous research, we directly transferred the
feature vectors acquired after WideResNet [37] training and
computed the statistics based on the feature vectors. and then
transferred these statistics to the prototype representation of
the novel class after the feature extraction module. Similarly,
we select the k base classes with the support set chosen to
have the closest Euclidean distance to the sample features.
However, the difference is that we do not perform a Turkey’s
Ladder of Powers transformation of the sample features, but
only data normalization pre-processing.

Sd =
{
−∥µi − x̃∥

2
| i ∈ Cbase

}
(7)

SN =
{
i | − ∥µi − x̃∥

2
∈ topk (Sd )

}
(8)

where topk () is the closest top k elements from input set,
which means the feature vector x̃. We select the closest k base
classes to compute the corrected mean and variance.

µ′ =

∑
i∈SN µi + x̃

k + 1
(9)

6′ =

∑
i∈SN 6i

k
+ α (10)

We use constructed corrected statistics to construct a new
Gaussian distribution and sample it.

Dy =
{
(x, y) | x ∼ N (µ, 6) , ∀ (µ, 6) ∈ Sy

}
(11)

where Dy denotes the set of corrected feature vectors
constructed from feature vectors sampled from the new
Gaussian distribution. Where Sy denotes the set of mean and
variances after k corrections. Generate new feature vectors to
be fused with the feature vectors of the query set and train a
logistic regression classifier.

IV. EXPERIMENTS
Our proposed method, DCPNet, was experimentally eval-
uated against classical few-shot classification methods on
three publicly available datasets. The experimental results
revealed that DCPNet outperformed classical methods in
terms of both learning performance and time efficiency.
The following seven subsections provide relevant details
regarding the datasets, experimental settings, implementation
details and results of our experiments.

Algorithm 1 Training a DCPNet

Data: Training data = {(x1, y1), . . . , (xN , yN )};
Nc: The number of classes per episode;
K : The number of classes in the training set;
Ns: The number of support examples per classes;
NQ: The number of query examples per classes
Result: ŷ
Fix TotalLoss: Total loss of DCPNet;
f (): The encoder model of DCPNet;
Choose a controlled hyper-parameter λ;
V ←− RandomSample ({1..K } ,Nc);
Totalloss = 0;
for k ∈ V do

Xai ,Xpi ,Xni ←− TripletRandomSample (D (x, y));
f
(
xai

)
, f

(
xpi

)
, f

(
xni

)
= model

(
Xai ,Xpi ,Xni

)
;

Sk ←− RandomSample (Dvk ,NS);
Qk ←− RandomSample

(
Dvk\Sk ,NQ

)
;

for (xi, yi) ∈ Qk do
Ck ← 1

Nc

∑
(xi,yi)∈Sk f (xi) ;

TotalLoss =
λ ∗ TripletLoss

(
f
(
xai

)
, f

(
xpi

)
, f

(
xni

))
+

(1− λ) ∗ CrossEntropy (yi,Ck);
TotalLoss = TotalLoss− ∂2TotalLoss

∂xai ∂xi
TotalLoss;

end for
end for
V
′

←− RandomSample ({1..K } ,Nc);
for k ∈ V

′

do
for (x, y) ∈ Qk do

(x̃, y)← DistributionCalibration (x, y);
ŷ← LogitClassifier (x̃);

end for
end for

A. DATASETS
For our experiments, we chose three datasets: including
Mini-Imagenet [17], Omniglot [38] and CUB [39]. Mini-
Imagenet [17] is a widely used dataset for few-shot learning.
This dataset consists of 60,000 colorful images divided
into 100 categories, each of size 84 × 84 pixels. Eighty
percent of the dataset comprises the training set, while the
remaining part is the test set. Another dataset we chose
for the experiments is Omniglot [38], which is also widely
used in few-shot learning scenarios. This dataset comprises
50 different language alphabets. Each alphabet contains
1,623 distinct characters, and every character is written by
20 different individuals. Each image in this dataset has a
size of 105 × 105 pixels. The last dataset we chose for our
experiments is CUB (Caltech-UCSD Birds-200) [39], which
is a widely used benchmark image dataset for few-shot fine-
grained classification and recognition research. This dataset
comprises 11,788 bird images, categorized into 200 different
bird subcategories. Out of the total dataset, 5,994 images
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FIGURE 3. Mini-Imagenet: Partial images and labels Mini-Imagenet
dataset.

