
Received 5 April 2024, accepted 29 April 2024, date of publication 8 May 2024, date of current version 15 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3398065

Elephant Flow Classification on the First Packet
With Neural Networks
BARTOSZ KA̧DZIOŁKA , PIOTR JURKIEWICZ , ROBERT WÓJCIK , AND JERZY DOMŻAŁ
Institute of Telecommunications, AGH University of Krakow, 30-059 Kraków, Poland

Corresponding author: Bartosz Ka̧dziołka (kadziolka@agh.edu.pl)

ABSTRACT Quick and accurate identification of the largest flows in the network would allow for the
management of most traffic using dedicated, flow-specific routes and policies, thereby significantly reducing
the overall number of entries in switch flow tables. Our analysis focuses on utilizing neural networks to
classify elephant flows based on the first packet using 5-tuple packet header fields. The findings indicate
that with simple neural networks comprising solely linear layers, it is possible to accurately detect elephant
flows at their inception, thereby reducing the number of flow table entries – by up to a factor of 15 – while
still effectively covering 80% of the network traffic with individual flow entries.

INDEX TERMS Flows, flow table, elephant, optimization, mice, traffic engineering, machine learning.

I. INTRODUCTION
Elephant flows, a term used to describe the largest data
flows on the Internet, are commonly believed to carry the
majority of the traffic. Yet, they pose a only small share of
the overall flow number. In contrast, there are numerousmice
flows, which, despite their abundance, contribute only a small
fraction of the overall traffic. This distribution is even more
skewed than the typical 80/20 split suggested by the Pareto
principle. Recent research indicates that as little as 0.2-0.4%
of all data flows may be responsible for up to 80% of the total
Internet traffic, as shown in studies such as [1] and [2].

Recently, flow-based traffic engineering has gained trac-
tion as an effective method to manage the ever-growing
network demand while maintaining Quality of Service
(QoS) unaffected. In this method, a distinctive forwarding
entry is allocated for every individual flow within the
switch’s memory. Each entry specifies the next hop in the
flow’s route, facilitating the utilization of diverse routes for
flows originating from the same source-destination pairs.
This capability enables the implementation of multipath
routing. The selection of routes for new flows can be
adjusted according to the current or anticipated network
load, adaptively bypassing overloaded links. Additionally,
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such flow-based adaptive routing offers more stability than
traditional dynamic load balancing [3].

The challenge with flow-based traffic engineering is that
the number of simultaneous flows in a network often
surpasses the capacity of flow tables in switches [4].
Additionally, in centralized software-defined networks, the
controller’s throughput for managing new flows is limited.
Besides the capacity limitation, a smaller number of entries
also accelerates table lookup and thus packet switching rate.
A potential solution to this issue is to create individual entries
solely for the largest flows. The majority of smaller flows
could be therefore routed via the standard, shortest paths.
This would notably decrease the number of entries in the flow
tables, yet it would still allow to management of a significant
portion of the traffic with dedicated, flow-specific entries.

Identifying the largest flows presents a significant chal-
lenge. Our goal is to detect them early enough to quickly
allocate individual entries, ensuring that the majority of their
packets will follow specific routing paths. Optimally, flows
should be classified right from their first packet, to prevent the
need for rerouting during the connection. Such an approach
can rely only on data contained in packet headers and cannot
utilize information about packet sequences, like packet
sizes or interarrival times. Consequently, we investigate the
application of neural networks to identify large flows based
on the 5-tuples (protocol, source and destination IP addresses,
and ports) data found in packet headers.

65298

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0003-3093-9089
https://orcid.org/0000-0002-0774-610X
https://orcid.org/0000-0002-9562-606X
https://orcid.org/0000-0002-8417-4416


B. Ka̧dziołka et al.: Elephant Flow Classification on the First Packet With Neural Networks

We evaluate the performance of several neural networks
built with the help of the PyTorch library. A key aspect
of our paper is its emphasis on metrics that are critical
for traffic engineering in Software-Defined Network (SDN).
Specifically, we concentrate on the amount of traffic carried
by flows identified as elephants after their detection (referred
to as traffic coverage), and the subsequent decrease in the
number of individual flow entries required in the tables
(which we refer to as flow table occupancy reduction).
We evaluate six models of neural networks along with five
different approaches to label normalization.

