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ABSTRACT The Entropy-based Categorical Exploratory Data Analysis (CEDA) paradigm is elaborately
refined to algorithmically explore the intricate high-order directional associative relational patterns within
the heterogeneous chronical disease dynamics captured by Behavioral Risk Factor Surveillance System
(BRFSS) database. Operating on this imbalanced categorical dataset represented fully by its metric-
free high-dimensional histogram, our algorithms conduct data-driven computations to investigate chronic
disease mechanisms across four sub-populations along the age-axis, culminating in comprehensive systemic
understandings. Upon this categorical data-world, CEDAfirst recognizes the category-oriented 1D histogram
as the simplest form of a piece of explainable information. Then, utilizing Kolmogorov’s randomness-
proper-based reliability check, CEDA identifies and confirms collectives of 1D histograms as major feature-
categories of varying orders within each sub-population. These confirmed major feature-categories’ binary
memberships are then arranged into a subject-vs-feature-category bipartite network heatmap, revealing
serial horizontal and vertical blocks framed by clusters of similar subjects characterized by individual-risk-
landscapes (IRL) against clusters of structurally dependent major feature-categories. Based on such block-
series, sub-population-specific disease mechanisms emerge as collective high-order interacting effects,
elucidating directional associative relationships from study subjects’ topological neighborhoods to response-
categories. Notably, the topological individual-risk-landscape offers profound insights into complex system
dynamics and simultaneously exposes atypical subjects as explainable errors across all Machine Learning
classifiers.

INDEX TERMS Behavioral risk factor surveillance system (BRFSS), bipartite network heatmap, categorical
exploratory data analysis (CEDA), complex system, conditional entropy.

I. INTRODUCTION
The US agency Center for Disease Control and Prevention
(CDC) conducts an annual phone survey with over 400K
participants to construct a yearly Behavioral Risk Factor
Surveillance System (BRFSS) database. Since 1984, the
primary goal of this database has been to understand the
dynamic and evolving linkages between multiple chronic
diseases and their potential risk factors across the 50 states of
US society over many years [1], [2], [3]. Each yearly BRFSS
database, by design, encompasses all associative relations
between multiple chronic diseases and many behavioral risk

The associate editor coordinating the review of this manuscript and

approving it for publication was Xianzhi Wang .

factors, referred to as feature-variables here, to sustain a
complex system dynamics of chronic disease in American
society for the year [4]. After 40 years, this yearly BRFSS
complex system dynamics is, by and large, still unknown
like a mystery, not to mention its evolution along the
year-axis.

Could such a complex system dynamics of BRFSS be
computationally extractable and explicitly displayable? To
our limited knowledge, due to the seemingly boundless com-
plexity and scope of such a system, comprehensive studies
addressing this question have scarcely been conducted and
rigorously reported in the literature. Nevertheless, positive
and practical answers to this question are not only critical
for the US but also for many countries that have developed
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similar surveillance systems, as seen on the BRFSS website
(https://www.cdc.gov/brfss/index.html).

In fact, this question holds a significant degree of universal-
ity across all sciences, and the potential impacts of its answers
can extend far beyond the realm of the BRFSS. Why have
there been hardly any comprehensive studies aimed atmaking
complex systems dynamics readable and understandable?We
are confident that the cause can be partly attributed to the
fundamental barrier within data analysis. When handling a
large system, data analysts encounter barriers stemming from
two kinds of complexity embedded within data [5], [6]. The
first kind of complexity is heterogeneity, which characterizes
a large system by containing many heterogeneous local
mechanisms. As described in [7], heterogeneity is expected
to be observed through broken-symmetry patterns across
different scales and localities within almost all large complex
systems. This characteristic certainly is not limited to
large physical or chemical systems. Indeed, the BRFSS
has been shown to embrace heterogeneity characterized by
(GenHL, Age) from the perspective of Heart Disease (HD)
dynamics [8], where GenHL stands for the feature-variable
called ‘‘general health.’’

The second kind of complexity pertains to the information
content contained in large databases, which goes far beyond
data visualization per se. Since the full information content
in data (ICiD) includes all patterns of relational nature.
Discovering such relational patterns, especially for high-
order ones, requires a wide spectrum of genuine creativity
and exploratory computing efforts. The information content
channeled through high-order relational patterns is of partic-
ular scientific importance and practical interest because such
directional associative relations ‘‘from a covariate feature-
set toward another response feature-set’’ offer a unique
window into essential mechanisms at a locality. However,
such information has hardly ever been explored or even
considered in data analysis due to its unknown functional
form, making the ideas and practices of modeling unrealistic
and incorrect. As a result, real-world associative relations
of high orders, in general, are completely unknown even to
domain scientists. This fact provides the brief background of
this information complexity.

This information complexity is particularly evident in
the BRFSS database because all its variables, from disease
statuses to behavioral and demographic risk factors, are
either categorical or categorized along certain axes. Thus,
each yearly BRFSS database is entirely and completely
represented by its high-dimensional histogram. Without
losing any bit of information, this histogram forms a
categorical data world of its own. Thus, the database’s
ICiD is perceived as consisting of all yet-to-be-discovered
relational patterns of a wide spectrum of orders. In this paper,
we delve deep into BRFSS’s categorical data world, and set
our primary goal as to graphically display BRFSS’s com-
putable and extractable information complexity. Conversely,
this concrete and visible histogram would easily render
man-made structures and assumptions as foreign objects.

This is why almost all modeling-based results are likely
unauthentic and obviously unscientific in this categorical data
world.

The remainder of this Introduction section is dedicated
to data descriptions, CEDA based computations and chief
results for takeaways in three subsections, respectively.
Subsection-A provides a detailed description of the Kaggle
version of the BRFSS database, which serves two roles in
this paper: as an illustrative example of our algorithmic
CEDA computing and simultaneously as the database of sci-
entific interest. Subsection-B explains how the computational
CEDA paradigm generates the new concept of individual
risk-landscape and its implications. We briefly outline the
major results achieved in this paper in Subsection-C.

A. KAGGLE VERSION OF 2015 BRFSS DATABASE
Each yearly BRFSS database is complicated by the preva-
lence and various kinds of no-responses. Across more than
one hundred questions in the survey, the no-response rates
vary greatly, and the types of non-responses are diverse.
However, it’s important to note that ‘‘no-response’’ does not
equate to ‘‘no information,’’ as some subjects may choose
not to answer certain questions due to sensitivity. Moreover,
since many questions are highly related, such no-response
data types persistently pose many difficulties and challenges
when analyzing BRFSS databases.

Such difficulties and challenges pertaining to the spe-
cific 2015 BRFSS are avoided in its Kaggle version. It cleans
out the majority of missing or non-response data points
and significantly reduced the number of feature-variables,
making it a popular database in Machine Learning literature.
This Kaggle version of the 2015 BRFSS database consists of
more than 250K subjects and 21 selected feature-variables.
All 21 feature-variables, including several chronic diseases
such as heart disease (HD), stroke (STK), and diabetes,
among others, are categorical with symbolic codes. In this
paper, as would be detailed below, some demographic and
health variables, such as Age, Income, Mental Health..etc.,
of this Kaggle version are further regrouped to reduce their
relative large numbers of categories. It is essential to note that
these symbolic codes bear no sense of metric. For instance,
code 1 may represent a diseased status, while code 0 indicates
non-disease. Some feature-variables do bear ordinal senses
among numerical codes. For example, five categories of both
Age and GenHL are coded 1 to 5, where subjects with
GenHL = 5 have the worst condition. However, the degree
of ‘‘difference’’ between GenHL = 5 and GenHL = 4 is not
necessarily equal to the difference between GenHL = 4 and
GenHL = 3. As such, this Kaggle version categorical data is
metric-free in nature.

In this paper, we continue to adopt the bivariate (GenHL,
Age) as the defining axis of heterogeneity identified in [8].
Instead of focusing on one single chronic disease, here we
designate the bivariate (Stroke (STK), Heart Disease (HD))
as the response (Re)-variable, with the remaining 17 one-
dimensional feature-variables as covariate (Co)-variables.
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The reason behind this choice of Y = (STK, HD) as
the response variable is twofold. First, it better represents
the real chronic disease dynamics of the complex system
of interest than any single disease alone does. Secondly,
it maintains a great degree of simplicity because all chronic
diseases are structurally dependent. In this fashion, we utilize
this Re-Co dynamics to represent the real chronic disease
dynamics embraced by the 2015 BRFSS. Furthermore, all
computational developments for Y = (STK, HD) can be
easily expanded for any high-dimensional Y .

