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ABSTRACT The proliferation of Internet of Things (IoT) applications poses formidable challenges in
managing data processing, privacy, and security. In response, technologies such as Fog Computing (FC),
Blockchain (BC), and Federated Learning (FL) have emerged as promising solutions. Combining these
technologies can broaden their scope, and impose novel challenges. This paper conducts a Systematic
Literature Review (SLR) to investigate their integration within the IoT domain, systematically evaluating
the current state-of-the-art by analyzing 40 papers against 38 extraction criteria, encompassing technical
characteristics specific to FC, BC, FL, or their integration. The findings offer insights into the advantages,
challenges, opportunities, and limitations of this integration, addressing data processing, privacy, and security
concerns in IoT. By filling a research gap and directly examining FC, BC, and FL interoperability across
architectural layers, this study contributes to knowledge expansion in the field. This paper proposes a
novel framework for implementing FL and BC within FC environments for IoT applications, alongside a
comprehensive synthesis of existing literature, distinguishing it from previous research efforts. Furthermore,
it offers valuable insights into the current landscape, identifies research needs, and proposes future research
directions. The framework and literature synthesis provided allow readers to access customized information
on FC-BC-FL integration, aiding in designing and implementing robust IoT solutions.

INDEX TERMS Blockchain, edge computing, federated learning, fog computing, Internet of Things,
systematic literature review.

I. INTRODUCTION
The Internet of Things (IoT) serves as a technologi-
cal paradigm that supports various application domains
(e.g., industry, smart cities, healthcare) through the global
telecommunication infrastructure and Cloud Computing
(CC) services [1], [2], [3]. The rapid growth of IoT has
led to a significant surge in connected devices, revealing
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vulnerabilities such as high bandwidth usage, efficiency,
latency, security, privacy, and data heterogeneity [2], [3].
Efforts in the distributed systems domain have aimed to
enhance both IoT and Cloud paradigms, addressing their
flaws. Additionally, novel solutions like Fog Computing
(FC), Blockchain (BC), and Federated Learning (FL) have
emerged to complement these paradigms [4], [5], [6], [7], and
are the focus of this document.

FC extends CC services closer to devices, thereby reducing
latency and alleviating the cloud’s workload by minimizing
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FIGURE 1. Structure of the paper.

the transmitted data volume [4], [5], [8]. In contrast,
BC enhances the security and precision of information man-
agement using a distributed ledger technology that records
transactions (i.e., data) and employs distributed consensus
protocols to govern these repositories [6], [9]. Lastly, FL,
an emerging field in Artificial Intelligence (AI), tackles data
decentralization by utilizing a distributed computing system
to locally train Machine Learning (ML) models on network
devices. This approach reduces data processing, bandwidth
usage, and reliance on cloud services [7], [10].
Numerous secondary studies (or literature reviews) have

recognized that despite the collaborative advancement of

these technologies within IoT solutions, persistent challenges
endure. Yet, these reviews tend to focus primarily on pairs of
technologies: BC and FC [11], [12], [13], [14], [15], FC and
FL [16], [17], [18], or BC and FL [16], [19], [20], [21], [22],
[23], [24], [25], [26]. While primary studies are emerging to
explore the direct relationship among all three technologies,
there is a noticeable lack of secondary studies summarizing
key findings and issues across FC, BC, and FL, highlighting
a substantial research gap.

Hence, to comprehensively depict the interplay among
these technologies and systematically capture insights within
the domain, a Systematic Literature Review (SLR) emerges
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as an ideal secondary study approach. SLRs enable unbiased
identification, evaluation, and interpretation of research
queries within a specific domain [27].

This paper conducts an SLR exploring BC, FC, and
FL integration in IoT applications. Following Kitchenham
& Charters’ guidelines in [27] and [28], it emphasizes
attributes like credibility, contribution, transferability, and
compliance [29]. From 2016, when ‘Federated Learning’ was
coined by Google [7], to August 2023, a systematic search for
40 papers was conducted. Additionally, 38 analysis criteria
were established to evaluate these papers. These criteria were
developed based on an initial assessment of 16 relevant
related reviews. Findings reveal a lack of collaborative
research in architecture, frameworks, heterogeneity, and
standardization among these technologies, offering insights
for future research.

As a result of the study, this paper introduces systematical
categorization and classification of criteria for the FC-BC-
FL integration for IoT applications. It provides a structured
framework for understanding the synergies and interactions
among these three technologies, aiding researchers and prac-
titioners in navigating the complexities of their integration
and implementation. The systematic categorization or criteria
is organized into distinct dimensions, including architec-
tural approaches, methodological strategies, and application
domains, offering a comprehensive overview of how these
technologies can be combined to tackle IoT challenges.

The structure of this paper is outlined in Figure 1. Sec-
tion II explores the background of the implied technologies,
including Fog/Edge Computing, Blockchain, and Federated
Learning, with an analysis of their integration. Additionally,
it compares similar survey/review papers to highlight the
contribution of this SLR. Section III adapts Kitchenham’s
SLR guidelines to the context. It elaborates on the core of
the SLR, defining the research questions and the extraction
criteria under which the evaluation will be performed. This
section provides a detailed categorization of the technologies
and their integration. Additionally, it describes the process
of selecting papers for analysis in the review. Section IV
validates the SLR methodology by presenting the results of
the analyzed studies, classified under the extraction criteria.
It also presents results by year and country. A synthesis of the
most relevant studies, along with the challenges and oppor-
tunities, forms part of the Section V. Section VI discusses
the advantages and limitations of the FC-BC-FL integration
based on the SLR results. Finally, Section VII presents the
conclusions and outlines avenues for future research.

II. BACKGROUND AND RELATED WORK
This section offers an exhaustive background encompassing
fundamental concepts, architectures, and essential technical
aspects within the domains of Fog Computing, Blockchain,
and Federated Learning technologies. It further examines and
contrasts relevant literature reviews concerning these tech-
nologies, with a specific emphasis on the interconnections
between BC and FC, FC and FL, and BC and FL. This

analysis provides insight into the distinctive contributions of
our work in comparison to prior research endeavors.

A. FOG COMPUTING
Fog Computing, an architectural concept introduced by
Cisco in 2012 [4], represents a paradigm shift that redefines
conventional computing structures [5], [30]. This concept
involves the decentralization of the traditional Cloud and
the extension of its services (i.e., storage, processing,
networking) to the network edge. The main goal is to
enhance the scalability and performance of applications by
distributing the computational load away from centralized
clouds [4], [5], [8], [30].

At the core of this architecture lie the Fog Nodes (FNs),
which establish connections with an array of counterparts,
such as other nodes, end devices, centralized services, and
even the cloud. Through these connections, FNs extend
computing services and resources in closer proximity to
end devices, creating an intricate distributed computing
environment [7]. Furthermore, FC addresses common issues
encountered in Cloud Computing, including network band-
width overuse, latency, request-response time reduction, and
more [4], [5], [30]. This architectural framework has found
a particularly fitting application in the realm of IoT, offering
an exceptional fusion of computing, networking, and storage
capabilities across a wide array of geographically dispersed
devices [4], [5], [8], [30].

1) FOG COMPUTING/EDGE COMPUTING, PARADIGM
SIBLINGS
As we delve into the realm of FC, it becomes imperative to
acknowledge the closely related concept of Edge Computing
(EC). Similar to FC, EC emphasizes the proximity of compu-
tation and storage to data sources. However, these paradigms
display distinct characteristics and functionalities [31], [32].
Edge Computing is intrinsically concerned with localized

processing, often occurring at the immediate first hop from
IoT devices, encompassing smart sensors, smart vehicles,
and WiFi access points. It empowers computation, data
processing, decision-making, and privacy protection within
the confines of edge devices. While EC excels at optimizing
local network interactions and reducing latency, its scalability
might be constrained by limited resources and potential
resource contention among multiple IoT applications [31].

In contrast, FC casts a broader net by extending the
edge concept to a hierarchical architecture. This encom-
passes a diverse range of network edge devices such as
RANs, base stations, and edge routers. By integrating
cloud-like capabilities into the network edge, FC offers
a comprehensive suite of computing, networking, storage,
control, and acceleration services spanning from cloud to
IoT devices [31], [32]. The architecture envisions a seamless
platform that caters to various industries and application
domains, fostering interactions between edge devices and
providing a holistic infrastructure-level perspective [32].
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Overall, while EC emphasizes localized processing at the
immediate network edge, FC adopts a more comprehensive
approach. It encompasses a hierarchical architecture and
a broader array of devices and services, with a focus on
seamless integration and the utilization of cloud resources
to address scalability and resource contention challenges that
EC might encounter.

Figure 2 depicts the FC architecture, which comprises
four layers (with EC considered as an integral part of the
infrastructure), each serving a distinct role within the data
processing hierarchy. The architecture is characterized by:

1) Devices / Edge Layer: This base layer comprises
physical devices (e.g., sensors, actuators, IoT devices)
that generate data by gathering it from the environment.
Positioned closest to these devices is the Edge infras-
tructure, acting as an intermediary connecting them
to upper layers for processing. It conducts initial data
preprocessing before relaying it to higher layers such as
Fog or Cloud, thus minimizing latency by processing
essential data close to its source [5], [8], [12], [31].

2) Fog Layer: It serves as an intermediary between
the Devices/Edge and Cloud layers, comprising
FNs/servers to bolster processing and storage capaci-
ties. The Fog layer proves invaluable for applications
needing greater computational resources than the Edge
layer offers but not requiring the extensive resources of
the Cloud. It facilitates real-time analytics, decision-
making, and data processing while ensuring low
latency [4], [5], [8].

3) Cloud Layer: This layer represents the traditional
CC infrastructure. It provides vast infrastructural
(Infrastructure as a Service (IaaS)), computational,
and storage (Software as a Service (SaaS)) resources
that can be accessed remotely. While the Cloud layer
excels in heavy data analysis, storage, and long-term
processing, it might introduce higher latency due to
data transmission to and from remote data centers [4],
[5], [8], [12].

4) Application Layer: The uppermost layer (situated
within the Cloud Layer) is designated for the devel-
opment and deployment of applications and services
(Software as a Service (SaaS)). This encompasses user
interfaces, web services, data analytics, AI services,
and other software components that make use of the
processed data. Applications can interact with data
across all lower layers, making it possible to harness
the benefits of the entire architecture [5], [8], [31].

Taking into account the aforementioned information, the
analysis of subsequent stages in this SLR will encompass
both FC and pertinent EC studies.

B. BLOCKCHAIN
Blockchain, introduced by Satoshi Nakamoto in 2008 is a
decentralized technology that forms the essential framework
for establishing trustworthy digital currency systems [6].

FIGURE 2. A fog computing based architecture.

BC systems encompass distributed computing structures
that primarily store and process a Distributed Ledger (DL)
within Peer-to-Peer (P2P) networks [9], [33], [34]. Both
permissioned and permissionless variants of BC exist,
offering authorized or open participation in the system,
respectively. The data archived within Blockchain DLs can
be public or private, depending on the domain/profile of
users capable of requesting or executing tasks within the
system [33].
Miners represent the core of the BC ecosystem, under-

taking the resolution of computational puzzles or problems
(whose complexity is conditionally predefined) to validate
blocks and integrate them into the chain. Various consensus
algorithms, including proof-based mechanisms (e.g., Proof-
of-Work (PoW), Proof-of-Stake (PoS), Proof-of-Authority
(PoA)), as well as non-proof-based strategies (e.g., Byzantine
Fault Tolerance (BFT)), are employed to achieve consensus
on transaction validity [33]. Forking arises when different
valid DL versions emerge, each consensus algorithm having
a distinct protocol for handling forks, while hashing prior
blocks maintains BC’s immutability [9], [34].

The potential application of BC in decentralized cloud
servers at the network edge has garnered significant attention,
leading to the proposition of models like Blockchain-as-a-
Service (BaaS) to revolutionize CC across various domains.
These models aim to elevate the capabilities of CC by seam-
lessly integrating BC technology, offering a versatile array
of functionalities (i.e., e-voting, authentication, and identity
management to trading, reputation management, supply
chain management, data management) [9], [33], [34], [35].
Although BC is originated in cryptocurrencies like Bit-

coin [6], its impact extends beyond finance. It enables
Smart Contract (SC) creation (e.g., Ethereum) and fosters

68018 VOLUME 12, 2024



W. V. Solis et al.: Exploring the Synergy of FC, BC, and FL for IoT Applications: A SLR

FIGURE 3. An overview of blockchain properties.

innovation in decentralized systems, evolving digital interac-
tions and trust [9], [34], [35].

BC-based systems are structured across five layers (see
Figure 3) comprising hardware/infrastructure, data, network,
consensus (including incentives), and application [9], [33],
[34]. These layers are described below:

1) Hardware / Infrastructure Layer: This architecture’s
foundation layer encompasses tangible components
that form the backbone of the BC network. Devices
(including nodes and miners), establish the network’s
framework. virtualmachines (VMs) and containers cre-
ate the computational environment for code execution.
The communication infrastructure ensures seamless
interaction, while messaging mechanisms facilitate
data exchange and synchronization [9], [33].

2) Data Layer: It manages the foundational building
blocks of BC data. Transactions serve as the bedrock
of the data structure, with Digital Signatures ensuring
transaction integrity and authenticity. The Merkle Tree
structure optimizes data verification, while the Data
Block and Chain Structure establish the chronological
sequence of transactions. Hash Functions and Crypto-
graphic Algorithms play a pivotal role in data security
and encryption within this layer [9], [33].

3) Network Layer: It encompasses the communication and
connectivity infrastructure that enables node interac-
tions. It includes a P2P Network for direct node-to-
node communication, CommunicationMechanisms for
data exchange, Routing to enhance data propagation
efficiency, and Verificationmechanisms to authenticate
transmitted data [9], [33].

4) Consensus Layer: This layer assumes a pivotal role
in ensuring network-wide agreement and validation.
Consensus Protocols and Algorithms establish rules
and mechanisms for collective transaction valida-
tion [9], [34]. Moreover, within this layer, the incen-
tives sub-layer orchestrates rewards for participants
contributing to the consensus process, thereby aligning
economic incentives with network integrity [9].

5) Application Layer: Positioned as the topmost layer,
it accommodates a wide range of both financial and
non-financial applications that harness the capabilities
of BC technology. Within this stratum, one can find
Smart Contracts, Financial Applications, and Non-
Financial Applications, representing the diverse spec-
trum of use cases that BC is capable of addressing [9],
[33], [35].

This comprehensive architectural framework underscores
the intricate interplay of components and mechanisms,
collectively realizing the robust capabilities and security
inherent to BC technology, aspects that should be taken into
consideration during the development of the SLR.

C. FEDERATED LEARNING
Federated Learning (FL) is a paradigm introduced by Google
in 2016 within the ML and data privacy domain [7].
In traditional ML approaches, data is often centralized on a
single server for training, giving rise to concerns regarding
data security and privacy breaches. Unlike, FL adopts a
distributed approach, enabling collaborative model training
across a network of decentralized devices or servers without
sharing raw data. This decentralized feature not only effec-
tively addresses privacy concerns but also capitalizes on the
collective intelligence derived from diverse data sources [7],
[10], [17].

At its core, FL offers distinctive technical features that dif-
ferentiate it from traditional centralized methods. Operating
within a decentralized framework, FL safeguards data privacy
by retaining information locally on devices, selectively
sharing only model updates for collaborative training [10],
[17]. This unique approach facilitates a privacy-centric aggre-
gation process, enhances communication efficiency, and
seamlessly adapts to the intricacies of diverse data sources.
These attributes make it suited for scenarios involving
Fog and Edge [16], [17], [18]. Furthermore, FL extends
personalized and fault-tolerant model training capabilities
while complying with stringent data protection regulations.
This multi-faceted nature positions FL as a robust and
privacy-conscious solution with expansive potential across
various domains [17].

In practical terms, FL empowers local data training while
upholding stringent data privacy. Devices or servers involved
in this process autonomously compute model updates using
their respective datasets, which are subsequently aggregated
to refine the overarching model. This decentralized approach
significantly mitigates the risks associated with centralized
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FIGURE 4. A general architecture for federated learning.

data storage and transmission, offering advantages that
extend beyond privacy. Notably, FL delivers scalability gains,
reduces communication overhead, and proves adaptable to
resource-constrained real-world scenarios [10], [17].

FL architecture consists of four layers (see Figure 4), each
serving a specific role in the decentralized learning process:

1) Client / Infrastructure Layer: This layer encompasses
both devices and local servers that play an active role
in the FL process. Devices contribute their localized
data and learning models to the broader system. Within
this layer, a sub-layer, referred to as the Data Layer,
assumes responsibility for Local Data Management
and Local Learning Models. The task of Local Data
Management involves overseeing proper data handling
and secure storage on individual devices. Meanwhile,
the Local Learning Models, which are trained using
local data, undergo continuous refinement through
updates throughout the FL process [10], [17], [36].

2) Network Layer:This layer manages interactions among
devices, nodes, local servers, and aggregation servers
within the FL system. It uses advanced Channel Coding
techniques to robust data transmission over potentially
noisy channels, supported by various Communication
Protocols (e.g., 6G, 5G, Z-Wave, ZigBee, Wi-Fi) to
facilitate data exchange [17], [36], [37].

3) Aggregation Layer: Situated at the heart of the architec-
ture, This layer assumes a pivotal role in amalgamating
local models into a comprehensive global model.
The pivotal Aggregation Server oversees the Model
Aggregation process. Various Aggregation Algorithms
dictate how local model updates integrate into the
global model. Model Updates involve transmitting
refined models to the Aggregation Server, which then
generates the comprehensive Global Model. Regular
Global Updates drive the continual refinement of the
overarching model [10], [17], [36], [37].