II. RELATED WORK
The concept of individually managing only elephant flows
is not new. It was first proposed in 1999 with the idea of
adaptive routing of significant data streams [5]. However, due
to hardware limitations of that time, it remained an academic
concept. It has seen a resurgence in popularity, especially
with the emergence of software-defined networking. In this
modern context, a controller equippedwith extensive network
knowledge can effectively handle large flows.

Hedera traffic engineering system, introduced in [6], was
designed to reroute flows through an embedded controller
once they exceed a certain threshold. This rerouting directs
the flows along dynamically chosen paths. It operates
under the assumption that edge devices gather all flow
statistics using OpenFlow counters, focusing optimization
efforts on non-edge devices. Another notable flow-based
system is DevoFlow [7]. DevoFlow prioritizes elephant
flows, employing sampling methods and threshold values for
identification. However, its efficiency assessment is based
solely on the aggregated flow of the entire network. A system
akin to DevoFlow, detailed in [8], detects elephant flows
at edge devices using a modified Bloom filter. This study’s
traffic model, which assumes that 20% of flows contribute
to 80% of traffic, significantly deviates from actual patterns,
as indicated by more recent studies [1], [2].

In the studies mentioned, basic techniques like sampling,
counters, and threshold values are used for detecting large
flows. Recently, more advanced machine-learning based
systems were proposed. A decision tree model for identifying
elephant flows was implemented and evaluated in [9],
focusing mainly on the accuracy of detection. However,
as we argue in this paper, accuracy might not be the
most representative factor. In [10] Poupart et al. evaluated
the effectiveness of three distinct Machine Learning (ML)
methods in predicting flow size and classifying it as an
elephant flow. Their dataset comprised three million flows,
encompassing both TCP and UDP traffic. The key metrics
in their analysis were the percentage of correctly identified
large flows (true positive rate) and the percentage of correctly
identified small flows (true negative rate).

In [11] Liu et al. suggest utilizing a random forest
decision tree to identify eight key features for a classification
model. They propose a two-tiered architecture consisting of

pre-classification at the edge devices of the SDN network
and precise classification at the central controller. The study
introduces a novel classification system, categorizing flows
into four types: elephant, cheetah, tortoise, and porcupine.
The research focuses on the accuracy of classification and the
delay involved in the classification process.

In the study [12] Hamdan et al. also examine a two-level
classification architecture, with initial sorting done at the
switches and the final classification at the central controller.
Here, switches differentiate between mice and potential
elephant flows using the count-min sketch algorithm, while
a decision tree in the controller performs the final classifi-
cation. Notably, the switch algorithm is periodically updated
with a new dataset from the controller. This study employed
real traffic models for algorithm validation, but like [11],
it primarily emphasized classifier precision. A single-level
count-min sketch-based lightweight flow table optimization
scheme was proposed in 2022 by He et al. [13]. Another
sketch-based mechanism was also proposed in 2022 by
Qian et al. in [14]. Different from common sketches, they
utilize TCAM-based flow table to store elephant flow labels
so as to solve the contradiction between the record of elephant
flow labels and the accuracy of mouse flows. Notably, in both
papers real ISP packet traces were used to evaluate the
proposed mechanisms.

In another study, da Silva et al. [15] proposed a Locally
Weighted Regression (LWR) algorithm for predicting the
size and duration of a new flow, utilizing patterns from
previous flows and their immediate correlation with the
new flow. Another system proposed in 2022 by the same
author uses hashing mechanism based on the Cuckoo Search
meta-heuristic [16]. There is also a recent proposal of a
threshold-agnostic heavy-hitter classification system is [17]
by Pekar et al. Similarly, the system uses template matching
to classify elephant flows according to the per-flow packet
size distribution observed in initial packets.

CrossBal, a hybrid load balancing system based on Deep
Reinforcement Learning (DRL) that focuses its efforts on
high-impact elephant flows was proposed in [18]. The system
uses three-level elephant flow detection, which include
threshold-based preliminary filtering. Flowlets of detected
elephant flows are then rerouted to achieve efficent netowrk
load-balancing. Deep learning system was also proposed by
Wassie et al. in [19]. It uses deep autoencode and gradient
boosting, with autoML predicting algorithms, including
XGBoost, GBM.