To study this Re-Co dynamics, the entire 250K subjects
are subdivided into 24 sub-populations with respect to
24 categories of (GenHL, Age). Notably, the category
(GenHL, Age) = (5,2) is empty. Each subpopulation is
postulated to embrace homogeneous disease mechanisms of
(STK, HD). Therefore, the quest of analyzing the Kaggle
version of 2015 BRFSS database is transformed into two
steps: first, exploring each sub-population’s ICiD thoroughly
to enable a graphic display of its diseasemechanisms; second,
linking all 24 locally computed and fully represented disease
mechanisms into a global disease dynamics. It is noted that,
for the sake of length of this paper, we only demonstrate
linkages among 4 sub-populations with GenHL = 5 and
Age = 1, 3, 4, and 5. This synthesized disease dynamics
of the poor health population along the Age-axis is of great
scientific interest on its own right, while the full global
disease dynamics is separately presented in a companion
report.

The signature ‘‘imbalance phenomenon’’ of the BRFSS is
retained in the Kaggle version as well. Here, the ‘‘imbalance
phenomenon’’ refers to the highly uneven sample sizes
among response-categories. Such a phenomenon is observed
with significant unevenness of sample sizes across all 24 sub-
populations. Specifically, the non-diseased category of (STK,
HD) = (0,0) typically has a sample size many times that of
the sample sizes of the three diseased categories (0,1), (1,0),
(1,1) combined. This phenomenon is noteworthy because of
its linkages to two technical fronts.

The first front pertains to recognizing why the marginal
information of a feature-variable concerning a variable or
a set of variables is imprecise and confusing. The second
front is that this phenomenon has widely been attributed
as the underlying cause of failures of many classifiers,
such as various variants of Random Forest and Boosting,
in Statistics and Machine Learning (ML) literatures. This
phenomenon is even considered ‘‘intrinsic’’ [13]. Numerous
remedial approaches have also been proposed without guar-
anteed successes [14], [15]. However, it is counterintuitive
that an observed pattern of sample sizes of response-
categories could become an intrinsic barrier hindering
all classifiers. Additionally, it is equally counterintuitive
regarding the merits of developing sampling schemes on
observed data to improve the performance of classifiers
per se without concerning the potential consequences of
distorting ICiD. These two technical fronts are explicitly
addressed in this paper, and their resolutions are outlined

in the next two subsections, with further details provided
in Section V. They indeed serve as two signatures of this
paper.

At the end of this subsection, we describe our coding
schemes for regrouping the following 5 variables of the
Kaggle version of dataset.
1. [Age:] Age-1: 18 to 29; Age-2: 30 to 44; Age-3: 45 to

59; Age-4: 60-74; Age-5: 75 and above.
2. [BMI:] BMI-1: BodyMass Index less than 18.5; BMI-2:

18.5 to 24; BMI-3: 24 and above.
3. [Education:] EDU-1: highest grades less than grade 8;

EDU-2: grade 9 to grade 12; EDU-3: 1-year college or
more.

4. [Income:] Income-1: annual household income less than
25k; Income-2: 25K to 75K; Income-3: above 75K.

5. [Mental Health:] Mentlth-1: zero days during the past
30 days being not good in mental health; Mentlth-2: 1 to
9; Mentlth-3: 10 to 29; Mentlth-4: whole month.

6. [Physical Health:] Physhlth-1: zero days during the past
30 days being not good in physical health; Physhlth-2:
1 to 9; Physhlth-3: 10 to 29; Physhlth-4: all 30 days.

This regrouping scheme is necessary for computations
conducted within sub-populations defined by (GenHL, Age).
By so doing, the 24 sub-populations have sizes around several
thousands. For the computational simplicity, all subjects with
missing or no-responses within the Kaggle version are further
excluded in this paper.

B. CEDA COMPUTING PARADIGM AND INDIVIDUAL
RISK-LANDSCAPE
As mentioned earlier, the 21-dimensional histogram con-
structed from the Kaggle version of the BRFSS database as
one whole is metric-free. Within this categorical data world,
arithmetic operations and functional forms are meaningless.
In this paper, we adapt the data-driven bottom-up computa-
tional paradigm, called Categorical Exploratory Data Anal-
ysis (CEDA), to effectively explore high-order associative
relations that constitute and reveal the database’s information
complexity. These explorations are necessary due to our
recognition of the 1D histogram as the simplest form of
‘‘a piece of explainable information’’ and Kolmogorov’s
randomness-proper on any contingency tables. Throughout
this paper, a contingency table is typically constructed by
arranging all categories of a covariate feature-set along the
row-axis and the four categories of (STK, HD) along the
column-axis. Any such a contingency table is simply a
projection of the 21-dimensional histogram of the whole data
set.

Information extraction from a contingency table is carried
out by comparing one row-vector, representing a 1D his-
togram of the conditional variable of Y given a covariate
feature-category, with the column-sum vector, representing
a 1D histogram or marginal distribution of Y . In a step-
by-step manner, each individual comparison yields one
piece of information regarding one aspect of the interacting
effects of the covariate feature-set. Then, the collective
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comparisons reveal glimpses of potential interacting effects
of the covariate feature-set on the response-variable Y =

(STK, HD). No functional forms of interacting effects are
needed in such comparisons.

In general, scientists are not capable of fully prescribing
interacting effects because diverse asymmetric relational
patterns are possible and potential among all involved
categories. Therefore, it becomes not only necessary but
also critical to be able to demonstrate and confirm all
individual category-specific interacting effects. From this
perspective of interacting effects, three standpoints of our
elaborately refined CEDA here make evident differences
from the original CEDA algorithms developed in a series of
previous works [8], [10], [11], [12].
The first standpoint is that a feature-set’s category-

specific effect takes the central role, not its marginal effect,
which is calculated via a weighted sum scheme. That is,
a category-specific effect is demonstrated by comparing
its corresponding conditional entropy of Y conditioning
on the corresponding covariate category with the entropy
of Y without involving with covariate information of
any sort. This is a very unique standpoint taken in this
paper.

The second standpoint is that this comparison must be
conducted under equal ‘‘randomness’’ footings. This is
where Kolmogorov’s randomness-proper comes in to play its
essential role through a contingency table platform [9]. Here,
two versions of Kolmogorov’s randomness-proper are respec-
tively seen through the following two constructed ensembles:
1) an ensemble of mimicries of the observed contingency
table, which share the same randomness embraced by the
observed table; 2) another ensemble of simulated contingency
tables only retain randomness embraced by the observed row-
sum vector. Both ensembles are commonly subject to the
column-sum vector, which represents the fixed sample sizes
of the four categories of Y . The conceptual differences of
these two ensembles rest on the fact that the first ensemble
genuinely reflects the data’s intrinsic randomness, while the
second ensemble embraces the hypothetical randomness as if
the covariate feature of the row-axis is independent of Y . The
first ensemble gives rise to an alternative entropy distribution,
while the second ensemble gives rise to a null entropy
distribution. Thus, the aforementioned comparison is carried
out by comparing alternative-vs-null entropy distributions
resulting in the minimum sum of Type-I and Type-II errors
or the two distributions’ overlapping area.

This comparison plays a key role at the heart of this
refined CEDA paradigm. Such a Kolmogorov’s randomness-
proper based comparison would be applied twice to select
and confirm a major feature-category, instead of major
feature-variable. Its first application is to a major feature-
category candidate of given order, which is equal to the
size of covariate feature-set. This application involves the
entire samples belonging to the sub-population. Its second
application is necessarily performed when the order of the
potential major feature-category candidate is larger than one.

Since we need to make sure this candidate is not redundant
with respect to an already confirmed major feature-category
of lower order. That is, a major feature-category of high
order must provide extra-information (Extra-Info) on top
of what a confirmed major feature-category of lower order
can provide. Hence, this application involves only samples
constituting this confirmed major feature-category of lower
order. Subsequently, we build a graphic display based on
a collection of selected high-order major feature-categories,
which becomes the chief part of the ICiD within each sub-
population.

The aforementioned feature-category based computational
operations are newly developed here, offering contrasting
differences with the original version based on marginal
mutual information calculations in selecting major feature-
variables. Such differences are especially evident and crucial
when the database is subject to a high degree of ‘‘imbalance’’.
Realistically speaking, the majority of real-world databases
retain varying degrees of ‘‘imbalance’’.

