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ABSTRACT With the increasing use of photovoltaic (PV) power generation, power forecasting has
become equally important to maintain stable and economic operation of the power system. However, the
high frequency component of the PV power time series reduces the accuracy of the model predictions.
Therefore, this paper proposes a short-term prediction model for PV power based on Row Secondary Modal
Decomposition (RSMD), Random Forest (RF), and BGSkip neural network. Firstly, modal features with
different complexity are obtained by RSMD. Secondly, RF is used to select different modal features. Then,
to improve the prediction performance of the model, the BGSkip model employs a hybrid neural network
to accurately predict the nonlinear part, while the linear part is handled by an autoregressive model. The
prediction results of these two parts are integrated through the BGSkip model to output more accurate
prediction values. Finally, the historical data of PV power plants in a region of Liaoning is utilized for
experimental validation. The experimental results show thatR2,EMAPE andERMSE of the RSMD-RF-BGSkip
short-term forecasting model are improved by 7.55%, 0.261% and 16.01% respectively compared with the
most advanced models, which has higher forecasting accuracy.

INDEX TERMS PV power, row secondary modal decomposition, random forest, neural network.

NOMENCLATURE

This article uses the following nomenclature throughout.

RNN Recurrent Neural Network.
LSTM Long Short-Term Memory.
GRU Gated Recurrent Unit Network.
EEMD Ensemble Empirical Mode Decomposition.
CEEMDAN Complete Ensemble Empirical Mode

Decomposition with Adaptive Noise.
PSO Particle Swarm Optimization.
VMD Variational Mode Decomposition.
TransNN Transform Neural Networks.
CNN Convolutional Neural Networks.
PE Permutation Entropy.
RF Random Forest.
IMF Intrinsic Modal Function.

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaodong Liang .

NMD No Modal Decomposition.
EMD Empirical Model Decomposition.
PMD Primary Modal Decomposition.
SMD Secondary Modal Decomposition.
RSMD Row Secondary Modal Decomposition.
RSMD-RF Row Secondary Mode Decomposition

combined with Random Forest.
∗ Convolution operation.
K The number of components obtained

by decomposition.
X (t) Original sequence signal.
K The number of categories.
k Feature category.
p The number of jump BiGRU models.
hRt Output of the cyclic layer.
hSt−p Output of the cyclic skip laye.
Yt Final prediction result.
R2 Coefficient of Determination.
EMAPE Mean Absolute Percentage Error.
ERMSE Root Mean Square Error.
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I. INTRODUCTION
In the context of global warming, renewable energy sources
such as solar, wind, hydropower and geothermal energy have
become crucial [1]. Although photovoltaic (PV) power gen-
eration technology is widely used in smart grids, however,
the output power of the PV power generation system suffers
from instability and volatility because of environmental and
meteorological factors [2]. Therefore, accurate prediction of
PV power generation has become a hot issue at present [2].
Currently, short-term PV power prediction methods are

mainly categorized into two main groups: statistical learning
algorithms and machine learning algorithms. In statistical
learning algorithms, such asmultivariate linear regression [3],
exponential smoothing [4], etc., although these methods are
computationally simple and fast, they are poorly robust and
easily interfered with by stochastic factors, which reduces
their reliability in PV power prediction. Machine learning
algorithms include Support Vector Machine [5], Extreme
Gradient Augmentation [6], Random Forest [7], etc., which
are more suitable for dealing with nonlinear and multidi-
mensional data but are sensitive to outliers and are prone to
performance degradation in the face of sudden data changes
or breakpoints [8].
In recent years, deep learning has attracted much attention

in the field of PV power prediction. Recurrent Neural Net-
work [9] (RNN), Long Short-Term Memory [10] (LSTM)
andGated Recurrent Unit Network [11] (GRU) have achieved
remarkable results in time series prediction. Although in
paper [12] achieved high accuracy in PV power prediction
using RNN models, it faced the problems of gradient van-
ishing and gradient explosion. In paper [13], LSTM is used
for PV prediction, but the forecasting accuracy is not high
under special weather conditions and there is an overfitting
problem. In addition, the LSTM model has a complex struc-
ture, many parameters and long training time. In paper [14],
a GRU model is proposed, who is another RNN gating archi-
tecture after inheriting LSTM, which is due to its simple
structure and few training parameters. GRU not only has high
prediction accuracy, but also alleviates the LSTM overfitting
problem [15], [16], [17]. Compared with statistical models
and machine learning models, the prediction accuracy of
GRU model has been greatly improved, but it still cannot tap
the fully mined sequence features [18].
Given the high complexity and nonlinear characteristics of