All the studiesmentioned above concentrate on flow classi-
fication after observing several initial packets. In contrast, our
primary objective is to identify a flow as rapidly as possible,
ideally from its first packet. Durner et al. in [20] demonstrated
flow classification on the first packet, using only features
extracted from the 5-tuple (src IP, dst IP, src port, dst port,
protocol) and the size of the first packet. In [21] Harde-
gen et al. suggested multiclass prediction as an alternative
to binary classification (elephant/mouse), employing a deep
neural network to predict flow characteristics from the 5-tuple
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of the first packet. A similar approach was used in [22] for
predicting a flow’s bit rate from the 5-tuple of its first packet.

The recent 2023 work in this area by Gomez et al. [23]
focuses on classification immediately after a flow’s first
packet. However, this study, like the others, primarily
evaluates classification accuracy, without considering the
impact on the number of entries in the flow table and
achievable traffic coverage. The most recent paper from
2024 by Xie et al. [24] on the other hand proposes 2-
stage decision tree based system. The first stage of elephant
flow pre-classification is performed solely using the data
contained in the first packet header. What is notable, the
authors implemented their system in the P4 language,
however they verified it only in a switch emulator, not on a
real device.

There are also recent works which incorporate neural
networks to classify network flows, but for the QoS, rather
than traffic engineering purposes. In [25] Alkhalidi et al.
propose a one-dimensional convolutional neural network to
classify flows into several classes based on the packet header.
Interesting novelty is the proposal of automatic selection of
only selected bits of packets headers, which can reduce the
number of features, and thus the processing time and energy
consumption, at the same time giving satisfactory accuracy.
In [26] Yaseen et al. propose usage of a similar system to
classify traffic and assign a DSCP field. The system has
been implemented within an SDN controller and evaluated
in the Mininet emulator in an emergency traffic prioritization
scenario.

Although the mentioned studies focus on flow classifi-
cation, they emphasize classification accuracy, overlooking
the practical effectiveness of these algorithms for traffic
engineering objectives. For example, incorrectly classifying
the largest flow in a network significantly affects traffic
coverage, more so than misclassifying a smaller flow.
The metrics used in these studies fail to recognize this
disparity. In particular, none of the previous research has
examined metrics such as the reduction in flow table entries
or the volume of traffic handled post-classification. These
factors are vital for evaluating switches and controller load
and the impact on traffic engineering and overall system
performance.

III. METHODOLOGY
Prediction of flow size based on its initial packet is feasible
using a type of ML known as regression. Regression is one
of the main supervised learning methods, requiring labeled
input data to enable the model to classify or predict. All
neural network models, presented in this paper, were built
with PyTorch [27].

A. DATA PREPARATION
The performance of any ML algorithm is heavily dependent
on the dataset used. In our evaluation, we rely on data
regarding the length and size distributions of flows from a

dataset gathered over 30 days in a large campus network [1].
For data processing, we utilized the package detailed in [28].

1) DATASET
The dataset in question comprises over 4 billion flows,
with its complete flow records amounting to approxi-
mately 278 GB in binary format. Given this immense size,
we used an anonymized subset of the data for training and
evaluating our models, as published in [29]. This subset
represents one hour of traffic, encompassing 6,517,484 flows
and 547 GB of data transmission. This specific time frame
was chosen to ensure it was free of anomalies and that the
theoretical reduction rate curve of a perfect elephant classifier
for this hour closely mirrors that of the complete 30-day
dataset. In the published open source dataset, IP addresses
were anonymized using the prefix-preserving Crypto-PAn
algorithm. As demonstrated in [29], this anonymization
process does not affect the performance of the ML
models.

2) INPUT FEATURES
The input data derived from the 5-tuple comprises the
following details: source IP address, destination IP address,
source port, destination port, and transport layer protocol, col-
lectively accounting for 104 bits. We explore one particular
representation of this input data:

• bits: Each field in the header is divided into individual
bits, creating 104 distinct features. These are represented
as binary values (0/1).

The dataset was partitioned into training and validation
sets, comprising 80% and 20% of the data, respectively. This
distribution implies that the training sets included 5,213,988
flows, while the validation sets contained 1,303,496 flows.

B. BALANCING DATASET
Balancing the training dataset played a crucial role. In the
training dataset which contains 5,213,988 flows the number
of mice flows significantly outnumbers the elephant flows.
To achieve satisfactory accuracy it was necessary to resolve
this issue. Every result presented in this paper was achieved
with the model being trained on the balanced dataset with
different ratios. Balancing the dataset was achieved in the
following steps:

1) Set the ratio – for instance 10%.
2) Calculate balanced dataset size – size of the initial

training dataset * ratio (5,213,988 * 10% = 521,398
flows).