FIGURE 4. Omniglot: Partial images and labels Omniglot dataset.

FIGURE 5. CUB: Partial images and labels CUB dataset.

comprise the training set, and the remaining 5,794 images are
part of the test set.

B. IMPLEMENTATION DETAILS
The present implementation was based on the Python
language and deep learning libraries of the Pytorch platform.
We use two-branch Resnet18 encoders in our feature
extraction module, which serves as a backbone in few-shot
classification, prototype computing and feature extraction.
To preprocess each image, we first resized it to 84 * 84,
and then proceeded with centralization and standardization.
The preprocessed image is fed into a two-branch encoder
for feature extraction. The two-branch resnet18 decoder was
then used, where one branch follows the model for parameter
updating while the other freezes the parameters without
following the model to learn. The two feature vectors were
merged and then reduced to 640 by a fully connected layer
and fused with the a priori statistics during the prediction
stage.

C. EXPERIMENT SETTINGS
We trained and tested the proposed method on a PC platform
equipped with an NIVIDA A100 GPU with 40 GB of

memory and an Intel Xeon Gold 6248R CPU with 72GB
with device. We utilized the traditional few-shot training
setup of 5way-1shot and 5way-5shot respectively. During the
training representation stage, we set the number of rounds
as 100 and 150 for the test query stage. We uniformly
employed 200 rounds and determined the experimental
results by computing the average precision and 95 percent
t-test confidence intervals. Regarding the artificial setting
parameters, we chose the loss parameter margin of the
comparison learning triad as 0.4, the weight of the total loss
function λ as 0.3 and the number of nearest neighbour groups
as 2 in the distribution correction stage.

It is worth mentioning that for the selection of prior
information, we used directly migrated WideResNet [40]
trained base class features in the overall process. However,
beacause some information from Omniglot [38] was missing,
we used the code method provided by Shuo Yang et al
[12] to train on Omniglot [38] and use it as a prior
feature. The experimental process comprises two phases.
The first phase is the representation learning phase in which
the double-branch ResNet18 is used as an encoder that
combines comparative learning and prototype representation
learning techniques to enable the encoder to learn the best
representation. In the second phase, the model weights were
fixed. The second stage is the test query stage, which uses
the best model weights and fuses them with the distribution
correction method for feature fusion to generate posteriori
features. These features were then used as input to the
logistic regression classifier provided by Scikit-learn for
classification.

D. EVALUATION METRIC
In our proposed method,we used accuracy as the evaluation
metric in our experiments, which is a widely used perfor-
mance measure in few-shot classification tasks. To evaluate
the performance of our proposed method in Mini-Imagenet
[17], Omniglot [38], CUB [39] datasets, we randomly sample
100,000 episodes from test’s datasets. While evaluating the
classification accuracy of the model, we simultaneously
calculated the 95 percent confidence interval for the mean
accuracy. Based on these, we also selected the total param-
eters as tested methods as the performance measure of model
complexity and efficiency. Traditional metrics for judging
image classification problems include confusionmatrix, ROC
and AUC etc. in addition to accuracy. However, in the few-
shot learning scenario, our support set and query set samples
are generally in the situation of many sample categories
but few samples and when calculating the ROC and AUC
curves, the curves will jump too much and become unstable
owing to the problem of too few samples. Therefore, when
evaluating the model performance, we select the commonly
used classification index called ACC.The ACC is shown
below:

ACC =
TP+ TN

TP+ FN + FP+ TN
(12)
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FIGURE 6. Loss function: Loss function change on Mini-Imagenet dataset when training epochs 200.