PV series, single algorithm prediction is still difficult. Signal
decomposition techniques such as Wavelet Transform (WT)
[19], Ensemble Empirical Mode Decomposition (EEMD)
[20], Complete Ensemble Empirical Mode Decomposition
with Adaptive Noise (CEEMDAN) [21], and Variational
Modal Decomposition (VMD) [22] are widely used in the
field of PV power prediction. In paper [23], EEMD algorithm
is used to decompose the weather sequence into compo-
nents of different frequencies, which improves the prediction
accuracy. However, the high-frequency components gener-
ated by the first decomposition are non-smooth components,

and there are large errors in direct prediction. In paper [24],
CEEMDAN is used to decompose the sequence, which effec-
tively reduces the residual noise of the data, but it may ignore
some of the high-frequency components, which leads to an
increase in the prediction error. In paper [25], CEEMDAN is
used in combination with alignment entropy to determine the
complexity of each component, which effectively improves
the prediction accuracy. In paper [26], Particle Swarm Opti-
mization (PSO) is used to search for the optimal parameter
combinations of VMD, so that it can automatically adjust
the parameters for energy data with different characteris-
tics, reduce the human error, and improve the stability and
accuracy of the prediction model. In paper [27], a combined
deep learning prediction method is proposed. The method
first extracts the trend features of PV power using VMD
technique, and then selects the optimal input feature set by
Fast Correlation Based Filter (FCBF) to reduce the predic-
tion error caused by redundant features. Experimental results
show that the method significantly improves the prediction
results. In paper [28], TransformNeural Networks (TransNN)
and Convolutional Neural Networks (CNN) are combined
and VMD decomposition is used in the data preprocess-
ing stage. The combination of this model can significantly
improve the accuracy of the prediction model. Although
papers [23], [24], [25], [26], [27], [28] have achieved better
results by combining signal decomposition techniques with
deep learning, there is still the problem of high-frequency
modal components generated by a single decomposition tech-
nique, as well as the troubling problem of low prediction
accuracy of the model itself, which are yet to be solved.
Therefore, the comprehensive use of multiple algorithms and
signal decomposition techniques may be an effective way to
improve the accuracy of PV power prediction [29].

To solve the problem of insufficient prediction accuracy
caused by high-frequency modal components in the modal
decomposition of PV power generation sequences, this paper
innovatively proposes theRSMD-RF-BGSkipmodel, which
is a short-term PV power prediction model. Firstly, the orig-
inal data are decomposed twice consecutively by Variational
Mode Decomposition (VMD), and the complexity is cal-
culated using Permutation Entropy (PE), which skillfully
fuses similar features. Subsequently, Random Forest (RF) is
applied for feature screening to further optimize the input
features of the model. Finally, the high coupling feature
matrix is constructed for each subsequence, which is input
into the BGSkip model for accurate prediction. The accuracy
of PV power prediction is effectively improved by integrating
the prediction results of each component through the fully
connected layer.

The main contributions of this paper are summarized
below:

(1) In this paper, a short-term forecasting model of
photovoltaic power based on Row Secondary Modal Decom-
position (RSMD), Random Forest (RF) and BGSkip Neural
Network is proposed.
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(2) Firstly, modal features with different complexity are
obtained by RSMD. Secondly, RF is used to select different
modal features. Then, to improve the prediction performance
of the model, the BGSkip model employs a hybrid neural
network to accurately predict the nonlinear part, while the
linear part is handled by an autoregressive model.

(3) The historical data of a photovoltaic power station in
a certain area of Liaoning Province is used for experimental
verification. The experimental results show that RSMD-RF-
BGSkip short-term forecasting model has higher forecasting
accuracy than the most advanced mode.