3) Sort the initial training dataset in a descending order –
largest flows at the beginning.

4) Get the first half of the balanced dataset size number
of flows from the beginning of the ordered list from the
previous step.

5) The second half of the balanced dataset size number of
flows is selected randomly from the rest of the initial
dataset.
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TABLE 1. Variable hyperparameters.

TABLE 2. Constant hyperparameters.

C. TRAINING
This phase included hyperparameters selection, labels nor-
malization and the training of neural network. The flowchart
of training phase is presented in the Figure III-C3.

1) HYPERPARAMETERS
Each model was trained on the shuffled, balanced dataset.
Then, its performance was evaluated on the validation data.
We performed training and validation with a couple of
hyperparameter combinations. Hyperparameters that varied
are shown in the Table 1, meanwhile, hyperparameters which
remained constant across all training sessions are presented
in the Table 2.

The general rule is that with the bigger batch size, one can
obtain more stable training – it reduces the chance for the
model to be overtrained. Together with batch size scaling we
decided to scale the learning rate. This resulted in the model
being able to faster find the local minima andmaximawithout
the need to scale a number of epochs adequately.

2) LABELS NORMALIZATION
Every training and validation was performed with different
types of normalization. In total, we analyzed 5 different
approaches to label normalization. We refer to the normaliza-
tion types as NONE, ONE CLIP, ONE NO CLIP, SQUARED
CLIP, and SQUARED NO CLIP:

• NONE normalization type means that there is no
normalization of the labels. We train and evaluate the
model on the original labels. Original labels range from
64 (smallest size of the flow) to 3,218,210,994 bytes
(biggest size of the flow).

• ONE CLIP means that every label in both training
and validation datasets is divided by one gigabyte
(1,000,000,000). After division values from the datasets
are clipped to range 0 – 1. This means that every value
smaller than 0 becomes 0, and, every value larger than
1 becomes 1. This is expressed by the Equation 1.

• ONE NO CLIP similarly to ONE CLIP divides the
datasets by one gigabyte. However, in this case, values
outside the interval are not clipped to the interval edges.
This is expressed by the Equation 2.

• SQUAREDCLIPmeans that every label in both training
and validation datasets is squared and divided by one
gigabyte. The result is clipped to the range 0 – 1. This is
expressed by the Equation 3.

• SQUARED NO CLIP means that every label in both
training and validation datasets is squared and divided
by one gigabyte. This is expressed by the Equation 4.

Let labels = {l1, l2, . . . , ln}, then for each label li in labels,
the normalized value T (li) is defined by:

T (li) =



0 if
li

1000000
< 0,

1 if
li

1000000
> 1,

li
1000000

otherwise.

(1)

T (li) =
li

1000000
(2)

T (li) =



0 if
l2i

1000000
< 0,

1 if
l2i

1000000
> 1,

l2i
1000000

otherwise

(3)

T (li) =
l2i

1000000
(4)

3) DECISION (MOUSE/ELEPHANT)
In regression analysis, the output of the algorithm is a
continuous value. In our case, it is the predicted size of the
flow in bytes. To generate a curve of flow table reduction
in the function of traffic coverage, it is not necessary to
repeatedly undergo the training and fitting process. Instead,
we can simulate the decision-making by adjusting the
elephant threshold on the predicted flow sizes. In this context,
a label refers to the actual flow size obtained from the dataset.

D. EVALUATION
Current research in the field largely overlooks metrics
crucial for evaluating the effectiveness of flow-based traffic
engineering. Instead, most studies focus on the accuracy of
flow classification, gauged by parameters such as the true
positive rate, true negative rate, and precision in predicting
flow size and duration. However, these metrics alone provide
limited insight into the practical application of the algorithms
in our area of research. Importantly, the misclassification
of the network’s largest flow has a far greater impact on
overall traffic coverage compared to the misclassification of
smaller flows. The metrics used in existing literature do not
adequately address this significant difference.

Addressing these gaps, we propose newmetrics to evaluate
ML models in the context of detecting elephant flows for
traffic engineering. We used two specific metrics for the
evaluation: the reduction in flow table occupancy and the
percentage of traffic covered.
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FIGURE 1. Training of the neural network.

It’s crucial to recognize the inherent tradeoff between these
metrics. Raising the threshold for elephant flow detection
leads to a greater reduction in the number of flow table
entries, but at the same time, it reduces the fraction of
traffic that is covered. This balance is key to optimizing both
network efficiency and the QoS.