4) Application Layer: Positioned as the uppermost layer,
this layer customizes the global model to align with
specific applications through Model Customization.
It also encompasses vital services such as Moni-
toring and Maintenance, which sustain the optimal
performance and integrity of the FL system. Analytics
extract valuable insights and patterns from the global
model, while diverse applications spanning financial
and non-financial domains effectively translate the
model’s findings into real-world contexts [10], [17].

Therefore, this comprehensive FL Architecture seamlessly
integrates layers, fostering a unified, efficient system pri-
oritizing data privacy, operational efficiency, and practical
applicability, all considered during SLR development.

D. INTEGRATING FOG COMPUTING, BLOCKCHAIN, AND
FEDERATED LEARNING
Building on the theoretical principles discussed earlier,
integrating FC, BC, and FL appears highly feasible due
to their shared decentralized computing foundations. Their
interconnections highlight compatibility in both theory and
practice, urging a deeper exploration.

For instance, the FC architecture creates a dynamic frame-
work for distributed and federated computing. Clustering
nodes systematically facilitates collaborative interactions,
fostering an environment for interconnecting federated ser-
vices across domains. This seamless interconnectivity not
only enhances scalability but also aligns intriguingly with
FL’s core principles [8]. This alignment gains significance,
emphasizing the shared focus on optimizing service distribu-
tion for superior application performance.

The potential for synergy becomes more evident when
delving into the realm of Blockchain. BC’s decentralized
nature and focus on secure and transparent data transactions
complement the ideals of both FC and FL. The distributed
and tamper-resistant nature of BC inherently supports the
trust and privacy concerns essential to FL’s data aggregation
process. This synchronization of objectives between BC
and FL creates a foundation for secure, privacy-conscious
collaborative learning scenarios within an FC environment.

In essence, the FC-BC-FL integration paints a cohesive
picture of decentralized, collaborative, and privacy-conscious
data processing and sharing. Despite inherent distinctions,
these technologies synergistically tackle challenges, foster
innovation, and shape future computing systems across
domains while prioritizing security, privacy, and efficiency.

As a first look, Figure 5 visually illustrates the integration
and interaction of FC-BC-FL technologies to collaboratively
address common challenges by converging within each
layer, showcasing their synergistic roles and interactions.
This view employs a schema with three core layers:
Device/Infrastructure, Network, and Application, acting as
a visual guide that emphasizes their harmonious coexistence
and collaboration. By aligning layers in this schema, Figure 5
offers insights into the interconnected nature of FC (See
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FIGURE 5. FC-BC-FL architectural integration relationship.

Figure 2), BC (See Figure 3), and FL (See Figure 4)
architectures.

1) Application Layer: In this layer, FC, BC, and FL
exhibit distinct functionalities. FC’s Layer 3 includes
the Cloud Layer with ample computational resources
and the Application Layer housing diverse services.
BC’s Layer 4, the Consensus Layer, centers on
network-wide agreement, while Layer 5 serves various
applications. FL, within Layer 4, tailors the global
model and provides monitoring and maintenance
services, while Layer 3 manages aggregation. This
layer demonstrates the synergy of FC-BC-FL, offering
diverse applications.

2) Network Layer: This Layer facilitates smooth con-
nectivity and communication. FC’s Fog Layer serves
as a bridge between Edge and Cloud, while BC’s
layer manages node interactions. FL’s layer orches-
trates device-to-server communication, using advanced
coding techniques and protocols to ensure efficient data
exchange and reliable transmission.

3) Device/Infrastructure Layer: At the base, FC’s Layer
1 consists of devices and sensors gathering data, with
the Edge infrastructure nearby for initial processing.
BC’s Layers 1 and 2 establish the hardware foundation
and manage data using transactions, signatures, and
cryptographic elements. FL’s Layer 1 includes devices
and local servers, handling the data and learning
models.

E. RELATED WORK
Over the last five years, numerous primary studies explored
integrating these technologies (FC/EC, BC, and FL). These
efforts curated influential studies for literature reviews,
symbolizing collaborative research progress. This subsection
analyzes and compares sixteen of these secondary studies to
identify areas needing further exploration in this field.

As Table 1 shows, prevailing studies have predominantly
focused on examining combinations of two out of the three
technologies: BC-FC [11], [12], [13], [14], [15], FC-FL [16],
[17], [18], or BC-FL [16], [19], [20], [21], [22], [23], [24],
[25], [26]. A noticeable trend emerges wherein there is a
scarcity of literature reviews encompassing the integration
of all three technologies comprehensively. The comparison

presented in Table 1 highlights the strengths and weaknesses
of these studies, specifically in areas such as architectural
features, frameworks, integration aspects (privacy, efficiency,
performance, security, interoperability, scalability, data man-
agement, service levels, trust, heterogeneity, resilience, and
access control), as well as the analysis of experimentation
features or general data analysis of the papers - detailed
further in the subsequent section. These papers excel in
their comprehensive analyses of specific intersections among
the technologies, elucidating architectures, addressing secu-
rity concerns, and exploring various application domains.
However, their limitations become apparent in the absence
of a holistic integration across all three paradigms in
several studies. Some prioritize or overlook one of the three
technologies, limiting a comprehensive understanding of
their collective potential within specific criteria or interest
areas. Moreover, while these studies address challenges and
solutions within individual frameworks, there is a recurring
oversight in considering architectural features, thus failing to
capture the entirety of the tripartite integration. Consequently,
while these studies offer valuable insights into isolated
intersections, they lack a cohesive examination of the FC-BC-
FL holistic integration.

Therefore, our review distinguishes itself by not only
acknowledging the existing research gaps but also by proac-
tively addressing them through a meticulous examination
of the integration of FC/EC-BC-FL. Unlike prior studies
which predominantly focus on partial combinations of these
technologies, our review takes a pioneering step forward
by providing a comprehensive analysis that encompasses all
three paradigms. We meticulously explore various criteria,
ranging from architectural features to security concerns,
ensuring a holistic understanding of the integration’s poten-
tial. By bridging this crucial gap in the literature, our
review offers unparalleled insights that are indispensable for
advancing research and practical applications in this field.

III. SYSTEMATIC LITERATURE REVIEW
This section outlines the Systematic Literature Review
(SLR) methodology, covering the research approach, review
protocol formulation following Kitchenham’s guidelines,
study selection, and categorization criteria.

Kitchenham’s systematic approach ensures structured, reli-
able, and repeatable acquisition, evaluation, and interpreta-
tion of information [27]. This tailored procedure investigates
Federated Learning and Blockchain convergence within Fog
Computing for IoT applications.

Figure 6 illustrates the three main phases of Kitchenham’s
guide: Planning, Conducting, and Reporting. Here, we focus
on the initial two phases, with the final phase detailed in the
subsequent section.

A. PLANNING THE REVIEW
The planning stage structures the SLR by initiating from the
definition of the Research Questions, which in turn forms the
basis for the SLR protocol statement [27].
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TABLE 1. Related Literature reviews about integrating FC-BC, FC-FL, BC-FL ( : fully addressed; #: partially addressed).

FIGURE 6. Kitchenham phases for performing SLR.

1) RESEARCH QUESTION DEFINITION
Since the SLR aims to analyze aspects related to the
integration of BC and FL in FC to enhance IoT applications,
the main Research Question (RQ) and three Sub-Research
Questions (SRQs) have been formulated to contribute to
specifying the findings of this study (see Table 2).

SRQ1 seeks to comprehend the intersection of FC, FL, and
BC technologies in architectures, frameworks, application
scenarios, and use cases. It explores leveraging BC and FL
techniques in FC to enhance IoT applications, encompassing
aspects such as security, privacy, efficiency, performance,
interoperability, and data management.

SRQ2 comprehensively analyzes the integration of BC-FL
within FC for IoT applications, evaluating performance,
efficiency, and security impact while exploring FC interoper-
ability. It examines how FL and BC enhance FC security and
efficiency, including BC’s role in ensuring privacy. The study
explores privacy and security considerations resulting from
FC-FL-BC integration, particularly with Smart Contracts.

TABLE 2. Research question and sub-research questions.

Investigating BC-FL synergy for enhanced data management
and security in FC for IoT, it also identifies opportunities to
improve FC-BC-FL integration for diverse IoT applications.

SRQ3 encompasses a comprehensive exploration of
the following aspects: the type of research conducted,
the present state of research including emerging trends,
existing drawbacks and limitations, the benefits derived
from integration, identified research gaps and challenges,
methodologies employed, evaluations of the integration of
these three technologies, and potential opportunities for
further advancement.

2) IDENTIFY RESEARCH AND SOURCES
Kitchenham [28] advises extracting information considering
population, intervention, comparison, outcomes, and context,
as outlined in Table 3.
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TABLE 3. Extraction aspects.

The search process encompasses two stages: Automatic
and Manual. In the initial phase, the Advanced Search tools
within major digital libraries such as IEEE Xplore, ACM,
Springer Link, and Science Direct are utilized to identify
relevant papers. Simultaneously, pertinent Conferences and
Journals linked to the research domain are explored for a
Manual Search on the specified topic. The search strategy
begins by outlining key terms as the search string shows:
‘‘[federated learning AND blockchain AND fog computing]’’.
It is employed across metadata (i.e., title, abstract, keywords)
for articles from all sources, with syntax adjusted according
to each library. Variations in terminology, such as ‘‘Col-
laborative Learning’’ for FL and ‘‘Distributed Ledger’’ for
BC, are also taken into account. It is important to note
that ‘‘Edge Computing,’’ due to its resemblance to Fog
Computing, is also incorporated. The search is specifically
focused on studies from 2016 onwards, as the Federated
Learning emergence [7] is a significant milestone among
these technologies.

3) QUALITY ASSESSMENT
Following the initial selection phase, retrieved studies from
both automated and manual searches undergo evaluation
based on title, abstract, and keywords for inclusion con-
sideration. Discrepancies in the selection are resolved via
consensus after thorough paper examination. Studies meeting
inclusion criteria, such as presenting novel insights on FL-BC
integration in FC, and adhering to English language and
at least 5 pages length criteria, are included. Conversely,
studies falling under exclusion criteria, like introductory,
short, and non-English papers, are excluded. Besides, the
quality assessment of the primary studies utilizes a three-
point Likert-scale questionnaire encompassing subjective
(issues and solutions related to FC-BC-FL integration) and
objective (relevance of publication and citation frequency)
questions.

Responses to subjective questions vary from +1 ‘‘agree-
ment,’’ 0 ‘‘partial agreement,’’ to −1 ‘‘disagreement.’’ For
objective questions about study quality, responses range
from +1 ‘‘very relevant,’’ 0 ‘‘relevant,’’ to −1 ‘‘not so
relevant.’’ The relevance question considers library ranking
and conference tier. Regarding citation frequency, Journal or
Google Scholar citation reports assess the study’s impact,

with responses ranging from +1 ‘‘cited by more than five
authors,’’ 0 ‘‘partially,’’ to −1 ‘‘not been cited.’’ Notably,
recent publications receive a ‘‘partially’’ score to avoid undue
penalties.

4) EXTRACTION CRITERIA
Extraction criteria are essential for systematically gathering
relevant information during the research process. Defining
these criteria helps to deepen the understanding of each
technology and their initial relationships. In this study, these
criteria are established based on information obtained from
the studies discussed in the related works subsection and
additional existing taxonomies of the implied technologies.
This approach ensures that the collected data and the
established extraction criteria are significant and align with
the overarching research objectives, contributing to a compre-
hensive analysis of the interactions between the investigated
technologies. By employing well-defined extraction criteria,
the research process effectively captures and synthesizes
essential insights from various sources, thereby enhancing the
overall rigor and reliability of the research findings [27], [28].

In the following lines, there are defined 38 extraction
criteria that cover a wide range of concepts, addressing each
of the three sub-research questions as previously outlined.
EC1 to EC18 are utilized to tackle SRQ1 (see Figure 7, 8,
and 9), from EC19 to EC33 the SRQ2 (see Figure 11), and
from EC34 to EC38 for SRQ3 (see Figure 12).
EC1: Main Scope of the Study: Indicates the specific

related areas covered within the reviewed study: Fog/Edge
Computing, Blockchain, and Federated Learning (see Fig-
ure 7).

The following criteria (EC2-EC4) delineate characteristics
that might be components of architectures as well as the fields
of application integrating FC-BC-FL.
EC2: Architecture Features: Encompasses several sub-

criteria for analyzing the architectural features (see Figure 7).

1) Software Architecture Pattern Type. This sub-criteria
defines the architecture patterns that shape the funda-
mental characteristics of an application [38]. Figure 7
shows architecture patterns that could be employed.

a) Layered. This approach utilizes horizontal layers,
each serving distinct functions to foster modular
and organized development [38].

b) Event Driven. In this pattern, event processing
components are decoupled, managing specific
events. It includes two topologies: mediator,
which coordinates multiple event steps using a
central mediator, and broker, connecting events in
a chain without a central mediator [38].

c) Microkernel. It features a core system and plug-in
modules for extensibility and isolation [38].

d) Microservices. This pattern involves deploying
components individually for straightforward scal-
ability, deployment, and decoupling. The archi-
tecture is distributed, with components accessed
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FIGURE 7. SRQ1 extraction criteria. Architectural features (EC2-EC4).
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remotely; it has evolved from layered and
service-oriented architecture patterns to tackle
scalability and deployment challenges [38].

e) Space-based. Also known as Cloud architecture,
it achieves high scalability by utilizing distributed
shared memory (tuple space) and replacing the
central database with replicated in-memory data
grids. Application data resides in memory and is
replicated among active processing units, alleviat-
ing central database bottlenecks and enabling effi-
cient scaling. Components encompass processing
units and virtualized middleware (handling syn-
chronization and communication) [38].

f) Other. Include alternative abstract representations
or descriptions of the software system’s structure,
behavior, and interactions, offering a high-level
understanding of system components, relation-
ships, and collaboration for desired functionality.

2) Architecture Type. It categorizes architecture types for
integrating the FC-BC-FL technologies, based on FL
architecture perspectives (See Figure 7) [23], [31].

a) Centralized: This architecture involves a sin-
gle central node responsible for communica-
tion, model aggregation, and deployment for
client/edge devices [23], [37].

b) Collaborative: In this architecture, devices cre-
ate a mesh-like network, connecting either to
a central server or nearby devices based on
proximity [23]. This approach can be divided into
Dispersed Architecture, involving two stages:
sub-global model aggregation within device
groups and global model computation through
centralization or distribution. Two categories
exist within this sub-classification: centralized
dispersed FL and distributed dispersed FL. Chal-
lenges remain concerning client privacy and non-
IID data [37].

c) Decentralized (Fully Distributed): In this archi-
tecture, processing shifts to clients or edge nodes,
eliminating the need for a third-party entity
to aggregate the global model. Clients connect
in a P2P or mutual communication manner to
exchange local model updates and aggregate the
global model [23], [37].

d) Hierarchical: It includes regional coordina-
tion nodes to manage various edge/fog clus-
ters, thereby reducing the central node’s work-
load [12], [23], [31], [37]. It also considers
regional architecture as a sub-classification,
wherein edge clusters are assigned to regional
aggregation nodes, eliminating central aggrega-
tion [23].

3) Architecture Layers. Considering that IoT applications
are commonly presented in Layered architectures, this
sub-extraction criteria provides a list of layers that can

be utilized, and are common, in IoT applications when
integrating FC-BC-FL (See Figure 7) [12], [36], [39].

a) Device Layer (Infrastructure/Physical): Consist-
ing of clients participating in the application (e.g.,
mobile devices, computers, sensors) [12], [39].

b) Data Layer: This layer collects, stores, and
manages data from the devices in the system [12].

c) Network Layer: Operating as a decentralized
P2P network, allowing direct resource sharing
among peers without intermediaries. Peers can
serve various functions and are organized based
on support roles like wallets, databases, miners,
or routing. It enables distributed resource sharing
and removes the need for central authorities [12].

d) Subchain Layer: Comprising multiple isolated
networks with client, leader replica, and follower
replica entities, this architecture operates within a
multi-access FC scenario. Here, FNs function as
independent replicas for transaction authentica-
tion and information exchange. The utilization of
a BC consortium ensures compliance with device
access control [39].

e) Consensus Layer: Verifies the block trustwor-
thiness and maintains accurate ledger copies.
However, forks can occur due to malicious nodes,
network faults, or communication delays, posing
a major challenge for consensus algorithms [12].

f) Contract Layer: This layer is responsible for the
management of digital currency and the creation
and administration of SCs [12].

g) Mainchain Layer: This layer is designed for FL
tasks and is deployed on distributed FNs. Its
purpose is to maintain and verify transactions in
a decentralized manner [12], [39].

h) Application Layer: Represents The application
layer is the topmost layer in the software archi-
tecture and is responsible for providing specific
functionalities and services to end-users [12],
[39].

The BC-FL integration is described and classified by
considering techniques and implementation schemas, as pre-
sented in [20] and [24]. Subsequently, the analysis extends to
the integration with FC. To analyze this extraction criterion,
selected sub-criteria include integration schemes and the type
of network infrastructure/mechanism explained below.

4) Integration Schemes. The study [12] suggests two
types of integration between IoT and BC applications.
As well, this integration schema can be extended to the
FC-BC-FL integration (See Figure 7).

a) Tight Integration: It mandates all IoT communi-
cations through BC, making devices peers and
recording interactions for accountability, thus
facilitating comprehensive monitoring [12].

b) Loose / Hybrid integration: It involves optional
interaction recording on BC, optimizing resource
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usage. It combines decentralized recording with
real-time communication for frequent interac-
tions, yet requires careful distance optimization
and compromises decentralization security [12].

