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ABSTRACT Direction-of-arrival (DOA) estimation plays a crucial role in array signal processing across
various domains, including radar, sonar, wireless communications, and seismic exploration. However,
traditional DOA techniques often assume either far-field (FF) or near-field (NF) propagation, limiting
their applicability in scenarios involving mixed-field sources. DOA estimation and localization in scenarios
involving mixed NF and FF sources is a complex and dynamic field that has garnered significant research
attention in recent years. This multifaceted and evolving area holds promise for addressing challenges in
radar, wireless communications, and acoustic sensing applications. This review paper provides a comprehen-
sive overview of the methodologies, techniques, and advancements in this domain. We categorize existing
methodologies, discussing their advantages and limitations. Furthermore, we delve into the mathematical
modeling of mixed-field sources and essential signal processing techniques for parameter estimation.
Special attention is given to technical issues such as aperture loss, computational complexity, and hardware
considerations. The paper discusses the various sources of noise in the mentioned scenario and highlights
the importance of modeling noise accurately for effective estimation. It also explores different scenarios and
assumptions considered in the literature, ranging from non-Gaussian and non-stationary noise environments
to scenarios involving multipath propagation and unknown mutual coupling effects. A detailed examination
of the statistical approaches used in DOA estimation and localization reveals a diverse range of methods,
including higher-order statistics and second-order statistics, each with its own advantages and applications.
A comparative evaluation of various approaches highlights their performance in terms of estimation accuracy,
resolution, aperture loss and computational efficiency. This provides insights into the trade-offs involved in
choosing between different approaches. The review also identifies promising future research directions, such
as the exploration of advanced signal processing techniques like compressive sensing and deep learning,
exact NF modeling, estimation based on one-bit measurements, the integration of polarization diversity,
employing metasurface antennas, tracking parameters, and the utilization of full-wave or experimental data
for amore realistic representation of the challenges. By reviewing advances inmethodologies and techniques,
as well as outlining future research directions aimed at addressing the complexities of mixed-field scenarios,
this paper paves the way for the development of more robust and reliable localization systems capable of
handling real-world complexities.
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INDEX TERMS Antenna array, array signal processing, azimuth/elevation angle and range estimations, DOA
estimation, Fresnel region, mixed-field sources, NF and FF sources, passive localization, wireless communication.

I. INTRODUCTION
Array signal processing (ASP) is one of the most important
branches of signal processing, which is widely used in var-
ious fields of science and engineering, such as radar, sonar,
seismic event prediction, microphone sensors, navigation,
air traffic control and wireless communication systems [1],
[2], [3]. The structure of the array can be defined as a set
of sensors/antennas that are placed next to each other in
a special arrangement. In radar and sonar systems, sensor
arrays are often used to determine the number of sources and
estimate their position, or estimate the speed of targets such
as airplanes, missiles, and submarines [4], [5]. Seismic arrays
are used for oil exploration and detection of underground
nuclear tests [6], [7]. For example, the Norwegian Seismic
Array (NORSAR), an internationally recognized independent
research foundation, now with 50 primary and 120 auxiliary
seismic stations around the world, is working on improving
array processing to improve an international monitoring sys-
tem for seismic activity. Since the strength of the desired
signals is reduced to some extent due to the distance between
the source and the microphones, in speech and audio signal
processing, microphone arrays are often used to extract the
desired signals by improving reception in one or more spe-
cific directions [8], [9]. The array antenna method [10], [11]
is known as one of the key features of the third generation and
beyond wireless communication systems, which can dramat-
ically improve the operational parameters of the system such
as capacity, quality and coverage.

Estimating the direction-of-arrival (DOA) [12] of one or
more plane waves impinging on an array of sensors from
noisy data is one of the most important aspects of ASP, which
has been the focus of many researchers in the past decades.
The signals to be processed can be in the form of electro-
magnetic (EM)/radio or sound waves. The necessity of DOA
estimation arises from the necessity of locating and tracking
signal sources in military applications as well as civilian
applications (such as search and rescue, sonar, seismology,
and locating wireless emergency calls). An antenna array can
be designed to detect incoming signals so that it only accepts
signals from certain directions and filters out unintended
signals that are known as interference [13]. The estima-
tion accuracy, resolution, applicability for real environments,
computational complexity and hardware implementation cost
have always been discussed in different DOA estimation
techniques [14], [15], [16], [17].
DOA estimation techniques can be divided into three gen-

eral categories, including classical methods, subspace-based
methods, and maximum likelihood (ML) methods [18], [19].
Classical methods such as the delay-and-sum method, and
minimum variance distortionless response (MVDR) method,
are conceptually simple but have relatively poor performance,
and are not computationally efficient [19]. In comparison, the

FIGURE 1. A schematic of the regions of Fraunhofer (reactive NF), Fresnel
(radiative NF), and far-field (FF) [38]. In the reactive NF zone, energy
decays very rapidly with distance. In the radiative NF region, the average
energy density remains fairly constant at different distances from the
antenna, although there are localized energy fluctuations [39], [40]. Note
that in the mixed-field sources scenario, in the literature and throughout
this paper, the NF region always refers to the Fresnel region (green region
in the figure).

ML technique performs well, especially when the signal-to-
noise ratio (SNR) is low or the number of snapshots is small,
but it is computationally very complex [20]. Subspace-based
methods also perform well and are known as high-resolution
methods; besides, they are also more efficient in terms
of computation [21]. By taking advantage of the orthog-
onality of subspaces, two common techniques including
multiple signal classification (MUSIC) [22] and estimation
of signal parameters through rotational invariance techniques
(ESPRIT) [23] and their different versions are widely used.
The above DOA estimators can be designed and implemented
based on spatial, frequency and time filtering or their com-
bination. In the case of wideband signals (i.e. signals that
occupy a relatively large portion of the frequency spectrum
and have a bandwidth that is significant compared to the car-
rier frequency), using spatial filtering to separate the signals
is not cost-effective. This is because it requires the calcu-
lation of the spatial statistics matrix for each frequency bin
and the use of a separate estimator for each signal, which
greatly increases the computational complexity and makes its
practical applications difficult. However, frequency filtering
is widely used in broadband DOA estimation methods [24],
[25]. In this way, wideband signals are decomposed into
several narrowband signals (which means that the time delays
are small compared to the inverse of the signal bandwidth) by
a filter bank or discrete Fourier transform.

Although the plane wave assumption can simplify the
modeling and processing, in practical applications of the
near-field (NF), such an assumption is not valid and will lead
to errors in the analysis [26]. When the radiation source is in
the NF (Fresnel region of the array aperture) [27], the shape of
the spherical wavefront changes nonlinearly with the position
of the array and is determined by both angle (DOA) and range
parameters (see Fig. 1) [28], [29]. As a result, conventional
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DOA estimation algorithms of far-field sources (FFSs) are
not directly applicable to NF sources (NFSs).

On the other hand, in various practical applications such
as wireless communication, radar systems, medical imaging,
acoustic sensing, seismic exploration, electronic supervision
and guidance systems, the coexistence of NF and FF sources
(relative to the sensing position) may occur [30], [31], [32].
For example, in wireless communication systems, base sta-
tions and mobile devices can be located in such a way that
some signals are received in the NF, especially when devices
are close to each other, while others may be in the FF when
the distance between transmitter (TX) and receiver (RX) is
significant [33]. Similarly, in radar systems, targets at varying
distances from the radar antennamay fall into either the NF or
FF region, depending on their proximity [34]. Medical imag-
ing techniques like magnetic resonance imaging (MRI) and
ultrasound imaging also encounter scenarios where sources
exhibit both NF and FF characteristics. For instance, in MRI,
the interaction between the radiofrequency coil and the body
tissues may lead to a combination of NF and FF signals [35].
Similarly, in ultrasound imaging, reflections from structures
close to the transducer can generate NF signals (NSs), while
those from deeper tissues may produce FF signals (FSs)
[36]. Acoustic sensing applications, such as microphone
arrays used for speaker localization or environmental moni-
toring, encounter similar situations. Sources emitting sounds
at varying distances from the microphone array may generate
both NF and FF signals, depending on their proximity [37].
In all these scenarios, conventional techniques face problems;
because these techniques are inherently limited to resolving
only pure FSs or pure NSs, rather than dealing with scenarios
where they co-exist. This has motivated the increasing atten-
tion to the issue of parameter estimation ofmixed-field source
signals in recent years.

Each of the approaches presented in the literature for the
problem of mixed FFSs and NFSs has advantages and dis-
advantages. Among the disadvantages and limitations that
can be found in some of them are severe loss of aperture
(degree of freedom), creation of spurious peaks in the spatial
spectrum, low estimation accuracy, high computational com-
plexity, low resolution, inability to estimate the parameters of
sources with the same angle, the failure in complex propaga-
tion environments, the limited dimensions of estimation, etc.
In this review paper, in addition to introducing the problem,
and stating the technical limitations, existing/possible strate-
gies to deal with some special problems/challenges will be
presented and discussed. In addition, suggestions for future
work in this area are provided.

The rest of this paper is organized as follows. In Section II,
the essentials of the problem of estimating the parameters
of mixed-field sources, including mathematical modeling
of the data are presented. In Section III, basic approaches
for solving the mixed-field sources problem are described.
In Section VI, the special technical issues and challenges,
both in the processing layer and in the hardware part,
are described for the mentioned problem. In Section V,

a summarized general comparison of various aspects of the
approaches available in the literature is provided. Finally,
concluding remarks are drawn in Section VI.
Notation: Throughout the paper, superscripts (·)T , (·)∗,

(·)H and (·)† represent the transpose, complex conjugate, con-
jugate transpose, and pseudoinverse, respectively. The sym-
bols E {·}, j, ln (·), log2 (·), cum {·}, x̂, eig (·), |·|, rem (a, b),
LCM (·), diag [·], blkdiag [.], ̸ , ⌈·⌉, ⌊·⌋, δ [·], min {·} and
max {·} denote the expected value operator, imaginary unit,
natural logarithm, binary logarithm, cumulant function, esti-
mation of x, eigenvalue, absolute value, remainder after the
division of a by b, lowest common multiple, diagonal matrix,
block diagonal matrix, angle, integer ceiling and floor func-
tions, Dirac delta function, and the minimum and maximum
values in the set, respectively. Im and Jm, respectively, stand
for the m× m identity matrix and m× m exchange matrix.
Acronym: In Table 1, all acronyms used throughout the

paper are presented.

II. THE PROBLEM OF MIXED FF AND NF SOURCES
A. BASIC CONCEPTS AND PREREQUISITES
In many applications of passive array processing, the wave-
front is assumed to be planar; this means that the radiating
sources are located in the FF (Fraunhofer region) relative to
the position of the array, and their range is considered infinite.
In this case, the task of locating the source is limited only
to the estimation of DOAs. As mentioned in the previous
section, although the plane wave assumption can simplify the
modeling and processing, in practical applications of the NF,
such an assumption is not correct and will lead to errors in the
analysis. In fact, when the radiation source is in the NF (the
Fresnel area of the array aperture), that is [28]

0.62

√
D3

λ
< RD < 2

D2

λ
, (1)

the shape of the spherical wavefront has a phase difference
that changes nonlinearly with the position of the array and is
determined by both angle and range parameters. In (1), RD, λ

and D represent the distance from the source to the reference
element in the array, the wavelength of the emitter and the
array aperture size, respectively. As a result, conventional
DOA estimation algorithms for FFSs are not applicable to
estimate the location of NFSs. On the other hand, in some
practical applications, FFSs and NFSs can coexist. Algo-
rithms presented to deal with pure FFSs or pure NFSs fail
in mixed sources scenario.

Considering that many solutions related to the mixed-field
sources problem, which will be reviewed in the next sections,
use fourth-order statistics (FOS), here is a short introduction
to the concepts of cumulant [29]. The moment generating
function (MGF) is a widely used function in mathematics and
is defined as follows for a random variable X [41]:

MX (t) = E
{
etX

}
, t ∈ R. (2)
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TABLE 1. List of acronyms. TABLE 1. (Continued.) List of acronyms.

By having the MGF of a random variable, its probability
distribution can be fully defined. In addition to univariate
distributions, the MGF can also be defined for vector- or
matrix-valued random variables. In general, if X is a multi-
variate random variable, then [42]

MX (t) = E
{
et
TX

}
. (3)

TheMGF, unlike the characteristic function (CF) [43], cannot
always be defined; because the implicit integral E

{
etX

}
need

not converge, in general [44]. According to the definition, the
CF of X is [45]

8X (jω) = E
{
ejωX

}
. (4)

The CF is actually the Fourier transform of the probability
density function (PDF), by converting ω ∈ [0, ∞) to −ω.
MGF and CF both have the same information. The n-th
moment of a random variable can be obtained simply by the
MGF andwithout the need to take the integral as follows [46]:

E
{
Xn

}
= M (n)

X (0) , (5)

where n a nonnegative integer.
In probability theory and statistics, the cumulants of a

probability distribution are sets of values that provide an
alternative for the moments of the distribution [47]. Any two
probability distributions that have the same moments have
the same cumulants and vice versa. The first cumulant is
the mean, the second the variance and the third cumulant
is the third central moment. But fourth and higher cumulants
are not equal to central moments. Note that the 0-th moment
for a random variable is equal to the total probability or the
value 1. In some cases, the use of cumulants is preferred over
moments. In particular, when two or more random variables
are statistically independent, the n-th order cumulant of their
sum is equal to the sum of their n-th order cumulants. Also,
the third and higher cumulants of the normal distribution are
zero. The cumulants of X are defined using the cumulant
generating function KX (t), which is the natural logarithm of
the MGF [48]

KX (t) = ln (MX (t)) . (6)

Cumulants are obtained from the expansion of the power
series (Maclaurin series) [49].
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B. GENERAL DATA MODEL
In this section, the general mathematical model that is mainly
considered the base problem in the scenario of mixed-field
sources in the literature is presented. In the next section, more
specific models are also reviewed.