E. IMPLEMENTATION CONSIDERATIONS
Although this paper focuses on an isolated problem of
elephant flow classification, in this section we present
considerations of how the proposed neural network model
can be used in a traffic engineering system. This is just an
example of an implementation – several different approaches
can be considered.Moreover, the proposedmodel can be used
in other applications and is not limited only to TE systems.

Figure 2 presents a flowchart of switch dataplane opera-
tion. Such packet processing pipeline can be implemented
for example in a P4 switch. Each incoming packet (which
includes the first packets of new flows, but also subsequent
packets of existing flows) is looked up against the flow table
to find a corresponding flow entry. The purpose of the flow
table is to store full flow entries for elephant flows, which
may include the next hops of a path individually assigned for
that flow and other flow-specific QoS attributes. When the
entry is present, the packet is forwarded according to the next
hop assigned for that flow.

When there is no flow entry in the flow table, the hash of
the packet’s 5-tuple is looked up against a Bloom filter. The
role of the Bloom filter is to be a cache of seen (and already
classified) mice flows. When the flow is present in the Bloom

FIGURE 2. Example of an implementation in a TE system.

TABLE 3. Model names.

filter, it means that it is a mouse flow. The packet is then
forwarded according to the shortest paths.

If the flow is not present in the Bloom filter, it means
that the incoming packet is the first packet of a new flow
and the flow needs to be classified. First, the feature bits are
extracted from the packet’s header 5-tuple. Then they are fed
to the neural network model which was earlier trained offline
based on previous traffic observations. The regression model
predicts a normalized flow size, which is then renormalized.
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FIGURE 3. Neural network models.

The predicted flow size is then tested against the elephant size
threshold, which can be tuned by the network administrator
according to the current needs. Finally, the incoming flow is
classified either as a mouse or an elephant.

Flows classified as elephants are added to the flow table
along with an individual path. The path may be selected
locally from the set of pre-determined alternative paths.

The packet can be also forwarded to the controller to
perform load-aware selection based on the global view
of the network. Subsequent packets of that flow will be
forwarded according to the flow table entry and not again
classified.

For flows classified as mice, the hash of 5-tuple is
calculated. Then the hash is added to the Bloom filter. This
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FIGURE 4. Flow table reduction for the balanced dataset with 6% ratio and clipping in the normalization.

FIGURE 5. Flow table reduction for the balanced dataset with 10% ratio and clipping in the normalization.

will prevent subsequent packets of already classified mice
flows from being again classified. However, there are possible
false positive matches with Bloom filters. That means that
new flows, which were not yet classified, may be considered
as already classified mice flows. Such flows will still be

forwarded, but using shortest paths, as in the classic routing.
This will reduce the effectiveness of the TE system, but will
not break its operation. Moreover, the probability of false
positives can be strictly controlled by adjusting the Bloom
filter size.
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FIGURE 6. Flow table reduction for the balanced dataset with 20% ratio and clipping in the normalization.

Some kind of aging and cleanup for entries in the
Bloom filter will also need to be implemented. Exemplary
design can include a rotating ring of Bloom subfilters. For
example, in the case of a 2-second inactive flow timeout and
10 subfilters, each subfilter will encompass 200 ms of traffic.
All subfilters will be looked up in parallel to find an entry, but
new entries will be added only to the subfilter currently at the
first position. The ring will be shifted by one every 200 ms
and the subfilter on the last position will be zeroed after each
shift. On a hit for an already existing flow, an entry will also
need to be added to the current first subfilter to ensure that
only entries for inactive flows will be subject to aging and
cleanup.

IV. MODELS
Models analyzed in this research were built from scratch
using the PyTorch library. The difference between those
models lies only in the number of layers and number of
neurons. The building blocks of the models are the same
– all models are built on top of the Linear layers and
Rectified Linear Activation Function (ReLU). Additionally,
all models are fully connected feedforward models with the
same number of neurons in the input and output layers. As it
was mentioned earlier, the input layer covers 104 features and
the output layer represents the predicted flow size, which is a
single output. Model names are presented in the Table 3.

Figure 3a presents FirstRegression architecture – it is a
neural network with 104 neurons in the input layer, one
hidden layer with 1024 neurons, and an output layer with a
single neuron.

FallingRegression is presented in Figure 3b. It has 3 hidden
layers where the first hidden layer has 1024 neurons, the
second hidden layer has 256 neurons and the last hidden layer
has 128 neurons.