5) Type of Network infrastructure/Mechanism. The stud-
ies in [20], [21], [24], and [40] outline BC-FL integra-
tion mechanisms, which remain consistent even when
FC is incorporated. These mechanisms are derived
from various BC types. Illustrated in (Figure 7), they
comprise:

a) Public: In this case, all data is visible to
nodes, enabling participation in FL and resource
contribution. BC consists of connected blocks
with cryptographic hashes, ensuring tamper resis-
tance and immutability. Data privacy relies on
encryption or hashes [24], [40].

b) Private: Limits BC network to selected partic-
ipants for data privacy in sensitive scenarios.
Write permission is restricted to an organization
or group, providing tighter control. Offers flexible
configuration, and central governance with con-
trolled mining [20], [24], [40].

c) Consortium1: It merges public and private BCs,
using a defined group for block validation.
It employs a signature mechanism for approval
and spans multiple organizations. Consensus is
regulated by pre-authorized nodes, and reading
rights can be public or limited. However, con-
trolled consortium BCs risk tampering if nodes
permit [20], [21], [24], [26], [40].

d) Hybrid: It combines public and private features,
offering flexibility and balance in data sharing
and control. This versatility suits a range of
applications, providing transparency in some
areas while preserving privacy in others, thereby
offering organizations benefits from both BCs
within a single solution [20], [24], [40].

6) System Components/Roles. This criterion catego-
rizes the roles present in federated system applica-
tions, infrastructures, and smart services. The com-
ponents/roles considered presented in Figure 7 are
described below:

a) Data Generation: This entity generates or
legally owns/controls the data. It includes sub-
roles like Producers, Suppliers, Vendors, and
Providers [12], analyzed in EC18 within the FL
domain.

b) Service Provider:Offers software andMLmodels
to the ecosystem [12].

1A Consortium BC involves multiple collaborating organizations with
restricted access, enabling shared governance and data sharing. Conversely,
a Hybrid BC combines public and private elements, allowing both public
participation and private data access. The key difference lies in their
fundamental structure and participant control.

c) Consumer:An entity that consumes resources/assets
(e.g., data, services) following guidelines and
policies provided by Producers/Providers [12].

d) Infrastructure Provider: A participant that sup-
plies computing resources to the ecosystem [12].

e) Broker: Facilitates resource registration and dis-
covery (e.g., infrastructures, services, data sets)
via metadata and self-descriptions [12].

f) Identity Provider: Creates and manages partici-
pant identity information [12].

g) Federator: Enables and facilitates interaction
between providers and consumers [12].

7) OperationMode.Describes the FL operation within the
application, based on the aggregation process for the
global model [20]. Two types exist (see Figure 7):

a) Centralized FL: In this scenario, global model
updates occur on a central server, where local
model parameters are aggregated (this process
relies on the central server for both the aggrega-
tion process and global model updates) [20].

b) Collaborative FL: In this setup, aggregation
begins at the end devices. Subsequently, the
aggregated model is shared with the central server
for final aggregation. Here, devices with limited
communication or resources share their model
parameters with nearby devices [20].

EC3: Technological solutions/frameworks/providers for
applications. This extraction criterion identifies and catego-
rizes technological solution providers or frameworks for each
of the selected technologies (See Figure 7):

1) Fog/IoT/Edge Frameworks.Categorizes popular frame-
works for Fog solutions (including Edge and IoT),
including Amazon Web Services (AWS), Cisco
FC Platform, FogHorn Systems, and others, along-
side self-developed and Domain-Specific Languages
(DSLs).2

2) Blockchain Frameworks. Groups of well-known BC
frameworks such as AWS, Azure BC, Ethereum,
Hyperledger, and more, supplemented by DSLs and
other frameworks.

3) Federated Learning Frameworks. Classifies leading
Federated Learning frameworks like AWS, FATE,
FL&DP, TFF, and more, encompassing self-developed
models, DSLs, and other [41], [42].

4) BC-based FL Frameworks. Categorizes existing
BC and FL integration frameworks, including
BFEL, BFLC, Blade-FL, and others, along with
self-developedmodels and additional frameworks [43],
[44], [45], [46], [47], [48], [48], [49].

2A Domain-Specific Language (DSL) is a specialized programming or
specification language designed for a specific industry or task, solving
problems within that domain with tailored syntax and semantics, enhancing
tasks like scientific computing or financial modeling.
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EC4: Application. This criterion classifies application
scenarios, further subdivided to categorize each analyzed
primary study’s application (see Figure 7):

1) Field of application. It encompasses various typical
application fields, including Business/Finance Man-
agement, Energy, Governance, Healthcare, Industrial
Management, Smart Cities/Smart Homes, Transport,
and others [17], [26], [50], [51], [52] (see Figure 7).

2) Scenario. It classifies deployment situations, environ-
ments, or contexts where technology or system (refer
to Figure 7). It characterizes unique circumstances
under which the technology is applied, emphasizing
challenges, requirements, or usage conditions affecting
implementation or operation. Examples can include
Autonomous Vehicles, Data Governance, Smart Home
Security, Supply Chain Management, and more.

3) Use case. It outlines specific instances or examples
that illustrate how a technology or system is utilized to
address a particular problem or fulfill a specific need
(see Figure 7). These depictions detail interactions,
processes, and advantages of practical technology
implementation. Examples include Energy Trading,
Fraud Detection, Personalized Healthcare, and more.

The following criteria outline the essential technical
components and attributes of Fog Computing about the FC-
BC-FL integration (See Figure 8). They assist in defining
the integration’s elements and improving understanding for
a more precise categorization of each primary study.
EC5: Cloud Features: It describes the cloud structure in

two main parameters as shown in Figure 8, and described
below:

1) Type of cloud. Defines the type of cloud used in the
solution [17], [53]. Figure 8 present their classification:
a) Private. Here, services and infrastructure are

provided by third-party providers via the Internet.
Resources are shared among multiple users. Scal-
ability and cost-effectiveness are key advantages.

b) Public. In this setup, infrastructure and services
are tailored for a single organization, offer-
ing greater control, security, and customization
options, though with increased maintenance and
infrastructure requirements.

c) Community. Shared clouds for organizations with
common interests, such as government agencies
or educational institutions, facilitate resource
sharing, collaboration, and security control.

d) Hybrid. It combines public and private clouds,
allowing organizations to leverage the benefits
of both. It offers flexibility, scalability, and the
ability to handle varying workloads efficiently.

2) Cloud server design. Define FL aggregation server
types for cloud implementation [17] (see Figure 8).
a) Containers based design. This design offers

lightweight, scalable deployment with faster
startup times [17].

b) Virtual Machines based design. provide stronger
isolation and compatibility.

c) Hybrid based design. Describes a combination of
container-based and virtual machines.

EC6. Fog (Edge) Nodes Features: The FN serves as a
pivotal element within the FC architecture [8]. This criterion
assists in delineating and recognizing the attributes of this
element within the review of primary studies, utilizing the
subsequent sub-criteria as depicted in Figure 8:

1) Node Design. It encompasses both hardware (Physical)
and Software (Virtual) aspects [8], [17].

2) Node Type. This criterion outlines different FN con-
figurations, encompassing base stations, cloudlets,
gateways, micro data centers, MEC nodes, routers,
servers, switches, virtual machines, virtual switches,
vehicles, and other customized designs. Each node type
corresponds to specific functionalities and roles within
the FC architecture, contributing to the ecosystem’s
overall efficiency and performance [8], [17], [50], [54].

3) Node Tasks. This sub-extraction criterion provides
insights into the tasks that a node can undertake within
an FC-BC-FL solution (see Figure 8).

a) Mining (BC). The node engages in mining
activities for BC-related operations.

b) Model Aggregation (FL). The node facilitates FL
processes by aggregating models of end devices.

c) Processing. The node handles conventional FC
tasks, such as data storage and processing.

4) Node Functionality (Fog). It outlines the designated
role of the FN [8], [12] (see Figure 8).

a) Fog Gateway Node (FGN). A node functioning
as an intermediary, connecting IoT devices at the
edge with the Fog Computing infrastructure [12].

b) Fog Orchestration Controller (FOC). A node
responsible for establishing a control layer in
the Fog, overseeing resources, and coordinating
communication. FOCs manage tasks such as task
offloading, scheduling, and resource allocation
while considering factors like communication
cost and latency [12].

c) Fog Computing Node (FCN). A node compris-
ing one or multiple physical devices endowed
with processing and sensing capabilities. These
devices empower the Fog to execute tasks
assigned by FOCs [8], [12].

d) Fog Storage Node (FSN). A node locating a
distributed database/repository [12].

5) Node Collaboration type for FL. The classification of
collaboration among FNs in the FL process depends
on the nature of the application and the available
communication resources. Training an FL model for a
massive number of IoT devices incurs communication
resource overhead. Collaborating between nodes helps
alleviate this process [17], [33] (see Figure 8).
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FIGURE 8. Fog computing features (EC5-EC7).
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a) Horizontal. FNs at the same level collaborate and
share resources to collectively handle tasks and
provide services [17]. Collaboration between end
devices and edge/fog servers [33].

b) Vertical. FNs at different levels collaborate with
higher-level nodes providing support and offload-
ing tasks to lower-level nodes. Collaboration
occurs between Edge/Fog and the Cloud [17],
[33].

c) Hybrid. Merges horizontal and vertical collab-
oration, enabling flexible and adaptive resource
sharing and task distribution in FNs [17], [33].

6) Service Models. Similar to the Cloud, the FN offers
service models that encompass IaaS, PaaS, and SaaS
(see Figure 8) [8].

7) Deployment Models. Just like the Cloud, the FN has the
following deployment models (see Figure 8) [8]:

a) Public FN. A node provisioned for open use by
the general public [8].

b) Private FN. A node dedicated to a single organi-
zation with multiple consumers [8].

c) Community FN. A node provisioned exclusively
for use by a specific community of consumers
from organizations that have shared concerns [8].

d) Hybrid FN. A complex node formed by combin-
ing private, community, and public nodes [8].

8) Collaboration Between Nodes. Are the methods for
coordinating collaborative interactions among diverse
FNs within the edge network [54] (see Figure 8):

a) Cluster. Nodes collaborate by forming clusters
based on homogeneity or location, considering
load balancing and functional development [54].

b) P2P. In FC, node P2P collaboration is common,
either hierarchical or flat order. P2P collaboration
can be home, local, or non-local based on
proximity. It enables the sharing of processed
output and virtual computing instances but raises
concerns about reliability and access control [54].

c) Master-slave. It is a master FN that controls
the functionalities of slave nodes. This approach,
alongwith cluster and P2P interactions, can create
a hybrid collaborative network in FC [54].

9) Networking System. There exist several computing
paradigms in different networking systems where FC
has been integrated (see Figure 8), including:

a) IoT. Networking system for device-to-device
interaction, categorized as industry or home-based
execution environment, stated in various forms
like wireless sensors/actuators, Cyber-Physical
Systems, and embedded system networks [54].

b) Content DistributionNetwork (CDN).Networking
system composed of distributed proxy servers
that provide content to end-users ensuring high
performance and availability [54].

c) Long-Reach Passive Optical Network (LRPON) /
Power Line Communication (PLC). FC integrated
with LRPON optimizes home, industry, and wire-
less backhaul network design, and additionally
integrates into electric power distribution [54].

d) Mobile Network (MN) / Radio Access Network
(RAN). FC in networking systems in mobile
networks, particularly in 5G, as well as in other
mobile networks like 3G and 4G. Besides, the
Radio Access Network (RAN) facilitates commu-
nication of individual devices with other entities
of a network through radio connections [54].

e) Vehicular Network (VN). Networking systems
connecting vehicles conformed by computational
and networking capabilities [54].

EC7. Clients (End Devices) Features: Clients play a
crucial role in FC-BC-FL integration, interacting with central
servers or distributed networks for service, data, or resource
requests. This criterion helps identify client attributes via the
sub-criteria in Figure 8.

1) Client Design. The client design can either be Hard-
ware (Physical) or Software (Virtual) (see Figure 8)
[17].

The clients represent the configuration and functionality of
the devices. Two types of clients are presented:

2) Type of Clients (End-Devices/Gadgets). They encom-
pass a variety of categories, including actuators,
sensors, controllers, data users/data centers, IoT
devices/gateways, and mobile devices. The latter cate-
gory includes deviceswithmobility within the network,
such as cell phones, tablets, and smartwatches. Addi-
tionally, there are smart devices with high computing
capabilities (e.g., laptops, PCs, Raspberry Pi). Besides,
vehicles and other categories (see Figure 8) [10], [12],
[17].

3) Type of clients (BC Devices/Equipment). Client types
for BC include virtual machines, containers, services,
messaging, and others (see Figure 8) [12], [23], [24].

4) Device Connections. The clients can be connected both
wireless or wired (see Figure 8) [12].

5) Device Tasks (FC-BC-FL).Describes the possible tasks
that the end-device performs in a FC-BC-FL solution,
including (see Figure 8):
a) Mining (BC). Device performs BC mining tasks.
b) Local Model Training (FL). End device partici-

pates in FL processes to train models on-device.
c) Local Model Aggregation (FL). The end device

contributes to FL tasks involving model aggrega-
tion within the end devices.

d) Processing. End device undertakes conventional
FC functions (e.g., data storage, management).

6) Client - Local ML models. Describe the ML models
potentially executed by clients (see Figure 8) [17],
[20]. These models encompass Convolutional Neural
Networks (CNN), Feed-Forward Neural Networks
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(FNN), K-means, Long short-term memory (LSTM),
Naive Bayes, Stochastic Gradient Descent (SGD),
Support Vector Machines (SVM), and others.

7) Clients used resources. The clients can use the
following resources when performing (see Figure 8)
a) Computational Resources. Refer to the comput-

ing power, processing capabilities, and storage
capacity of devices or systems. These resources
are essential for performing data processing,
running algorithms, and executing tasks effi-
ciently [17].

b) Communicational Resources. Represent the net-
work infrastructure, bandwidth, and communi-
cation protocols that enable data exchange and
connectivity between devices or systems. These
resources facilitate data transfer, and communica-
tion between nodes, and support the information
flow within a network [17].

8) Data Distribution Type. It describes how data is
distributed within the clients’ datasets, especially in the
ML and data analysis context (see Figure 8) [55], [56].
a) Independent Identically Distributed (IID). Here,

each data point within the client’s dataset is
independent of others, and these data points are
drawn from the same underlying distribution [55],
[56].

b) Non-IID. Are datasets within the client where
data points are not independent and can come
from different underlying distributions. Such
situations often occur in real-world contexts due
to variations in data sources or devices [55], [56].

The following extraction criteria highlight the Blockchain
key attributes to consider during the primary studies review
(see Figure 9). These attributes are organized following
the layered architecture, covering from the contract to
the physical layer (The application layer was previously
analyzed).
EC8. BC Contract Layer: This criterion concerns the

contract layer, encompassing script codes, algorithms, and
SCs embedded in the BC to execute complex business rules.
These contracts automatically trigger predefined actions or
transactions upon meeting specific conditions agreed upon
by network nodes [13], [23], [33], [37]. The subsequent sub-
criteria (see Figure 9) outline the analyzable features.
1) Type of Contract.Defines the types of contacts that can

be part of the BC system [13], [57] (See Figure 9).
a) Scripts. The BC’s contract layer introduces pro-

grammable features, enabling advanced scripting.
Scripts are basic code pieces used for simple
transaction validation in BC networks [57].

b) Smart Contracts.ASC is amore powerful form of
contract that enables the automation of complex
agreements and business logic on the BC [13].
It is a data and code collection, also referred
to as functions and states, which is deployed

using cryptographically signed transactions on
the BC. Examples of platforms with SCs include
Ethereum’s SCs and Hyperledger Fabric’s chain
code [34].

2) Type of Smart Contracts. (see Figure 9).
a) Deterministic Smart Contracts. These contracts

execute actions based solely on predefined condi-
tions and do not require any external input or off-
chain data. They are entirely self-executing and
deterministic in nature [58].

b) Non-Deterministic Smart Contracts. These con-
tracts rely on external input or off-chain data
to execute actions. They may involve human
intervention or external systems to trigger certain
actions or decisions within the contract [58].

3) Smart Contracts Study Scope. (see Figure 9).
a) Improvement. If the primary study proposes

alternative methods to enhance the SC func-
tionality verification. These methods can be
Modeling-driven or Optimization-driven [57].

b) Usage. If the primary study demonstrates the
utilization of SCs across various domains. This
usage can be either resource-driven or driven by
cross-organizational collaboration [57].

EC9. BC Incentive Layer: This layer, economically
rewards specific nodes, motivating their active block ver-
ification and decentralization maintenance (See Figure 9).
It ensures incentive issuance and distribution, encouraging
node participation in the consensus process [23], [59].

1) BC Incentive Mechanisms. They encompass a variety
of approaches designed to motivate and reward partic-
ipants (nodes) within a BC network for their contribu-
tions to maintaining the network’s security, consensus,
and overall functionality [23]. These mechanisms
are categorized as follows: Bitcoins, Ether, Mining
Rewards, and others (e.g., Governance Participation,
Staking Rewards, Transaction Fees, ZCash).