Consider K uncorrelated narrowband sources, consisting
of KN NFSs and KF FFS, where KF = K − KN. The signals
transmitted by these sources from the azimuth directions
θ1, θ2, . . . , θK impinge on a symmetric uniform linear array
(SULA) of N = 2M + 1 isotropic sensors with inter-spacing
d (Fig. 2). Each antenna element is denoted by the index m,
where m = −M , −M + 1, . . . , 0, . . . , M − 1, M . The
spatial phase-shift factor between the reference element and
m-th one for the k-th impinging signal is defined as [50]
and [51]:

am, k = ejτm, k , (7)

where τm, k represents the phase shift associated with the
propagation time delay of the k-th signal between the ref-
erence sensor (array physical center in Fig. 2) and the m-th
sensor, and k = 1, 2, . . . , K . By considering the array center
as the phase reference, the exact value of τm, k is obtained
from the following equation [50], [52]:

τm, k =
2π
λ
rk

√
1 −

2
rk
md sin θk +

(
md
rk

)2

− 1

 , (8)

where rk is the range of k-th source. If the k-th source is
located in the NF, τm, k can be approximated as follows [53],
[54]:

τm, k ≃ γkm+ χkm2, (9)

where the electric angles γk and χk are obtained from the
following equations [50], [55]:

γk = −2π
d
λ
sin θk , (10)

χk = π
d2

λ rk
cos2 θk . (11)

On the other hand, if the signal source is located in the FF
(rk → ∞), τm, k can be considered in the following form [50],
[56]:

τm, k ≃ γkm. (12)

With a proper sampling rate that satisfies the Nyquist
rate [57], the l-th signal sample observed by the m-th sensor
can be expressed as follows [58], [59]:

xm (l) =

K∑
k=1

sk (l) ejτm, k + nm (l) , l = 1, 2, . . . , L,

(13)

where L is the number of snapshots, sk (l) is the baseband
signal of the k-th source, and nm (l) is the noise corresponding
to the m-th sensor. Without the loss of generality, it can be

FIGURE 2. A SULA consisting of N = 2M + 1 sensors.

assumed that the firstKN signals are received from theNF and
the remaining KF signals are received from the FF. Therefore,
according to (9)-(12), (13) can be rewritten in the following
form:

xm (l)

=

KN∑
k=1

sk (l) ej
(
γkm+χlm2)

+

K∑
k=KN+1

sk (l) ejγkm + nm (l) .

(14)

In the matrix form, the output vector of the array, x (l) =
K∑
k=1

a (θk , rk) sk (l)+ n (l), can be expressed as follows:

x (l) = A s (l)+ n (l) = ANsN (l)+ AFsF (l)+ n (l) ,
(15)

where

x (l) =
[
x−M (l) . . . x0 (l) . . . xM (l)

]T
∈ CN×1, (16)

s (l) =
[
sTN (l) s

T
F (l)

]T
∈ CK×1, (17)

sN (l) =
[
s1 (l) s2 (l) . . . sKN (l)

]T
∈ CKN×1, (18)

sF (l) =
[
sKN+1 (l) sKN+2 (l) . . . sK (l)

]T
∈ CKF×1, (19)

n (l) =
[
n−M (l) . . . n0 (l) . . . nM (l)

]T
∈ CN×1, (20)

where sN (t), sF (t), and n (t) are the source vector of NSs,
the source vector of FSs and the additive Gaussian noise
vector with zero mean and variance σ 2, respectively. In (15),
A is a steering matrix whose columns are the steering vectors
corresponding to K signals and can be written as follows:

A =
[
AN AF

]
∈ CN×K , (21)

AN = [ a1 a2 . . . aKN ] ∈ CN×KN , (22)

AF = [ aKN+1 aKN+2 . . . aK ] ∈ CN×KF , (23)

ak =
[
a−M , k a−M+1, k . . . aM , k

]T
∈ CN×1, (24)

where a (θk , rk) = ak , and am, k is obtained from (7).
Two-dimensional (2)-D) DOA estimation (estimation of

both azimuth and elevation angles) [60] is an important issue
in some applications, especially radar, mobile communica-
tion, sonar, seismology and industrial measurements [61],
[62], [63]. Due to the increase in dimension, and as a result
of the increase in the complexity of the problem, 2-D DOA
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estimation in the scenario of mixed sources, despite its great
importance, has been studied less. It should be noted that
since the 1-D DOA estimation algorithms for the mixed
sources scenario are completely dependent on the array
geometry, they cannot be directly generalized for the 2-D
problem. Among the 2-D arrays, uniform circular array
(UCA) is usually preferred due to its 360◦ azimuthal coverage
and almost unchanged directional pattern [54], [64]. More-
over, the resolution of UCA is relatively uniform around the
azimuth angle [65], [66]. In addition, UCAs are capable of
forming beam patterns that are relatively invariant with fre-
quency [66], [67]. In the following, the general mathematical
datamodel for the problem ofmixed-field sources usingUCA
is expressed.

Suppose K signals transmitted by KN NFSs and KF FFSs
impinge on a UCA with radius R consisting M sensors, plus
a center sensor at the phase reference point (see Fig. 3). The
center sensor is used to normalize the data [68], [69]. Each
antenna element is denoted by the index m, where m′

=

0, 1, . . . , M . NFSs and FFSs are located at (θk , φk , rk) and
(θk , φk), where θk ∈ [0, 2π), φk ∈

[
0, π

/
2
)
and rk repre-

sent the azimuth angle, elevation angle, and range measured
by the array set, respectively. With a proper sampling rate,
the l-th sample of the signal observed by the m′-th sensor is
expressed as [54] and [70]

xm′ (l) =

K∑
k=1

sk (l) e
j 2π

λ
(rk−rm′ (θk , φk , rk )) + nm′ (l) , (25)

where rm′ (θk , φk , rk) is the distance between the k-th source
and them′-th sensor, which can be calculated by the following
equation [54]:

rm′ (θk , φk , rk)

=

√
r2k − R2 − 2rkRηm′ (θk , φk), m′

= 1, 2, . . . , M ,
(26)

where ηm′ (θk , φk) = cos
(
2πm′

/
M − θk

)
sinφk . Assuming

R ≪ rk and according to the second-order Taylor series
expansion [71], (26) can be approximated as

rk − Rηm′ (θk , φk)+
R2

2rk

(
1 − η2m′ (θk , φk)

)
. (27)

Note that for m′
= 0, rm′ (θk , φk , rk) = rk . Since if the

source is located in the FF, it is assumed that rk → ∞,
so substituting the above expression into (25) yields

xm′ (l) =



K∑
k=1

sk (l)+ nm′ (l) , m′
= 0,

KN∑
k=1

sk (l) e
j 2πR

λ

(
ηm′ (θk , φk )−

R
2rk

(
1−η2

m′ (θk , φk )
))

+

K∑
k=KN+1

sk (l) e
j 2πR

λ
ηm′ (θk , φk ) + nm′ (l) ,

m′
= 1, 2, . . . , M .

(28)

FIGURE 3. The geometry of a UCA with a center sensor in the mixed-field
sources scenario.

The general matrix form of the output vector of the array (i.e.
x (l) ∈ C(M+1)×1) is similar to (15), with the difference that
in the case of the array in Fig. 3, its components are defined
as follows:

n (l) =
[
n0 (l) n1 (l) . . . nM (l)

]T
∈ C(M+1)×1,

(29)

AN =
[
aN (θ1, φ1, r1) aN (θ2, φ2, r2)

. . . aN
(
θKN , φKN , rKN

)]
∈ C(M+1)×KN ,

(30)

AF =
[
aF

(
θKN+1, φKN+1

)
aF

(
θKN+2, φKN+2

)
. . . aF (θK , φK )] ∈ C(M+1)×KF , (31)

aN (θk , φk , rk) =

[
1 e

j 2πR
λ

(
η1, k (θk , φk )−

R
2rk

(
1−η21, k (θk , φk )

))

. . . e
j 2πR

λ

(
ηM , k (θk , φk )−

R
2rk

(
1−η2M , k (θk , φk )

))]
∈ C(M+1)×1, (32)

aF (θk , φk) =

[
1 ej

2πR
λ
η1, k (θk , φk ) ej

2πR
λ
η2, k (θk , φk )

. . . ej
2πR

λ
ηM , k (θk , φk )

]
∈ C(M+1)×1. (33)

The basic assumptions that are usually considered in
modeling are:

[A1] The array is calibrated.
[A2] Signals {sk (l)}Kk=1 are statistically independent, nar-

rowband stationary processes.
[A3] The sensor noise is additive Gaussian and is statisti-

cally independent of the sources’ signals.
[A4] The total number of sources (i.e. K ) is known or

properly estimated by conventional methods [72], [73], [74].
Remark 1: All the methods that will be reviewed in the

following sections estimate both the DOA and the range r of
the source in locating NFSs. By having these two parameters
and using the conversion of polar coordinates to Cartesian
coordinates, it is easy to calculate the position of NFSs in
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Cartesian coordinates. For more details and access to the
relevant equations, refer to [75] and [76]. Note that logically,
the 3-D position of the source in Cartesian coordinates (i.e.
(x, y, z)) is only achievable for approaches that use 2-D
arrays to estimate both the azimuth angle θ and the elevation
angle φ. In the case of linear arrays, it is usually assumed that
the antennas and sources are located in the horizontal plane,
i.e. φ = 0, and the elevation angle is ignored. In this case, the
corresponding array manifold is only a function of the signal
azimuth angle and range. As a result, in the latter case, it is
possible to calculate the position of the source in Cartesian
coordinates in the plane φ = 0.

III. BASIC APPROACHES
In this section, some basic approaches to estimating spatial
parameters whenNFSs and FFSs coexist are briefly reviewed.
In the next section, the challenges and limitations of the
basic approaches in more practical and complex scenarios are
described along with solutions.

The two-stage MUSIC algorithm (TSMUSIC) [77], as the
first research in the area of mixed-sources passive esti-
mation, uses two fourth-order cumulant (FOC) matrices
C1 and C2 to localization of combining FFSs and NFSs.
The first matrix (i.e. C1) is obtained from the cumulant
cum

{
xm (l) , x∗

−m (l) , x
∗
p (l) , x−p (l)

}
, where x represents

the received signal, and p = −M , −M + 1, . . . , M [77],
[78]. The second matrix (i.e. C2) is obtained by combining
the information of the following four cumulants [77]:

cum
{
xm (l) , x∗

M (l) , x
∗
p (l) , xM (l)

}
, (34)

cum
{
xm (l) , x∗

M (l) , x
∗
M (l) , xq (l)

}
, (35)

cum
{
xM (l) , x∗

n (l) , x
∗
p (l) , xM (l)

}
, (36)

cum
{
xM (l) , x∗

n (l) , x
∗
M (l) , xq (l)

}
, (37)

where q = M − 1, M − 2, . . . , −M and n = M − 1,
M − 2, . . . , −M . In this way, the virtual steering vector
d (γk , χk) is separated into two parts d1 (γk) and d2 (χk). The
first part is a function of the electric angle common in both the
FF and NF signal models, and the second part is a function
of the electric angle that exists only in the NS model. The
DOA of all sources is obtained using the MUSIC algorithm,
in which the search interval of the azimuth angle parameter
is divided into uniform steps of size 1θ in degrees. Then,
by substituting the estimated common electric angle γ̂k into a
specific Hermitian matrix [77] formed from another MUSIC
spectrum function, the range of NFSs is obtained from the
eigenvector of the Hermitian matrix as follows [77]:

χ̂k = min
χ

dH2 (χ)d
H
1

(
γ̂k

)
ŪnŪH

n d1
(
γ̂k

)
d2 (χ) , (38)

where Ūn contains the eigenvectors of the noise subspace
of the cumulant matrix C2. Although the parameters of the
mixed sources are successfully estimated by the TSMUSIC
algorithm, due to the construction of high-order cumulant
(HOC) matrices along with the spectral search operation and

the application of several eigendecomposition operations, its
computational complexity is very high [79], [80].
To reduce the computational burden, an algorithm called

oblique projection MUSIC (OPMUSIC) was presented
in [81] for the localization and classification of narrowband
mixed FFSs and NFSs. The FF MUSIC estimator F (θ) and
the NFMUSIC estimator F (ϖ) are constructed to separately
extract FF and NF angles, where ϖ ≜ 2γ [81]. The FF
estimator is calculated from the following equation [81]:

F (θ) =

[
aHN (θ, ∞)EnEHn aN (θ, ∞)

]−1
, (39)

where aN represents the NF steering vector and En is the
noise subspace matrix resulting from the eigendecomposition
of the covariance matrix of the array (R = E

{
x (l) xH (l)

}
)

[29], [81]. The NF MUSIC estimator F (ϖ) is built based
on the symmetry property of the array geometry (as shown
in Fig. 2) and the extraction of the spectral signature of the
signal, which is only dependent on the DOA of the sources.
The oblique projection technique is used to separate NFSs
from FFSs [81]. The range NFSs are obtained by performing
KN 1-D searches, inwhich the range parameter search interval
in the NF region is divided into uniform steps of size 1r in
wavelength. The OPMUSIC method uses only second-order
statistics (SOS) and does not need a multidimensional search.
However, this algorithm suffers from a severe loss of array
aperture [50], [82]. In fact, due to the creation of overlap-
ping subvectors, it faces a fifty percent array aperture loss,
and the maximum number of resolvable sources is equal to
(N − 1)

/
2.