GrowingRegression is a reverted FallingRegression. Its
first hidden layer has 128 neurons, the second 256 neurons
and the third has 1024 neurons. It is presented in the
Figure 3c.
ThreeLayerNeuralNetworkRegression, FourLayerNeural-

NetworkRegression, and TenLayerNeuralNetworkRegres-
sion share the same number of neurons in hidden layers
– 1024. They differ in the number of hidden layers. The
architectures of those models are presented in Figures 3d,3e,
and 3f.

V. RESULTS
The graphs depict how flow table occupancy changes in
relation to traffic coverage. Notably, the x-axis is inverted,
and the y-axis uses a logarithmic scale. In the y-axis the
[x] axis unit is a multiplier (for example 1000 means that
we obtained reduction by a factor of 1000, so the flow
table occupancy is 1/1000 of the initial one). The objective
here is to maximize flow table occupancy reduction while
maintaining optimal traffic coverage. The closer the curve
approaches the top-left corner of the graph, the more effective
the model is.

The black line, labeled as Data, represents the projected
performance based on a distribution fit to the validation
dataset, which consists of 1,303,496 flows. This is under
the assumption of perfect prediction of each flow’s size
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FIGURE 7. Flow table reduction for the balanced dataset with 6% ratio and no clipping in the normalization.

FIGURE 8. Flow table reduction for the balanced dataset with 10% ratio and no clipping in the normalization.

from its first packet. The benchmark for assessment is the
theoretical flow table occupancy reduction rate curves of a
model that can perfectly predict the size of all flows from
their first packet. This approach is detailed in [30] as the first
method. The process involves selecting the smallest number

of largest flows, ordered by size in descending order, which
cumulatively accounts for a predetermined percentage of total
network traffic.

Figures 4, 5, and 6 present results for normalization types
with clipping to the desired range, whereas Figures 7, 8, and 9
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FIGURE 9. Flow table reduction for the balanced dataset with 20% ratio and no clipping in the normalization.

TABLE 4. Best results.

present results for normalization types without clipping to the
desired range. In every figure within the best hyperparameter
combination, the best model and training epoch were
selected. For example, the appearance of TenLayerNeural-
NetworkRegression_29_NONE curve means that without
labels normalization the TenLayerNeuralNetworkRegression
model at epoch 29 had the best performance.

As can be seen, in some cases, the result does not reach
50% of traffic coverage. Especially for the SQUARED
normalization type, the model predicts negative values which
after renormalization become zero’s. In this scenario, data
points received from the flow table reduction algorithm very
often do not reach 50% of traffic coverage.

VI. DISCUSSION
In summary, Table 4 illustrates how varying training con-
figurations can impact the effectiveness of machine learning
models in reducing flow table sizes while maintaining
consistent traffic coverage. For every dataset ratio, within
the best hyperparameter combination, the best model and
training epoch were selected. They are presented in the

Table 4. The use of different normalization techniques seems
to have a noticeable impact on the flow table reduction
metric, with SQUARED CLIP generally leading to higher
reduction percentages, especially when combined with the
FourLayerNeuralNetworkRegressionmodel and a 6%dataset
ratio. Increasing the dataset ratio from 6% to 20% does not
linearly improve the flow table reduction, suggesting that
simply increasing the amount of training data is not sufficient
to enhance model performance in terms of this metric.

VII. CONCLUSION
As presented in this research, using rather simple neural
networks based only on linear layers to detect elephant flows
on the first packets, it is possible to reduce the number of
flow table entries approximately 15-fold while still covering
80% of the traffic. Such a reduction of flow table can have
positive impact on the flow table lookup, therefore increasing
the switching rate. We plan to further research more complex,
state-of-the-art models with multiple parameter variations
and tune them specifically for the given task. The starting
point will be TabNet [31].
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Future research on reducing flow table size should also
consider the significance of input data, particularly the
critical features that contribute to accurate elephant flow
classification. Identifying these key features will allow
us to streamline the model’s complexity by eliminating
irrelevant input data features. Simplifying the model in this
way leads to faster training and evaluation times. This is
particularly advantageous as it facilitates quicker elephant
flow classification, thereby minimizing the introduction
of additional latency in the network. Such efficiency in
model operation is essential for maintaining optimal network
performance and responsiveness.

DATA AVAILABILITY
The anonymized input data is available in the GitHub
repository: https://github.com/piotrjurkiewicz/flow-models
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