EC10. BC Consensus Layer: This extraction criterion
outlines the Consensus Layer in BC, detailing the protocols
that network participants follow to establish consensus on
valid transactions and ensure system security. This layer
can employ diverse algorithms for achieving decentralized
agreement [23], [33]. The attributes of this layer help define
the core of this extraction criterion (See Figure 9), including:

1) Consensus Algorithms (CA). In BC, the CAs ensure
ledger integrity, security, and efficiency among
untrusted nodes in the P2P network. Their primary goal
is to achieve agreement on adding new blocks to the
ledger. Different CAs are used in BC systems, each
with its strengths and weaknesses [20], [22], [33], [34],
[40], [60] (See Figure 9). The CA categorization is:
a) Proof of Authority (PoA). It relies on trusted

validators who are authorized to create new
blocks and validate transactions based on their
recognized identity within the network.
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FIGURE 9. Blockchain features (EC8-EC13).

b) Proof of Contribution (PoCot). It rewards nodes
based on their tangible contributions to the net-
work, such as providing computational resources,
storage, or services that improve functionality.

c) Proof of Elapsed Time (PoET). It ensures fairness
by having nodes wait for a randomly assigned
time, and the first node to complete its waiting
time gets the right to propose a new block.

d) Proof of Knowledge (PoK). It requires nodes
to prove their possession of specific knowledge
or information before they can participate in
consensus. It emphasizes using knowledge-based
proofs.

e) Proof of Schedule (PoS). It selects block creators
based on a predefined schedule, often determined
by factors like the node’s age, wealth, or a

combination of both. This aims to provide a
deterministic way of choosing validators.

f) Proof of Stake (PoS). Similar to PoW, it chooses
validators based on the cryptocurrency they hold
and are willing to ‘‘stake’’ as collateral. This
reduces energy consumption compared to PoW
and encourages active participation from those
who hold more stake in the network.

g) Proof of Work (PoW). It entails solving complex
mathematical problems (using significant com-
putational power). Miners compete to solve the
problem, and the first one to solve it gets to create
the next block.

h) Byzantine Fault Tolerance (BFT). It addresses
faulty nodes in a network, ensuring consen-
sus despite malicious behavior or failures. It
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guarantees agreement even with a specific num-
ber of nodes behaving maliciously or failing,
enhancing security and consistency in untrust-
worthy or unreliable node scenarios. The algo-
rithm employs a voting or agreement process
among nodes to determine transaction validity.

i) Delegated BFT (DBFT). Extends BFT by involv-
ing trusted nodes or delegates in consensus. These
nodes validate transactions through agreement.
Trusted delegates streamline consensus, speeding
transaction confirmations, especially in BC net-
works with predetermined validators or delegates
responsible for consensus.

j) Others. Covering extra CAs such as Proof of ‘‘X’’
(Authentication, Capacity, Importance, Learning,
Retrievability, Space, Storage, Training Quality,
Verification), Delegated Proof of Stake (DpoS),
Crash Fault Tolerance (CFT), and more.

2) Consensus Protocols (CP). CPs underpin BC security
and performance. CPs achieve decentralized consen-
sus on a shared transaction ledger, defining how
nodes exchange messages and make decisions. Design
choices impact transaction capacity, scalability, and
fault tolerance [33], [61], [62], [63]. The general CP
types are:

a) Compute-intensive based.CPs based on compute-
intensive algorithms are characterized by their
high energy consumption during the mining
process. It primarily focuses on PoW [61].

b) Capability based (Consensus based on Proof-
of-X). This category extends beyond energy
consumption and considers non-computing capa-
bilities. These protocols factor in various aspects,
such as the amount of cryptocurrency owned by
a miner, their contribution to the community,
trustworthiness, or the storage they possess [61].
It includes all ‘‘proof-of-X’’ except PoW [62],
[63].

c) Voting based. They use voting systems to elect
a miner for block generation, addressing energy
consumption and wealth dominance concerns.
They tolerate Byzantine faults, ensuring consen-
sus despite node failures or malicious behav-
ior. This category is divided into BFT-based
consensus, achieved by following Byzantine
algorithms [62], [63], and CFT-based. BFT-
based prevents failing and malicious nodes, while
CFT-based addresses only failing/crashing nodes
using protocols like Raft and Federated [61].

d) DAG-Based Consensus.This category covers CPs
that use DAG-Based algorithms [63].

Note that CA defines the overall strategy for consensus,
while CP specifies the detailed rules and mechanisms for
communication among nodes to achieve consensus.

3) Consensus Protocol Configuration. The protocol con-
figuration plays a crucial role in a BC network,
impacting security and scalability [40].
a) Security. For security purposes, Nakamoto con-

sensus systems employ strategies such as await-
ing a specific number of blocks (X-Block confir-
mation) or implementing checkpoints to mitigate
double-spending risks (Checkpointing).

b) Scalability. It can be improved by adjusting block
size or mining difficulty to increase transaction
processing rate (e.g., adjusting original block size
and frequency or increasing block size/reducing
mining size). However, this might lead to more
frequent forks and longer waiting times for
confirmation blocks by users.

EC11. BC Network: This BC layer defines the networking
implementation within the BC system [13]. This criterion is
analyzed by the following sub-criteria (see Figure 9).

1) Network Mechanism. This aspect’s primary goal is to
distribute data generated by the data layer. The network
mechanisms include (see Figure 9):
a) Peer-to-peer (P2P). In decentralized networks,

each participant functions as a peer [13].
b) Client-Server. While P2P networks are common

in BC to ensure decentralization and eliminate
central intermediaries, BC-FL integration might
involve other network architectures depending on
specific BC implementation requirements [13].

2) Network Topology. Referring to the structure and
organization of nodes and their communication [13],
[33], [40], different network topology types are used in
BC systems, categorized as follows (see Figure 9):
a) Fully decentralized. his topology lacks a central

authority [13], [33], [40].
b) Partially decentralized. Some centralization ele-

ments exist in this topology [13], [33], [40].
c) Sharded. This topology divides into small subsets

called shards to achieve scalability [13], [33].
3) Network Categorization. BC networks are categorized

based on permission models, outlining authorized
entities for maintenance [33], [34] (see Figure 9).
a) Permissionless. Here, anyone can participate (as

the public internet). Permissionless BC networks
are decentralized ledgers open for anyone to
publish blocks without requiring permission.
Users can read/write to the ledger, but malicious
users might try to undermine the system [33],
[34].

b) Permissioned. This network type requires autho-
rization for block publishing, controlling read and
transaction access. They can be open for reading
to anyone or restrict access to authorized individ-
uals. These networks use consensus models for
block publishing, being faster and less computa-
tionally intense than the permissionless [33], [34].
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EC12. BC Data: The significance of data in BC is
relevant. Consequently, This criterion highlights the attributes
pertaining to datawithin a BC environment (refer to Figure 9).

1) Chaining Approach. This encompasses the structure
of authenticated data from the consensus layer storage
(see Figure 9). It includes:

a) Main chain structure (Linear). It is the traditional
BC, where blocks are linked in a linear chain, and
each block contains the hash of the previous block
(e.g., Bitcoin) [13], [33].

b) DAG chain. In this case, the blocks are connected
in a non-linear way, forming a graph structure
without cycles. Each block references multiple
previous blocks, increasing scalability and trans-
action parallelism (e.g., IoTa, PriFob) [33].

c) Off-chain. In this chaining approach, the transac-
tions are processed outside the main BC, and only
the final outcome is recorded on the main chain.
This approach reduces on-chain congestion and
enhances privacy [13], [33].

d) Sidechain. An independent BC that is interopera-
ble with the main BC, allowing specific functions
or applications to operate autonomously while
maintaining a connection for enhanced security
and flexibility [13].

e) Plasma chain. This represents a hierarchical
structure comprising child chains linked to the
main BC, utilizing merkleized proofs to facilitate
rapid and cost-effective transactions. This archi-
tecture enhances the scalability of BC by reducing
the workload on the main chain and enabling
parallel processing [13].

2) Data Structure. In BC, it defines how the information
is stored and linked together to form a chain of blocks.
This data structure allows for the secure and efficient
storage and retrieval of data, enabling the decentralized
and distributed nature of BC technology [40]. The BC
systems use several data structures (see Figure 9):

a) Blockchain. It is the traditional d data structure
formed by interconnected blocks. When conflict-
ing blocks arise, network participants typically
opt for the longest chain as the valid one [40].

b) GHOST (Greedy Heaviest-Observed Sub-Tree).
By using the GHOST protocol, miners modify the
data structure by including competing indepen-
dently mined blocks (uncle blocks) in their chain,
adding weight to their chain for selection as the
main chain. This enhances network efficiency and
throughput by recognizing concurrent work and
incorporating uncle blocks in the consensus [40].

c) BlockDAG. Moving from a linear chain to a
Directed Acyclic Graph (DAG) permits the inte-
gration of non-conflicting transactions from uncle
blocks into the primary chain. Selection criteria
can favor the longest chain or the heaviest sub-

tree, determined by block length or collective
difficulty. Additionally, customization of the
internal block structure is achievable [40].

d) Segregated witness. It is a proposed solution in
the Bitcoin community that separates transac-
tion signatures (witnesses) from the transaction
data, reducing their impact on block size. This
approach improves scalability by decreasing
storage requirements since all transactions are
replicated on every node in a BC network [40].

3) Data Privacy. It is the protection of sensitive and
personal information on the BC, ensuring authorized
access and restricting unauthorized disclosure [12],
[40]. The data privacy can be achieved by (see
Figure 9):

a) Soft privacy technologies. Are techniques that
protect privacy without fundamentally altering
data, allowing for data processing while safe-
guarding sensitive information.

b) Hard privacy technologies. Are strong measures
involving irreversible data transformation or
encryption, offering enhanced privacy assurances
while potentially constraining specific data pro-
cessing capabilities.

c) Data Anonymization. Refers to the process of
removing or modifying personally identifiable
information from datasets to prevent individual
identification while enabling useful data analysis.

d) Data Masking. It is the Technique of concealing
sensitive data with modified or randomized
values to protect privacy while maintaining data
realism for specific purposes like testing or
development.

4) Data Security. Ensure data integrity, confidentiality,
and availability through encryption, access controls,
and digital signatures. The techniques include Encryp-
tion, Authentication, Forensics, and Replication [12],
[40], [52] (see Figure 9).

5) Data Encapsulation. In the data layer, the data is
collected through transactions from the physical layer.
Then, the first step is to encrypt or encapsulate
the data [12]. This sub-criterion describes the data
encapsulation alternatives for data (see Figure 9).

a) Hashing. One-way function, converts data to
fixed-size hash and verifies data integrity in BC.

b) Digital signatures. They use asymmetric cryptog-
raphy, provide authenticity and non-repudiation,
and verify the sender and data integrity.

c) Asymmetric Cryptographic Algorithms. These
algorithms employ a pair of keys’a public key
and a private key. The public key is utilized
for encryption, while the private key is used for
decryption. Data encrypted with the public key
can solely be decrypted using the corresponding
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private key, ensuring secure communication
between parties without requiring a shared secret.

6) Hash Algorithms. It is a mathematical function that
transforms an input (often termed a message) into
a fixed-size string of characters, known as a hash
value or code. This output typically provides a distinct
representation of the input data, with minor changes
yielding significantly different hash values [64]. This
criterion categorizes Hash Algorithms into SHA-256,
SHA-512, and Others (e.g., Ethash, ring signatures,
cunningham chain) as presented in Figure 9.

EC13. BC Hardware / Infrastructure: This extraction
criterion describes the BC physical structure (with special
analysis in the BC-based FL) and their relevant elements
which are detailed in Figure 9, and analyzed below:

1) Miners (BC based FL).Miners are important elements
in the BC domain. They validate transactions, solve
complex puzzles to add blocks and secure the network
while earning rewards. In the BC-based FL context,
miners are responsible for the secure and trustable
exchange of learning model parameters in a distributed
manner [17], [33]. They can be classified into (see
Figure 9):

a) Static. These stationary devices play a crucial role
in the BC network, contributing their high compu-
tational power to validate transactions, generate
new blocks, and ensure the security of FL. Static
miners exhibit the highest computational power,
the lowest forking probability, and the highest
block propagation capability [17], [33].

b) Flying. Are Unmanned Aerial Vehicles (UAVs)
that provide computational resources to validate
transactions and generate blocks. This miner has
low computational power, high forking probabil-
ity, and the highest block propagation [17], [33].

c) Mobile. Similar to autonomous cars, movable
devices actively participate in mining. They
use computational power and connectivity to
contribute to the BC network, ensuring secure
parameter exchange in learning models. These
miners boast high computational power, low fork-
ing probability, and low block propagation [17],
[33].

2) Node Types (BC based FL). The nodes are the network
participants [61]. The node types are (see Figure 9):

a) Simple/Light Node. A network node that can only
send and receive transactions, without storing a
copy of the ledger or validating transactions [61].

b) Full Node. A node that stores a copy of the entire
ledger and can validate transactions [61].

c) Mining node (Miners/Block Generators). A full
nodewithin the network that possesses themining
capability, which involves creating new blocks
and adding them to the BC [61].

3) Node Tasks (BC based FL). The nodes in a BC-based
FL can perform tasks such as:

a) Consensus Mechanisms: Nodes collaborate to
reach a consensus on the validity and order of
transactions. Examples include Proof of Work
(PoW), Proof of Stake (PoS), and Practical
Byzantine Fault Tolerance (PBFT) [59], [61].

b) Transaction Validation. Nodes collaborate to
validate transactions by verifying their integrity,
authenticity, and adherence to the predefined
rules or smart contracts [52], [59], [61].

c) Block Propagation. Nodes collaborate to prop-
agate newly created blocks across the network.
This involves broadcasting the block to other
nodes for verification and inclusion in their BC
local copy [59], [61].

d) Block Verification. Nodes collaborate to verify
the correctness of blocks by performing cryp-
tographic operations, checking signatures, and
validating transactionswithin the block [59], [61].

e) Block Validation. The nodes collaborate to vali-
date the entire BC, ensuring its consistency and
integrity. They reach a consensus on the BC state
and agree on the next block to be added [59], [61].

f) Data Synchronization. Nodes collaborate to syn-
chronize their local copies of the BC, ensuring
that they have the same version of the ledger.
This involves sharing and updating the BC data
between nodes [59], [61].

4) Node Collaboration Type (BC-based FL). It defines
three types in a BC-based FL solution [33], [44], [61]:

a) Consensus-Based Collaboration. Nodes in the
BC network collaborate to reach a consensus on
the validity and ordering of federated learning
updates. Through consensus algorithms such as
Proof-of-Work (PoW) or Proof-of-Stake (PoS),
nodes collectively validate and agree on the
updates contributed by participating devices or
entities. This collaboration ensures the integrity
and consistency of the FL process [44].

b) Aggregation-Based Collaboration. Nodes collab-
orate to perform aggregation of local model
updates contributed by participating devices.
Each node receives the individual model updates,
aggregates them using specific aggregation algo-
rithms (e.g., FedAvg), and generates a new global
model. The collaboration among nodes enables
the merging of knowledge from different devices
while preserving data privacy [44], [59], [65].

These node collaboration types are crucial for the success-
ful operation of BC network-based FL. They enable secure,
decentralized coordination among nodes, ensure trustworthy
updates and model aggregation, and provide a framework for
collective decision-making and governance.
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The following extraction criteria outline the main Feder-
ated Learning features to be considered when reviewing the
primary studies. The features are established based on the
layered architecture, starting from the global model layer
to the data layer (The application and physical layers were
previously analyzed) (see Figure 10).
EC14. FL Global Model: It describes the Global Model

layer characteristics by the sub-criteria shown in Figure 10.

1) Federated Optimization Schemes. In FL, they aim to
minimize the global loss function (i.e., the overall
performancemeasure used to evaluate the accuracy and
quality of the global model) [17]. Two types exist:

a) Single Task. In this case, the global federated
learning model is trained only for a single task
(e.g., FedAvg, FedProx, and q-FedAvg) [17].

b) Multi task. In this case, it involves the training
of multiple models for different tasks (e.g.,
Federated Multitask Learning (FML)) [17].

2) FL Algorithms. They enable devices to collaboratively
train a shared global model without sharing raw
data. Local models’ updates are aggregated iteratively,
preserving privacy and decentralizing data. Within the
realm of FL, various algorithmic approaches have been
developed, each tailored to address distinct objectives
and challenges. These include Auditable FL (AFL),
Communication-Efficient FL (CEFL), Clustered FL
(CFL), Chain FL (CFL-Chain), Fine-Grained FL
(FGFL), Incentive-aware FL (IFL), Reliability-aware
FL (RAFL), Reward FL (RFL), Reputation-Aware FL
(RFL), and others [24], [39] (see Figure 10).

EC15. FL Incentive Layer: This category contains the
incentive mechanisms employed within the FL domain.
These mechanisms serve as strategies or tools intended to
incentivize and reward participants, including nodes/miners
and end devices, within an FL network. These incentives
aim to encourage their active engagement in the learning
process and the sharing of updates from their local models
while upholding data privacy and security [17], [23]. Some
of the incentive mechanisms include (see Figure 10): Auc-
tions, Blockchains, Contact theory, Reinforcement Learning,
Game-theoretic,Matching theory, Shapely value, Stackelberg
Game [17], [20], [23], and others.
EC16. FL Aggregation: Aggregation is the merging of

local model updates from multiple devices to create a global
model while preserving data privacy [10], [36]. This criterion
helps in identifying important FL aggregation facts (see
Figure 10).

1) FL Aggregator Type (For FL-FC/IoT applications).An
aggregator is the device that performs the aggregation
process which consists of initiating, combining local
model updates, and constructing new global models.
The aggregator types include Cloud Servers, Data
Centers, Data Servers, Data Workers, FL Servers,
Security Gateway, and Others [10].

2) FL Aggregation Time. The FL methods are categorized
into three synchronization schemes based on when
global model aggregation occurs [23] (see Figure 10).

a) Synchronous. This scheme entails simultaneous
training of all active devices, resulting in idle
time for high computational devices and slow
convergence due to the slowest device [23].

b) Asynchronous. It allows devices to update the
global model separately, improving convergence
but taking more communication resources [23].

c) Semi-Synchronous. This aggregation time strikes
a balance between synchronous and asyn-
chronous processes, enabling local training until
synchronization points. It cuts communication
costs and optimizes resource utilization, enhanc-
ing model convergence, especially for devices
with diverse computational capabilities [23].