In [83], an ESPRIT-like algorithm was developed for the
problem of localization of mixed cyclostationary sources [84]
using a SULA. This algorithm is based on the third-order
cyclic moment [85]. By it, the NF direction and range param-
eters are automatically paired. The algorithm first constructs
two special third-order cyclic moment matrices, where the
rotational factor is a function of DOA and range of sources.
The DOAs of the sources are estimated by performing sin-
gular value decomposition (SVD) [86] to a matrix merged
from these matrices and MUSIC spectral search. Despite the
relatively low computational complexity of this method, the
array aperture loss and low range estimation accuracy are two
limitations of this method.
The authors of the study [87], by using a symmetric sparse

linear array (SLA), extended the array aperture. By exploiting
the special geometry of the array and the construction of
a cumulant matrix, the DOAs of the FFSs and NFSs are
estimated using the MUSIC technique. With the estimated
DOAs and covariance matrix of the sparse array, FF and NF
sources are identified, and the range parameter of NFSs is
obtained by defining the range spectrum. Compared to the
previous algorithms, research [87] has moderate computa-
tional complexity and better resolution and has improved the
accuracy of parameter estimation, but its range estimation
suffers from the problem of spurious peaks [29], [88].
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Based on the generalized ESPRIT (GESPRIT) algorithm
[89], [90], several methods for the localization of mixed
sources have been proposed [91], [92], [93], [94], which are
reviewed below.

In the study [91], first, the steering vectors of two subarrays
are combined to eliminate the range parameter to create a
new steering vector. This steering vector only contains DOA
information. Then, based on the polynomial rooting and
ESPRIT-like methods [95], [96], the DOAs of all sources are
obtained. Then, with the estimated DOAs and using MUSIC,
the range parameter is estimated. According to the number
of roots close to the unit circle, the number of sources in the
same direction can be determined. Finally, based on the size
of the range parameters, the source type (NFS or FFS) can
be determined. The algorithm [91] does not need high-order
statistics (HOS) and spectral search, and as a result, it has a
low computational cost. It is also able to determine the num-
ber of FFSs that have the same angle as the NFSs (denoted
by K ′, where 0 ≤ K ′

≤ KF and 0 ≤ K ′
≤ KN). However,

this method uses a series of additional assumptions about
the signal type, which limits the practical application of this
method.

A method based on the SOS is given in [92]. To improve
the estimation accuracy, after estimating the DOAs and power
of the FSs, the components related to the FF are eliminated
from the signal subspace. Then, based on the symmetry in
the SULA geometry, an NF estimator is used without the
need for 2-D search and parameter pairing. Compared to other
methods based on SOS, the algorithm [92] has achieved a
more logical classification of the types of signals. However,
the technique of eliminating FF components in it leads to
additional estimation errors.

The two-stage matrix differencing algorithm (TSMDA)
[93], [94], facing the problem of localization of mixed
sources, provides a reasonable classification of the source
type. By exploiting the structural differences between the
FF covariance matrix RF (Toeplitz structure) and the NF
covariance matrix RN (non-Toeplitz structure), the spatial
differencing method is used to classify the type of signals
and eliminate the FF components. As a result, the pure com-
ponents of the NF can be found in the covariance difference
matrix RD in the following form [93], [94]:

RD = JN1RJN = RN − JNR∗

NJN , (40)

where1R ≜ JNRJN −RT , and according to the properties of
the Toeplitz structure [97], it can be written RT

F = JNRFJN ,
and as a result, 1R = JNRNJN − RT

N. NF DOA and
range estimators based on a hybrid ESPRIT-like andMUSIC-
like method are implemented by taking advantage of the
symmetry feature in the SULA geometry, without the need
for parameter pairing. After the localization of NFSs, the
covariance matrix of the FF information is reconstructed as
follows [93], [94]:

R̂F = Us

(
1s − σ̂ 2IN

)
UH
s − R̂N, (41)

where1s and Us include the eigenvalues and eigenvectors of
the signal subspace ofR, respectively. In fact, after estimating
the power of the NSs, the NF components can be eliminated
from the signal subspace, and the DOAs of the FFSs can
be estimated by finding the peaks of the following spectral
function [93], [94]:

f (γ̄ ) =

[
aHF (γ ) ŨnŨH

n aF (γ )
]−1

, (42)

where aF and Ũn represent the steering vector and noise sub-
space of R̂F, respectively, and γ̄ denotes the electric angle of
the FFSs. TSMDA has better resolution than the method [81].
However, the low accuracy of estimation due to the remaining
effects of other components in the differencing operation and
the need to know the number of NFSs are the most important
drawbacks of TSMDA [56], [98].
It is worth mentioning that for GESPRIT-based algo-

rithms [91], [92], [93], [94], the number of NFSs they
can resolve is less than half of the number of array
sensors [98], [99].
In [100], [101], and [102], the authors use the sparse signal

reconstruction method for the passive localization of mixed
sources. Algorithms [100] and [101] are based on the con-
struction of FOC matrices and vectors, while in [102], the
anti-diagonal elements of the second-order covariance matrix
of the array are employed.
In the work [100], the DOAs of all sources are estimated

by constructing an array cumulant domain data that is only
related to the DOA parameter of the mixed sources. Then the
range parameter is estimated and the FFSs are separated from
themixed sources. Unlikemany algorithms that consider only
the NF region for range estimation or source classification,
in the approach [100], a range grids set with the number of Nr
elements is also defined for FFSs. Compared to the TSMU-
SIC algorithm, the method [100] provides better estimation
accuracy.
In the study [101], two special cumulant vectors are con-

structed sequentially, the first to obtain the direction of all
signals and the second to distinguish mixed sources as well
as estimate the range of NFSs.
In the study [102], by constructing the data from the SOS

domain of the array, which is only related to theDOAparame-
ter of the mixed sources, the DOA estimation of all sources is
obtained by using weighted norm minimization concerning
an overcomplete basis matrix with K̄ columns, where in
general K̄ ≫ K [103]. The weighted norm minimization
problem is defined based on the division of the sparse signal
representation framework into NL overlapping subvectors,
where NL > K . After that, the MUSIC spectral function
is used to distinguish the mixed sources as well as find the
more accurate DOA of the FFSs. Finally, based on the DOA
estimation, the range parameter is estimated.
In general, algorithms based on sparse reconstruc-

tion [100], [101], [102] contain a huge amount of calcula-
tions. Moreover, it is difficult to determine the regulatory
parameter that makes the trade-off between norms [50].
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A method based on the construction of FOCs is presented
in [104], which does not need to know the number of sources.
In the first step, this method separates the DOA estimation
from the range estimation by using the following cumulant
with time lag ι [104]:

cum
{
xm (l − ι) , x∗

−m (l) , x
∗
p (l) , x−p (l)

}
, (43)

where ι = 1, 2, . . . , ρ and ρ is the number of time lags.
To obtain DOAs estimate of FFSs and NFSs, based on the
structure of cumulant matrixC composed of spatial-temporal
cumulant of (43), the 1-D spectral function P (θ) is extracted
in the following form [104]:

P (θ) =

[
N − max eig

(
QH (θ)C†Q (θ)

)]−1
, (44)

whereQ is also made from spatial-temporal cumulant of (43)
[104]. Then, the range parameter of NFSs is estimated based
on the following MVDR beamformer [104]:

PMVDR (θ, r) =

[
aH (θ, r)R−1a (θ, r)

]−1
. (45)

The method [104] requires the construction of many
spatial-temporal cumulant matrices to improve the estimation
accuracy. Along with that, the application of angle and range
spectral search operations (based on MUSIC and MVDR
techniques) greatly increases its computational complexity.

An algorithm based on polynomial decomposing and using
FOC is presented in [51]. First, the SULA is divided into
two subarrays with different phase reference points. Three
FOC matrices C̄1, C̄2 and C̄3 are formed by the following
cumulants [51]:

cum
{
xm′ (l) , x−1−n′ (l) , x∗

−1−m′ (l) , x∗

n′ (l)
}
, (46)

cum
{
xm′′ (l) , x1−n′′ (l) , x∗

1−m′′ (l) , x∗

n′′ (l)
}
, (47)

cum
{
xm′ (l) , x1−n′′ (l) , x∗

−1−m′ (l) , x∗

n′′ (l)
}
, (48)

where m′
= −M , −M + 1, . . . , M − 1, n′

= −M , −M +

1, . . . , M−1,m′′
= −M+1, −M+2, . . . , M , n′′

= −M+

1, −M + 2, . . . , M . Cumulant matrices are designed so that
the range parameter of NFSs in steering vectors is omitted and
only contain DOA information. By collecting the above three

cumulant matrices in the form of a Hermite matrix
[
C1 CH

3
C3 C2

]
and based on an ESPRIT technique, the DOA of each source
is estimated at the phase reference point. By having the DOA
estimate, the coefficient matrix of the k-th source is formed
in the following form [51]:

Tk =

[
sin θk,−d/2 − sin θk, d/2
cos θk,−d/2 − cos θk, d/2

]
, (49)

where θk,−d/2 and θk, d/2 are defined as the DOAs of the k-th
source at two different center points. Sources are classified
according to determinant of Tk . Finally, the range of NFSs
is obtained. Despite the low computational complexity and
preventing aperture loss, the classification mechanism in this
method requires setting a threshold that may change in each
experiment [56]. This makes the practical application of the

algorithm difficult. In addition, this method suffers from low
accuracy in DOA estimation [56].
A method based on SOS is presented in [105] to estimate

the parameters of DOA, range and frequency of sources,
which avoids multi-dimensional spectral search.
An algorithm named mixed-order statistics (MOS) has

been developed using the combination of SOS and FOS [106],
which provides a reasonable classification of signals. How-
ever, it imposes strict limits on the DOA intervals of incoming
signals [56].
In the study [107], a method of mixed-order statistics [108]

based on the reconstruction of the cumulant matrix and the
use of the MUSIC spectrum is presented, which provides
good estimation accuracy.
Most of the methods reviewed above require heavy compu-

tations related to spectral search. In addition, some of them,
due to the combined use of spectral search and FOS, have
an extra processing volume. On the other hand, the relatively
severe loss of aperture, which can be seen in some of them,
is another issue that should be considered in employing a
sufficient number of sensors. Since in the case of NFSs,
in addition to estimating the angle and range parameters,
pairing between these two parameters should also be done,
even in some ESPRIT-basedmethods such as [109] and [110],
an additional process is required to pair these two parameters.
The differencing operations presented in [93] and [94] are
only valid for SOS, and as shown in [111], for methods based
on FOS, the Toeplitz property used in them to separate the FF
and NF components will no longer be effective.
In [111], a method called high-order differencing

algorithm (HODA) is presented, which in addition to the
effective separation of FF and NF components in the field
of HOS, estimates the location of NFSs and FFSs without
the need for complex spectral searches, the pairing process
and the sharp aperture loss. The use of HOS, in addition to
increasing the accuracy of estimation, also enables saving the
number of sensors [112]. In addition, the FOC is not sensitive
to Gaussian noise types [113]. Some advantages of HODA
are:

■ It does not require heavy searches.
■ The parameter pairing operation is performed automati-

cally and does not require an additional process.
■ It has low aperture loss compared to similar works.
■ It is the first research that provides a technique for

performing spatial differencing operations in the field of
HOS.

■ In addition to the main parameters, it also provides an
estimate of the frequencies and kurtosis [114] of the
sources.