II. DATA PREPROCESSING
A. VARIATIONAL MODE DECOMPOSITION
Variational mode decomposition (VMD) is a new method for
non-recursive signal adaptive processing [30]. The algorithm
decomposes the PV sequence into Intrinsic Modal Func-
tion (IMF) with frequencies ranging from high to low, and
each IMF embodies the characteristics of the original data
in different frequency ranges, which effectively reduces the
complexity of the sequence and improves the accuracy of the
subsequent model training. The VMD decomposition process
is as follows [30]:

(1) Constructing constrained variational optimization
problems for intrinsic modal functions:

min
{uk },{wk }

{
K∑
k=1

∥∥∥∥∂t

[(
δt +

j
π t

)
∗ uk (t)

]
e−jw

t
k

∥∥∥∥2
2

}

s.t.
K∑
k=1

uk (t) = X (t)

(1)

where: ∗ is the convolution operation; K is the number of
components obtained by decomposition; uk and wk are the
modal components and center frequency, respectively; X (t)
represents the original sequence signal.

(2) The problem is turned into an unconstrained variational
model by means of penalty factors α and Lagrange multiplier
operators λ:

L ({uk} , {wk} , {λ (t)})

= α
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K∑
k=1

uk (t)

∥∥∥∥∥
2

2

+

〈
λ (t) ,GCIMF (t) −

K∑
k=1

uk (t)

〉
(2)

(3) The optimized objective function is iteratively updated
with uk and wk to obtain a specified number of modal com-
ponents IMF.

B. PERMUTATION ENTROPY
Permutation Entropy (PE) can accurately represent the degree
of complexity and mutability of time series [31]. With its

fast calculation speed and strong noise resistance, it has good
applicability and strong sensitivity to the dynamic nonlin-
ear data of photovoltaic power generation. In this paper,
we use the alignment entropy to calculate the complexity of
each subsequence obtained by VMD decomposition, and the
similar features are fused. The PE calculation process is as
follows [31]:
(1) Reconstruct the time series featurematrix {x (i) , i = 1,

2 · · · n} to obtain the reconstruction matrix X .

X (1) = {x (1) , x (1 + τ) , · · · , x (1 + (m− 1) τ )}
...

X (i) = {x (i) , x (i+ τ) , · · · , x (i+ (m− 1) τ )}
...

X (N ) = {x (N ) , x (N + τ) , · · · , x (N + (m− 1) τ )}


(3)

where: m is the embedding dimension; τ is the delay time; N
is the number of reconstruction components.

(2) Each row in the matrix X is a reconstructed component,
and a new set of time series is obtained for each row x in
ascending order.

(3) For any reconstructed component a new sequence can
be obtained.

s (k) = {j1, j2, · · · , jm} (4)

where: k = 1, 2, . . . , g, g < m! will produce a sequence of
m! species s (k). Calculating the probability distribution Pk
of the labeled sequence at this point yields a probability sum
of 1.

(4) The entropy of the permutation of the time series x (i)
can be defined as

Hp (m) = −

g∑
k=1

Pk lnPk (5)

where: Pk is the probability of occurrence of one of the s (k)
sequences.

C. RANDOM FOREST
Randomized Forest (RF) is an integrated learning method,
and its core idea is to form a forest by constructing mul-
tiple weakly categorized regression trees, and finally get
the comprehensive results by voting [32]. Compared with
traditional feature screening methods such as Pearson cor-
relation coefficient and chi-square test, randomized deep
forest performs more powerfully in dealing with nonlinear
features. Its advantage lies in its ability to better capture
nonlinear patterns and its excellent scalability, which makes
it suitable for handling large-scale data and many features.
Feature select by Random Forest can reduce the interference
to the model, especially reduce the influence of features with
weak correlation, to improve the generalization ability of the
model.

Where the Gini index Gm is commonly used to measure
the purity of the dataset after feature partitioning as a way of
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assessing the importance of the features, which is expressed
as [32]:

Gm = 1 −

|K |∑
k=1

p2mk (6)

where: K represents the number of categories; k is a fea-
ture category; pmk indicates the proportion of category k in
node m.