3) FL Aggregation Algorithms. An aggregation algorithm
combines outcomes from training individual models
on clients’ devices with their data, updating the global
model. Algorithms include (see Figure 10) Fed AVG,
FedProx, FedMA, and others [10], [17], [20], [36],
[42].

4) FL Aggregation Approaches. As known, the aggrega-
tion algorithms in FL are crucial for updating global
models. Various approaches are used based on goals
like privacy protection, convergence rate improvement,
and fraud prevention. Each has pros and cons, and some
suit specific contexts better [36] (see Figure 10).

a) Adversarial. It identifies and mitigates the impact
of malicious clients or outlier model updates [36].

b) Average. It averages the client updates [36].
c) Bayesian. It is employed for aggregating model

updates while considering uncertainty [36].
d) Differential Privacy Average. Introduce random

noise to the model updates before aggregation to
guarantee privacy [36].

e) Ensemble Based.Merge model updates from var-
ious models trained on diverse data subsets [36].

f) Hierarchical. It performs the aggregation process
at different levels of a hierarchical structure [36].

g) Momentum. It incorporates a momentum factor
into the model updates before aggregation to
enhance the speed of convergence [36].

h) Personalized. Takes clients’ unique characteris-
tics into account [36].

i) Quantization. Decrease the bit representation of
model updates before sending them [36].

j) Secure. It ensures privacy with techniques like
homomorphic encryption or secure multi-party
computation, safeguarding data during computa-
tion and transmission [36].

k) Stochastic. Solutions in this category utilize
randomness or probabilistic methods during the
model update aggregation process. It aims to
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FIGURE 10. Federated learning features (EC14-EC18).

enhance privacy, improve convergence, and mit-
igate malicious or outlier model updates influ-
ence [39].

l) Weighted. Assign weights to clients’ contri-
butions based on their performance or other
criteria [36].

5) FL Operation modes based on global aggregation
fashion. The global aggregation fashion refers to how
local learning models from several devices or servers
are combined to create a global model in FL [17]. Thus,

based on the mentioned information, the FL operation
modes are (see Figure 10):

a) Centralized aggregation-enabled FL. The aggre-
gations take place at distributed servers without
using a centralized aggregation [17], [20].

b) Distributed aggregation-enabled FL. The aggre-
gation occurs at distributed servers without rely-
ing on a central aggregation point. End devices or
servers share their model updates with each other.
The aggregations perform distributedly [17].
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c) Hierarchical FL. In hierarchical FL, the local
learning models are aggregated at edge servers
before global aggregation at the cloud [17].

d) Collaborative FL. The devices with limited com-
munication resources send their models to nearby
devices with better resources, and the aggregated
models are sent to a centralized server [17], [20].

e) Dispersed FL. It is a novel approach where
sub-global FL models are computed within dif-
ferent groups, then transferred between groups,
and finally aggregated iteratively until a desirable
global FL accuracy is achieved [17].

6) FL Learning Style. Before the aggregation process, the
models are trained following a specific learning style.
It refers to the approach or methodology used by an
algorithm or model to process and learn from data.
It defines how the model generalizes from the provided
data to make predictions or decisions on new, unseen
data [36]. These styles include:
a) Supervised. Use labeled data to train a model,

where input-output pairs are provided, allowing
the model to learn to make predictions or
classifications on new data [36].

b) Unsupervised. Deal with unlabeled data, finding
patterns or structures within it, without explicit
target outputs, often used for clustering or dimen-
sionality reduction [36].

c) Semi-supervised. Combine labeled and unla-
beled data, leveraging the unlabeled data to
enhance model performance with limited labeled
data [36].

d) Reinforcement. Involve an agent interacting with
an environment, learning from feedback in the
form of rewards or penalties to make optimal
decisions and actions to reach a specific goal [36].

EC17. FL Network. This extraction criterion classifies the
network features in FL. While the criteria discussed in EC6
and EC13 have described important network characteristics
of FC and BC, there is one remaining feature that is crucial
in the FL domain and in the integration of these three
technologies which is the number of participants in the
network.

1) Network Type (FL Scale). Since FL can occur in a range
of types [23], [41]. This extraction criterion defines
the scales of FL networks regarding the number of
participants (See Figure 10):
a) Cross-device. It involves a large number of

client devices, like IoT devices and smartphones,
with limited data size and intermittent network
connectivity. The challenge is to effectively
utilize contributions from diverse devices to
collaboratively train a global model [23], [41],
[42], [66].

b) Cross-silo. It involves a small number of clients
(tens to hundreds), like data centers or organi-

zations, working together with large data sets,
reliable connectivity, and powerful computing
resources. The security and performance of the
FL system depend on the network type and other
complex criteria related to ML objectives and
privacy constraints [23], [41], [42], [66].

EC18. FL Data: It classifies some of the considerations in
the data layer within the FL domain (See Figure 10).

1) FL Data Management. The data layer in FL involves
various features regarding data that are essential
for the FL system functionality, including key data
management aspects (see Figure 10).

a) Data Distribution. The data layer deals with how
data is distributed across multiple devices, clients,
or nodes participating in the FL process. Data
can be heterogeneous, non-IID, and may have
different features at each device [10], [36], [39].

b) Data Privacy. Privacy preservation is crucial in
FL, as data is kept decentralized and sensitive
information remains on individual devices. Tech-
niques like differential privacy and encryption are
employed to protect data privacy during the FL
process [10], [23], [26], [41], [52].

c) Data Aggregation. The data layer manages how
local model updates from different devices are
aggregated to create a global model. Aggregation
methods need to be efficient and secure while
considering communication resources [10], [36].

d) Data Synchronization. FL systems need to han-
dle the synchronization of data updates across
devices with intermittent connectivity. The data
layer ensures timely and reliable synchronization
of local model updates [23].

e) Data Partitioning. Data partitioning involves
dividing data across devices or clients for train-
ing local models. Different partitioning strate-
gies (vertical, horizontal, transfer learning) are
employed based on the data distribution and
learning objectives [10], [12], [20], [42], [66].

f) Data Availability. The data layer addresses issues
related to data availability, as some devices
may be offline or inaccessible at times. Data
availability mechanisms must ensure that devices
can effectively contribute to the FL process.

g) Data Heterogeneity FL systems often deal with
data heterogeneity, where devices have different
data formats, types, and distributions. The data
layer manages these variations to create a coher-
ent global model [12], [17], [23].

h) Data Bias. The data layer handles data bias,
ensuring that biased data from specific devices
does not negatively impact the global model’s
performance. Techniques to address bias and
fairness are incorporated [36].
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2) Type of FL infrastructure based on data partitioning.
The FL is used in scenarios where data is distributed
across multiple devices with different variants of
clients, usage data, and applications [20], [37], [42].
This diversity allows ML models to have better
generalization capabilities through continuous updates.
Data partitioning in FL includes (see Figure 10):
a) Vertical FL. In this case, IoT devices from

different clusters with shared data interests train
ML models collaboratively without relying on
central authority [20], [24], [42].

b) Horizontal FL.In this case, clients with similar
data features share their data for collaborative
learning [20], [24], [42].

c) Transfer Learning. In this case, pre-trained mod-
els are shared among devices to train local ML
models, providing better results compared to
training from scratch [20], [24], [42].

3) FL Data Entities. These are entities, organizations,
or businesses that generate or legally own/control the
data [12]. The classification is (See Figure 10):
a) Data producer. It is an entity, organization,

or business that generates or creates data. They
are the source of the data and have legal
ownership or control over it. They can be
individuals, companies, sensors, devices, or any
entity that generates data as part of its operations
or activities [12].

b) Data Supplier. It is an entity or organization
that supplies or provides data to others. The
term ‘‘supplier’’ is used interchangeably with
‘‘producer,’’ referring to entities that generate or
own data [12].

c) Data Vendor. It is an entity or business that sells
or trades data as a product or service. Vendors
act as intermediaries between data producers and
consumers, aggregating and offering data from
multiple sources [12].

d) Data Provider. These entities mediate between
data producers and the data ecosystem. They
collect data from various producers and offer it to
the ecosystem on behalf of the producers, making
data access more convenient for consumers [12].

The extraction criteria below outline the impact of FC-
BC-FL integration in primary studies across domains like
privacy, efficiency, security, interoperability, scalability, data
management, resource allocation, service metrics, trust,
resilience, access control, heterogeneity, and more (See
Figure 12).
EC19. Privacy. It entails the protection of sensitive data

and user information during the collaborative model training
and chaining process [11], [20], [41], [67]. This criterion
defines several categories to analyze the privacy impact in the
FC-BC-FL integration across primary studies (see Figure 11).

1) Privacy-related purposes (BC-FL).

a) Data privacy. In the BC-FL integration is
addressed through accurate data provenance and
decentralized access control mechanisms, using
spatiotemporal chaotic models and encryption for
IoT data protection [11].

b) Identification privacy. BC-based identity man-
agement systems with access control and
self-certified cryptography ensure secure authen-
tication, confidentiality, and auditability, safe-
guarding identities in IIoT data [11].

c) Location privacy. BC-enabled vehicular FC and
pseudonym systems ensure anonymous veri-
fication, secure pseudonym management, and
reliable data sharing while protecting the location
information of nodes [11], [26].

d) Privacy support. BC integration in FC enhances
privacy, reducing the need for centralized third
parties through features like Consortium BC and
TLSP, preserving data security and privacy [11].

2) Privacy Techniques. This criterion classifies the pri-
vacy techniques which are methods to safeguard
sensitive data, such as encryption, data anonymization,
access control, and secure communication, ensur-
ing confidentiality and protection from unauthorized
access [20].

a) Anonymization. This method is utilized to safe-
guard sensitive data by eliminating or encrypting
personally identifiable information (PII) from
datasets. It guarantees that individuals’ iden-
tities cannot be associated with specific data
entries, preserving privacy and confidentiality.
Anonymization finds widespread use in various
domains, such as healthcare, finance, and IoT,
to thwart unauthorized access and shield user
information from potential threats [20].

b) Differential privacy. This privacy protection tech-
nique adds controlled noise during query evalu-
ation to safeguard data. It is applied in diverse
fields, including BC-enabled IoT. For instance,
in healthcare, perturbation-based differential pri-
vacy adds noise to patient records, preventing
privacy attacks [20], [42].

c) Encryption. Encryption is a widely used pri-
vacy technique in BC-enabled IoT and other
networks. It ensures secure communication using
public key encryption and protects sensitive
data. Applications include securing vehicular
networks and wearable health devices. However,
encryption requires significant computation and
may increase communication overhead [20].

d) Mixing. This privacy technique in IoT involves
encrypted transactions sent to trusted third-
party servers, which then mix and forward
them to transmitter nodes, ensuring privacy.
To decentralize the process and protect user

68038 VOLUME 12, 2024



W. V. Solis et al.: Exploring the Synergy of FC, BC, and FL for IoT Applications: A SLR

FIGURE 11. (a) SRQ2 extraction criteria (EC19 - EC26).
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FIGURE 11. (Continued.) (b) SRQ2 extraction criteria (EC27 - EC33).

privacy, CoinShuffle techniques leverage the BC
network.

e) Smart Contract. Are programmable codes with
condition statements executed when conditions
are met. In BC-enabled smart contracts, IoT
information is stored in code and deployed when
conditions are satisfied [20].

3) Privacy Preserving FL (PPFL) schemes. The PPFL
aims to achieve a balance between data privacy and data
utility when applying privacy-preserving techniques to
FL frameworks. The goal is to enable collaborative
model training across multiple devices while protecting
the privacy of individual data owners [67]. This
extraction criterion classifies four PPFLs:

a) Anonymization-based Privacy-Preserving FL.
These methods prioritize privacy and data
utility by applying anonymization schemes like
k-anonymity to protect private data during
collaborative model training. They defend against
malicious attacks and have shown better privacy
preservation and model performance compared to
differential privacy-based FL methods [67].

b) Encryption-based Privacy-Preserving FL. These
methods employ cryptographic techniques for
privacy preservation, and these methods can be
subcategorized into homomorphic encryption-
based, secret sharing–based, and secure mul-
tiparty computation-based PPFL methods [52],
[67].

c) Hybrid Privacy-Preserving FL. These methods
strike a balance between data privacy and utility
by combining cryptographic and perturbation-
based techniques. They address computation
and communication overheads while preserving
privacy and data accuracy. Various approaches

integrate homomorphic encryption, secret shar-
ing, differential privacy, and secure multiparty
computation to ensure data privacy without
sacrificing the accuracy of FL models [67].

d) Perturbation-based Privacy-Preserving FL. This
method adds intentional noise to data for pri-
vacy while enabling collaborative model train-
ing. Noise obfuscates individual data, preserving
privacy. Four subcategories include global and
local differential privacy-based, additive, and
multiplicative perturbation-based PPFL methods.
These techniques balance data privacy and utility
in FL scenarios [67].

EC20. Efficiency. This criterion helps to analyze the
efficiency of the solutions presented in the primary studies
as a critical aspect of the FC-BC-FL integration. It refers
to the system’s ability to perform tasks with minimal
resource consumption and optimal performance. The fol-
lowing sub-criteria support the analysis of efficiency (see
Figure 11).

1) Computational Efficiency (Learning Efficiency).
Refers to how effectively the integrated system
performs model training using available computational
resources [10], [11], [39].

2) Cost Efficiency. Examines the overall expenses associ-
ated with implementing and maintaining the integrated
system compared to the benefits it provides [10], [42].

3) Energy Efficiency. Focuses on how well the system
utilizes energy resources during model training and
communication processes [11].

4) Resource Efficiency. Evaluates the utilization of
resources such as bandwidth, memory, data sharing,
and storage in the integrated system [10], [11], [26].
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5) Time Efficiency. Assesses how quickly the system can
complete tasks, enabling real-time or near-real-time
decision-making [11].

EC21. Performance: This extraction criterion helps to
analyze the performance of the solutions presented in the
primary studies. Performance in the context of FC-BC-FL
integration refers to how well the system functions and
delivers results in terms of its overall effectiveness, speed, and
accuracy [10], [11]. It encompasses several aspects related to
the system’s capabilities and achievements (see Figure 11),
including:

1) Accuracy.The correctness and reliability of themodel’s
predictions and results [11].

2) Energy. The amount of power or energy consumed
during the integration process [11].

3) Fault Tolerance. The system’s ability to maintain
functionality despite failures or errors [11].

4) Latency (Consensus Latency). The time taken to reach
a consensus in the BC network [11].

5) Precision. The level of detail and accuracy in model
training and inference [11], [39].

6) Resources.The utilization and allocation of computing,
memory, and network resources [11], [39].

EC22. Security: This extraction criterion assesses the
security-related aspects of the solutions presented in the
primary studies. Security in FC-BC-FL integration aims to
protect the system from unauthorized access, data breaches,
and malicious attacks. It guarantees data confidentiality,
integrity, and availability during collaborativemodel training,
secures the BC network and smart contracts, and prevents
data tampering and unauthorized modifications. Trusted
entities are permitted to participate in FL, ensuring controlled
access to sensitive information [11] (see Figure 11).

1) Security Concern. While traditional FC systems face
significant security vulnerabilities due to their location
between end devices and cloud data centers [54],
in the FC-BC-FL integration, security concerns aim to
protect the system from unauthorized access, ensure
data confidentiality and integrity, prevent disruptions in
availability, and safeguard sensitive information during
collaborative model training [11], [17], [54]. Existing
studies may address security concerns related to:

a) Availability. Ensuring that the system remains
accessible and functional to entitled users [11],
[17].

b) Privacy. To Implement privacy-preserving mech-
anisms to protect individual data while allowing
collaborative model training in a federated learn-
ing environment [17], [54].

c) Encryption. Applying strong encryption tech-
niques to protect data during transmission and
storage, preventing unauthorized access to sensi-
tive information [17], [54].

d) Vulnerability. Address potential weaknesses in
the embedded system to mitigate attacks that may
disrupt system functionality [11], [17], [54].

e) Fraud Detection.Detecting and preventing fraud-
ulent activities within the integrated system [11].

f) Security Support. Implementing measures to
support secure and reliable operations [11].

g) Confidentiality. Safeguarding sensitive data from
unauthorized access or disclosure [11], [42].

h) ntegrity.Ensuring the accuracy and consistency of
data and models [11], [42].

i) Robustness. Enhancing the system’s resilience to
withstand attacks, failures, or adverse conditions,
keeping its operation and security [11], [17], [54].

2) Physical Security. In the context of integrating FC, BC,
and FL, physical security entails protecting hardware
(e.g., FC, BC nodes), against tampering, theft, and
unauthorized access. Physical security encompasses
access control, secure storage, tamper-evident mecha-
nisms, electrical/electronic connections, and others.

3) Physical Security Beneficiary. In the context of pre-
senting physical security in the primary study, the
beneficiaries of security measures can be the edge
server, cloud server, end devices, miners, or none.

4) Cyber Security Beneficiary. Cybersecurity defends
against digital threats, ensuring data confidentiality,
integrity, and availability during collaborative model
training [11], [17], [23]. Since the subsequent extrac-
tion criteria analyze specific cyber-security concerns,
this extraction criterion classifies the beneficiaries of
the implemented cyber security within the solutions:

a) Network Security. Securing the communication
channels and infrastructure to prevent unautho-
rized access and data breaches.

b) Endpoint Security. Securing individual devices
and endpoints (e.g., computers, mobile devices)
to prevent malware and unauthorized access.

c) Data Security. Protecting sensitive data from
unauthorized access, modification, or theft, both
during transmission and storage.

d) Application Security. Securing software appli-
cations and systems from vulnerabilities and
exploits to prevent potential cyber-attacks.

e) Cloud Security. Securing data and cloud-hosted
applications hosted in cloud environments, to pre-
vent data breaches and unauthorized access.