The block diagram of HODA is given in Fig. 4. The matri-
ces C1, C2, C3, C4 and C5 are respectively constructed from
the following five cross-cumulant functions from the array
output stationary signals with different sensor lags [111]:

cum
{
x∗

u+1 (l) , xu+2 (l) , x∗

v+2 (l) , xv+1 (l)
}
, (50)

cum
{
x∗

u+1 (l) , xu+2 (l) , x∗

v+1 (l) , xv (l)
}
, (51)
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cum
{
x∗
u (l) , xu+1 (l) , x∗

M−v (l) , xM+1−v (l)
}
, (52)

cum
{
x∗

u+1 (l) , xu+2 (l) , x∗
M−v (l) , xM+1−v (l)

}
, (53)

cum
{
x∗
−p (l) , x−m (l) , x

∗
m (l) , xp (l)

}
, (54)

where u = −M , −M + 1, . . . , M − 2 and v = −M , −M +

1, . . . , M − 2. The angle estimation matrix CA is formed as
follows [111]:

CA ≜ C†
51C 52, (55)

whereC 51 andC 52 consist of 2M first row and 2M last row of
C 5, respectively. By applying the eigenvalue decomposition
(EVD) to CA, one can write [111]

CA = Ũ6Ũ
−1
, (56)

where 6 = diag
[
σ1 σ2 . . . σN

]
is a diagonal matrix with

ordered eigenvalues |σ1| ≥ |σ2| ≥ . . . ≥ |σK | > |σK+1| >

. . . > |σN | and part of U ∈ CN×N contains K eigenvectors
corresponding to eigenvalues σ1, σ2, . . . , σK , spanning the
signal subspace of the matrix CA. The DOA of k-the signal
can be extracted from the following equation [111]:

θ̂k = arcsin
(

λ ̸ σk

4πd

)
, (57)

where σk = e−j2γ̂k . Also, the appropriate number of snap-
shots (LP) to use in HODA is obtained from the following
formula [111]:

LP = L−rem
(
L, fs × LCM

([
1

f̂1

]
,

[
1

f̂2

]
, . . . ,

[
1

f̂K

]))
,

(58)

where fs is the sampling frequency, and fk represents the
linear frequency of the k-th signal. The frequencies of the
signals are estimated by extracting the pseudospectrum using
the MUSIC approach with frequency search step 1f in
Hz [115], [116].

The vastmajority ofmethods for the problem of parameters
estimation in mixed scenarios use MUSIC-like approaches
completely or in stages. Although MUSIC-based approaches
have been studied more and have advantages (including in
hardware implementation) [117], [118], in ESPRIT-based
approaches, the search step on the parameter space, which
is inherent in all MUSIC, ML, and maximum entropy tech-
niques, is omitted. In addition to the lower computational
load, the storage cost is also lower in them and they are
more robust against calibration errors [98], [112], [119].
In ASP, it has been more common to use only spatial infor-
mation [120], [121]. However, when the DOAs of the signals
are close to each other, the sources cannot be satisfactorily
resolved by spatial information alone. By exploiting spatial
and temporal features, the resolution and accuracy of esti-
mation can be improved [122], [123]. Presented in [98] is
an all-ESPRIT method called the high-order spatial-temporal
algorithm (HOSTA). In this algorithm, by constructing spe-
cial spatio-temporal cumulant matrices, it is possible to
localize NFSs and FFSs with good accuracy, high resolution,

relatively small computational volume and without the need
for any spectral search and pairing process. In addition, it is
able to perform the estimation of NFS and FFS parameters
with the same angle well. In summary, some of the key
features of HOSTA are:

■ It is all-ESPRIT and does not require any spectrum
search.

■ The parameter pairing operation is performed automati-
cally and does not require an additional process.

■ It has a low aperture loss compared to similar works.
■ It is possible to estimate NFS and FFS parameters that

are at the same angle with good accuracy.
■ Unlike some methods, it does not suffer from errors

caused by statistical differencing.

The block diagram of HOSTA is given in Fig. 5. The sensor
complex cross-cumulant matrices Cι1 and C2 are constructed
from two cumulants obtained from the array output stationary
signals with a time lag ι and different sensor lags in the
following form [98]:

cum
{
x∗

0 (l) , x0 (l) , x
∗
p (l) , xm (l + ι)

}
, (59)

cum
{
x∗
−p (l) , x−m (l) , x

∗
m (l) , xp (l)

}
, (60)

where ι = ils, ls is the sampling interval from signal xm (l),
i = 0, 1, . . . , ρ. C̃2 is reconstructed from C2 so that its
rank is equal to the known value of K . This is called the
rank-matching operation [50], [98]. Assuming that U =[
u1 u2 . . . uN

]
∈ CN×N is the left singular vector of C2,

V =
[
v1 v2 . . . vN

]
∈ CN×N is its right singular vector,

and 6 = diag
[
σ1 σ2 . . . σN

]
∈ RN×N is its singular values

(where σ1 ≥ σ2 ≥ . . . ≥ σN ), the reconstructed matrix C̃2
can be formed in the following form [98]:

C̃2 = U′6′V′H , (61)

where U′
=

[
u1 u2 . . . uK

]
∈ CN×K , V′

=[
v1 v2 . . . vK

]
∈ CN×K and 6′

= diag
[
σ1 σ2 . . . σK

]
∈

RK×K . The angle estimation matrix CA is formed as
follows [98]:

CA ≜ C†
21C22, (62)

whereC21 andC22 are created from 2M first row and 2M last
row of Hermitian matrix C̃2, respectively. The matrix Cι, ι

′

1 ∈

CN×N C is defined as follows [98]:

Cι, ι
′

1 ≜ Cι1C
ι′†
1 , (63)

where ι ∈ {ls, 2ls, . . . , ρls}, ι′ ∈ {ι− ls, ι− 2ls, . . . ,
ι− ρls} and ρ ≥ 1. The rank-matching operation [50],
[98] is also applied to Cι1 and Cι

′

1 so that the rank of the

corresponding reconstructed matrices Dι1 and Dι
′†
1 is equal

to K . The parameter estimation matrix Dι, ι
′

1 ∈ CN×N is
obtained in the following form [98]:

Dι, ι
′

1 ≜ Dι1D
ι′†
1 . (64)

65892 VOLUME 12, 2024



A. M. Molaei et al.: Comprehensive Review of DOA Estimation and Localization Approaches

FIGURE 4. HODA block diagram.

FIGURE 5. HOSTA block diagram.

Âι, ι
′

is an estimate of A that is obtained by exploiting the
cumulant matrices Cι1 and C

ι′

1 [98].
HOSTA does not have any restrictions on the type of signal

field; in other words, even all sources can be pure NF or
pure FF. Whereas in HODA, the maximum number of NFSs
that can be estimated is less than half the number of array
elements.

The paper [124] introduces an NF interference mitigation
(NFIM) beamformer to address challenges in passive sonar
arrays caused by NF interferences masking FFSs. The pro-
posed beamformer utilizes Nv configurable subarrays and
an azimuth-domain filter to separate FFS beams from NF
interferences without source constraints. Computer simula-
tions demonstrate that the NFIM beamformer improves DOA
estimation performance compared to conventional methods
by effectively mitigating interferences.

In studies [125], [126], techniques based on orthogonal
projection have been presented to deal with 2-DDOA estima-
tion of mixed sources using UCA. In [125], the differencing
matrix and the orthogonal projection matrix of the signal
subspace are constructed to classify signals and estimate
2-D DOAs. Then, the covariance matrix of the signals is
decomposed to obtain the noise subspace. In [126], cumu-
lant matrices are employed to estimate 2-D DOAs using
the orthogonal projection matrix of the signal subspace and
obtain the noise subspace using eigendecomposition. In these
studies, spatial SOS and FOS are used, respectively. Both
methods, like those of [127] and [128], require very complex

multidimensional searches, which can seriously hamper their
performance in real-time applications. In addition, the meth-
ods [125], [126] suffer from estimation error due to spatial
differencing.

In the approach [54] called the fourth-order spatio-
temporal algorithm (FOSA), by constructing two spatial-
temporal cumulant matrices, without range information, and
considering the fourth-order stationarity property, the 2-D
DOA estimation matrix is extracted. By using EVD, a vir-
tual steering matrix is estimated. During the implementation
process, a rank-matching mechanism is used to improve
accuracy. Then, the 2-D DOAs are estimated by the least-
squares (LS) technique [129], [130]. The ranges of NFSs are
estimated by constructing a spatial cumulant matrix and using
the 1-D MUSIC technique. Spectral search is implemented
in an interval beyond the Fresnel region, so that the positive
factors ζ < 1 and β > 1 are multiplied by the beginning
and the end of the Fresnel zone as interval expansion coeffi-
cients, respectively [54]. This approach provides a reasonable
classification of the type of signals.

IV. SPECIAL TECHNICAL ISSUES AND CHALLENGES
In the previous section, the basic approaches to resolving
the mixed-field sources problem were reviewed. However,
they and similar approaches may face challenges in practice,
including more complex assumptions/scenarios, or imple-
mentation limitations. In this section, special technical issues
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FIGURE 6. Interference due to multipath.

and challenges are discussed, and solutions/suggestions for
future research are provided.

A. MULTIPATH ENVIRONMENT
In practical multi-path environments and some applications
such as wireless communications and smart jammers, the
received signals may be uncorrelated (independent), partially
correlated, or coherent [60], [131], [132]. In the illustration
in Fig. 6, an object (building) affects the received signal by
adding a second path. The signal reaches the RX through two
different paths that have different lengths. The main path is
the direct path, while the second is caused by reflections from
the building.

The problem of DOA estimation for all incoming sig-
nals to sensors (including uncorrelated, partially correlated
and coherent signals [133], [134], [135]), in some practical
scenarios of array processing where multipath propagation
usually causes various returns (for example, multipath fading
channel estimation [136], [137], processing of back-scattered
acoustic signal [138], [139], spatially distributed signal [140],
[141], etc.), is of great importance. Although error sources
such as gain/phase mismatch and mutual coupling (MC)
between antennas also affect the angle estimation accuracy,
multipath distortion is the main source of gross errors in
the results [142], [143], [144]. For more details about the
effects of gain/phase mismatch andMC, refer to Section IV-E
and [145], [146].
Conventional DOA estimation algorithms were initially

developed with the assumption that the received signals
are uncorrelated; that is, there is no signal due to multi-
path propagation [147]. But in real environments, signals
received from a target/source/user may experience reflec-
tion, resulting in multiple return signals, which are actually
phase-delayed along with amplitude-weighted replicas of the
direct signal [148], [149]. Consequently, these signals are
coherent [149], [150]. Coherent signals decrease the rank
of spatial statistics matrices, and as a result, conventional
algorithms do not perform well in the presence of multipath
propagation [56], [151]. Also, the inability to distinguish
uncorrelated signals from coherent signals leads to the waste
of a significant number of sensors [60], [152].
Now let us describe the data model for a mixed-field

sources scenario in multipath environments [153]. Consider

FIGURE 7. A SULA consisting of N = 2M + 1 sensors in a mixed sources
scenario in a multipath environment.

a SULA consisting of N = 2M+1 isotropic sensors (Fig. 7),
which receivesK narrowband signals, consisting of a mixture
of Kn noncoherent signals (including KnN uncorrelated or
partially correlated NSs, and KnF uncorrelated or partially
correlated FSs), and Kc coherent signals (including KcN NSs
in GN groups and KcF FSs in GF groups). With a proper
sampling rate, the l-th sample of the signal observed by the
m-th sensor can be written in the following form [54], [56]:

xm (l) =

KnN∑
k=1

sk (l) am (θk , rk)+

Kn∑
k=KnN+1

sk (l) am (θk)

+

GN∑
g=1

Pg∑
µ=1

αg, µsKn+g (l) am
(
θKn+g, µ, rKn+g, µ

)
+

G∑
g=GN+1

Pg∑
µ=1

αg, µsKn+g (l) am
(
θKn+g, µ

)
+ nm (l) .

(65)

am (θ, r) and am (θ) are the m-th element of the steering
vector of NFSs (a (θ, r) ∈ CN×1) and steering vector of
FFSs (a (θ) ∈ CN×1), respectively. αg, µ and Pg respectively
represent the complex fading coefficient (FC) corresponding
to the µ-th signal from the g-th coherent group, and the
number of coherent signals in the g-th group, such that P1 +

P1+ . . .+PGN = KcN and PGN+1+PGN+2+ . . .+PG = KcF.
In matrix form, the array output can be expressed as

follows [56], [154]:

x (l) = AnNsnN (l)+ AnFsnF (l)+ AcN0NscN (l)

+ AcF0FscF (l)+ n (l) = A0s (l)+ n (l) , (66)

where x (l) ∈ CN×1 and [56], [154]

A =
[
AnN AnF AKn+1 AKn+2 . . . AKn+GN

AKn+GN+1 AKn+GN+2 . . . AKn+GN

]
∈ CN×K ,

(67)

AnN =
[
a (θ1, r1) a (θ2, r2) . . . a

(
θKnN , rKnN

) ]
∈ CN×KnN , (68)

AnF =
[
a

(
θKnN+1

)
a

(
θKnN+2

)
. . . a

(
θKn

) ]
∈ CN×KnF ,

(69)

AKn+g =
[
a

(
θKn+g, 1, rKn+g, 1

)
a

(
θKn+g, 2, rKn+g, 2

)
. . . a

(
θKn+g,Pg , rKn+g,Pg

)]
∈ CN×Pg , (70)
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AKn+g′ =

[
a

(
θKn+g′, 1

)
a

(
θKn+g′, 2

)
. . . a

(
θKn+g′,Pg′

) ]
∈ CN×Pg′ , (71)

s (l) =
[
sTnN (l) s

T
nF (l) s

T
cN (l) s

T
cF (l)

]T
∈ C(Kn+G)×1,

(72)

snN (l) =
[
s1 (l) s2 (l) . . . sKnN (l)

]T
∈ CKnN×1, (73)

snF (l) =
[
sKnN+1 (l) sKnN+2 (l) . . . sKn (l)

]T
∈ CKnF×1,

(74)

scN (l) =
[
sKn+1 (l) sKn+2 (l) . . . sKn+GN (l)

]T
∈ CGN×1,

(75)

scF (l) =
[
sKn+GN+1 (l) sKn+GN+2 (l) . . . sKn+G (l)

]T
∈ CGF×1, (76)

0 = blkdiag
[
IKn 0c

]
∈ CK×(Kn+G), (77)

0c = blkdiag
[
α1 α2 . . . αG

]
∈ CKc×G, (78)

n (l) =
[
n−M (l) n−M+1 (l) . . . nM (l)

]T
∈ CN×1,

(79)

where g = 1, 2, . . . , GN and g′
= GN +1, GN +2, . . . , G.