The third standpoint relies on the capability of representing
computed and confirmed major feature-categories through
a graphic display in this new version of CEDA. As each
selected major feature-category of any order has its own
memberships due to its locality, each subject will be
prescribed by a binary vector indicating its presence or
absence with respect to all selected major feature-categories.
This subject-specific binary vector sheds light on the positive
and negative disease risks facing this subject. From this
aspect, we term this binary vector of memberships of all
selected major feature-categories the subject’s individual
risk-landscape (IRL).

Furthermore, based on the collective individual risk-
landscapes, two significant sub-population specific charac-
teristics can be derived. First, a topology is defined on the
study-subject space with a natural choice of dissimilarity or
similarity measure. The neighborhood system offered by this
topological space explicitly reveal information about which
subjects are close to which subjects, but far away from other
subjects. A graphic display of the entire topological space
pertaining to high-order major feature-categories in general
is very informative regarding sub-population specific chronic
disease dynamics and beyond, as would be clearly seen in
Section V. For instance, this topological characteristic among
subjects can serve as a critical basis for matching in causality
study and optimal selection for the highest or lowest risk
subject-groups.

The second significant sub-population specific characteris-
tic is that each cluster of subjects’ individual risk-landscapes
will characterized by a horizontal blocks framed by a series
of clusters of major feature-categories. When coupled with
annotated response-categories, such a horizontal series of
blocks provides ‘‘readable’’ and ‘‘visible’’ information defin-
ing this cluster of subjects. One piece of vital information
is the explicit map of so-called ‘‘atypical subjects’’. Here,
an ‘‘atypical subject’’ is referred to a study subject encoded
with an annotated response-category is found belonging
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to an individual risk-landscape neighborhood sharing with
several other study subjects, who are encoded with very
different annotated response-categories from his/her. A large
collective of ‘‘atypical subjects’’ allows us to fundamen-
tally resolve the aforementioned ‘‘imbalance phenomenon’’
issue [13], [14], [15].

Putting together these two sub-population specific charac-
teristics, we can further point to the fact that, as a byproduct,
such a topological space of individual risk-landscapes is
an informative platform for building variants of explainable
inferential decision-makings, including prediction and clas-
sification.

C. MAJOR RESULTS OF THIS PAPER
WithY = (STK, HD) as the response variable, we explore the
Re-Co dynamics representing the chronic disease dynamics
underlying the 2015 BRFSS database. Upon the Kaggle
data set, our CEDA computations first illustrate why a
feature-category specific 1D histogram is the simplest form
of ‘‘a piece of information’’ within this categorical data
world. We then explicitly demonstrate the unsuitability of the
‘‘marginal form of information’’. This simple fact establishes
a wide spectrum of profound impacts that would be seen not
only inDataAnalysis as a scientific discipline [16], but also in
all sciences. Since so far data analyzing methodologies from
statistics andML primarily rely on ‘‘operations of variables’’,
such as all modeling based topics and methodologies, like
variable selection among many others. That is, from the
ICiD perspective, it is legitimate to seriously question the
validity ofmethodologies developed in these two fields. Since
a methodology employed in any data analysis for sciences
needs to pass ‘‘the test of experience’’. This is themost crucial
criterion underlying any scientific disciplines as advocated by
John Tukey [16] in his 1962 paper with title: ‘‘The future of
data analysis’’.

Secondly, the recognition of Kolmogorov’s randomness-
proper on any contingency table plays an instrumental role in
our refined version of CEDA. In fact, this concept is essential
and fundamental in its own right in Data Analysis beyond
the categorical data world. Given that a histogram can very
well approximate any quantitative variable’s entire empirical
distribution [17], so this concept is indeed applicable across
all data types. Its importance is indeed self-evident for
its capability of facilitating the pair of alternative-vs-null
entropy distributions. It is extremely critical that Type-I and
Type-II errors can be evaluated without assuming any man-
made modeling structures and distributional assumptions in
any data analysis.

Thirdly, we build algorithms to conduct CEDA comput-
ing step-by-step: from identifying and confirming major
1-feature-categories, major 2-feature-categories to major 3-
feature-categories within each sub-population. Among major
2-feature-categories, we show diverse forms of asymmetry
of order-2 interacting effects across a series of feature-pairs.
Such diversity of asymmetric interacting effects is meant

to reiterate a key point in data analysis: Invaluable knowl-
edge of disease mechanisms is available to be discovered
only if data analysts and domain scientists are willing to
explore.

Fourthly, a sub-population’s computed disease mecha-
nisms are represented through the collection of all computed
and confirmed order-3 interacting effects, so-called major 3-
feature-categories with either positive or negative risks. The
presence-absence memberships of this collection of major
3-feature-categories are compiled into a binary bipartite
network matrix. Thus, this graphic display collectively
reveals all involving subjects’ individual risk-landscapes as
a serial positive or negative disease risks exposures. After
rearrangements via hierarchical clustering on the row-axis
of subjects and column-axis of major 3-feature-categories,
respectively, this block-pattern sustained heatmap reveals
explicit relational patterns though the authentic topology
of individual risk-landscape defined on the subject space
and complex structured dependency on the collection of
major 3-feature-categories. This heatmap allows us to figure
out characteristics of the sub-population specific disease
mechanisms via horizontal series of blocks discovered on
the scale of category of Y and on a finer scale of clusters
within category of Y . That is, such a heatmap indeed
sustains functionally critical and philosophically vital parts
of information content in data (ICiD) pertaining to the sub-
population under study.

Fifthly, along the heterogeneity-axis of GenHL = 5 and
Age = 1, 3, 4, and 5, we then patch and link all relational pat-
terns derived from the four sub-populations into a composite
complex system. Such global functionality embraced by the
linked four sub-populations provides one important aspect of
understanding the whole complex system. The grand global
view of chronic disease dynamics underlying 2015 BRFSS
database would be separately presented in a companion study
by embracing all 24 sub-populations.

Sixthly, the four sub-population specific heatmaps col-
lectively and explicitly reveal the existence and preva-
lence of ‘‘atypical subjects’’ across diseased and non-
diseased categories. These atypical subjects would defi-
nitely cause ‘‘errors’’ to whatever classifiers. From this
standpoint, the ‘‘imbalance phenomenon’’ is indeed not
the intrinsic cause of ill performances of all classifiers.
On the other hand, if there are no ‘‘atypical subjects’’
present in a sub-population, this heatmap graphic display
would allow perfect classifications even under the pres-
ence of a very severe ‘‘imbalance phenomenon’’. That
is, the ‘‘imbalance phenomenon’’ is simply a fundamental
misconception.

Finally, we conclude that the explicit demonstration of
‘‘atypical subjects’’ reflects the fact that building ICiD is
indeed the ultimate goal of data analysis. Subsequently, any
inferential operations must be performed strictly in accord
with ICiD. This is the merit of pointing out this long-standing
big mistake. On the other hand, we also emphasize here that a
comprehensive study of complex systems must achieve ICiD.
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From the technical perspective, the most far-reaching
implication of our methodological developments in this paper
is that this CEDA paradigm can, in fact, be at the heart of
all structured data analysis of any data types. Since each
quantitative data set can be categorized and simultaneously
retain its chief part of ICiD. Then, from this ICiD perspective,
the brand-new concept of individual risk-landscape truly
provides authentic insights through its topological subject
space. Through its block-sustained heatmap display, the
comprehensive and vital pattern information pertaining to
nature of complex chronic disease dynamics is explicitly
summarized. As such it becomes rather unthinkable for any
inferential decision-making without embracing insights of
the subject’s individual risk-landscape and its topological
neighborhood structures.

We organize the rest of this paper as follows. In section II,
we lay the foundations for the CEDA paradigm, including
arguments for the simplest form of a piece of information
and the directional associative relation from any feature-
set toward the response variable Y = (STK ,HD), as well
as reliability checks based on Kolmogorov’s randomness-
proper. In section III, we develop the algorithm for CEDA
computing major feature-categories of various orders and
explain and visualize their rather convoluted interacting
effects. Section IV is devoted to presenting diverse kinds
of asymmetry found in order-2 interacting effects and their
evolutions along the age-axis. In Section V, we show
results centered around individual risk-landscapes and their
heatmaps, along with consequent summarizing statistics.
We also construct the global dynamics of Y = (STK ,HD)
under GenHL = 5 by combining results from the four sub-
populations along the age-axis. In the conclusion section,
we reflect on the potential impacts of our CEDA-enabled
topological results and the induced issues within and beyond
Data Analysis.