III. BGSKIP NEURAL NETWORK MODEL
BGSkip consists of a linear part and a nonlinear part. In this
case, the linear part is modeled by autoregressive modeling,
while the nonlinear part consists of convolutional, cyclic, and
cyclic skip layers. After the results of the nonlinear part are
obtained, they are fused through full connect layers. Finally,
the linear prediction is superimposed with the nonlinear
results to get the final prediction. The BGSkip neural network
model is shown in Figure 1.

FIGURE 1. BGSkip neural network model.

A. CONVOLUTIONAL LAYER
CNN is constructed by mimicking biological visual per-
ception mechanisms and is capable of both supervised and
unsupervised learning [33]. The sharing of convolutional
kernel parameters in the implicit layers and the sparsity of
inter-layer connections enable CNN to extract deep local
features from high-dimensional data with less computational
effort and to obtain effective representations through the
convolutional and pooling layers. Therefore, to fully extract
modal sequence features as well as capture local depen-
dencies between variables, the first layer of the BGSkip
model uses a CNNmodel without pooling layers. This design
aims to maximize the advantages of CNN while ensuring
effective extraction of modal sequence features and local
dependencies.

B. CYCLIC LAYER
When the number of time steps is large, the historical gradient
information of RNN cannot be maintained in a reason-
able range all the time, so gradient decay or explosion is
almost inevitable, which leads to the RNN will be very

difficult to capture effective information from long distance
sequences [7]. LSTM, as a special kind of RNN, is pro-
posed to solve the problem of gradient vanishing in RNN
very well [34]. GRU, on the other hand, is proposed based
on LSTM, which has a simpler structure, fewer parameters,
shorter training time, and faster training speed than LSTM.

BiGRU is a deformation of recurrent neural network,
which is especially suitable for processing time series with
long intervals [35]. In this paper, the output of the convolu-
tional layer is input to both cyclic layer and cyclic skip layer.
In addition, to realize the capture of long-term dependencies,
BiGRU is used as the recurrent unit of cyclic layer. The
computation of the cyclic layer is as follows:

⇀

ht = GRU (Xt ,
↼

ht−1)
↼

ht = GRU (Xt ,
⇀

ht−1)

ht = ωt
⇀

ht + vt
↼

ht + bt

(7)

where: ht is the hidden layer state at time t;
⇀

h is the forward
hidden layer output at time t;

↼

h is the reverse hidden layer out-
put at time t; ωt and vt represent the corresponding weights;
and bt denotes the bias.

C. CYCLIC SKIP LAYER
By introducing a cycle layer with BiGRU units, relation-
ships can be effectively captured in historical information.
The BiGRU model suffers from the problem of vanishing
gradient, which leads to low model prediction accuracy [36].
To solve this problem, this paper mitigates it by adding a
cyclic skip layer. The cyclic skip layer updating process is
represented as follows:

⇀

ht = GRU (Xt ,
↼

ht−p)
↼

ht = GRU (Xt ,
⇀

ht−p)

ht = ωt
⇀

ht + vt
↼

ht + bt

(8)

where: p is the number of jump BiGRU models.
The nonlinear part of the prediction is obtained by using a

fully connected layer that combines the outputs of the cyclic
and cyclic skip layers.

hDt = WRhRt +

p−1∑
i=0

W S
i h

S
t−p (9)

where: hRt is the output of the cyclic layer; h
S
t−p is the output of

the cyclic skip layer; hDt is the nonlinear part of the prediction
at time t .

D. AUTOREGRESSIVE LAYER
Since the nonlinear nature of the convolutional and cyclic
layers can make the output data insensitive to the input data
and reduce the prediction accuracy of the neural network for
the non-periodic variation data in the sequence, the Autore-
gressive (AR) model is used to predict the linear part of
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the load data. The prediction results of the AR layer are as
follows:

hLt,i =

qar−1∑
k=0

W ar
k yt−k,i + bar (10)

where: qar is the number of windows; hLt is the autoregressive
model outputs.

The advantages of neural networks and AR models are
considered, and the integration of both is carried out and the
final prediction results are obtained.

Yt = hDt + hLt (11)

where: Yt is the final prediction result at time t .