In the above equations, snN (l), snN (l), snN (l), and snN (l)
are the source vectors of NF noncoherent, FF noncoher-
ent, NN coherent, and FF coherent signals, respectively.
The matrix 0c contains information about the FCs, where
αg =

[
1 αg, 2 αg, 3 . . . αg,Pg

]T
∈ CPg×1 and αg′ =[

1 αg′, 2 αg′, 3 . . . αg′,Pg′

]T
∈ CPg′×1. According to Fresnel

approximation [56], [155], one can write

a (θk , rk) =

[
ej

(
−Mγk+M2χk

)
ej

(
(−M+1)γk+(−M+1)2χk

)
. . . ej

(
Mγk+M2χk

)]T
, (80)

a (θk) =
[
e−jMγk ej(−M+1)γk . . . ejMγk

]T
, (81)

a
(
θKn+g, µ, rKn+g, µ

)
=

[
ej

(
−MγKn+g, µ+M2φKn+g, µ

)
ej

(
(−M+1)γKn+g, µ+(−M+1)2φKn+g, µ

)
. . . ej

(
MγKn+g, µ+M2φKn+g, µ

)]T
, (82)

a
(
θKn+g, µ

)
=

[
e−jMγKn+g, µ ej(−M+1)γKn+g, µ . . . ejMγKn+g, µ

]T
.

(83)

For the array in Fig. 3, the signal xm (l) in (65) takes the
form below [69], [156]:

xm′ (l) =

Kn∑
k=1

sk (l) e
j 2π

λ
(rk−rm′ (θk , φk , rk ))

+

G∑
g=1

Pg∑
µ=1

αg, µsKn+g (l)

ej
2π
λ
(rKn+g, µ−rm′(θKn+g, µ, φKn+g, µ, rKn+g, µ))

+ nm′ (l) . (84)

Since if the source is in the FF, for the range parameter, it is
assumed that rk , rKn+g, µ → ∞, so according to (84) [69],
[157],

xm′ (l)

=



Kn∑
k=1

sk (l)+

G∑
g=1

Pg∑
µ=1

αg, µsKn+g (l)+ nm′ (l) ,

m′
= 0,

KnN∑
k=1

sk (l) e
j 2πR

λ

(
ηm′ (θk , φk )−

R
2rk

(
1−η2

m′ (θk , φk )
))

+

Kn∑
k=KnN+1

sk (l) e
j 2πR

λ
ηm′ (θk , φk )

+

GN∑
g=1

Pg∑
µ=1

αg, µsKn+g (l)×

e
j 2πR

λ

(
ηm′(θKn+g, µ, φKn+g, µ)− R

2ri

(
1−η2

m′(θKn+g, µ, φKn+g, µ)
))

+

G∑
g=GN+1

Pg∑
µ=1

αg, µsKn+g (l)

ej
2πR

λ
ηm′(φKn+g, µ, θKn+g, µ) + nm (l) ,

m′
= 1, 2, . . . , M .

(85)

The array output in matrix form is similar to (66), where
[69], [158]

AnN =
[
ηN (θ1, φ1, r1) ηN (θ2, φ2, r2)

. . . ηN
(
θKnN , φKnN , rKnN

)]
, (86)

AnF =
[
ηF

(
θKnN+1, φKnN+1

)
ηF

(
θKnN+2, φKnN+2

)
. . . ηF

(
θKn , φKn

)]
, (87)

AKn+g =
[
ηN

(
θKn+g, 1, φKn+g, 1, rKn+g, 1

)
ηN

(
θKn+g, 2, φKn+g, 2, rKn+g, 2

)
. . . ηN

(
θKn+g,Pg , φKn+g,Pg , rKn+g,Pg

)]
,

(88)

AKn+g′ =
[
ηF

(
θKn+g′, 1, φKn+g′, 1

)
ηF

(
θKn+g′, 2, φKn+g′, 2

)
. . . ηF

(
θKn+g′,Pg′ , φKn+g′,Pg′

) ]
, (89)

ηN (θk , φk , rk)

=

[
1 e

j 2πR
λ

(
η1(θk , φk )−

R
2rk

(
1−η21(θk , φk )

))

e
j 2πR

λ

(
η2(θk , φk )−

R
2rk

(
1−η22(θk , φk )

))

. . . e
j 2πR

λ

(
ηM (θk , φk )−

R
2rk

(
1−η2M (θk , φk )

))]T
,

(90)

ηF (θk , φk) =

[
1 ej

2πR
λ
η1(θk , φk ) ej

2πR
λ
η2(θk , φk )

. . . ej
2πR

λ
ηM (θk , φk )

]T
. (91)
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In [159] and [160], a two-step method for estimating the
DOA of an FFS and localizing its NF multipath reflections
is presented. In the first step, by using a calibration tech-
nique, the DOA of the FFS is estimated. In the second step,
to remove the FF components and obtain the pure NF compo-
nents, an NF to FF transformation is presented to estimate NF
multipath signals. It exploits a UCA for 2-D DOA estimation
and a virtual uniform linear array (ULA) structure for NF
multipath localization. The approach presented in [159] and
[160] is not able to resolve multiple sources and is applicable
only in the presence of one FFS.

For the array in Fig. 7, a method called components sepa-
ration algorithm (CSA) for localization of the mixed NF and
FF multiple sources in multipath environments is presented
in [56], which includes DOA estimation for FFSs and DOA
and range estimations for NFSs. CSA is based on FOS,which,
as mentioned earlier, increases the estimation accuracy, saves
the number of sensors, and is insensitive to Gaussian noise
types [112].
In summary, some key features of CSA are:
■ It is the first algorithm that is presented for the prob-

lem of multiple mixed NFSs and FFFs that can resolve
coherent signals.

■ It does not require multidimensional searches.
■ Designing a mechanism based on the integration of

techniques of squaring, projection, array interpolation
transform and spatial smoothing (SS) [161], [162] for
the problem of mixed coherent signals is one of the
innovations of problem solving.

■ Due to the separation of noncoherent signals and coher-
ent groups, and their separate resolve, it has low aperture
loss.

In addition to the assumptions [A1] and [A3] in
Section II-B, the following main assumptions are also con-
sidered for CSA:

[A5] Signals {sk (l)}
Kn+G
k=1 are statistically independent,

narrowband stationary processes.
[A6] The total number of sources (i.e. Kn +G) is known or

properly estimated by conventional methods [72], [73], [74].
[A7] The multipath components due to FFSs are in the FF

of the array and the multipath components due to NFSs are in
the NF.

[A8] The DOAs of the signals are not the same.
The block diagram of CSA is given in Fig. 8, in which two

cumulant matrices C1 and C2 are formed from the following
cumulants, respectively, by using the array output stationary
signals with different sensor lags [56]:

cum
{
x∗
m (l) , xp (l) , x

∗
−p (l) , x−m (l)

}
, (92)

cum
{
x∗

0 (l) , x0 (l) , x
∗
p (l) , xm (l)

}
. (93)

For decorrelation, the SS technique is applied to coherent esti-
mation matrix, where the array is divided into Nu overlapping
subarrays.

For the mixed sources scenario in multipath environments,
the following are suggestions for future research in this area:

• As the results in [56] show, CSA has a poor per-
formance in estimating coherent sources compared to
noncoherent sources. One of the reasons for this is that
the deviation of the estimate from the actual value in
each step is transferred to the next step. Therefore, the
percentage of error in the final estimates is higher than
the estimates of the first stages. A solution could be
to provide an algorithm that estimates the noncoherent
and coherent signals independently as much as possi-
ble, instead of a hierarchical algorithm (such as CSA).
For this purpose, the definition of special statistics
matrices may help to achieve this. In addition, a more
efficient technique, instead of using the array interpo-
lation transform, can improve the parameter estimation
of NF coherent signals.

• FCs provide multipath propagation characteristics.
Therefore, by estimating them, the effect of multipath
propagation can be removed, and the performance of
DOA and range estimations can be improved [163],
[164]. FCs can be extracted before DOA or range
estimations and may be fruitful in purifying the infor-
mation to estimate other parameters.

• The problem of estimating the parameters of mixed
signals in multipath environments using 2-D arrays (to
estimate the direction for both azimuth and elevation
angles), can be presented and solved as a new scenario
in future research.

• The use of radio-based simultaneous mapping and
localization process [165], [166] and reconfigurable
intelligent surface technology [167], [168]may provide
efficient solutions for the complex assumptions of this
subsection and more specific applications in this area.

B. CRAMÉR–RAO BOUND (CRB)
CRB is known as an important mathematical benchmark to
achieve a reference for evaluating the efficiency of algo-
rithms [169], [170]. CRB provides a lower bound on the
variance (minimum variance) of unbiased estimators [171],
[172]. CRB analyses in [155] and [173], for a linear array,
assume that the set of radiation sources are all from FF
and NF, respectively. Assuming the coexistence of FFS and
NFS with linear array, stochastic CRBs have been presented
in research [81]. Being uncorrelated of sources is the main
assumption of all the above. The stochastic CRBs related to
the problem mentioned in Section IV-A, for the linear array,
are derived in [153].

Research [174] focuses on NF CRBs for planar arrays.
As mentioned in Section II-B, among 2-D arrays, UCA is
usually preferred. The CRB analyses in [175] and [176]
assume that all signals impinging on the UCA are pure FF
or pure NF, respectively. CRBs derived in the above refer-
ences are not applicable to the localization problem of mixed
NFSs and FFSs, including uncorrelated, partially correlated
and coherent signals. The stochastic CRBs related to the
above problem, corresponding to the data model presented
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FIGURE 8. CSA block diagram.

in Section IV-A for the 2-D array, are derived as a compact
closed-form expression in [69], which can be used as a bench-
mark to evaluate the accuracy of the estimation parameters of
azimuth DOA, elevation DOA, and range, as well as complex
FCs for the algorithms under the relevant scenario.

C. APPROXIMATE NEAR-FIELD MODEL
The approaches reviewed in the above sections use the NF
approximation model [177], [178] to simplify the equations.
The reviewed methods, by using the exact models in (8)
and (26), definitely lose their effectiveness; because the basis
of simplifying cumulants and the resulting equations from
spatial statistics matrices is the use of (9) and (27).

More importantly, the studies [75], [179], [180] show that
the standard array manifold models sometimes differ signif-
icantly from the model based on EM theory. In particular,
it is shown that the standard models do not fit the equations
governing the EM field near an antenna or an array. Also,
linear prediction approaches do not take into account the
characteristics of the NFS, such as the type and orientation
of the transmitting antenna, which may have a profound
effect on the signals received by the array. The mismatch
between the highly idealized mathematical model and the
actual array response raises concerns about the performance
of conventional methods (both in resolving pure NFSs and in
resolving mixed-field sources) with real arrays.

Unlike the majority of existing approaches that are based
on the approximate model, in [181], [182], and [183], meth-
ods for NFSs localization are presented that consider the exact
wavefront model. For the mixed sources scenario, there is
a significant need for a comprehensive study of the errors
caused by employing the approximate NF model, along with
a solution to the problem when the exact model is consid-
ered [184].

D. WIDEBAND SIGNALS
A signal can be considered narrowband if [19], [185]

D
/
c ≪ 1

/
B, (94)

where D, c and B are the array length, speed of light
and signal bandwidth, respectively. If the condition (94)
is not satisfied, the signal is considered wideband and the

measurement model in (15) cannot be applied. In this case,
usually, first, the wide frequency band is decomposed into a
set of narrow sub-bands [87], in each of which the condition
of narrowband is fulfilled; so that the model (15) can be used.
For example, if a wide frequency band is decomposed into I
sub-bands, for each of them, (15) is applicable. Therefore, the
widebandmeasurement model can be written in the following
form [186], [187]:

xi (l) = A (fi) si (l)+ ni (l) , (95)

where xi (l) ∈ CN×1, si (l) ∈ CK×1 and ni (l) ∈ CN×1

are respectively the measurement, signal and noise vectors
in the l-th sample of the i-th sub-band. A (fi) and fi are the
array steering matrix and frequency corresponding to the
i-th sub-band, respectively. Therefore, the steering matrix of
each sub-band is different, but the DOA of all sub-bands is
the same.