II. WHAT INFORMATION LOOKS LIKE?
Within the metric-free 21-dimensional categorical data
world, the journey of data analysis naturally commences
with addressing the simplest question: What does a piece of
information look like? This inquiry is especially significant
because such a piece of information remains invariant to all
permutations along all dimensions of the histogram. Only
after obtaining an answer to this question does it become
feasible to address the subsequent critical and fundamental
question: What is ICiD made of? In the following two
subsections, we exemplify CEDA computations for selecting
and confirming major feature-categories in a bottom-up data-
driven fashion.

A. WHAT IS THE SIMPLEST FORM OF A PIECE OF
INFORMATION?
Take anyone of the 21 categorical feature-variables. Does
one of its 1D categorical data points mean anything? The
answer is apparently negative. Since it is simply a label-
code which can be arbitrarily encoded. A label-code only

marks a ‘‘location’’ on the metric-free-axis of this feature-
variable. Further, any aggregation of one single label-code is
also meaningless in relation to this feature-variable’s multiple
locations. Furthermore, any missing aggregation of anyone
label-code along this feature-variable’s location-axis will
distort the information formation. As such a label-code as
a ‘‘location’’ apparently acts like an element in formatting
a piece of information. And, the simplest form of a piece
of information is delivered by an 1D histogram of an 1D
categorical feature-variable. This is the answer to the first
question.

When two 1D categorical feature-variables are observed
or derived from the same system, this bivariate feature-
variable owns an 2D contingency table or histogram. All
aspects of relational information content in this 2D data set
is fully described by ‘‘location-to-location’’ correspondences
as being visibly laid out via the 2D contingency table.
Likewise for all relational relations involving with more than
2 categorical feature-variable. As such the chief mechanism
of formatting relational information within a categorical data
world is still operated via the fundamental ‘‘location-to-
location’’ correspondence within their histogram or so-called
hyper-contingency table.

Nonetheless, when comparing two histograms, again
it is conducted on the ‘‘location-to-location’’ basis. This
comparison will not be altered by any permutations
respectively applied on their common metric-free-axis.
Thus, at least ideally, ‘‘location-to-location’’ basis still
give rise to the full and meaningful information regarding
comparing two histograms of any dimensionality. By the
same argument, one effective way of comparing multiple
histograms is simply done by adding an extra categorical
ID-variable.

In summary, we term a ‘‘label-code’’ meaning a ‘‘location’’
of any 1D data point as ‘‘an element of information’’. It is
understood that such an element of information bears with
a feature-variable specific ‘‘location’’ message. With this
concept of ‘‘element of information’’, we clearly see that
a 1D histogram is indeed the most fundamental form of
‘‘a piece of information’’ in any categorical data worlds.
Given that the ‘‘location-to-location’’ correspondence is
the most fundamental mechanism of relational information
formation, our next task is how to effectively extract all
essential relational information content from data’s very high
dimensional histogram.

B. WHAT ICiD IS MADE OF?
Next we turn to the fundamental question: What ICiD is
primarily made of? There are only two potential possible
answers in sight: either marginal information of feature-
variables, or 1D histogram of feature-category, in this
categorical data world. As aforementioned, 1D histogram
is the simplest form of a piece of information, while
any feature-variable or a feature set’s marginal information
involves multiple 1D histograms arranged in a contingency
table format. The first critical difference between these two
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possible answers rests on their different scales. An 1D
histogram is of category-specific locality scale, while feature-
variable’s marginal information is of the global scale. The
second critical differences is regarding their meanings.
An 1D histogram is clear and explainable. In contrast,
a feature-variable’s marginal meaning can be confusing
because of conflicting meanings derived from different
localities. That is, individual category-specific meanings can
be lost, even distorted, within its marginal version. This
loss and distortion surely will miss out many important
and essential feature-categories. We explicitly illustrate
here why marginal information is not the fundamental
format of information content representing categorical data.
In fact, the feature-category is the right format for revealing
aforementioned ‘‘broken symmetry’’ as another key char-
acteristic of complex system [7]. Here this characteristic
is seen through the drastically distinct pattern information
emitted from a feature-variable or a feature-set’s distinct
categories.

In this subsection, our illustrating example is built upon
the sub-population of GenHL = 5 and Age = 1, which
consists of 1776 subjects. As aforementioned, we focus on
the Re-Co dynamics with the categorical response variable
is Y = (STK ,HD) and the rest of 17 categorical features as
covariate variables, including Diabetes, High Blood Pressure
(HighBP), High Cholesterol (HighChol),.., etc. The response
variable Y has four categories of bivariate disease-status:
{(0, 0), (1, 0), (0, 1), (1, 1)}. Except BMI, Education (EDU)
and Income are encoded with 3 categories, Mental health
(MentHlth) and Physical Health (PhyHlth) encoded with four
categories. The remaining covariate 12 feature-variables are
all binary.

We begin by illustrating the associative relations between
Y = (STK, HD) and HighBP through the 2 × 4 contingency
Table 1. This table is denoted as HCT [(STK ,HD);HighBP].
The two rows of this table are two 1D histograms with 4 bins
pertaining to 1-feature-categories: HighBP0 and HighBP1,
standing for two categories of subjects: not having and having
high blood pressure, respectively. They are 1D histograms
of Y conditioning on HighBP = 0 and HighBP = 1,
respectively. In contrast, the column-sum vector pertaining
to the four response categories is ‘‘constant’’ with respect to
all covariate variables, which is the 1D histogram of Y .

By listing the three histograms within Table 1, we intend
to compare the individual 1D histograms of Y conditioning
on HighBP0 or HighBP1 with the marginal 1D histogram of
Y . One meaningful comparison is performed by comparing
row-wise conditional (Shannon) entropy with that of the
column-sum vector [18]. The entropy of Y = (STK ,HD) is
calculated: CE[Y] = CE[(STK ,HD)] = 0.7565. Strikingly,
given HighBP0, the conditional entropy of Y is reduced
to CE[Y|HighBP0] = 0.5292, while given HighBP1, the
conditional entropy of Y is increased to CE[Y|HighBP1] =

0.9133.
The entropy reduction of CE[Y|HighBP0] is attributed

to the observation of having relatively more subjects in

the non-diseased Y = (0, 0) category and less sub-
jects in diseased categories: Y ∈ {(0, 1), (1, 0), (1, 1),
in comparison with column-sum vector of proportion of
Y . While the entropy increase of CE[Y|HighBP1] is
attributed to the observation that non-diseased Y =

(0, 0) category has a reduced proportion, but still keeps
the majority of HighBP1 subjects, while even though the
proportions of diseased categories: Y ∈ {(0, 1), (1, 0), (1, 1),
have slight increases against the column-sum vector of
proportion of Y . In this fashion, the row vector of
HighBP1 becomes more evenly distributed among non-
diseased and diseased categories than the column-sum vector
of Y . This is the phenomenon of ‘‘imbalance’’, which is
underlying the somehow counterintuitive scenario of extra
information of HighBP1 indeed promoting more, not less,
uncertainty of Y .
As would be confirmed in the next subsection, both

conditional entropies CE[Y|HighBP0] and CE[Y|HighBP1]
pass the reliability checks of being significantly different
from CE[Y]. That is, both covariate categories are highly
associated with Y . However, if the predictive perspective is
taken as the solo focus for associative relation, then these
two 1-feature-categories give rise to two rather conflicting
kinds of messages. The information of HighBP0 is good for
predictive relation with Y , while the information HighBP1 is
not. That is, using the predictive capacity as a way of
quantifying the strength of associative relationship between
two variables is fundamentally improper, especially under the
‘‘imbalance phenomenon’’.

Further, from disease dynamics perspective, it is transpar-
ent that HighBP0 strongly points to less risk of the bivariate
disease, while HighBP1 points to higher risk. In sharp
contrast, themarginal conditional entropy:CE[Y|HighBP] =

0.73075, which is calculated as the weighted sum of
CE[Y|HighBP0] and CE[Y|HighBP1] with weights 843

1776 and
933
1776 , respectively, does not convey either one of the two
directional associative relations. That is, the effects on Y
incurred by feature-variable: HighBP, can not be properly
delivered by its marginal relationship with the response-
variableY . In summary, the description of associative relation
of HighBP-to-(STK, HD) is necessary of category-locality
nature.