5) Type of Attacks. An attack represents deliberate and
malicious actions or attempts to exploit vulnerabilities
or weaknesses in a system, network, or application.
The primary goal of attacks is to gain unauthorized
access, disrupt normal operations, steal sensitive infor-
mation, manipulate data, or cause harm to the targeted
entity [67]. Below are classified the general attack
types that could be part of FC-BC-FL integration
developments:
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a) Passive Attack.Are attempts to observe computa-
tions and data during collaborative model training
without directly altering the system [67].

b) Active Attack. Are deliberate actions to influence
the training process andmanipulatemodel param-
eters to achieve adversarial objectives [67].

6) Attacks. This criterion classifies the possible attacks
analyzed within the primary studies. The classified
attacks are common in the areas of FL and BC.

a) Background Knowledge Attack. It is a major
privacy-oriented attack originating from the
device’s local data and global model updates
received from the central authority. In FL, this
attack exploits data and global model updates to
potentially leak privacy information. Collusion
attacks, a specific form of this attack, involvemul-
tiple parties sharing knowledge, and disclosing
more sensitive information due to the freedom of
devices to join and leave FL systems [25].

b) Byzantine Attacks. These attacks disrupt FL
system model convergence. A resilience strategy
employs stochastic quantization, outlier detec-
tion, and secure model aggregation. Large-
scale FL is susceptible due to diverse, low-
powered edge devices, making prevention chal-
lenging [23], [25].

c) Poisoning Attacks.Are significant threats that aim
to manipulate training data and global models to
mislead the learning output [25]. They cover data
andmodel Poisoning attacks [18], [23], [41], [42].

d) Model Poisoning Attacks. In FL, these attacks
aim to compromise the global model directly
by manipulating its updates or learning rules,
often proving more effective than data poisoning.
These attacks employ techniques like gradient
manipulation or altering training rules to under-
mine the global model’s performance. Preventing
model poisoning in FL is challenging given the
large number of participants, requiring innovative
defense strategies for effective detection and
mitigation of sophisticated attacks [18], [23],
[41], [42].

e) Data Poisoning Attacks. In FL, these attacks
compromise the integrity of training data to
mislead the model’s performance such as label
flipping, watermarking, perturbation, and back-
door insertion, which intentionally fool the model
and reduce overall accuracy. These attacks call
for urgent solutions to protect the global model
from being poisoned by malicious participants,
requiring careful defense strategies like Fools-
Gold and model evaluation to detect and mitigate
Sybil-based data poisoning attacks [18], [23],
[41], [42].

f) Evasion Attacks. These attacks deceive the target
model with adversarial samples during predic-
tion, causing inaccurate results when the global
model is deployed on end devices [23].

g) Free-riding Attacks. Attacks where participants
benefit from the global model without actively
contributing to training. This behavior can under-
mine system fairness and efficiency, and various
approaches, including BC-based solutions, aim to
detect and mitigate such attacks [18], [23], [42].

h) Inference Attacks. In FL, these attacks aim to
extract sensitive information about participants,
training data, and labels; compromising privacy
and impacting performance. They include mem-
bership inference attacks (e.g., Confidence score-
based, label-based), data properties inference
attacks, data samples attacks, labels inference
attacks, and model inversion attacks (e.g., Class
representation) [23], [25], [41], [42], [67].

i) Distributed Denial of Service (DDoS). In
large-scale FL systems, DDoS involves thousands
of edge devices participating in the learning
task, potentially causing communication channel
over-occupation and computational resource
overload. This can lead to high latency, physical
failure of infrastructure, and denial of ser-
vice [25].

7) Type of Attackers. This criterion describes the potential
adversaries in the FC-BC-FL integration. Including:

a) Insiders. These attackers, including clients and
the central server responsible for model aggrega-
tion in FL (i.e., malicious clients and servers), can
gain access to intermediate training updates and
the final model, posing privacy and information
inference risks [42], [67].

b) Outsiders. This type of attacker are outsider who
can probe private data through the final model
or query results (e.g., consumers and eaves-
droppers). Moreover, these attackers can exploit
access to the final model, while eavesdroppers
may steal intermediate training updates, both
causing significant privacy risks [42], [67].

8) Moment of Attacks. This extraction criterion defines the
phases where the attacks occur. These moments are:

a) Training phase. In this phase, model updates are
vulnerable to privacy leakage as adversaries can
access local gradients, model weights, aggregated
updates, and the final model, with eavesdroppers
intercepting communication between participants
and the aggregator, posing additional risks [67].

b) Inference Phase. In this phase, privacy risks
primarily arise from the released final model,
enabling attacks based on model parameters
and queries. Adversaries can perform inference
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attacks to extract sensitive information about
training datasets or infer membership [67].

9) Attack Target. This extraction criterion, Attack Target,
describes the specific targets where attacks can occur,
which encompass weight updates, gradient updates,
and trained models [67].

10) Attack Reason. The attacks aim to compromise privacy
and extract valuable information about the training
data. Potential triggers for these attacks include:

a) Inferring class representative.Generate represen-
tative samples for studying training datasets [67].

b) Inferring membership.Determine if a data sample
was used for model training [42], [67].

c) Inferring properties of private training data.Gain
information about the datasets [67].

d) Inferring training input and labels. Reconstruct
the original data and labels [67].

11) Defense Methods against attacks. Defines and classi-
fies several methods that could have been considered
as methods against attacks. These include:

a) Differential Privacy (DP). These methods aim to
enhance data privacy by injecting noise into input
data, making it difficult to distinguish individual
entries with a high degree of certainty. DP safe-
guards FL model parameters against information
leakage and defends against attacks such as
backdoor attacks while maintaining privacy in
federated analysis models. DP mechanisms strike
a balance between preserving data privacy and
maintaining accuracy during FL [41], [66].

b) Sniper. A defense against distributed poisoning
attacks in FL, able to recognize legitimate users
and reduce poisoning attack success rates even
with multiple attackers [42].

c) Knowledge distillation. A model compression
technique sharing knowledge instead of model
parameters to enhance FL client data secu-
rity [42].

d) Anomaly detection.Utilizes statistical methods to
identify deviations from normal behavior in FL,
useful for detecting various attacks such as data
poisoning and trojan threats [42].

e) Moving target defense. A proactive defense
architecture that continuously changes to increase
the cost and complexity for attackers, protecting
against intrusion at different levels in FL [42].

f) Federated MultiTask Learning. Extends FL to
collaboratively train personalized but shared
models among devices, addressing communica-
tion cost and fault tolerance challenges [42].

g) Data Sanitization. Filters out suspicious data
points as an anomaly detection technique to
defend against data poisoning attacks in FL [42].

h) Foolsgold. A defense against compromised
clients in FL, efficient against Sybil-based, label
flipping, and backdoor poisoning attacks [42].

i) Prunning. A technique to minimize the size
of ML models in FL, reducing complexity
and improving accuracy to address communi-
cation and computation limitations on client
devices [42].

j) Homomorphic encryption (HE). This method
enables mathematical operations on encrypted
data without decryption. The output remains
encrypted and decrypting it yields the result of the
operations on the plaintext [66].

k) Outlier Detection. This method is a defense
strategy that aims to identify and deny malicious
influence. Approaches such as ‘‘reject on negative
impact’’ measure test error and reject updates that
don’t improve the global model; or the TRIM
method removes outliers with high residuals to
minimize global objective loss, proving effective
against various poisoning attacks [41].

l) Robust Aggregation. It involves combining model
updates from multiple participants while address-
ing challenges like noisy or malicious data,
network instabilities, and attacks. The goal is to
maintain accuracy and reliability by mitigating
outliers and adversarial behaviors, ensuring the
collaborative learning process integrity [41].

m) Secure Multi-Party Computation (MPC). It is a
cryptographic protocol enabling users to perform
computations with private inputs. Data owners
send encrypted data to servers for model training
or analysis [42], [66].

n) Secure Aggregation (SecAgg) protocol. This
method uses secure MPC, allowing untrusted
parties to evaluate functions on hidden inputs.
Trusted execution environments (e.g., Intel SGX)
are used to protect computations within secure
enclaves. SecAgg protocol uses MPC and
involves data owners performing local training
and sending encrypted model weights to the
aggregator for gradient aggregation. [41], [66].

o) The trusted execution environment (TEE). These
are trustable computational environments that
ensure the code and data security within them.
It can enhance the central server credibility [42],
[66].

EC23. Interoperability (Standards): Standards are founda-
tional documents that offer guidance across various domains,
ensuring optimal performance and simplifying the use of
information technology. They provide precise specifications
for system interactions, like network protocols, and concep-
tual blueprints for software development, such as software
architecture. Adhering to standards enhances interoperability,
security, and efficiency, promoting seamless information
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exchange and technology adoption based on common
formats and criteria [68]. This criterion assesses whether
primary studies integrate standardization in their FC-BC-
FL integration. Subcategories encompass prominent standard
organizations: ISO Standards provide international guide-
lines for optimal performance in defined scopes [69]. IEEE
Standards ensure consistency and interoperability in various
technology fields [10]. NIST Standards offer guidance in
cybersecurity, technology, and measurement [70]. Consider
Domain Specific Languages (DSL), is relevant due to their
specialization for specific application domains, streamlining
tasks, and improving efficiency, although achieving broader
interoperability often requires standardization [71]. Addi-
tional standards and guidelines are included in Others (see
Figure 11).
EC24. Scalability: When integrating FC-BC-FL, scala-

bility issues arise due to the different mechanisms in each
technology. For instance, some solutions have limitations in
scalability and power requirements, while others sacrifice
security, privacy, or decentralization [11]. This extraction
criterion helps in identifying key scalability parameters that
could have been addressed in the primary studies to improve
the scalability of these integrated systems (see Figure 11):

1) Scalability Support. It refers to implementing architec-
tures and techniques to address scalability challenges
arising from diverse mechanisms in each technology.
This involves designing systems to efficiently man-
age numerous devices and transactions, improving
real-world performance (e.g., via smart contracts,
secure data management platforms, integrated frame-
works, distributed SDN controllers, and scalable public
BC with two-chain structures) [11].

2) Mobility. It refers to the ability to transfer data and
perform tasks efficiently and securely across mobile
and distributed devices [11].

3) Regulations/Standards. It refers to the use of BC and
SCs to establish transparent rules for transactions and
IoT devices, ensuring compliance and secure resource
management [11]. It also involves setting guidelines
and policies to govern the sharing and privacy of data
among participating devices or clients in FL to ensure
compliance with legal and ethical requirements.

EC25. Data Management: FC-BC-FL integration leads
to data management issues arising due to the differences
in the mechanisms of handling data, as well as the hetero-
geneity and distributed nature of IoT devices/nodes in each
technology [54]. This criterion helps in identifying key data
management parameters that could have been addressed in
the primary studies to improve these integrated systems.

1) Storage. In the FC-BC-FL integration, storage refers
to the management of data from IoT devices. Tran-
sitory fog storage allows fast data model updates.
Besides, various protocols and techniques, including
BC capability, regeneration coding, and encryption,
ensure secure and efficient data storage [54].

2) Sharing. It involves securely and efficiently sharing
data among participants, ensuring trust, and main-
taining integrity through methods such as consensus
and encryption. Techniques like storing hash values in
blockchain and cross-chain sharing ensure reliable data
exchange in diverse IoT/FC systems [50], [54].

3) Validation. It ensures data accuracy, integrity, and
authenticity before storage or access. Techniques like
digital signatures, smart contracts, and timestamping
on the BC ledger ensure secure validation in the
FL process, maintaining data integrity across entities.
These mechanisms preserve privacy, security, and
performance in the BC-FC integration [52], [54].

EC26. Resource Allocation / Service ProvisioningMetrics:
Resource allocation and service provisioning metrics in FC-
BC-FL integration are performance indicators used to assess
the efficient utilization of resources for executing tasks (e.g.,
FL tasks) [11]. They ensure sufficient resource allocation,
optimize system performance, and leverage the combined
capabilities of BC, FC, and FL technologies. This extraction
criterion categorizes various resource allocation and service
provisioning metrics that could have been addressed in the
primary studies, considering several domains:

1) Time. Time is a key metric for resource allocation and
service provisioning in FC-BC-FL integration, measur-
ing task efficiency, response times, and system perfor-
mance. It evaluates the timely allocation of resources to
meet application and service demands [54]. There are
sub-criteria to consider:

a) Communication. It indicates the time for
exchanging model updates or data elements
between the central server and clients or
between FC/Mining nodes, impacting training
efficiency, communication overhead, and node
selection [54].

b) Computation.Measures task execution efficiency,
helping in resource and power management [54].

c) Deadline. Set the maximum service delivery
delay, and detail latency-sensitive applica-
tions [54].
Below, are described some BC-FL Time metrics.

d) Training Time. It is the time taken to train
the ML models in the FL process. This metric
indicates the efficiency of the training process
across multiple clients or nodes in a federated
environment.

e) Consensus Time. In BC-based systems, the time
required to reach consensus on new transactions
or blocks. This metric affects the speed and
scalability of the BC network.

f) Block Time. The time interval between the cre-
ation of consecutive blocks in a BC. This metric
determines the speed at which new transactions
are added to the BC.
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g) Transaction Time. The time taken to process and
validate a single transaction in the BC network.
This metric influences the responsiveness and
efficiency of the BC system.

h) Confirmation Time. In BC networks using con-
sensus mechanisms (e.g., PoW), the confirmation
time for new block validity impacts transaction
security and finality.

2) Data. The metrics concerning data are:

a) Data Flow. It defines data transmission pat-
terns (event-driven or real-time) and influences
resource allocation and service provisioning [54].

b) Data Size. The volume of data processed through
BC, FC, or FL, that impacts resource provisioning
and computational space requirements [54].
Below, are described some BC-FL Data metrics.

c) Data Distribution. Describes the distribution
of data across participating clients, which can
impact the model’s performance and conver-
gence.

d) Data Privacy. Measures the level of privacy
protection during data sharing and model updates
to ensure compliancewith privacy regulations and
prevent data leakage.

e) Data Heterogeneity. Evaluates the diversity and
variation of data among clients, affecting the
generalization and robustness of the FL model.

f) Data Immutability. Refers to the property of data
being tamper-resistant once recorded on the BC,
ensuring the integrity and trustworthiness of data.

g) Data Transparency. Measures the degree of
visibility and accessibility of data stored on the
BC to promote accountability and auditability.

h) Data Storage Efficiency. Evaluates the efficiency
of storing data on the BC, considering factors like
data size, storage cost, and scalability to optimize
resource utilization.

3) Cost. The metrics about cost-impacting resource and
service provisioning in the FC-BC-FL integration are:

a) NetworkingCost. It includes bandwidth expenses,
uploading, and inter-nodal data sharing costs [54].

b) Deployment Cost. Refers to infrastructure place-
ment expenses, considering Fog/Mining node
positioning and virtual computing instances [54].

c) Execution Cost. It refers to the computational
expenses of Fog/Mining nodes while processing
tasks, calculated based on task completion time
and resource usage cost [54].
Below, are considered some BC-FL Cost metrics.

d) Communication Cost. The expenses incurred in
transmitting model updates or gradients between
the central server and individual clients during the
FL process [42].

e) Computation Cost. The computational expenses
involved in training and updating the models on
the client devices during the FL process [42].

f) Transaction Fee. The cost paid by users for
each transaction executed on the BC network or
FL training. This fee is essential to incentivize
miners or validators to include the transaction in
a block and secure the network (i.e., FL or BC
Incentives).

4) Context. It refers to the situation or condition of entities
in various circumstances. They include:

a) User Context. It comprises features, usage his-
tory, and feedback, impacting resource alloca-
tion [54].

b) Application Context. Enfolds operational require-
ments like processing and networking needs [54].

5) Energy Consumption. It is a crucial concern in FC-BC-
FL integration. Studies prioritize energy-related issues
for FC-BC-FL resources and services provisioning,
optimizing consumption, and considering end devices’
energy constraints [54].

EC27. Service Level Objectives (SLOs): An SLO is a
measurable performance goal set to ensure the quality and
reliability of a service. It represents the desired level of
service performance and is used to monitor and maintain
service quality. Meeting SLOs is essential for delivering a
satisfactory user experience [54]. The SLOs include (see
Figure 11).

1) Latency management. To optimize communication
between FC nodes, BC ledger, and FL clients, mini-
mizing service delivery time and achieving low latency
while meeting QoS requirements [54].

2) Cost management. It is to strategically deploy
Fog nodes and utilize cost-effective FC-BC-FL
infrastructure configurations to minimize costs in
Fog nodes/miners for resource hosting, ensuring
cost-efficient provisioning of resources and ser-
vices [54].

3) Network management. Enabling flexible, virtualized
network structures to ensure seamless connectivity
among FNs, BC miners, and FL clients. Designing
an architecture for efficient resource discovery and
communication across FC-BC-FL environments, par-
ticularly catering to the highly distributed IoT devices.
This entails defining SLOs targeting Congestion,
Virtualization, and Connectivity [54].