In [188], the problem of localization of wideband sources
in the NF of the sensor array has been addressed. More-
over, in [189], a two-step algorithm is developed to localize
the mixed FF and NF acoustic sources using a N ′-order
spherical microphone array [190], [191] in a free-field envi-
ronment. The algorithm proposed in [189] can localize
multiple wideband mixed-field sources. Also, the proposed
method presented in [192] works for FFSs inmixedwideband
signals (FMW).

E. THE EFFECT OF ANTENNA MUTUAL COUPLING
MC between antennas reduces their efficiencies and thus
the estimation accuracy [193], [194]. In fact, when such a
phenomenon occurs, the voltage of each of the antennas is
not only caused by the radiation wave, but the radiation signal
also induces a current to the other elements of the array,
which makes them act as secondary radiators and create an
additional voltage on the adjacent elements [195], [196].
A simple way to solve this issue is to increase the distance

between the elements, which leads to an increase in the physi-
cal area of the array. However, this solution not only conflicts
with today’s modern wireless communications [197], [198]
but also adds the phase ambiguity problem to many algo-
rithms presented in the mixed-field scenario. Obviously, the
larger the aperture of the array, the higher the accuracy of
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the results [199], [200]. On the other hand, the size of the
aperture of the array is related to the number of array elements
and the distance between adjacent array elements. Therefore,
when the number of array elements and the distance between
adjacent elements increases, the accuracy of the results also
increases. However, according to the analysis of [29] and
[98], for many algorithms in the mixed sources scenario,
especially those that use FOS and even some algorithms that
exploit SOS, when d (spacing between the array elements)
is chosen larger than λ

/
4, although the accuracy increases,

phase ambiguity occurs. Consider (56) and (57). The diagonal
entries of6, i.e. σk = ej4πd sin θk /λ , are the eigenvalues ofCA.
Without placing any condition on d , a series of ambiguous
DOA estimates are obtained as follows [29], [98]:

θk, z = arcsin
(
νk + z

λ

2d

)
, (96)

where νk = λ ̸ σk
/
4πd and [29], [98]⌈

2d
λ
(−1 − νk)

⌉
≤ z ≤

⌊
2d
λ
(1 − νk)

⌋
. (97)

For every θk and d , always −π ≤ ̸ σk ≤ π . To avoid
any cyclic ambiguity in ̸ σk , it must be bounded to 0 ≤

̸ σk ≤ π and −π ≤ ̸ σk ≤ 0 for 0 ≤ ̸ θk ≤ π
/
2 and

−π
/
2 ≤ ̸ θk ≤ 0, respectively. According to (97), to avoid

ambiguity, λ
/
4 should be considered as the upper bound of

d . This is the reason why in cumulant-based algorithms or
some SOS-based algorithms (depending on how the statistics
functions are defined) in the scenario of mixed sources, inter-
element spacing d ≤ λ

/
4 is used.

The use of special antennas made or insulated with special
materials, for example, usingmantle cloaking [201], photonic
bandgap structures between elements [202], [203] and neu-
tralization line [204], [205] are other solutions in the physical
layer for dealing with the problem of MC. It should be noted
that the last two methods, in addition to making the design
more complicated, do not work for dipole andmonopole array
antennas [206]. In addition to the above solutions, electrically
small antennas [207], [208] with a size of λ

/
10 or less may

be used. In this case, the distance between the antennas can
be less than λ

/
10; and to reduce the MC effect in this case,

metamaterials with cells less than λ
/
100 can be used.

Another strategy can be to use a compensator matrix in the
RX processing part [209], [210]. This method is suitable for
eliminating the effect of MC in dipole array antennas. The
formation of the compensationmatrix requires the calculation
of the mutual impedance between the elements [211], [212].
Considering the effect of MC between array elements, (15)
changes to the following form [213], [214]:

x (l) = MAs (l)+ n (l) , (98)

where M represents the MC matrix (MCM). It is often
sufficient to consider the ULA coupling model with finite
non-zero coefficients, and a symmetric Toeplitz matrix can
be used to model the MC [215], [216]. Therefore, the MCM

of the array in Fig. 2 can be written as [217] and [218]

M =



c1 c2 . . . cm̃ 0 0 . . . 0
c2 c1 c2 . . . cm̃ 0 . . . 0
...
. . .

. . .
. . .

. . .
. . .

. . .
...

cm̃ . . . c2 c1 c2 . . . cm̃ 0
0 cm̃ . . . c2 c1 c2 . . . cm̃

0 0 cm̃ . . . c2 c1 c2
...

...
. . .

. . .
. . .

. . .
. . .

. . . c2
0 . . . 0 0 cm̃ . . . c2 c1


∈ CN×N , (99)

where m̃ indicates the number of non-zero MC coefficients
(MCCs), and 1 = |c1| > |c2| > . . . > |cm̃| > 0.

Based on the rank reduction (RARE) principle [219],
[220], in [221], a localization algorithm called two-stage
RARE (TSRARE) is presented for mixed FFSs and NFSs in
the presence of unknown MC. The TSRARE algorithm only
requires SOS and 1-D spectral search. Another localization
algorithm for mixed-field sources under unknown MC is
proposed in [222], which is based on rectilinearity [223].
In this algorithm, the multiple parameters of DOA, range, and
MCC are decoupled, so that only three 1-D spectral searches
are needed to estimate the parameters of the mixed rectilinear
signals [224]. In addition, the closed-form deterministic CRB
form of the corresponding problem is also derived. In [225],
the authors have proposed a symmetric thinned coprime array
(STCA) with the aim of reducing MC in a mixed sources
scenario. The simulation results in this work show that STCA
can achieve better performance than other symmetric nested
arrays under the same array sensors and MC effects. In [226],
an effective approach to resolve FFSs in mixed signals (FM)
using SULA is presented, which in addition to considering
MC effects, gain/phase imperfections are also addressed. The
issue of array gain/phase uncertainties for mixed sources is
also addressed in [227]. The authors in [227] have developed
an algorithm using partly calibrated nonuniform linear arrays,
which is compatible with exact spatial geometries. Also,
in [76], a method called calibration for mixed FF and NF
signals (CFN) has been proposed for the scenario of mixed
sources, in which gain/phase error array is considered.

F. SPARSE ARRAYS
Achieving high resolution and estimation accuracy neces-
sitates a large array aperture [227], [228]. To fulfill this
requirement, it becomes imperative to augment the number
of array elements, consequently escalating the number of
circuit connections for the antennas. This increment, in turn,
results in heightened hardware complexity within the system,
accompanied by an associated increase in overall costs. One
of the ways to overcome this problem is the sparse array
structure [229]. By using sparse array structures, it is possible
to estimate the direction of O

(
N 2

)
sources through only

O (N ) sensors [230].
In the study [231], an algorithm based on MUSIC has

been developed for locating mixed FFSs and NFSs using
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a structured sparse array and FOCs. A geometric proof is
also provided to justify the utilisation of the proposed sparse
linear array and to calculate the effective aperture of the array.
The proposed algorithm enhances the resolution, estimation
accuracy and the number of resolvable sources. In [52],
a localization approach for mixed sources using a symmetric
double-nested array (SDNA), by applying the oblique pro-
jection technique and constructing a special NF cumulant
matrix is presented. Also, under a given number of sensors,
the consecutive range of difference coarray and optimum
array configurations for SDNA have been extracted. In the
study [232], a generalized symmetric linear array framework
is proposed that unifies all SULAs or symmetric SLAs,
including symmetric nested arrays, cantor array and fractal
arrays, for mixed sources localization. To increase the degrees
of freedom of these arrays, the HOC matrix of the array
output from the coarray perspective is used. The angle and
range information are obtained by using the atomic norm
technique from the gridless manner [233], [234] and applying
the norm minimization technique to the covariance signal
model, respectively. The authors claim that this method can
be applied to any ULAs or symmetric SLAs to localize a
mixture of FFSs and NFSs. In the study [235], in addition
to designing an enhanced symmetric nested array, which
can achieve more consecutive lags [236] and more unique
lags [237] compared to a generalized nested array, a special
cumulant matrix has been developed, which can automat-
ically generate the largest consecutive lags. A symmetric
flipped nested array (SFNA) for the localization of mixed-
field non-circular (NC) sources is proposed in [238], where
NC phase information can be removed by taking advantage
of the special geometry of the array. In [239], two sparse
symmetric linear arrays (SSLAs) named extended symmet-
ric nested array (ESNA) and translation and transformation
symmetric nested array (TTSNA) are designed for mixed
sources localization. The ESNA configuration consists of
three sparse SULAs with specified inter-element spacing and
can achieve a higher number of unique lags than other SSLAs
under the same number of array elements. Also, TTSNA
is designed on the basis of nested arrays, which makes it
possible to achieve a higher number of consecutive lags than
other SSLAs. In addition, closed-form expressions of the two
array configurations are provided in terms of the number of
unique and consecutive lags.

G. TRACKING PARAMETERS
Tracking the parameters of multiple moving sources is impor-
tant in wide areas such as surveillance in military applications
and air traffic control in civilian applications [240], [241],
[242]. A basic method for DOA tracking is to first find the
DOAs for each time frame by a DOA estimation algorithm
under the assumption that the directions do not change in
each time frame. Each of the recently estimated DOAs is then
linked to the previous estimates to track DOA changes and
source movement. The above assumes that the measurement

can be done quickly enough concerning the coherence time
of the channel with a non-stationary target.

Parameter estimation and tracking represent pivotal
research areas within the domain of direction finding and
localization. While significant strides have been made in
addressing the former, the latter, pertaining to sources with
dynamic and non-static positions, remains an active and
evolving research frontier, warranting further investigation
and scholarly attention. Although approaches have been pre-
sented for parameters tracking [243], [244], [245], [246],
[247], [248], none have been developed for the mixed-field
sources scenario. Regarding tracking parameters in the sce-
nario of mixed sources, two cases may be imagined. First,
it is assumed that despite the movement of sources, NFSs will
remain in NF and FFSs will remain in FF; and a more com-
plicated case is that during the tracking process the mobile
source transitions between FF and NF.

H. ESTIMATION OF PARAMETERS IN THE PRESENCE OF
TYPES OF NOISE
For noise, there are many sources; for example, natural
and man-made environmental noise in the transmission
path [249], [250], [251]. The RX also produces noise such as
thermal noise, shot noise and flicker noise [252], [253]. The
RX noise is often the main source of noise, and additive white
Gaussian noise is a good model for it. In many studies, noise
is considered spatially and temporally white with Gaussian
distribution, so that [254] and [255]

E {n (l)} = 0, E
{
n (l)nH

(
l ′
)}

= σ 2IN δ
[
l − l ′

]
,

E
{
n (l)nT

(
l ′
)}

= 0, ∀ l, l ′. (100)

The reason for this assumption is that if there are multiple
sources of noise, according to the central limit theorem,
their sum has a Gaussian distribution [256], [257]. Also, the
assumption of white Gaussian noise greatly simplifies the
performance analysis of DOA estimation.

Generally, the reason for the presence of colored (cor-
related) noise is interference between channels, random
radiation from distributed sources, echoes, unwanted inter-
ference, etc [258]. Prominent examples of this noise occur in
sonar (where there is ocean noise due to marine life, waves or
ships) and in radar (where the background noise consists of
ground clutter, sea clutter and scattering interference) [259].
If the noise is considered correlated, then the spatial covari-
ance of the noise will be non-diagonal [260], [261].
Radar, sonar and communication systems are instances

of application areas in non-Gaussian and non-stationary
environments [262], [263], [264]. Non-stationary or
non-Gaussian noise environments can be caused by various
reasons such as changing conditions during operation and
the presence of impulsive noise [265], [266]. For example,
the variance of Gaussian observation noise may change over
time. In this case, n (l) ∼ N

(
0, σ 2

l IN
)
, where σ 2

l IN is
the noise covariance matrix at time l. Also, noise samples
n (l) may result from a spherically symmetric distribution
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described by a multivariate PDF that is only a function of the
Euclidean norm of the random vector n [267], [268]. Another
type of non-Gaussian noise environment may occur in such
a way that the noise vectors at some time instants have much
more variance than at other instants. A common model for
such a case is an ε-contaminated Gaussian distribution with
a cumulative distribution function (CDF) of the following
form [267], [269]:

Fn (n) = (1 − ε)2
(
n; σ̃ 2IN

)
+ ε2

(
n;

⌢
σ
2
IN

)
, (101)

where2(n; IN ) is the CDF of the zero mean Gaussian vector
n with covariance matrix IN . ε ∈ [0, 1], and σ̃ 2 and ⌢

σ
2

are the variance of the samples originating to the nominal
and contaminating distributions, respectively. Typically, ε is

a number close to zero and σ̃ 2
≪

⌢
σ
2
.