Based on this simple example, we are confident that 1D
histogram is the answer to the question: What ICiD is made
of? That is, the quest of data analysis is to extract all relevant
pieces of relational information in a form of 1D histogram.
We likewise conclude that all pattern information in ICiD
is of locality nature. More evidences are seen through the
interacting effects conveyed by categories of 1D covariate
feature-pairs in Section IV. The implications of this somehow
simplistic statement are far reaching. A major impact is that,
under the shadow of ‘‘data’s imbalance phenomenon’’, all
Statistics and Machine Learning topics become by and large
invalid because they solely rely on marginal information of
global nature. Consequently, all modeling approaches in these
two fields likely fail.
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TABLE 1. Contingency table HCT [(STK , HD); HighBP] through the
perspective of heterogeneity (GenHL = 5, Age = 1).

C. KOMOGOROV’S RANDOMNESS-PROPER AND
RELIABILITY CHECK
Next, we discuss how to make sure that both pieces of
information: the two 1D histograms of Y conditioning
on HighBP0 or HighBP1 are significant by passing their
reliability checks. For a piece of information, its reliability
check is performed by precisely two observed versions:
alternative-to-null, of Kolmogorov’s randomness-proper per-
taining to Table 1 [9]. The alternative version is column-
wise randomness given only the corresponding column-sum.
That is, each column vector is seen as a realization of Multi-
nomial randomness given its column-sum and its observed
column-specific vector of proportion. In contrast, the null
version is the randomness of row-sum vector being equally
imposed onto all columns. That is, each column vector is
seen as a realization of Multinomial randomness given its
column-sum and the common proportion vector of row-
sums. These versions indeed cover all randomness observed
within a contingency table, like Table 1, while the null
version indeed bears no associative information regrading
HighBP to Y .
Here are the technicalities of the alternative and null ver-

sions of randomness underlying the 2×4 contingency table in
Table 1. The 4-dim column-sum vector (1372, 106, 231, 67)
is fixed with a total 1776. They present four column-
wise constraints in formatting the contingency Table 1.
That is, both kinds of randomness are conditioning on this
column-sum vector. Subsequently, the 2-dim row-sum vector
(r0, r1) = (843, 933) is an observed vector being specifically
subject to randomness of covariate feature-variable HighBP
as one whole under the constraint of total sum 1776.
In other words, each row-sum’s randomness is linked to
its four components’ randomness under the four column-
wise constraints.With randomness-proper tied to all observed
entries of Table 1 and (r0, r1), we can depict the all aspects of
randomness-proper associated with Table 1 as follows.
Alternative Randomness: This randomness for the four

observed columns of Table 1 is given as: MN (ny,Pay) with
y ∈ {(0,0), (1,0), (0,1), (1,1)} and Pay = (ny[0]/ny, ny[1]/ny)
with (ny[0], ny[1])′ being y-th column vector. Such multino-
mial randomness protocols constitute the randomness-proper
underlying the alternative setting against the null setting
described below.
Null Randomness: The column-wise null randomness is

given by the multinomial distributionMN (ny,Po) with Po =

(r0/1776, r1/1776).
With the above alternative and null randomness specifica-

tions for Table 1, a generic form of simulated contingency

table with respect to having alternative-effect and null-effect
of HighBP, denoted byHCT [Y;HighBP] andHCT [Y; null−
HighBP], respectively, is given in the Table 2.

TABLE 2. Generic form of simulated contingency table of
HCT [Y; HighBP] and HCT [Y; null − HighBP] with respect to alternative
randomness and null randomness based on the perspective of
heterogeneity (GenHL = 5, Age = 1).

We simulate two ensembles of 1000 contingency tables of
HCT [Y;HighBP] andHCT [Y; null−HighBP], respectively.
Upon the ensemble of HCT [Y;HighBP], we build the two
alternative entropy distributions (orange colored) pertaining
to HighBP0 and HighBP1 marked with observed red-
colored vertical lines at CE[Y|HighBP0](= 0.5292) and
CE[Y|HighBP1](= 0.9133), respectively, as seen in the
two corresponding panels of Fig. 1. Likewise, we build the
two null entropy distributions (blue colored) pertaining to
HighBP0 and HighBP1.

From the two panels of Fig. 1, we clearly see that both
pieces of information: the two 1D histograms of conditional
entropy of Y given HighBP0 and HighBP1, respectively,
have zero-sums of type-I and type-II errors. That is, both
are confirmed being rather significant. In contrast, the
marginal alternative entropy distribution is expected to be
centered around CE[Y|HighBP] = 0.73075 that would
be heavily overlapping with the marginal null entropy
distribution centered around CE[Y] = 0.7565562. This
example illustrated why the marginal evaluations of potential
effect of any feature-variables have dangers of giving rise to
misinformation.

FIGURE 1. Two null (blue)-vs-alternative(orange) distributions of
HighBP0 and HighBP1. See corresponding plots at
https://github.com/CEDA2024/Metric-Free-Categorical-Database.

It is somehow critical for performing this reliability check
based on the minimum sum of Type-I and Type-II errors,
or the overlapping area of the alternative and null entropy
distributions. Since the commonly used criterion based on
P-value is simply too optimistic in a sense of too many
false positive feature-categories being selected. This fact truly
reflects the importance of Kolmogorov’s randomness-proper
when analyzing real world data.
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III. DATA-DRIVEN BOTTOM-UP CEDA PARADIGM
After the description of reliability check in the previous
subsection, it is essential to put the technical meaning of
confirming both pieces of information of HighBP0 and
HighBP1 pertaining to the dynamics of Y in perspective.
Since this dynamics is limited to the sub-population defined
by (GenHL, Age) = (5, 1). The structural dependency and
de-associating operation discussed in details in [8] assure
the fact that these two 1-feature-categories HighBP0 and
HighBP1 indeed provide extra-information beyond what the
bivariate-category (GenHL, Age) = (5, 1) can provide into
the dynamics of Y . This seemingly simple de-associating
operation is critical for identifying true factors underlying
Y from two fronts. First, its chief merit is to identify
potential major feature-categories of various orders. Sec-
ondly, it provides a way of checking whether one feature-
category indeed provides extra-info, instead of piggy-backing
upon an already confirm major feature-category. Via these
two fronts, we construct our CEDA bottom-up data-driven
computational developments in this section.

A. MFCI ALGORITHM
As the first phase of developing CEDA paradigm, we build an
algorithm forMajor Feature-Category Identification (MFCI):
from order-1 to higher orders. Before describing the MFCI
algorithm, we first clarify the ‘‘identification’’ operation of
CEDA paradigm that facilitate two types of tasks: MFC and
Extra-info, in the MFCI algorithm given below.

1) FOR MFC
For identifying potential major k-feature-categories (MFC
of order k) pertaining to a covariate feature-set A with
cardinality k , we first build a hyper-contingency table
HCT [Y;A] based on the entire sub-population of data
points. Secondly, we perform reliability check upon each
row of HCT [Y;A], respectively. Thirdly, a decision of
identification is made with respect to a chosen threshold of
minimum sum of Type-I and Type-II errors.

2) FOR EXTRA-INFO
For identifying whether 1-feature-category, says Bb, can
provide extra-info upon an identified major k-feature-
category, says Aa, we first build a hyper-contingency table
HCT [Y;B|Aa] based on the collection of data points
belonging toAa. Secondly, we perform reliability check upon
the b−th row of HCT [Y;B]. Thirdly, again a decision of
identification is made with respect to a chosen threshold of
minimum sum of Type-I and Type-II errors.

Within the sub-population (GenHL, Age) = (5, 1),
apparently, both tasks of identification for MFC and Extra-
Info are so-called de-associating operations working on two
different data-settings: one is the sub-population specified
by (GenHL, Age) = (5, 1) and the other is specified by the
targeted major feature-category, such asHighBP0, see details
in [8]. We now describe the MFCI algorithm below.

a: MAJOR FEATURE-CATEGORY IDENTIFICATION (MFCI)
ALGORITHM:
MFCI-1. Identify and confirm effect of anymajor 1-feature-

categories via minimum sum of type-I and type-II
errors or overlapping area of alternative and null
entropy distributions.

MFCI-2. Identify and confirming effects of any major 2-
feature-categories in two steps. Step[2]-1 is to
find out which 1-feature-categories can provide
Extra-Info upon each confirmed major 1-feature-
category; Step[2]-2 is to confirm the order-2 effect
of any identified 1-feature-category in Step[2]-1
together with its corresponding confirmed major
1-feature-category via the criterion of minimum
sum of type-I and type-II errors to identify a major
2-feature-category.