IV. PREDICTION MODELING BASED ON
RSMD-RF-BGSKIP
As the PV power is greatly affected bymeteorological factors,
it shows strong volatility and randomness. The traditional
primary modal decomposition method may have a prob-
lem of too many high-frequency components, which makes
it difficult to analyze the PV power generation accurately
for prediction. Therefore, the RSMD-RF-BGSkip prediction
model is proposed in this paper. The prediction process of this
model is shown in Figure 2.

FIGURE 2. RSMD-RF-BGSkip prediction flow.

V. CASE STUDY
In this paper, the PV power generation data of a PV
power station of the national grid in Liaoning region from
September 14, 2018 to August 17, 2020 at the time period
of 4:00-20:00 every day is used as the input data, and the
step size is 15min. All experiments are completed on the
Pycharm platform with a computer configuration of NVDIA
RTX 3060 GPU; CPU AMD 5800H; RAM 16GB.

A. EVALUATION PERFORMANCE INDICATORS
The predictive effectiveness of the model was assessed using
Coefficient of Determination R2, Mean Absolute Percentage
Error EMAPE and Root Mean Square Error ERMSE [37], which
are given by:

R2 = 1 −

∑n
i=1

(
yt − ŷt

)∑n
i=1 (yt − ȳt)

(12)

EMAPE =
1
ρ

ρ∑
t=1

∣∣yt − ŷt
∣∣

yt
× 100% (13)

ERMSE =

√√√√√ ρ∑
t=1

(
yt − ŷt

)
ρ

(14)

where: ρ is the number of samples; yt , ȳt , ŷt are the real
value of the data at the moment of t , the average value of the
real value and the predicted value, respectively. The larger
the value of R2, the better the prediction, and the smaller the
values of EMAPE and ERMSE , the better the prediction.

B. MODAL DECOMPOSITION AND FEATURE SELECTION
In short-term PV power generation forecasting, the character-
istic factors such as temperature and radiation intensity both
have an important impact on the forecasting results. Radiation
intensity has the most significant impact on PV power gen-
eration. The geographical location of the data selected in this
paper is special and has a large weather change, which makes
the PV power generation power have a large volatility. Table 1
describes the specific information of the input features, which
include five climate factors and historical power generation.
Considering the importance of historical power generation for
future PV power prediction, this paper adds it to the model as
a characterization factor.

TABLE 1. Input feature information.

Before decomposing the original PV sequence using
VMD, the number of IMF of the decomposition needs to
be specified. In this paper, the K value is determined by the
center frequency observation method [38]. The best results
are obtained when K = 5 at the first modal decomposition.
The results of one VMD modal decomposition are shown
in Figure 3.
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FIGURE 3. Results of one VMD modal decomposition.

The analysis in Figure 3 shows that the complexity of
the modal components decomposed by the primary VMD is
high, and it is difficult to maintain high prediction accuracy
by direct prediction, so the VMD is used again to decom-
pose them in the secondary decomposition, and the modal
components generated by the secondary decomposition are
VIMF1-VIMF9. The second modal decomposition is still
determined by using the center frequency observation, and
the best results are obtained when using the center frequency
observation K =9. The results of the second VMD modal
decomposition are shown in Figure 4.

FIGURE 4. Second VMD modal decomposition results.

Due to the excessive number of VIMF components,
inputting each component into the BGSkip model for

prediction analysis will increase the computation of the
model. Therefore, to reduce the model computation, the
complexity of all modes is analyzed by using the permuta-
tion entropy, and the similar arrangement entropy values are
superimposed, and the permutation entropy values of each
modal component are shown in Figure 5.

FIGURE 5. Entropy value of each VIMF component permutation.

As can be seen from Figure 5, the entropy value of the
samples of each modal component decreases gradually. After
the calculation of arrangement entropy, those with similar
entropy values are superimposed to achieve the purpose of
reducing the modal components. The superimposed modal
components are shown in Figure 6.

FIGURE 6. Modal fractional energy results after superposition.
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After the original time series are subjected to row second
modal decomposition, the correlation information between
the meteorological factors and each modal component
changes. Therefore, feature selecting of individual modal
components is required to reduce unnecessary features and
improve forecast accuracy. The results of the Random Forest
feature selecting are shown in Figure 7, and VIMF1-VIMF8
represent the components obtained by the secondary modal
decomposition of IMF1-IMF5 rows. The Random Forest
feature selecting method can more closely correlate mete-
orological factors and modal components, thus improving
forecast performance and reducing information loss.