The scenario of mixed NFSs and FFSs has been addressed
so far only under additive (white and color) Gaussian
noise [50], [54], [98], [111], [270]. As mentioned earlier,
FOCs are insensitive to Gaussian noise types. Note that the
algorithms developed by FOCs all have a limiting assumption
that the source signals must be non-Gaussian; because the
fourth-order moment and cumulant of Gaussian processes is
zero [271], [272]. However, the non-Gaussianity of signals
is not a strong limiting assumption; because non-Gaussian
signals include a wide range of applications such as seis-
mology, sonar, radio astronomy and digital communications
[273], [274].
In wireless communications, signal degradation may occur

due to the propagation of waves through random heteroge-
neous media such as urban areas or indoor environments.
As a result, these waves, before impinging onto the antenna
array, undergo random amplitude variation, which can be
considered as a type of multiplicative noise from the point of
view of the signal. Exploring the estimation of parameters for
mixed-field sources in the presence of both additive noise and
multiplicative noise constitutes a promising avenue for future
research in this area; because this is a scenario that often
happens in real wireless communications systems. In this
case, the general form of the received signal in (13) can be
expressed as follows [275], [276]:

xm (l) = um (l)
K∑
k=1

sk (l) am (θk , rk)+ nm (l) , (102)

where um (l) is the multiplicative noise corresponding to the
m-th sensor.

I. TIME DIFFERENCE OF ARRIVAL (TDOA)
Measuring the transmitted signal by two separate RXs allows
the calculation of the TDOA between the RXs [277], [278].
By estimating the TDOA, other parameters that describe
the source location, including DOA and range, can be
calculated [279]. Calculating the range for TDOA point posi-
tioning involves determining whether the source is in the NF
or FF, estimating the DOA, and potentially utilizing the mod-
ified polar representation (MPR) [280] to achieve accurate

localization [279]. The closed-form solutionmethods, such as
successive unconstrainedminimization [281] and generalized
trust region subproblem [282], provide efficient algorithms
for TDOA positioning in MPR, ensuring stable and accurate
estimation even under noise [279].
In [283], a unified approach based on TDOA is presented

for locating a source that can be in the NF or FF. It is
also shown that it is not possible to obtain the Cartesian
coordinates of a distant source from Gaussian measurements
when applying the NF model and derive the DOA bias of
a not-so-distant source when using the FF model [283].
The approach [283] is limited to one source only. In [284],
a method for the localization of multiple sources is pro-
posed to eliminate association ambiguity for mixed NFSs
and FFSs. A spatial source localization model is constructed
in the modified polar representation without needing prior
knowledge of whether the source is in the NF or FF. The
localization model for multiple sources is derived using all
possible permutations of TDOA sequences obtained from the
original array. In addition, comparative analysis is performed
through simulation and experiment on real speech datasets
under different localization scenarios.
It is worth mentioning that the performance of TDOA is

completely related to the signal bandwidth, so as the signal
bandwidth increases, its performance improves [285]. It is
sometimes impossible or difficult to estimate parameters of
unmodulated signals and narrowband signals by TDOA tech-
niques [286].

J. COMPRESSIVE SENSING (CS) TECHNIQUES
By considering the sparsity of the angle and range domains
of the targets/sources, the localization problem can be turned
into a sparse estimation problem [88]. In this way, it is
assumed that there is a limited number of sources to estimate
the angle/range, and this causes there to be a small number of
peaks corresponding to the sources in the spatial spectrum.
Such a problem can be considered a sparse signal recon-
struction problem, and it uses CS reconstruction algorithms
to recover the location of the peaks (angles/ranges) [287].
CS-based parameter estimation methods are robust in the
condition of low number of snapshots [288], [289].
Based on FOS, a sparse reconstruction algorithm for the

localization of mixed NFSs and FFSs is presented in the
study [80]. By exploiting the structural characteristics of
an SULA, an FOC matrix is constructed that separates
angular and range information. Based on the sparse represen-
tation framework, a weighted norm minimization algorithm
is developed to obtain DOAs of mixed sources. Next, another
FOC matrix containing both the DOA and range information
of the mixed sources is constructed. With DOA estimates,
the 2-D spatial dictionary can be reduced to a 1-D dictionary
that depends on the parameters. Then, by using a similar
sparse reconstruction method, an estimate of the range of
mixed sources can be obtained, and the type of sources can
be distinguished from those ranges.
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In [290], complex variational mode decomposition
(CVMD) [291], [292], [293] is used to localize mixed NFSs
and FFSs sources, which works with a single snapshot. Tak-
ing advantage of the fact that the signal model of the source
localization problem is similar to the time-domain frequency-
modulated signal model, in [290], CVMD is extended for
array signal processing. Decomposition results of array mea-
surements can correspond to potential sources at different
locations. The DOA and range of the sources are estimated
by model fitting with the decomposed sub-signals.

K. HIGHER-ORDER STATISTICS
Statistics of orders higher than four (such as sixth- and eighth-
order statistics) have been especially used in the area of
automaticmodulation classification [294], [295], [296]. Also,
they have been used in a few works [297], [298], [299] in the
area of sources DOA estimation.

The feasibility of using statistics of orders higher than
four, to improve the performance (especially to enhance the
accuracy and resolution of the results) in the scenario of
mixed-field sources, can be studied in the future. It is shown
in [297] that by using 2υth-order cumulants, it is possible to
have a virtual array with an aperture of O

(
(2υ + 1)N 2υ

)
.

With such an enhancement, although one can expect an
increase in resolving capabilities, identifiability, and estima-
tion accuracy, the sharp increase in computational complexity
and the need for many snapshots will be among the inevitable
drawbacks of using these higher-order statistics [300], [301].

L. POLARIZATION
The effectiveness of polarization diversity has been proven
in wireless communications and various types of radar sys-
tems [302], [303], [304]. Polarization is also incorporated
in array antennas for improved estimation of FF and NF
signals parameters (including DOA and range) [184], [305],
[306], [307], [308], [309], [310]. It has been shown that the
use of polarimetric information can significantly improve the
accuracy of source parameter estimation [311], [312]. For
the SULA of Fig. 9 consisting of dual-polarization sensors
placed on a flat plane in a 2-D surface, the received signal
model at the m-th sensor is expressed separately for x and y
polarizations [311], [313].
A multidimensional parameter estimation method for

mixed NFSs and FFSs based on polarization sensitive array,
FOC, joint diagonalization technology [314], [315] and prop-
agator method [316], [317] is presented in [318], which can
jointly estimate DOA, range, frequency, polarization auxil-
iary angle [319], and polarization phase difference [320].
In thismethod, the FOCmatrix is constructed using the output
on the label of the specific dipole pairs of the received array,
which effectively avoids the matrix rank reduction caused
by the FFSs coexistence situation. In addition, the proposed
method employs the orthogonal propagation algorithm for
subspace decomposition and uses the total LS solution to

FIGURE 9. An example array geometry for polarized signals.

replace the orthogonal solution of SVD, which is effective
in reducing computational complexity.

M. ONE-BIT MEASUREMENTS
One-bit DOA estimation represents a paradigm shift in
wireless communication and radar systems, addressing the
persistent challenge of high-resolution quantization [321].
Traditional methods require costly and complex hardware
setups due to the exponential increase in power consumption
with higher quantization bit numbers in analog-to-digital con-
verters (ADCs) [322]. However, with the advent of one-bit
ADCs, which utilize simple comparators and consume min-
imal circuit power, there is a promising avenue for improve-
ment, particularly in massive multiple-input multiple-output
systems [323].
Most of the researches in the area of one-bit DOA estima-

tion have been carried out under the FF assumption [324],
[325], [326], [327]. The NF localization approach in [328]
is studied under one-bit measurement to show its robust-
ness. However, the assumption of coexistence of FFSs and
NFSs presents a significant challenge that has not yet been
addressed in the literature. Future work in this area could
focus on developing localization algorithms specifically tai-
lored to handle the coexistence of NFSs and FFSs under
one-bit measurement constraints.

N. METASURFACE ANTENNAS
Metasurface antennas represent a groundbreaking advance-
ment in antenna technology, leveraging the principles
of metamaterials and surface electromagnetics to achieve
unprecedented control over electromagnetic waves [329].
By designing metasurfaces with tailored properties, such as
phase modulation and beam steering, they have recently been
widely employed in advanced imaging systems for enhancing
resolution, reducing aberrations, and enabling novel imaging
modalities [330], [331], [332], [333].
Metasurface antennas offer promising opportunities for

enhancing the performance of DOA estimation and localiza-
tion techniques [334]. By integrating metasurface structures
into antenna arrays, researchers in the area of localization
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of mixed-field sources can achieve precise control over the
radiation patterns and beamforming capabilities, enabling
accurate localization of signal sources in both azimuth and
elevation domains [335]. Metasurface-based antennas can
mitigate MC effects and improve array sensitivity, lead-
ing to enhanced DOA estimation accuracy, particularly in
scenarios with complex propagation environments and inter-
ference [336]. Moreover, the reconfigurability and tunability
of metasurface antennas allow for adaptive beamforming and
dynamic localization, enabling robust operation in dynamic
and cluttered environments [337].

O. DEEP LEARNING (DL)
DL is a subset of machine learning that involves the use of
artificial neural networks to model and solve complex prob-
lems [338], [339], [340]. It has proven to be highly effective
in handling complex and high-dimensional data, making it
well-suited for ASP tasks [341], [342], [343].
In [344], convolutional neural networks (CNNs) are pre-

sented to achieve NFSs localization through SDNA. Due
to the possibility of separating noncoherent NFSs in the
frequency spectrum, first, the phase difference matrices are
calculated, and the typical elements are considered as the
input of the networks. To guarantee the accuracy of the angle
estimation, autoencoders are implemented to divide the angle
subregions, and the corresponding classification CNNs are
constructed to obtain the angles of the NFSs. Then, a specific
range vector without estimated angles is constructed, and
regression CNN is used to obtain the sources range.

In the study [345], a DL-based DOA estimation approach
considering Nc classes is presented to detect FFSs under
correlated NF interferences. This approach consists of an
NF interference rejection network and a DOA estimation
network. The first network calculates the NF components
of the covariance matrix by CNNs with a complex mapper.
The NF components are rejected from the covariance matrix.
The second network removes the interference residuals and
estimates the DOAs of the interfered FFSs.

P. FULL-WAVE OR EXPERIMENTAL DATA
In most references related to DOA estimation and localiza-
tion, the performance of the methods has been evaluated
only with simulated data obtained from semi-analytical sys-
tems (e.g. MATLAB) [346]. Full-wave simulations (e.g. with
Wireless InSite, CST Microwave Studio, FEKO, HFSS, etc.)
or experimental data obtained directly from measurements
in the real-world environment can provide a more realistic
representation of the challenges faced in practical applica-
tions [347], [348].

In researches [157], [349], [350], [351], [352], full-wave
simulations, and in researches [353], [354], [355], [356],
[357], [358], experimental data (for radio or acoustic sig-
nals) have been used to evaluate the performance of DOA
estimation or localization in pure fields. However, for the
mixed-field sources scenario, only a limited real experiment

has been performed in an anechoic chamber with microstrip
patch antennas with a carrier frequency of 1.26 GHz in [51].
Also, in [159] and [160], EM simulations have been per-
formed in Wireless InSite assuming only one FSS and its
multipaths. A comprehensive study including a combination
of numerically simulated data, full-wave data, and experi-
mental data allows researchers to investigate both controlled
conditions and the challenges posed by practical applications
for the complex scenario of the coexistence of NFSs and
FFSs.

Q. ARRAY GAIN
Array gain plays a pivotal role in the performance of
DOA algorithms, especially when dealing with directional
antenna arrays [359], [360], [361]. Unlike isotropic or omni-
directional arrays, which have uniform radiation patterns,
directional arrays exhibit narrower radiation patterns that
change as the main beam is directed towards different angular
directions [359], [362].
Most of the DOA estimation and localization algorithms in

the mixed-field sources scenario are designed to work with
isotropic or omnidirectional antenna arrays. The shift from
isotropic to directional elements alters the radiation pattern,
subsequently impacting the maximum gain and directivity
of the array [359], [363], [364]. As a result, any modifi-
cations to existing algorithms must consider these changes
in array gain [359], [363], [364]. Consequently, there is a
pressing need to adapt these algorithms to suit directional
antenna arrays effectively. One promising avenue for address-
ing this challenge involves developing new approaches for
calculating the statistics matrices, a crucial component in
many existing algorithms. These approaches must inherently
account for variations in array gain as the array is swept across
different ‘‘look directions’’ in azimuth or elevation angles.

R. ROBUST STATISTICS
Traditional statistical signal processing relies heavily on the
assumption of a normal (Gaussian) distribution, which often
serves as a suitable model for the available data [365], [366].
This Gaussian model facilitates the derivation of optimal
procedures in many cases [365], [367]. However, devia-
tions from Gaussian behavior have been observed in various
measurement studies [365], [368]. Robust statistical meth-
ods address the reality that assumed data models are only
approximate rather than exact. Unlike classical parametric
approaches, robust methods are less affected by minor vari-
ations in the data, such as outliers or slight deviations from
the model [365], [369]. They also demonstrate nearly opti-
mal performance even when the underlying assumptions are
not precisely met. While achieving optimality is desirable,
engineers often prioritize robustness in their decision-making
processes.