E. TEST RESULTS
For the comparison experiments, we used the publicly
available code provided by the original authors of the paper
to conduct the experiments in our experimental environment.
Considering the differences in experimental environments,
the results used in this paper are the numerical results
obtained after conducting multiple experiments instead of
directly adopting the values in the original paper pro-
vided by the papers. We make the experimental code
publicly available at the following link: https://github.com/
XuRanhui/Experiments-for-DCPNet/tree/main. This section
discusses and analyzes the results of the comparative
experiments in detail. Table 1 shows that our proposed
method outperforms other classical methods in both datasets.
This confirms its effectiveness. Despite this, it fails to reach
the leading level on the Omniglot [38] dataset. However,
the difference in accuracy does not exceed one percent in
either case. We conjecture that Omniglot’s [38] inaccuracy
results in inappropriate information extraction during the
WideResNet [40] feature extraction process. Secondly, the
Omniglot [38] dataset is a handwriting dataset containing a
large number of character corpora in different languages that
have different shapes but similar structural features. While
relation networks [9] mainly capture features by calculating
the similarity of different samples, and thus perform better
on the Omniglot [38] dataset, more complex datasets are not
suitable for simple similarity calculation for metrics. Thus,
it can be demonstrated that our DCPNet method is functional.

In contrast to other classical methods, our approach utilizes
a two-branch structure for feature extraction that effectively
blends the comprehensive features of shallow semantics and
the specific features of deep semantics. By integrating the
triplet loss and cross-entropy loss, the encoder, trained as
per the dataset, can capture a prototypical representation
that can pull different samples apart and similar samples
together. When training the classifier, we utilized a dis-
tribution calibration method that facilitated fine-tuning in
the fitting of classification boundaries by incorporating

TABLE 1. Results of comparative experiments on Mini-Imagenet.

TABLE 2. Results of comparative experiments on Omniglot.

TABLE 3. Results of comparative experiments on CUB.

a priori features. To enhance the model performance for the
few-shot classification problem, we made adjustments and
improvements to both the prototype center and classification
boundary.
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TABLE 4. Results of ablation experiments on Mini-Imagenet.

F. ABLATION STUDY
Based on the comparison experiments, we conducted ablation
experiments to assess the contribution of our approach fea-
turing a two-branch encoder and a priori feature distribution
calibration to the DCPNet. We first computed prototype
centers for feature extraction using parallel hierarchical
feature extraction module and few-shot differentiation loss
to be used to train the prototype network, which we called
DCPNet (without DC) and the results of the trained data were
compared with the Prototypical Network and DCPNet. For
our ablation experiments, we selected Mini-Imagenet [17],
with a training setting of 5way-1shot and 5way-5shot.

The experimental ablation data indicates that the model
accuracy is enhanced by approximately 15 percent using
parallel hierarchical feature extraction module, few-shot
differentiation loss and by about 14 percent from the a priori
feature distribution calibration. This confirms the validity of
our previously proposed approach.

V. CONCLUSION
In this paper, we present a parallel hierarchical feature
extraction module, a few-shot differentiation loss function,
and an improved distribution calibration for improving
the representative features of prototype network metric
learning and classifier boundaries. To address the limited
feature extraction capabilities in prototypical network metric
learning, we utilize a parallel hierarchical feature extraction
module to integrate shallow and deep semantic information
within images. This module is trained using the few-shot
differentiation loss function, which fine-tunes metric learning
to bring similar samples closer together while pushing
dissimilar samples apart. In addition, we introduce an
improved distribution calibration that incorporates statistical
base class informationwith the original features. This calibra-
tion trains the classifier by sampling posterior features and
ultimately refining the classifier boundaries. We evaluated
the performance of our model on three publicly available
datasets: Mini-Imagenet [17], Omniglot [38] and CUB [39].
The DCPNet model, which is our newly proposed approach,
achieves highest results for two of these datasets. Notably, our
method performs within one percent of the best method on
the Omniglot dataset, highlighting its effectiveness. In terms
of model architecture, our model utilizes a simple encoder
design, resulting in a lightweight performance. Furthermore,
the ablation experiments validate the contribution of each
component to the overall performance of the model. Accord-
ing to our findings, each component plays a critical role in
enhancing the performance of the model.

Despite the shortcomings observed in our experiments, this
study offers an enhanced version of a prototypical network.
Although the improvements made to the prototype represen-
tation and classification correction methods are significant,
the approach still exhibits signs of algorithm redundancy and
complexity. Furthermore, although the prototypical network
achieved classification success in the distance space, it lacked
a reasonable representation in the probability space. As such,
our future work will focus on exploring methods to address
the few-shot classification problem in the probability space,
aiming to overcome these limitations.
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