4) Computation management. It entails SLOs oriented to:

a) Resource estimation. Optimizing resource allo-
cation in FC-BC-FL integration is vital, consid-
ering user characteristics, Quality of Experience
(QoE), and device features. This ensures efficient
resource allocation for FL tasks, maintaining the
desired Quality of Service (QoS) and accurately
determining service prices [54].
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b) Workload allocation. It focuses on optimizing
resource utilization, minimizing idle periods,
and ensuring balanced load distribution among
various components. Effective workload allo-
cation involves distributing computational tasks
efficiently among Fog nodes, clients, and the BC
network. Scheduling-based policies play a key
role in achieving these objectives and improving
the overall QoE in the system [54].

c) Coordination. Efficient Fog resource coordina-
tion is vital for FL. Using a directed graph-based
model optimizes communication and computa-
tion, ensuring effective resource use across Fog
nodes and federated entities [54].

5) Application management. It entails SLOs oriented to:
a) Programming platform. Platforms using simpli-

fied programming models for large-scale appli-
cations in Fog computing. A distributed data
flow platform facilitates application develop-
ment. In FC-BC-FL integration, an efficient and
compatible programming platform is vital [54].

b) Scaling. Are scalable techniques to optimize
resource utilization and enhance QoE for BC
mining and FL tasks [54].

c) Offloading. It distributes tasks efficiently among
federated entities, considering resource availabil-
ity and improving FL performance [54].

6) Data management. It includes data management, such
as data analytics, resource allocation, and low-latency
data aggregation, in the SLOs of the studies.

7) Power management. It has power consumption consid-
erations (e.g., miner node energy, cloud energy) as part
of the SLOs in the studies [54].

EC28. Trust: Represent trust connections between nodes,
enabling entities to trust each other for specific activities. Its
primary functions are to establish an entity’s trustworthiness
for others and assess the trustworthiness of other entities.
However, trust management can be energy-intensive, which
poses challenges for resource-constrained IoT devices [11].
It outlines sub-criteria related to trust (see Figure 11).
1) Trust support. Mechanisms enabling secure interac-

tions and cooperation among entities in FC-BC-FL
integration [11].

2) QoS. It is the level of performance and reliability in FC-
BC-FL operations [11].

3) Transparency. Are visible decision-making processes
and data-handling practices for trust-building [11].

4) Reliability It is the Consistency and dependability of
accurate results in the integrated system [11].

5) Reputation. It is the Assessment of entity trustworthi-
ness based on past behaviors in FC-BC-FL [11].

6) Payment. It is the fair and secure handling of financial
transactions and incentives among participants [11].

EC29. Resilience (Proper of BC): It refers to the capacity
to withstand and recover from challenges and disruptions,

adapting and maintaining functionality in adverse situations.
It involves proactive planning and the ability to bounce back
quickly after setbacks [34]. This extraction criterion classifies
a resilience-related sub-criterion in BC (see Figure 11):

1) Forking
a) Soft Forks. Backwards-compatible changes to a

BC implementation, allowing non-updated nodes
to still transact with updated nodes [34].

b) Hard Forks. Non-backwards-compatible changes
to a blockchain implementation require all nodes
to switch to the updated protocol, resulting in the
creation of two independent BC versions [34].

EC30. Access Control: This extraction criterion aids
in the analysis of access control, involving the use of
countermeasures and tactics to secure access to data [11]. The
following sub-criteria assist in addressing this criterion (see
Figure 11):
1) Authorization. It ensures access for authenticated users,

using BC to enable distributed processes among fog
nodes. It enhances data sharing, integrity, and security,
mitigating centralized storage concerns, and improves
privacy for IoT devices through SCs [11], [26].

2) KeyManagement. It involves cryptographic procedures
to protect data, requiring encryption and access control.
BC-based schemes manage secure keys, enable mutual
authentication, and provide efficient key management
for secure group channels in Fog-based IoT systems.
BC is utilized to ensure data integrity, and message
security, and detect malicious nodes in decentralized
key management frameworks [11].

3) Authentication. It ensures user identity verification and
prevents fraudulent communications. Integrated BC
security models provide privacy and authentication,
enhancing security and privacy for distributed vehic-
ular fog services and smart vehicle systems in FC [11].

EC31. Heterogeneity: Refers to the diverse elements or
entities within a system. In integrating FC-BC-FL, managing
diverse environments requires seamless interactions and
interoperability. This criterion includes sub-criteria such as
data format, device, protocol, and network heterogeneity.
EC32. Model (Local / Global): The models are critical

elements within FC-BC-FL integration; therefore, they
require precision and security to ensure success [39]. This
extraction criterion categorizes two important features that
could have been addressed in the primary studies to guarantee
the effectiveness of the models (see Figure 11). These are:

1) Model Precision. It is the accuracy and correctness of
locally trained models on FNs ensure they faithfully
represent their datasets. In global FL, this extends to the
accuracy of the aggregated global model, encapsulating
the collective knowledge of all local models [17], [20].

2) Model Verification. It assures the authenticity and
security of FL models. BC verifies model integrity by
storing cryptographic hashes, ensuring reliability and
detecting tampering or malicious activities [20], [39].
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FIGURE 12. SRQ3 extraction criteria (EC34 - EC38).

EC33. Other Considerations: This extraction criterion
categorizes additional aspects that could have been evaluated
in the primary studies regarding the integration of BC, FC,
and FL to enhance IoT applications (see Figure 11):

1) Economical Considerations. Entails assessing the
financial aspects and cost implications of integrat-
ing these technologies, analyzing expenses, cost-
effectiveness, and Return on Investment (ROI), and
optimizing resource allocation for maximal benefits.

2) User Acceptance. Assesses stakeholders’ preparedness
for the integrated system, addressing user expectations,
handling resistance to change, ensuring user-friendly
interfaces, and collecting feedback for enhancements.

3) Environmental Impacts. Evaluate the integration’s
environmental impact from energy use, carbon foot-
print, and resource consumption, while backing sus-
tainability via energy-efficient and eco-friendly meth-
ods.

The upcoming criteria (Figure 12) align with SRQ3, aiding
in characterizing research phases, validations, relevance, and
key aspects, directly extracted from primary studies.
EC34. Phases: In traditional computer science, the stan-

dard life cycle includes key phases like analysis, design,
implementation, and testing. In an FC-BC-FL integration
project, these phases are used as reference points to assess
the project’s progress. During the review, primary studies
are categorized by the specific phase they address, such as
Analysis, Design, Implementation, or Testing (see Figure 12).

EC35. Type of Validation:Assessing research quality is
vital across various scientific fields and study levels [72].
This criterion classifies the validation methods that primary
studies may utilize to evaluate their solutions [73] (see
Figure 12).

1) Experiment. Involves strict control and randomization
of variables to establish causality.

2) Quasi-Experiment. Utilizes controlled variables for
causality when full control is not feasible.

3) Prototyping. Creates an initial product version for
design and functionality testing.

4) Study Case. Analyzes a specific case deeply to
understand a phenomenon or problem.

5) Surveys. Collects data through structured questions to
gauge trends or opinions.

6) Proof of Concept.Demonstrates idea feasibility, even if
it is small or incomplete.

7) Other. Another type of validation.

EC36. Experiment Features (Simulation Configurations,
Tools): This extraction criterion outlines experiment details
in primary studies, including (see Figure 12):

1) Type of Scenario. Real or Simulation.
2) Simulation Tools. The tools include FISCO Blockchain

system, Python (PyTorch), MatLab, among others.
3) Dataset Type. There are classified utilized datasets to

perform experiments [39] (e.g., FEMNIST).
4) Data Type. Types of data used in experiments, includ-

ing images, time series, text, and more.
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FIGURE 13. Selection of the primary studies for performing the SLR.

5) Number of clients. Ranging from 0-10, 10-20, to 20-*
in real or simulated scenarios.’’

EC37. Relevance of the Study: It classifies the study
relevance into two categories: Conference Rank (i.e., A*,
A, B, Other) or Journal Rank (i.e., Q1, Q2, Q3, Q4) (see
Figure 12).
EC38. Study General Information: Defines essential

publication details for primary studies (see Figure 12).
1) Approach scope. Specifies whether the study was

conducted or supported in academia or industry.
2) Status of the study. The study is new, or an extension.
3) Year of Publication. Starting from the milestone of the

FL emergence. The years of publication are categorized
into two groups: 2016 – 2019, and 2019 – 2023.

4) Country. Specifies the country where the study was
conducted (not where it was published).

B. CONDUCTING THE REVIEW
The process for selecting primary studies is illustrated in
Figure 13. Initially, 153 papers were retrieved through
automatic search following the planning stage and search
guidelines. Subsequently, the inclusion/exclusion criteria
stated in the quality assessment were applied, resulting in
the selection of 32 papers. Additionally, 8 papers were added
through a manual search in specialized conferences and
journals. Thus, 40 primary studies were selected for the SLR
(see Table 4).

IV. REPORTING THE SLR RESULTS
This section presents SLR results. The reporting is segmented
into two parts: first, results per extraction criterion; second,
findings concerning age and year of publication.

TABLE 4. Selected primary studies addressing FC-BC-FL integration.
Paper ID refers to an assigned identifier of the paper for further analysis.

A. RESULTS PER EXTRACTION CRITERION
The results for each extraction criterion are presented and
discussed in this sub-section. These findings are presented in
percentages, corresponding to the number of studies out of
40 that cover or consider these criteria while integrating FC-
BC-FL, grouped by sub-research question (i.e., SRQ1, SRQ2,
SRQ3). All results with values greater than 0 are considered;
however, those below this threshold have been excluded.

1) SRQ1 RESULTS
Figure 14 (a) and Figure 14 (b) display the outcomes of
SRQ1, all of the selected studies focus on BC and FL
technologies (100%). Additionally, 75% of these studies
delve into the edge, while 50% explore research including FC.
In this context, the primary motivations driving this integra-
tion encompass enhanced data privacy (highlighted in 93%
of the studies) and improved data synchronization (68%). FL,
identified in all studies, plays a pivotal role in model aggre-
gation (100%) within a decentralized architecture (70%)
distributed across multiple layers such as Device (88%), Data
(93%), and Network (90%). Notably, the architecture design
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FIGURE 14. (a) Results per extraction criterion, SRQ1 (EC1-EC7).
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FIGURE 14. (Continued.) (b) Results per extraction criterion, SRQ1 (EC8-EC18).

predominantly leans towards layered (68%) and microser-
vices (53%) patterns. The technical dimensions echo a trend
favoring hybrid integration schemes (58%) and a consortium-
based BC-FL network infrastructure (45%), showcasing a
balance between different approaches for system design.
EC3 shows insights into frameworks supporting FC-BC-FL
convergence, and it reveals a general presence of Formal
Models in major IoT players like AWS, Azure, TFF, and
others (e.g., IHS [104]). In BC Ethereum and Hyperledger
reign supreme, while others (e.g., Algorand [76], [81],
[92], AFFIRM [82], Solidity [96]) also hold a presence.
In FL, Google TFF is the most popular. Integrated BC-FL
frameworks present overall formal models, besides the use of
others (i.e., Fedtrust [81], AFFIRM [82]), frameworks like
Blade-FL and VBFL are underrepresented, suggesting the
need for further exploration. Applications span diverse sec-
tors, prominently healthcare (35%), industrial management
(30%), smart cities (30%), and others (i.e., smart grid [81],
disaster response [84], BC reliability prediction [86], Internet

of Battle Things (IoBT) [94], Internet of Drone Things
(IoDT) [101], Agriculture [96], MEC [99], Society [103],
Gamming [107], Industry 5.0 [112]) (43%) indicating the
versatility and potential impact of this integration. Within
Cloud Features (EC5), a hybrid cloud deployment model
(48%) and container-based cloud server design (43%) stand
out, emphasizing flexibility and scalability. Fog (Edge) Node
Features (EC6) spotlight hardware-centric designs (70%) and
diverse node types, with gateways (40%) and Fog Computing
Nodes (FCN) (83%) dominating. The Client (End-Devices)
Features (EC7) underscore the prevalent usage of IoT
devices/gateways (68%) and the significance of wireless
connections (100%) in this ecosystem. Blockchain-related
dimensions elucidate a strong inclination towards smart
contracts (93%), permissioned networks (70%), and consen-
sus algorithms such as PoW (38%). Federated Learning’s
global model (EC14) primarily revolves around single-task
federated optimization schemes (80%) and an array of
federated learning algorithms (83%). FLAggregation (EC16)
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strategies lean towards average-based approaches (73%) in
a distributed aggregation-enabled FL (73%) environment,
showcasing collaborative learning paradigms. Furthermore,
FL Data Management (EC18) accentuates the importance of
data privacy (93%) and distribution (75%) within federated
learning setups. The synthesis of these findings delineates
a landscape where the integration of FL, BC, and FC
for IoT applications thrives on decentralized, collabora-
tive, and privacy-centric approaches, spanning multifaceted
domains and demanding versatile technical infrastructures to
materialize their potential. This detailed exploration reveals
the interconnected nature of FL, BC, and FC in driving
IoT applications toward enhanced security, privacy, and
decentralized operation.

The FC-BC-FL convergence serves as a catalyst for inno-
vative solutions across various domains, prominently health-
care, industrial management, and smart cities. The robust
architecture primarily follows a layered and microservices
pattern, accommodating the complexities of this integration.
Notably, the emphasis on hybrid integration schemes and
consortium-based network infrastructures reflects the pursuit
of balanced system design strategies. Cloud deployment and
Fog (Edge) Node designs exhibit flexibility and scalability,
essential for accommodating diverse IoT environments. The
prevalence of wireless connections and the utilization of
IoT devices/gateways underscore the omnipresence of edge
devices in this ecosystem. Within the BC realm, smart
contracts, permissioned networks, and consensus algorithms
like PoW emerge as pivotal components. FL, on the other
hand, emphasizes collaborative learning paradigms through
diverse optimization schemes and algorithms.Moreover, FL’s
focus on data privacy and distribution within its management
echoes the criticality of secure and synchronized data
handling. Overall, this synthesis delineates a landscape
wherein the FC-BC-FL integration for IoT thrives on
decentralized, collaborative, and privacy-centric approaches,
demanding multifaceted technical infrastructures to harness
their full potential.

2) SRQ2 RESULTS
Figure 15 showcases the results concerning SRQ2 (EC19-
EC33). Notably, within the realm of security, the findings
underscored the significance of encryption techniques (93%)
in BC, along with encryption-based privacy-preserving
FL (70%) and privacy-preserving schemes (FL) (70%).
Additionally, the analysis emphasized the prevalence of
security concerns related to availability (53%), confidential-
ity (88%), and integrity (90%). Efficiency, another pivotal
facet, demonstrated computational efficiency (95%) as a
predominant factor, albeit with lesser emphasis on cost
efficiency (10%). Performance indicators showed promising
trends in terms of accuracy (90%) but also flagged concerns
regarding energy (40%) and latency (58%). Moreover,
interoperability and data management surfaced as critical
domains, with storage (93%), data sharing (93%), and
validation (98%) ranking significantly. Noteworthy within

resource allocation/service provisioning metrics were aspects
like training time (78%) and data flow (80%), signifying their
importance in optimizing FC. The SLR further highlighted
the prominence of trust support (85%), authorization (98%),
and key management (85%) within the trust and access
control domains, crucial for securing IoT applications.
Overall, the findings converge on the potential of BC
and FL amalgamation in FC to substantially fortify IoT
applications, particularly by addressing security concerns,
enhancing privacy, optimizing efficiency, ensuring interop-
erability, managing data effectively, and fortifying trust and
access control mechanisms. Besides, from the results can
be mentioned that the strengths in privacy preservation,
efficiency optimization, and security fortification. Notably,
the research emphasizes robust privacy measures, efficient
resource utilization, and a strong security focus, showcasing
the potential of this integration to fortify IoT ecosystems
against data breaches and vulnerabilities. Insights into
attack types and defense mechanisms further contribute
to foundational strategies for proactive security measures.
However, the research landscape reveals notable weaknesses,
including limited real-world implementations, challenges in
standardization and interoperability, incomplete exploration
of evolving attack vectors, and insufficient scrutiny of
scalability and cost implications. Bridging these gaps requires
concerted efforts toward practical deployments, standardized
protocols, comprehensive security considerations, and a
deeper understanding of scalability and cost-effectiveness
to fully harness the transformative potential of FC-BC-FL
integration within IoT domains.

3) SRQ3 RESULTS
Figure 16 illustrates the outcomes related to SRQ3 (EC34-
EC38). The analysis reveals a predominant emphasis on the
stages of Analysis (93%), Design (95%), and Implementation
(98%), indicating a mature developmental process compared
to Testing (85%). Primary validation methods include
experiments (63%) and proof of concepts (28%), indicating
a preference for empirical verification. Additionally, the
evaluation of Experiment Features shows a tendency towards
simulated scenarios (43%) over real-world instances. Python
(PyTorch) (38%) and various unspecified tools (80%) are
the dominant choices for Blockchain systems and simulation
tools, respectively. Diverse datasets such as FEMNIST (8%)
and MNIST (35%) have been predominantly used, focusing
primarily on images (43%). Notably, most experiments
involve a substantial number of clients (20-*), indicating
scalability considerations. Overall, the review portrays a land-
scape where robust design and implementation are evident,
yet further exploration and validation in diverse real-world
scenarios are necessary for comprehensive advancements.
The integration of these technologies displays a maturing
progression through developmental phases but with notice-
able disparities in testing and validation methodologies.
While significant progress is evident in the design and
implementation stages, the relatively lower emphasis on
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FIGURE 15. Results per extraction criterion, SRQ2 (EC19 - EC33).

testing (85%) suggests a potential gap that requires further
scrutiny to ensure the robustness and reliability of integrated
systems. The prevalent use of experimental validation meth-
ods highlights an empirical inclination within the research
community, to seek tangible evidence to validate theoretical
frameworks. The prevalence of simulated scenarios (43%)
suggests a practical approach towards initial validation,
but also indicates the necessity for deeper exploration in
real-world settings to ensure practical applicability. The
dominance of Python (i.e. PyTorch) in Blockchain systems
and the use of unspecified tools reflect both flexibility and
ambiguity within the domain. These findings underscore the
need for a balanced approach, combining theoretical robust-

ness with a nuanced understanding of practical applicability
to strengthen the evolution of FC, BC, and FL integration for
IoT applications.