The study [370] introduces a robust method for estimating
the DOA based on sparse Bayesian learning (SBL). This
method is designed to handle non-circular signals amidst
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TABLE 2. Comparison of works available in the literature in the scenario of mixed-field sources in terms of design and implementation foundations.
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TABLE 2. (Continued.) Comparison of works available in the literature in the scenario of mixed-field sources in terms of design and implementation
foundations.

impulse noise and MC. Initially, the Toeplitz property of
the MCM is leveraged to nullify the impact of array MC,
while also extending the array aperture using non-circular
signal properties. To mitigate the effects of impulse noise,
the algorithm reconstructs the outlier segment of the impulse
noise alongside the original signal in the signal matrix. Subse-
quently, a coarse estimation of DOA is achieved by balancing
accuracy and efficiency through parameter estimation using
the alternating SBL update algorithm. Finally, a 1-D search
is employed around the identified spectral peaks to achieve
precise DOA estimation.

To address the issue of declining performance in traditional
localization methods caused by impulsive noise when dealing
with a mix of NFSs and FFSs, a robust localization approach
is proposed in [371]. This method begins by mitigating the
effects of impulsive noise using a weighted outlier filter. Sub-
sequently, the DOAs of FFSs are estimated through aMUSIC
spectral peaks search. With the DOAs of FFSs identified,
the mixed sources can then be separated. Additionally, the
estimation of localization parameters for NFSs can avoid 2-D
spectral peaks search through the decomposition of steering
vectors. The CRB for unbiased estimations of DOA and range
under impulsive noise are also derived.

V. SUMMARIZED COMPARATIVE EVALUATION
This section highlights and summarizes the main differ-
ences between the existing methods for DOA estimation and

localization in the scenario of mixed NFSs and FFSs, which
were discussed in detail in the previous sections, in tables,
to make a general comparison between them. In Table 2,
the comparison of the works available in the literature in the
scenario of mixed-field sources is given in terms of design
and implementation foundations. References are listed in
order of publication year from the oldest to the newest in
the first column. Abbreviated names of the methods are also
mentioned, if any. In the second column of the table, the
type of array used is mentioned. References that use the same
array type are marked with the same color. At a glance, it can
be seen that SULA is the dominant array that researchers
have considered in their work due to its simplicity and the
exploitation of its symmetry in developing algorithms. In the
third column of the table, the main assumptions used in
each work are mentioned. Wherever not stated, it is assumed
that the source signal is narrowband, the array is calibrated,
and the noise is additive. Although all works are under
mixed-field sources scenario, some of them include more
comprehensive/complex scenarios, such as mixed sources in
multipath environments, mixed sources under MC, mixed
sources with wideband signals, etc. These items are also
highlighted in the third column. Special scenarios and issues
are discussed in detail in eighteen subsections in Section IV.
The inter-element spacing conditions are related to avoiding
phase ambiguity, which was discussed in Section IV-E. In the
fourth column of the table, the type of statistics used in each
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TABLE 3. Comparison of works available in the literature in the scenario of mixed-field sources in terms of aperture loss and major computational
complexities.
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TABLE 3. (Continued.) Comparison of works available in the literature in the scenario of mixed-field sources in terms of aperture loss and major
computational complexities.

of the approaches is mentioned. References that have used the
same type of statistics are marked with the same color. Most
of the approaches have employed pure FOS or pure SOS;
however, some works have used hybrid statistics. There are
also a few methods that, being single-snapshot, do not rely
on signal statistics. Finally, in the last column of Table 2, the
basis of the method used in each of the approaches is given.
More details of the algorithms and their implementation can
be found in Sections III and IV.
In Table 3, the comparison of works available in the lit-

erature in the scenario of mixed-field sources in terms of
aperture loss and computational complexity is given. Similar
to Table 2, the references are listed in the order of publication
year and with the abbreviated name in the first column. One
of the quantitative criteria for comparing the performance of
different DOA estimation and localization approaches is the
amount of aperture loss. This criterion determines the degrees
of freedom available for parameter estimation, in other words,
the number of sources that can be resolved [50], [56]. The
lower the aperture loss, the higher the number of resolv-
able sources. The maximum number of sources that can be
resolved by each approach according to the given number of
sensors is listed in the second column of Table 3. Note that
the above upper bound, in some approaches, is a function of
other parameters that the algorithm imposes, apart from the
number of sensors. In addition, some approaches have a limit
on the number of pure field sources. It is worth mentioning
that in ESPRIT-based approaches, according to the theory of
ESPRIT [372], the maximum number of resolvable uncorre-
lated sources is equal to the size of sub-arrays. A dash mark
in Table 3 signifies that the value is not mentioned directly
in the reference or is not easily verifiable. The last column
of Table 3 shows the total computational complexity of each
method. Computational complexity is another quantitative
comparison measure that indicates the number of arithmetic
operations of an algorithm and determines the amount of
resources required to execute that algorithm [373]. The total
computational complexities of the algorithms in Table 3 are
calculated by considering the major multiplications involved

in the construction of statistics matrices, eigendecomposi-
tion, spectral search, sparse signal recovery process, matrix
inversion, selecting of tuning factor, constructing matrix,
whitening reduction dimension, diagonalizing and orthogo-
nal propagation [374]. All the parameters in the tables have
already been introduced in the text. In general, various DOA
estimation and localization approaches in the mixed-field
sources scenario over the past fifteen years have gradually
included more complex and practical assumptions, consid-
ered different types of arrays and statistics, employed more
innovative techniques or tried to improve the performance
in terms of estimation accuracy, resolution, aperture loss,
computational complexity, etc.

Now let us examine the simulation results of some
methods to evaluate their performance in the face of uncor-
related mixed sources. Consider two NFS and two FFS
located at

(
θ1 = 1◦, r1 = 7.3λ

)
,

(
θ2 = −35◦, r2 = 5.2λ

)
,

(θ3 = −15◦, r3 = ∞) and (θ4 = 35◦, r4 = ∞). For all
experiments, a 17-element ULA with inter-element spacing
d = λ

/
4 is assumed. The number of snapshots is equal

to 500. The signals are equi-power and narrowband sta-
tionary. They are modeled in harmonic form sk (l) =

ej(2π fk l+ψk ) [50], [378], where the phases ψk are uniformly
distributed in [0, 2π). The additive noise is assumed to be
a spatial-temporal white complex Gaussian random process.
The Fresnel region is RD ∈

[
4.96λ , 32λ

]
. 1θ , 1r and 1f

are assumed 0.1◦, 0.05λ and 0.0001Hz, respectively. The
number of time lags is 2. The performance of the methods
of TSMUSIC, TSMDA, [51], HODA, HOSTA and CSA are
compared with each other as well as with the corresponding
theoretical CRB (see Sections IV-B). The results are evalu-
ated in the estimated root mean square error (RMSE) based
on the average results of 500 independent Monte Carlo runs.
RMSE is calculated as follows [379]:

RMSE =

√√√√ 1
NT

NT∑
n=1

(
ζ̂n − ζ

)2
, (103)
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FIGURE 10. Comparison of RMSEs of DOA and range estimates of various
algorithms versus SNR for mixed sources (two NFS and two FFS); (a) NFSs
DOA, (b) FFSs DOA, (c) NFSs range.

where ζ̂n is an estimate of the parameter ζ in the n-th test and
NT is the number of Monte Carlo runs.

When SNR varies from -10 to 20 dB, the RMSE of DOA
and range estimations are shown in Fig. 10. As can be seen,

FIGURE 11. Comparison of RMSEs of DOA and range estimates of various
algorithms versus DOA change of the second NFS for mixed sources (two
NFS and two FFS); (a) NFSs DOA, (b) FFSs DOA, (c) NFSs range.

in the DOA estimation, CSA, HOSTA, TSMUSIC have the
best performance in terms of accuracy and are closer to
the related CRBs. Especially in the case of the CSA and
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TSMUSIC, this was expected; because in both methods,
to estimate the DOA of uncorrelated sources, cumulant matri-
ces of full size N × N are constructed and estimates are
obtained based on MUSIC-like mechanisms. After these
three methods, the best performance in DOA estimation
belongs to HODA and TSMDA. The weakest performance
in DOA estimation is provided by the method [51], one of
the reasons for which is its greater aperture loss than other
methods. As can be seen from Fig. 10(c), CSA has the best
performance in terms of range estimation accuracy and is
much closer to CRB than other methods. In the case of CSA,
considering the high accuracy of DOA estimation of NFSs
and the direct dependence of range estimation performance
on the accuracy of DOA estimates of NFSs (refer to (17)
from [56]), as well as the lack of spatial differencing, such
performance was not far from expected (for more details,
refer to [56]). After CSA, HOSTA and HODA have the
best performance in terms of range estimation. According to
the efficiency of CSA and HOSTA in the range estimation,
and the analysis of Section IV-C of [56], these methods are
expected to perform well in terms of signals classification.
Notice that in the case of TSDMA andHODA, which are both
based on spatial differencing, the results show that, in general,
HODA performs better than TSMDA. This is due to the use
of higher-order statistics and the reduction of differencing
errors in HODA. Note that here the CRBs of the DOAs of
the NFSs are almost equal, and the range CRB value of the
second NFS, which is closer to the array, is smaller than that
of the first NFS. This is fully consistent with the theoretical
analysis of [109].

In the next experiment, to examine the angular resolution of
the methods, the RMSE values are extracted versus the angu-
lar gaps. The SNR is assumed to be 10 dB. When the DOA
of the second NFS varies from −35◦ to −17◦, the RMSE of
the DOA and range estimates are shown in Fig. 11. As can be
seen, DOA CRBs are almost insensitive to the angular gap.
In most methods, this trend is almost maintained up to −19◦.
However, when the second NFS is placed at −17◦, most
results are faced with a relatively severe error. The reason for
this is reducing the spatial gap and approaching the source
located at −15◦. HOSTA and TSMDA are the only methods
that even when the second NFS is located at −17◦, the DOA
of the first NFS follows the CRB behavior. This holds true
for the DOA of the second FFS for the methods of HOSTA
and [51]. The justification for this superiority in the case of
HOSTA is the use of spatial-temporal statistics matrices that
improve the resolution and estimation accuracy [98], [122].
In general, the angular resolution of none of the methods
reaches less than 4◦, and their performance is reduced by
decreasing the angular gap. In the case of range CRBs, it can
also be observed that they are almost insensitive to the angular
gap. The range RMSEs of various methods behave almost
similarly to the general pattern of DOA RMSEs of NFSs.
The reason for this is that in all these methods, the range
estimation is either jointly obtained by estimating the DOAs

of the NFSs, or at a later stage by inputting the estimated
values of the DOAs of the NFSs.

VI. CONCLUDING REMARKS
The exploration of DOA estimation and localization in sce-
narios involving mixed NFSs and FFSs has been the focus of
extensive research efforts, as evidenced by the comprehensive
review presented in the preceding sections. In this section,
we summarize the key findings and highlight future research
directions in this domain.

Firstly, the reviewed literature showcases a diverse array of
methodologies and techniques employed for DOA estimation
and localization assuming the coexistence of NFSs and FFSs.
Various array types, including ULA, UCA, SLA, spherical
array, SDNA, SFNA and STCA have been utilized, each with
its own advantages and suitability for specific applications.
Additionally, a wide range of assumptions and scenarios have
been considered, encompassing non-Gaussian noise models,
multipath environments, and unknown MC effects, among
others.

Secondly, the type of statistics used in the different
approaches varies, with some methods relying on HOS to
capture the complex characteristics of mixed-field sources,
while others leverage SOS for simplicity or computational
efficiency. These statistical approaches form the basis of
many DOA estimation algorithms, ranging from beamform-
ing, sparse signal reconstruction and differencing to the
RARE principle, oblique projection and ESPRIT-like tech-
niques.

Thirdly, the performance evaluation of DOA estima-
tion and localization methods in mixed-field sources sce-
nario involves considerations such as aperture loss and
computational complexity. The ability to resolve multi-
ple sources and the computational resources required for
implementation are crucial factors that influence the practi-
cal applicability of these methods. Comparative evaluations
have provided insights into the strengths and limitations
of different approaches in terms of their ability to han-
dle complex scenarios and achieve accurate localization
results.

Looking ahead, several avenues for future research emerge
from the existing literature. One promising direction is the
exploration of advanced signal processing techniques, such
as compressive sensing and DL, to further enhance the
accuracy and robustness of DOA estimation algorithms in
mixed-field sources environments. Moreover, the integration
of polarization diversity, employing metasurface antennas,
the development of efficient algorithms based on exact NF
models and one-bit measurements, tracking parameters, and
the utilization of full-wave or experimental data offer oppor-
tunities to improve the performance of localization systems
in real-world applications.

In conclusion, the study of DOA estimation and local-
ization in scenarios involving mixed NFSs and FFSs is a
multifaceted and dynamic field that continues to evolve
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with advancements in signal processing, array design, and
experimental techniques. By addressing the challenges posed
by complex noise environments, multipath propagation,
and unknown system parameters, researchers can develop
more robust and reliable localization systems with broad
applicability across domains such as radar, wireless commu-
nications, and acoustic sensing.
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