MFCI-3. Identify and confirming effects of any major 3-
feature-categories in two steps. Step[3]-1 is to
find out which 1-feature-categories can provide
extra information upon each confirmed major
2-feature-category. Step[3]-2 is to confirm the
order-3 effect of any identified 1-feature-category
in Step[3]-1 together with its corresponding con-
firmed major 2-feature-category via the criterion
of minimum sum of type-I and type-II errors to
identify a major 3-feature-category.

Comp-4. Identify and confirming effects of any major
higher-order-feature-categories in two steps
exactly like the above MFCI-2 and MFCI-3.
(Naturally, the finite sample size would force our
computations to a stop at Step[k+1]-1 when no
more 1-feature-categories can be found to provide
Extra-Info upon all identified major k-feature-
categories.)

The above description of MFCI algorithm is designed
to cope with finite computing resource, in particular when
facing a large number of 1D covariate feature-variables
contained in data set. It might miss some major feature-
categories of high orders with its 1D component-member-
features being not involving in selected major 1-feature-
categories. Such kinds feature-categories of high orders are
relatively rare. On the other hand, if computing resource
is large enough, then the orders of Step[2]-1 and Step[2]-2
can be switched. Then the concern of missing some order-2
interacting effect is resolved. Likewise for switching orders
of Step[3]-1 and Step[3]-2. Nonetheless, if the MFCI-3 step
is performed with its two steps in reversed order, then there
would be

(17
3

)
= 680 triplets of features and more than

5440 reliability checks. From the cost-benefit aspect, we do
not switch the order of these two steps. Patterns reported in
the next two sections seem to support this decision.

Here we report results from the first two steps of MFCI
algorithm applied on the sub-population (GenHL, Age) =

(5, 1). By applying MFCI-1 step of MFCI algorithm,
we found 13 major 1-feature-categories with respect to
a chosen 0.1 threshold value of minimum sum of Type-

66304 VOLUME 12, 2024



H. Fushing et al.: Topological Risk-Landscape in Metric-Free Categorical Database

I and Type-II error, Error − I&II for short, see Fig. 2.
From the column-perspective of this figure, it is worth
noting that these 13 major 1-feature-categories consist one
positive and one negative disease risk groups marked with
‘‘+’’ and ‘‘−’’ signs. Members of each group overlap with
significant number of subjects. Such overlapping patterns
clearly indicate the strong structural dependency among these
1D features. From the row-perspective, it is obvious that
many subjects share the same or very similar memberships
across 13 major 1-feature-categories, while they belong to
very distinct response-categories. These patterns together
promote the necessity of carrying out MFCI-2 step for more
informative associative patterns.

FIGURE 2. Heatmap of confirmed major 1-feature-categories for dynamics
of Y = (STK , HD) within the subpopulation GenHL=5 and Age=1.

Upon applying Step[2]-1 of MFCI-2 step, we found
57 candidate 1-feature-categories that can provide extra-
info upon the 13 major 1-feature-categories resulted from
MFCI-1 step. Further, applying Step[2]-2 of MFCI-2 step,
we identified and confirmed 31 major 2-feature-categories,
see Fig. 3. Overall, the heatmap in Fig. 3 reveals much
clear associative patterns from major 2-feature-categories
of positive and negative disease risks than that in Fig. 2.
Especially, it is striking to see that subject-members of the
non-diseased category Y = (0, 0) are respectively separated
into two obvious groups. One group consists of member-
subjects having prevalent memberships among 14 major 2-
feature-categories of positive disease-risk, and another group
consists of member-subjects having prevalent memberships
among 17major 2-feature-categories of negative disease-risk.

This obvious improvement from major 1-feature-
categories to major 2-feature-categories naturally motivates
us to further carry out the MFCI-3 step. Before we report
computational results from the MFCI-3 steps in Section V,
we report four types of interacting effects of order 2

FIGURE 3. Heatmap of confirmed major 2-feature-categories for
dynamics of Y = (STK , HD) within the subpopulation GenHL=5 and
Age=1.

resulted from MFCI-2 step and illustrate their age-related
evolving patterns across four sub-populations of (GenHL,
Age) = (5, k) with k = 1, 3, 4, 5 in the next Section IV.
Discoveries of interacting effects and understanding of their
evolutions across age-axis are especially important from
the perspectives of societal chronical disease and individual
risk dynamics. The scientific discoveries and understanding
become self-evident when we face the diverse formats
of asymmetry among all involving 2-feature-categories.
In contrast, we would see heatmap-based displays of
individual risk-landscape topologies and their age-related
evolution along the same age-axis in Section V.

IV. DIVERSE TYPES OF ORDER-2 INTERACTING EFFECTS
AND THEIR EVOLUTIONS
As an 1-feature-category is found to provide Extra-Info to
any major 1-feature-category, this fact indeed signals the
potentials of discovering essential and important interacting
effects of order-2. In particular, when such discoveries are
arranged with respective to age-axis, we figure out their
evolutions. Such evolutions are rather interesting and critical.
Here, four types of asymmetry of order-2 interacting effects
would be illustrated centering around HighBP coupled with
four 1D binary features. Their four types of interacting effects
are characterized by their diverse relationswithHighBP given
as follows: 1) ‘‘DiffWalk being independently equal’’; 2)
‘‘Diabetes being nearly complete dominated’’; 3) ‘‘HighChol
being highly dependently equal’’, and 4) ‘‘Smoker being
seemingly irrelevant, but strikingly modified just at one
locality’’. Each type gives to one format of asymmetry
as displayed in a figure format with double-scale panels.
At the age-scale, such a figure consists of four age-panels
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with increasing age-category. At the bivariate-category scale
for patterns of interacting effects, each age-panel consist
of 4 panels: (0,0), (0,1), (1,0) and (1,1). Such discovered
asymmetric patterns of interacting effects in general give rise
to clear senses of information complexity. Computationally,
we would clearly see the merits of (Step[2]-1, Step[2]-2) in
MFCI-2 in the MFCI algorithm in this section.

All interacting effects of order-2 are uploaded into the
GitHub with address listed in the caption. It is also noted
that, in fact, such explorations can and should be likewise
done for interacting effects of any orders. Here, it is necessary
to reiterate that authentic interacting effects of order-2 and
higher-order ones will contribute to our true understanding
on bivariate-disease dynamics of Y .

FIGURE 4. Four increasing-age-panels: (A) to (D), with
2 × 2 bivariate-category-panels of interacting effects of bivariate-feature
(Diffwalk, HighBP) and their reliability check via simulated alternative (in
orange color) and null (in blue color) entropy distributions. See
corresponding plots at
https://github.com/CEDA2024/Metric-Free-Categorical-Database.

A. TYPE-0
From the Fig. 4, we discuss our discoveries in a fashion with
respect to each of 2×2 panels of bivariate-feature (Diffwalk,
HighBP) across the four age-categories.

1. On the (0,0)-panel, among the four age-categories,
three observed pairs of CE-distributions of 2-
feature-category {DiffWalk-HighBP = [0,0] }
achieve zero Error−I&II , except the one of Age=

5, which achieves a less than the threshold 0.1
Error − I&II value. Such significant results can be
achieved from either of the two possible directions.
Direction-1: 1-feature-category {DiffWalk = 0}
provides extra-info upon {HighBP = 0} to achieve
the significant CE value. Direction-2:1-feature-
category {HighBP = 0} provides extra-info upon

{DiffWalk = 0} to result this significant CE value.
In reality, we confirm that {DiffWalk = 0} and
{HighBP = 0} indeed provide each other Extra-
info in age-categories: Age = 1 and Age =

3 but neither directions being confirmed in Age =

4 and Age = 5. It is also evidently that the four
mode-locations of their alternative CE-distributions
reveal sizeable CE-reductions from the minimums
of mode-locations of alternative CE-distributions
pertaining to 1-featue-categories {DiffWalk = 0}
and {HighBP= 0}. These are computed interacting
effects bivariate-feature (Diffwalk, HighBP) =

(0,0) from the age-axis perspective.
2. On the (0,1)-panel, among the four age-categories,

the four observed pairs of CE-distributions of
2-feature-category {DiffWalk-HighBP = [0,1] }
achieve rather large Error−I&II values comparing
with the threshold. One common pattern among
these four alternative-vs-null distributions is that the
alternative one is on the left hand side of the null
one. That is, the alternative one is stochastic smaller
than the null one. Such a pattern of stochastic
comparison is more evident in Age = 3 and Age =

4 than in Age = 1 and Age = 5. This pattern
indicates that the category {DiffWalk = 0} seems
somehow dominant over the category {HighBP =

1}, which has an opposite relational pattern of its
alternative-vs-null distributions. This is one notable
pattern of computed interacting effects of bivariate-
feature (Diffwalk, HighBP) = (0,1).