FIGURE 7. Feature selection results.

From Figure 7, Radiation intensity, temperature and
humidity all have a large impact on the components. Among
them, radiation intensity has the highest correlation coeffi-
cient, indicating that radiation intensity has a more significant
effect on PV power prediction. The correlation coefficients of
temperature, humidity, historical PV power generation and
rainfall are mostly between 0.1 and 0.2, which also have a
strong correlation on PV power. While pneumatic has low
correlation, this feature is removed to reduce the computa-
tional effort of the model.

C. ROW SECONDARY MODAL DECOMPOSITION
COMPARISON TEST
To analyze the effect of each module in the row secondary
modal decomposition framework on the overall prediction
performance, the last 48 hours of data in the 2018 dataset
are selected for the comparison experiment. In comparing
the effects of different modal decomposition methods, this
paper comparatively analyzes seven scenarios: No Modal
Decomposition (NMD), Empirical Model Decomposition
(EMD), CEEMDAN, PrimaryModal Decomposition (PMD),
Secondary Modal Decomposition (SMD), Row Secondary
Modal Decomposition (RSMD) and Row Secondary Mode
Decomposition combined with Random Forest (RSMD-RF).
Their prediction results are compared, and the experimental
results are shown in Table 2 and Figure 8.

TABLE 2. Experimental errors for different modal decompositions.

FIGURE 8. Comparative prediction results for different modal
decompositions.

Table 2 shows that the prediction error of no modal
decomposition is the largest; after the primary modal decom-
position, the prediction accuracy is significantly improved,
R2 is improved by 3.25%, and EMAPE and ERMSE are reduced
by 14.60% and 15.01%, respectively; after secondary modal
decomposition, the prediction accuracy is further improved;
and the prediction accuracy is the highest when RSMD-RF is
performed. Moreover, RSMD-RF method compared to other
modal decomposition methods VMD, CEEMDAN its R2 is
improved by at least 11.79%; EMAPE and ERMSE are reduced
by 28.89% and 24.99%, respectively.

Analyzing Figure 6, due to the strong volatility and ran-
domness of PV power generation, the direct prediction error
is large. Although performing primary modal decomposition
can effectively improve the prediction accuracy, it is often
difficult to predict the high-frequency stochastic components
generated by the decomposition and has limited ability to
deal with the prediction of small-scale fluctuations in the
sequence. By further decomposing the high-frequency com-
ponents generated by the one-time decomposition, multiple
smooth components are obtained. Then the overall model
prediction accuracy is significantly improved after using per-
mutation entropy for complexity analysis and combiningwith
Random Forest for feature selection.

D. CONTRASTIVE OF DIFFERENT MODEL PREDICTIONS
To verify the performance advantages of the RSMD-RF-
BGSkip prediction model, the prediction model proposed in
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this paper is compared with BiGRU, GRU, and TCN, and the
2018-2019 data in the dataset is intercepted for experimen-
tation, with the length of 17,542 data, and the last 2 days of
2019 is used as the test set. To control the variables, the input
data of all models are subjected to the same preprocessing and
feature screening methods and are trained with the optimal
parameters shown in Table 3. The prediction results of each
model combined with the framework of this paper are shown
in Figure 9 and the prediction errors are shown in Table 4.

From Table 4, the EMAPE of this method is reduced by
64.91%, 60.03%, and 57.83%, and the ERMSE is reduced by
65.28%, 60.20%, and 56.23% compared to GRU, TCN, and
BiGRU, respectively, and the prediction accuracy is improved
by a factor of 1-2. The prediction effect of each model is
shown in Figure 9, when the RSMD-RF decomposed features
show the best results when combinedwith the BGSkipmodel,
while the BiGRU, GRU, and TCN models are somewhat less
capable in PV power prediction.

TABLE 3. Parameter settings for each model.

TABLE 4. Prediction errors of different models.

FIGURE 9. Prediction results of different models.