B. RESULTS PER YEAR AND COUNTRY
Figure 17 shows the distribution of results across different
years and countries among the 40 selected studies. Based on
the figure, we can state that all these studies were conducted
from 2020 onwards, indicating the contemporary relevance
of this evolving research field. As of 2023 (with the analysis
considered until August), 40% of the studies were conducted,
underscoring the current prevalence of this topic. Among the
countries showing a substantial interest in integrating these
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FIGURE 16. Results per extraction criterion, SRQ3 (EC34 - EC38).

FIGURE 17. Results per country and year.

technologies, China leads with 17 studies, followed by the
United States and Canada with 8 studies each, and Australia
with 7 studies. Additionally, parts of Europe, Africa, andArab
countries have shown notable interest in this field. While
the FL concept emerged in 2016, it took time to integrate
these technologies. Nevertheless, recent trends unmistakably
demonstrate the growing significance of this combination.

V. DISCUSSION
This section synthesizes the relevant aspects derived from
the review, covering various approaches and techniques for
integrating FC-BC-FL technologies. This synthesis is based
on carefully selected extraction criteria and is illustrated
through bubble graphs, analyzing the technologies integra-
tion, alongside their associated challenges and opportunities.

A. CHALLENGES AND OPPORTUNITIES. THE SYNTHESIS
OF THE MOST RELEVANT FINDINGS
This subsection synthesizes key findings concerning existing
frameworks, application fields, interoperability, networking
systems, on-chain/off-chain structures, and BC-FL features.

1) FRAMEWORKS USE PER APPLICATION FIELD AND
STANDARDIZATION
Figure 18 illustrates the practical application of BC and FL
frameworks in specific fields and the standardization when
integrating FC-BC-FL, providing insights into the number

of studies addressing each framework within particular
application fields. Several studies feature innovative formal
models crafted to introduce solutions for integrating FC-BC-
FL. Notably, Healthcare (six studies in BC, six in FL, 12 in
BC-FL), Industry (three studies in BC, six in FL, 10 in BC-
FL), Smart Cities (four studies in BC, five in FL, 11 in BC-
FL), Transport (four studies in BC, five in FL, 8 in BC-FL),
and Others (five studies in BC, 8 in FL, 15 in BC-FL) emerge
as a main area for BC and FL framework implementation.

However, a significant research gap exists in utilizing
certain existing frameworks and exploiting their capabilities.
For example, there is limited exploration of frameworks
like Flower, IBM FL, or Azure Flute within FL. Similarly,
there is a lack of exploration in utilizing IBM BC, Cisco
BC, or wider adoption of Ethereum or Hyperledger for BC
applications. Moreover, existing BC-FL frameworks have not
been used within fields integrating all three technologies.
Moreover, most analyzed studies introduce formal models
for new frameworks, posing a challenge in testing their
application in different fields to demonstrate their versatility.
Additionally, the Energy and Business sectors under-utilize
these frameworks, resulting in research gaps. Addressing
these areas presents significant opportunities to strengthen
existing frameworks and explore untapped areas.

In this early phase of developing specialized frameworks
for integrating FC-BC-FL, notable efforts are underway to
bridge this gap. These efforts involve creating new formal
models that integrate distributed intelligence and security into
applications. Additionally, existing platforms are compelled
to adapt to these requirements, aiming to provide the
combined capabilities of these three technologies to IoT
applications. Both emerging and established frameworks are
emphasizing this integration, promising more robust IoT
solutions.

Regarding standardization, there is a notable absence of
using existing sources like IEEE, ISO, and NIST to stan-
dardize BC-FL frameworks for instance to wider adoption
and convergence of these technologies. Furthermore, the
specification of elements within solutions using tools like
DSLs is lacking investigation (see Figure 18).

Emphasizing the importance of specification and stan-
dardization across FC/EC-BC-FL integration is crucial for
seamless interoperability, compatibility mitigation, security
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FIGURE 18. BC, FL, and BC-FL frameworks used by application fields in FC-BC-FL integration.

enhancement, and innovation acceleration. Standards provide
a unified framework for communication and collaboration,
facilitating cohesive system development and enabling effi-
cient utilization of combined technology benefits. Adherence
to standardized protocols fosters trust and confidence in data
exchange integrity, vital for privacy-sensitive and reliable
applications. Ultimately, specification and standardization
propel widespread adoption and advancement of these
technologies across diverse industries.

An important challenge lies in ensuring that new solutions
prioritize adherence to standards and specifications, fostering
scalability and interoperability. By aligning with established
norms from reputable organizations, developers can pave
the way for seamless integration and accelerated adoption,
ultimately driving advancements in the field.

2) BC AND FL FEATURES PER NETWORKING SYSTEMS
Figure 19 illustrates the distribution of studies examining
networking systems that integrate FC-BC-FL, encompassing
various BC features like consensus protocols, chaining
approaches, and data security, alongside FL elements such as
aggregator types, aggregation algorithms, and learning styles.

The adoption of specific BC-FL features is primarily
observed in IoT networks, with notable application domains
including vehicular and mobile/RAN networks. The rapid
emergence of 5G and forthcoming challenges posed by
6G networks create a pressing need to enhance distributed
systems within these mobile scenarios. Mobile environments
encapsulate essential components of FC/EC, offering an

optimal platform for implementing BC technology and FL
methodologies. However, despite potential advantages, there
remains a significant gap in understanding how to effectively
leverage these technologies within dynamic and resource-
constrained Mobile/RAN network environments.

An analysis of the consensus protocols utilized across
diverse networking systems reveals prevailing trends.
Notably, capability-based protocols feature prominently, with
11 studies in IoT, one in CDN, two in LRPON/PLC, six in
mobile/RAN, and five in vehicular networks. Additionally,
compute-intensive protocols are notable, with 13 studies in
IoT and three each in vehicular and mobile/RAN networks,
while voting-based protocols exhibit presence with 8 in
IoT, one each in CDN and LRPON/PLC, and three each in
mobile/RAN and vehicular networks. In contrast, DAG-based
protocols appear less utilized, represented by only one study
in IoT and one in vehicular networks, despite the increasing
FC-BC-FL integration. Furthermore, alternative forms of
consensus like Secure Multiparty Computation-based (P10),
are presented in IoT and vehicular networks (see Figure 19).
Regarding the chaining approach, the main chain pre-

dominates in IoT applications, drawing significant attention
with 24 dedicated studies. Specifically, 10 studies focused
on mobile/RAN, six on vehicular networks, four on CDN,
and one on LRPON/PLC within the main chain paradigm.
Additionally, off-chain chaining approaches play a role
in these network types, with 16 studies in IoT, 7 in
Mobile/RAN, four in vehicular networks, and one in CDN.
It’s also noteworthy that sidechain approaches, with five
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FIGURE 19. Fog/Edge node networking system used by BC: consensus protocol, chaining approach, data security, FL: aggregator type,
aggregation algorithms, learning style.

studies in IoT and two in Mobile/RAN and vehicular
networks, and DAG approaches with no studies, appear to
be underutilized within these contexts. Conversely, the types
of aggregators used by network systems in integrating FC-
BC-FL show that FL servers are most commonly used,
with 16 studies in IoT, two in CDN, one in LRPON, 7 in
Mobile/RAN, and five in vehicular networks. Moreover,
cloud servers (11 studies in IoT, one each in CDN and
vehicular, and two in Mobile/RAN networks) and other
aggregators (e.g., fog/edge nodes, fog/edge servers, edge
devices, CDN servers, Fog Cloud Agent - FCA) are com-
monly employed, with 13 studies in IoT, 7 in mobile/RAN,
three in vehicular and CDN, and two in LRPON/PLC
(see Figure 19).

The most utilized aggregation algorithms in networking
systems are FedAvg algorithms (14 studies in IoT, two
in CDN, one in LRPON/PLC, six in Mobile, and five in
vehicular networks). However, there is a lack of utiliza-
tion of other aggregation algorithms such as FedProx or
FedMA. Other types of aggregations are more prevalent,
as observed in 20 studies for IoT, 10 in Mobile/RAN,
and five in vehicular networks (e.g., Stochastic Gradient
Descend (SGD), Distributed Approximate Newton (DAN),
DLP-LDP, Differential Privacy SGD, FedSGD). Nonetheless,
the learning styles employed across networking systems
indicate a prevalence of supervised models, with 13 studies in
IoT, six in Mobile/RAN, five in vehicular networks, and one
in CDN. Additionally, unsupervised, semi-supervised, and

reinforcement learning methods are utilized, but to a lesser
extent (see Figure 19).

VI. ADVANTAGES AND LIMITATIONS OF THE FC-BC-FL
INTEGRATION
The synergy among FC, BC, and FL offers several advantages
but also presents limitations depending on their utilized
approaches and techniques. Following the SLR development,
this section will address these crucial aspects.

A. ADVANTAGES
1) Data Privacy. The integration allows sensitive data

to be processed locally on edge devices or within
the fog network, reducing the need to transmit raw
data to centralized servers. Through BC’s immutable
and transparent ledger, data access and transactions
are securely recorded, ensuring that only authorized
parties can access specific data. FL further reinforces
privacy by enabling model training on decentralized
edge devices without transferring raw data, thereby
minimizing the risk of data exposure and preserving
user privacy.

2) Data Security. The integration leverages distributed
ledger technology provided by BC, which ensures
tamper-resistant and transparent data transactions. The
FC/EC processing closer to the source reduces the
attack surface and vulnerabilities associated with
transmitting data over long distances. FL allows model
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training directly on fog/edge devices, avoiding the
need to transfer sensitive data to centralized servers,
thus mitigating the risk of interception or unauthorized
access.

3) Decentralization. It embodies the core of integrating
these technologies. BC decentralizes the consensus
process, ensuring no single entity controls the network.
This distributed consensus model enhances trust and
eliminates intermediaries, lowering the risk of data
manipulation or censorship. Fog/Edge further decen-
tralizes data processing by enabling computations at
the network’s edge, closer to data sources, reducing
reliance on centralized cloud infrastructure. FL decen-
tralizes model training by allowing edge devices to
collaboratively train models without sending raw data
to a central server.

4) Scalability. This integration optimizes the utiliza-
tion of computing resources and scalability by dis-
tributing computational tasks across Fog/Edge nodes,
enabling data processing and model training closer
to the data source, thereby reducing latency and
bandwidth requirements. BC ensures scalability by
providing a platform for recording and validating
transactions, accommodating growing data volumes
without performance issues. FL enhances scalability
by enabling collaborative model training across data
sources, leveraging collective computational power and
bandwidth while minimizing reliance on centralized
infrastructure.

5) Synchronization. This integration facilitates synchro-
nization through efficient coordination of data process-
ing and model updates across distributed Fog/Edge
nodes. It ensures timely synchronization of data with-
out relying heavily on centralized servers. BC synchro-
nizes data transactions across all nodes in the network,
ensuring consistency and transparency. FL synchro-
nizes model updates across sources, allowing models
to learn from diverse data sources while maintaining
synchronization with the central model.

6) Other. Additional benefits include collaborative model
training, enabling distributed devices to enhance a
global model while safeguarding data privacy, thereby
improving accuracy and compliance. Another advan-
tage is optimized data processing, ensuring efficient
resource utilization by processing data closer to its
source, leading to enhanced scalability, resilience, and
security. Together, these features offer a comprehen-
sive solution for maximizing utility and security in
distributed data applications.

B. LIMITATIONS
1) Complexity. Integrating FC-BC-FL requires intricate

system design and coordination, which may increase
implementation complexity and development costs.

2) Security Concerns. While BC enhances data security,
it’s not immune to vulnerabilities such as attacks or

smart contract bugs. FL relies on secure communica-
tion protocols to protect privacy, but edge devices may
still be susceptible to physical attacks or malware.

3) Data Privacy and Regulation. FL addresses privacy
concerns by keeping data local, but regulatory com-
pliance and data governance become more challenging
in distributed environments. Ensuring compliance with
privacy regulations such as GDPR requires careful
management of data access and consent mechanisms.

4) Performance Overhead. The additional computational
and communication overhead introduced by BC and
FL may impact system performance, particularly
in resource-constrained IoT environments. Balancing
performance requirements with security and privacy
concerns is essential for successful integration.

5) Ethical Issues. Integrating FC-BC-FL presents ethi-
cal considerations that demand careful examination.
Foremost among these are concerns surrounding data
privacy, as the vast amounts of sensitive information
generated by IoT devices require robust safeguards
to prevent unauthorized access or misuse. Security is
another critical aspect, as the decentralized nature of
these technologies introduces new vulnerabilities that
must be addressed to mitigate potential cyber threats.
Furthermore, the deployment of such advanced systems
may have profound social implications, including
issues of digital divide, algorithmic bias, and the
exacerbation of existing inequalities. Therefore, ethical
frameworks must be established to guide the respon-
sible development and implementation of these tech-
nologies, ensuring that they not only deliver technical
advancements but also uphold fundamental principles
of fairness, transparency, and societal well-being.

As presented, the integration of these paradigms showcases
promising opportunities to enhance IoT solutions. Here,
addressing their complexities and limitations is crucial to
realizing their full potential in real-world applications.

VII. CONCLUSION AND FUTURE WORK
Integrating Fog/Edge Computing, Blockchain, and Federated
Learning within the Internet of Things ecosystem presents a
compelling avenue for enhancing various network systems
and applications. This SLR study presented an analysis
and categorization of BC and FL technologies within FC
environments, addressing a research gap. While adhering to
the guidelines outlined by Kitchenham for conducting an
SLR, it is crucial to acknowledge inherent limitations in
the process. Despite efforts to encompass a broad spectrum
of sources, inadvertent exclusion of relevant studies due to
stringent inclusion criteria remains a possibility. Furthermore,
resource constraints such as time limitations and database
accessibility may impact the review’s comprehensiveness.
In addition to limitations in the review process, constraints
regarding the findings obtained must be acknowledged, such
as potential biases among selected studies. Moreover, the
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dynamic nature of the involved technologies may render
some findings outdated or incomplete. Thus, while the SLR
provides valuable insights, it is imperative to interpret results
with awareness of these limitations, ensuring a nuanced
understanding of the research landscape.

The success attained in this study, compared to existing
ones, can be attributed to several key factors that enhance
its effectiveness in addressing research objectives. Firstly, the
meticulous analysis involved comparing 16 similar literature
review studies against our SLR proposal, which allowed
us to identify critical gaps in existing research concerning
the analysis of FC/EC-BC-FL integration. Consequently,
areas requiring further exploration were pinpointed, and
provided a detailed assessment of them. This approach
enriches the understanding of the subject matter and brings
a holistic perspective by examining the integration of
all three paradigms comprehensively, rather than focusing
solely on partial combinations as presented in existing
studies. Secondly, the meticulous examination of various
criteria, including architectural features, security concerns,
and application domains, provides a comprehensive overview
of integration potential.

The SLR of 40 papers uncovers insights into this emerging
field, using 38 criteria covering FC-BC-FL integration’s
architectural and technical features. Since 2020, there has
been a notable rise in interest from enterprises and academia
in developed nations contributing to integrated solutions with
these technologies. The survey data was analyzed criteria
by criteria to showcase their influence and consideration
within the domain. Additionally, a combined analysis
unveils relationships and research prospects. Interpretations
of strengths, weaknesses, and research directions for FC-BC-
FL integration from the surveyed literature are also provided.

The FC-BC-FL integration presents multifaceted advan-
tages poised to revolutionize IoT landscapes, offering
enhanced data privacy, security, and decentralized consensus
mechanisms through BC, while FL facilitates collabora-
tive model training without compromising data privacy.
Simultaneously, FC/EC optimizes data processing, reducing
latency by distributing computational tasks closer to the
data source for amplified efficiency and responsiveness
within IoT frameworks, offering future directions for improv-
ing integration and leveraging its advantages. These can
include:
Frameworks Utilization and Implementation: Future

efforts could focus on developing guidelines or tools to
facilitate widespread and practical implementation of existing
frameworks. The emergence of novel formal models and
frameworks within examined studies signifies a proactive
response to specialized framework deficiencies, significantly
contributing to the maturation of integration methodologies.
However, additional efforts are needed.
Specification and Standardization: Establishing technical

and industry standards and protocols would ensure interop-
erability and streamline integration practices, fostering more
robust and scalable implementations.

Exploration in Diverse Network Contexts: Examining
how this integration can extend its benefits to diverse
network environments beyond IoT, including Mobile/RAN
Networks (e.g., 5G and 6G), would broaden its applicability
and potential impact. For instance, addressing computation
offloading or resource allocation needs. Further exploration
in these networks would unveil insights and opportunities
for leveraging integration to tackle specific challenges or
enhance performance across various applications.
Comprehensive Approach: Emphasizing interdisciplinary

collaborations and holistic research efforts to address
identified gaps, enhance understanding, and advance the
integration’s applicability.

In conclusion, the synthesis of these technologies within
the IoT domain represents an avant-garde approach poised to
augment network systems profoundly. Addressing the identi-
fied gaps in existing frameworks, standardization efforts, and
expanding the scope to encompass diverse network scenarios
can further enrich the understanding and applicability of this
integration. This comprehensive approach holds immense
promise in propelling the evolution of IoT ecosystems
towards heightened efficiency, security, and scalability.
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