3. On the (1, 0)-panel, among the four age-categories,
the four observed pairs of CE-distributions of
2-feature-category {DiffWalk-HighBP = [0,1] }
reveal even more evident common pattern among
these four alternative-vs-null distributions as seen in
(0,1)-panels: the alternative one is on the left hand
side of the null one. The pairs Age = 3, Age =

4 and Age = 5 achieve rather small Error − I&II
values comparing with the threshold. That is, the
alternative one is evidently stochastic smaller than
the null one. This pattern strongly indicates that
the category {DiffWalk = 1} is dominated by the
category {HighBP= 0}. This is an essential pattern
of computed interacting effects of bivariate-feature
(Diffwalk, HighBP)= (1,0). The meaning of this
interacting effects is important from both societal
and individual perspectives.

4. On the (1, 1)-panel, among the four age-categories,
like in the panel-(0,0), the four observed pairs of
CE-distributions of 2-feature-category {DiffWalk-
HighBP = [1,1] } achieve zero Error − I&II ,
except the one of Age = 5, which achieves a
less than the threshold 0.1 Error − I&II value.
Again, we confirm that {DiffWalk = 1} and
{HighBP = 1} indeed provide each other Extra-
info in age-categories: Age = 1, Age = 3 and
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Age = 4, but neither directions being confirmed
in Age=5. Again, it is also evidently that the four
mode-locations of their alternative CE-distributions
reveal sizeable CE-increments from the maximums
of mode-locations of alternative CE-distributions
pertaining to 1-feature-categories {DiffWalk = 1}
and {HighBP= 1}. These are computed interacting
effects bivariate-feature (Diffwalk, HighBP) =

(1,1) from the age-axis perspective.

The evolution of non-linear interacting effects of bivariate-
feature (Diffwalk, HighBP) across the four Age-panels is
exhibited through the above computational patterns and
results. Via its graphic display in the Fig. 4, this evo-
lution strongly indicates that {HighBP} and {DiffWalk}
play somehow equal roles along the age-axis. And both
{DiffWalk = 0} and {HighBP = 0} retain dominant effects
over {HighBP = 1} and {DiffWalk = 1}, respectively. This
dominance manifestation of interacting effects of bivariate-
feature (Diffwalk, HighBP) sends multiple strong medical
and scientific messages about the dynamics underlying
Y = (STK ,HD) with respect to Age. Here, such messages
precisely refer to the potential benefits of changing status:
from {DiffWalk = 1} to {DiffWalk = 0} and {HighBP = 1}
to {HighBP = 0} in individual and societal levels.

Nonetheless, if changes can’t be done on both{DiffWalk=

1} and {HighBP = 1}, one change would also create
significant impacts. This is one of the key merits of figuring
out the interacting effects of bivariate-feature (Diffwalk,
HighBP). On the other hand, the Fig. 4 is indeed a graphic-
display for demonstrating the necessity of employing a data-
driven bottom-up computational paradigm like CEDA for
authentic information contained in data.

B. TYPE-I
From the Fig. 5, we continue discussing patterns of inter-
acting effects in the same fashion with respect to each of
2 × 2 panels of bivariate-feature (Diabetes, HighBP) across
the four age-categories. The computed patterns here embrace
some intrinsic differences from that found in the above
Type-0 of bivariate-feature (Diffwalk, HighBP), in particular,
in (0,1)- and (1,0)-panels.

1. On the (0,0)-panel, among the four age-categories,
three observed pairs of CE-distributions of 2-
feature-category {Diabetes-HighBP = [0,0] }
achieve zero Error − I&II , except the one
of Age = 5, which achieves a less than the
threshold 0.1 Error − I&II value. The four
mode-locations of their alternative CE-distributions
reveal sizeable CE-reductions from the minimums
of mode-locations of alternative CE-distributions
pertaining to 1-featue-categories {Diabetes = 0}
and {HighBP = 0}. However, we confirm that
{Diabetes = 0} only provide extra-info upon
{HighBP = 0 for Age = 4 categories, while
{HighBP = 0} indeed provides Extra-Info upon

FIGURE 5. Four increasing-age-panels: (A) to (D), with 2 × 2 panels of
interacting effects of bivariate-feature (Diabetes, HighBP) and their
reliability check via simulated alternative (in orange color) and null (in
blue color) entropy distributions. See corresponding plots at
https://github.com/CEDA2024/Metric-Free-Categorical-Database.

{Diabetes = 0} with Error − I&II ≤ 0.1 in all
Age categories.

2. On the (0,1)-panel,{Diabetes-HighBP = [0,1] }
fails to be a major 2-feature-category across all
four age-categories. Nonetheless, we confirmed the
directional effect: {HighBP = 1} provides Extra-
Info upon {Diabetes = 0}, but not the other
way, across all four age-categories. Such Extra-info
results are reflected on the fact that the alternative
entropy distribution appeared on the right-hand
side of null entropy distribution as being coherent
with the pattern of {HighBP = 1}only in the
Age = 1, while the three pairs of alternative-
vs-null CE distributions are nearly completely
overlapping in Age = 3, Age = 4 and Age =

5. This evolution of patterns of interacting effects
of bivariate-feature (Diffwalk, HighBP) seemingly
indicates that the the category {Diabetes = 0} in
fact has varying capacity of reducing the disease
risk from that of {HighBP = 1} with respect to
age-categories.

3. On the (1,0)-panel, again {Diabetes-HighBP = [1,
0] } fails to be a major 2-feature-category across all
four age-categories. Though, we confirmed the one-
directional effect: {HighBP = 0} provides extra-
info upon {Diabetes = 1}, but not the other way,
the alternative entropy distribution appeared on the
left-hand side of null entropy distribution same as
the pattern of {HighBP = 0}, but the opposite of
the pattern of {Diabetes = 1}, also across all four
age-categories. Thus, patterns of interacting effects
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of bivariate-feature (Diffwalk, HighBP) found in
this panel and the above panel together indicate the
dominance of feature {HighBP} over {Diabetes} in
their interacting effects.

4. On the (1,1)-panel, {Diabetes-HighBP = [1, 1]
} is confirmed as a major 2-feature-category in
Age = 1, Age = 3, and Age = 4, but not in
Age = 5. Also we confirmed the one-directional
effect: {HighBP = 1} provides extra-info upon
{Diabetes = 1} in Age = 1 and Age = 3, but not
the other way, in the first three age-categories. Such
one-directional effects reflects on varying amounts
of CE increments of {Diabetes-HighBP = [1, 1] }
over the CEs of {HighBP= 1} and {Diabetes= 1}.

From the above results of the four panel displayed in Fig. 5,
we can see that {HighBP} is apparently dominant over
{Diabetes}. Also, we found that both {HighBP = 0} and
{HighBP = 1}indeed bring extra information upon both
{Diabetes = 0} and {Diabetes = 1}, but not the other
way around. Both results conclude non-linear interacting
effects for bivariate-feature ( {HighBP}, {Diabetes}) coupled
with somehow sophisticated dominance within the dynamics
underlying Y = (STK ,HD).

FIGURE 6. Four increasing-age-panels: (A) to (D), with 2 × 2 panels of
interacting effects of bivariate-feature (HighBP, HighChol) and their
reliability check via simulated alternative (in orange color) and null (in
blue color) entropy distributions. See corresponding plots at
https://github.com/CEDA2024/Metric-Free-Categorical-Database.

C. TYPE-II
The three 1D features: {DiffWalk}, {HighBP} and {High-
Chol}, are key risk factors of disease dynamics underlying
Y = (STK ,HD). At Age = 1, 3 and 4, these three
binary factors mutually provide Extra-Info among their
categories, while such mutual relations disappear in Age= 5.
Nonetheless, the evolutions of patterns of order-2 interacting

effects of bivariate-feature ({HighBP}, {DiffWalk}) and
({HighBP}, {HighChol}) are somehow distinct. As would
be seen below through Fig. 6 and panel-based summary,
the bivariate-feature ( {HighBP}, {HighChol}) reveal some
extents of ‘‘asymmetry’’, which is not exactly identical the
asymmetric patterns found in bivariate-feature ( {HighBP},
{DiffWalk}).