E. COMARATIVE ANALYSIS OF FORECAST RESULTS FOR
DIFFERENT WEATHER CONDITIONS
In a bid to more comprehensively verify the applicability of
the short-term PV power generation forecasting method pro-
posed in this paper, sunny and rainy days with large weather
fluctuations are selected to validate the model. To exclude
the influence of different date types on the PV power gen-
eration prediction results, 2 consecutive days (September 27,
2019, and September 28, 2019) of weekdays were purposely
selected for the study. Among these two days, day 1 is
sunny and day 2 is rainy. Figure 10 and Figure 11 shows
the prediction results under different weather conditions.
The prediction errors under different weather conditions are
shown in Table 5.
Analyzing Figure 10, the PV power curve fluctuates less

under sunny weather conditions, and the PV power changes
with a certain regularity, and the four models have a more
stable prediction effect. In terms of the error index, the pro-
posed prediction models are smaller than the other prediction
models, and in themidday, the power curve has a slight fluctu-
ation phenomenon, compared with the other threemodels, the
proposed prediction model has the best fitting effect overall,
and it can be better close to the actual curve.

TABLE 5. Prediction errors of different models.

Figure 11 in rainy weather conditions, the PV power
curve fluctuates relatively large due to a variety of factors,
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FIGURE 10. September 27th sunny day forecast results.

FIGURE 11. September 28th rainy day forecast results.

and the prediction curves of the models produce a certain
deviation from the actual curve, in which the prediction
errors of RSMD-RF-TCN, RSMD-RF-GRU and RSMD-RF-
BiGRU are obviously increased, and the linear and nonlinear
characteristics of data are fully extracted using the BGSkip
model, and the linear and nonlinear characteristics of data
are fully extracted in the event of drastic weather conditions.
characteristics, the prediction performance of the model is
improved during the periods of dramatic fluctuations in
weather conditions. Figure 12 and Figure 13 respectively
show the prediction of different methods in sunny and rainy
days, and the model evaluation index values R2, EMAPE ,
ERMSE are displayed visually, as shown below.
In the comprehensive analysis, the RSMD-RF-TCN,

RSMD-RF-GRU and RSMD-RF-BiGRU models have large
deviations between the predicted values and the actual values,
especially the tracking of the sudden change points is not
strong, while the RSMD-RF-BGSkip model has the smallest

FIGURE 12. Sunny day forecast error for september 27.

FIGURE 13. Rainy day forecast error for september 27.

deviation, and is able to make good predictions of the sudden
changes in the PV power generation capacity, which shows a
better prediction performance.

VI. CONCLUSION
Aiming at the problem of low prediction accuracy due to
high-frequency components in the modal decomposition of
short-term PV power prediction, this paper proposes a new
method of RSMD-RF-BGSkip. After experimental valida-
tion, the method achieves the following conclusions:

(1) The complexity of the high-frequency component is
reduced by using the row second modal decomposition and
feature extraction using Random Forest for smoother and
stable subsequences. The performance differences in the
RSMD-RF method with the NMD, PMD, SMD and RSMD
methods were analyzed through experimental comparisons.
The results show that the RSMD-RF method improves the
prediction accuracy by 19.45%, 15.43%, 10.4% and 7.68%,
respectively, compared to these methods.

(2) The BGSkip model is applied to the subsequence
to divide the sequence into linear and nonlinear parts and
forecast the next 48h. Compared with the three models
GRU, TCN and BiGRU, R2 increases by 15.75%, 8.86%
and 8.17%, respectively. The results show that the BGSkip
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prediction model has excellent robustness and good predic-
tion accuracy.

(3) Comparing with RSMD-RF -GRU, RSMD-RF -TCN,
and RSMD-RF -BiGRUmodels under different weather con-
ditions, the RSMD-RF-BGSkip model has higher prediction
accuracy. In addition, by calculating the evaluation param-
eter R2, at least 7% improvement of forecasting accuracy
occurs.

The PV power data used in this paper did not include other
energy types, and in subsequent work, the joint prediction of
integrated energy sources such as wind, PV, geothermal, and
biomass can be considered to further improve the applicabil-
ity of the model.
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