1. On the (0,0)- and (1,1) panels, {HighBP-
HighChol = [0, 0] } and {HighBP-HighChol = [1,
1] } are all confirmed as a major 2-feature-category
at Age = 1, 3 and 4, but not Age = 5.

2. On the (0,1)-panel, {HighBP-HighChol = [0, 1] }
is confirmed as a major 2-feature-category at Age=

3 and 4, but not Age = 1 and 5. The alternative
entropy distribution is located on the left-hand side
of null entropy distribution with sizable overlapping
at Age = 1 and 5, but having near-zero overlapping
at Age= 3 and 4. The interpretation of this evolving
pattern over age is that the status {HighBP = 0}
is more important than status {HighChol = 1} in
terms of subject’s disease risk.

3. On the (1, 0)-panel, {HighBP-HighChol = [1,
0] } is also confirmed as a major 2-feature-
category only at Age = 4, but not at Age = 1,
3 and 5. The evolving pattern of relative position
of the alternative entropy distribution toward the
null entropy distributions has gone from almost
entirely overlapping to entirely separated and back
to heavily overlapping from Age = 1 to Age = 5.
It means that {HighChol = 0} is more important
than {HighBP = 1} only at Age = 4.

Though {HighBP} and {HighChol} seem to play equal
roles, their interacting effects revealed in (0,1)- and (1,0)-
panels are highly asymmetric across all age-categories. Such
evolving asymmetry is hardly known in any priori fashion.
That is, the evolution of asymmetric order-2 interacting
effects of {HighBP} and {HighChol} can only be described
precisely on the category-locality, not on global or marginal
scale. The computational approach for patterns of such
nature needs to be data-driven and bottom-up like CEDA
paradigm. And these computational and observed facts
further enhance that ICiD is consisting of 1D histograms of
feature-categories.

D. TYPE-III
Next, we consider the evolving order-2 interacting effects
of bivariate-feature (HighBP, Smoker) across the four age-
categories. Upon the Fig. 7, we would see two significant
evolving patterns. The first pattern is that, through the (0,0)-
, (0,1)- and (1,1)-panels, we see the two categories of
{Smoker} have nearly zero interacting effects with categories
of {HighBP} at Age = 1, 3 and 4, while this pattern of
interacting effect disappears at Age = 5 in a fashion that
the alternative and null entropy distributions become heavily
overlapping. The second pattern is seen through (1,0)-panels
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FIGURE 7. Four increasing-age-panels: (A) to (D), with 2 × 2 panels of
interacting effects of bivariate-feature (HighBP, Smoker) and their
reliability check via simulated alternative (in orange color) and null (in
blue color) entropy distributions. See corresponding plots at
https://github.com/CEDA2024/Metric-Free-Categorical-Database.

across age-categories. The pair of alternative and null entropy
distributions is nearly overlapping each other at Age = 1.
Then, the alternative one shifts to the left of the null one at
Age = 3 and 4. At the end, the alternative one shifts to the
right of the null one at Age = 5. This evolving pattern means
that interacting effects of {Smoker = 0} and {HighBP =

1} are visible, but deceasing to a great extent at Age =

5 subpopulation.
In summary, these two evolving patterns indeed bear

significant scientific impacts on understanding chronical dis-
eases. Hence, it is worth reiterating that not only {HighBP}
plays a dominant role over {Smoker} with highly asymmetric
effects, but also their relational patterns do change along
the age-axis. In fact, as would be seen in the next section,
{Smoker} does play important role through its interacting
effects with {DiffWalk}, {HighBP} and {HighChol}. This
is one authentic and scientific, but very different way of
describing effects of smoking in our society. This is indeed
rather striking. In contrast, {Veggies} don’t have similar
effects at all.

Though the evolution of the above four types of order-
2 interacting effects are not unthinkable if we take a
retrospective viewpoint, the existence of such seemingly all
natural types interacting effects emphasizes one simple fact
that the diversity of functional forms of interacting effects can
be too complex to be modeled realistically. As such we again
emphasize the fact that these natural and explainable patterns
are possible and visible only when we adopt bottom-up data-
driven computational paradigm, like CEDA. This simple fact
is tied to the categorical-locality nature.

V. TOPOLOGICAL INDIVIDUAL RISK-LANDSCAPES AND
THEIR EVOLUTIONS VIA MFCI
Four heatmaps of confirmed major 1-feature-categories
for the four age-categories are resulted from applying
MFCI-1 step of algorithm MFCI respectively and shown
in Fig. 8. The memberships of the four sets of major
1-feature-categories (or 1-risk-factor-categories) are highly
overlapping. The common risk factors along the age-axis
are:{DiffWalk, Diabetes, HighBP, HighChol}. Interestingly,
risk-factors {Smoker, Income} are present from Age = 1 to
Age = 3, but drops out at Age = 4 and are replaced
by {NoDocbcCost}. This evolution coherently confirms the
expected fact that the effects of these two groups of risk-
factors are highly age-dependent. It is evidently noted that
there is an evolutionary break-down seen in the Age =

5 panel, which consists only 3 major 1-feature-categories.
The discussion of this phenomenon is given in the subsection
just before the Conclusions.

FIGURE 8. Four heatmaps of binary bipartite network matrices of major
1-feature-categories selected with respect to the threshold
Error − I&II ≤ 0.1 across the four age-categories.

Three heatmaps of confirmed major 2-feature-categories
for the age-categories: Age = 1, 3 and 4, are resulted
from applying MFCI-2 step of algorithm MFCI respectively
and shown in Fig. 9. At Age = 5, we don’t find any 1-
feature-category being able to provide Extra-Info for all
confirmed major 1-feature-categories found through MFCI-
1 step. However, we present those 2-feature-categories that
merely satisfy the threshold Error − I&II ≤ 0.1.
Across the four heatmaps in Fig. 9 along the age-axis,

almost all major 2-feature-categories are primary interacting
pairs of major 1-feature-categories. The chief implication
of such an evident pattern is that higher order interacting
effects are highly potential at least in age-categories: Age =

1, 3 and 4. On one hand, since 2-feature-categories narrated
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FIGURE 9. Four heatmaps of binary bipartite network matrices of major
2-feature-categories selected with respect to the threshold
Error − I&II ≤ 0.1 across the four age-categories. The panel of Age =

5 consists of unconfirmed 2-feature-categories with respect to the
Step[2]-1 of MFCI-2 step.

in (0,1)- and (1,0)-panels in the previous section are most not
major 2-feature-categories found in Fig. 9, diseased-vs-non-
diseased subjects belonging to these two 2-feature-categories
need to be further separated by at least one more 1-feature-
categories. On the other hand, subjects in those confirmed
major 2-feature-categories narrated in (0,0)- and (1,1)-panels
in the previous section could be further separated to achieve
better diseased-vs-non-diseased separation beyond 2-feature-
categories, as would clearly be seen in next two subsections.

A. RESULTS OF MFCI-3 STEP AT AGE = 1
In this subsection, we report computed patterns through
various heatmaps of major 3-feature-categories within the
subpopulation (GenHL, Age)= (5, 1), while similar resultant
patterns of subpopulations at Age = 3 and 4 are reported in
the next subsection. In this section, one key idea of individual
risk-landscape would be introduced. And all subjects’
individual risk-landscapes are collectively displayed through
three versions of heatmaps. We then construct summarizing
contingency tables to confirm that such individual risk-
landscapes based heatmaps contain significant amounts of
pattern information content in data (ICiD). At the end,
we demonstrate the apparently existing so-called ‘‘atypical
subjects’’ in both diseased and non-diseased response cate-
gories.

Upon the Step[2]-2 of MFCI-2 step, we identified and
confirmed 31 major 2-feature-categories as seen in Fig. 3.
We then further perform the MFCI-3 step of the MFCI algo-
rithm. Upon applying Step[3]-1 of MFCI-3 step, we found
65 major and non-major 1-feature-categories that can provide
extra-info upon the 31 major 2-feature-categories resulted

from MFCI-2 step. Further, applying Step[3]-2 of MFCI-
3 step, we identified and confirmed 31 major 3-feature-
categories, see Fig. 10. There will be 41 confirmed if the
confirmation criterion is switched to P-value being less than
0.05, see Fig. 11. This heatmap is presented here to indicate
the potential fact that selection criterions based only on P-
values, not involving with alternative distributions, are likely
over-optimistic. All subsequent analyses are to be based on
results contained in Fig. 10.
Here, here by having the binary bipartite network’s matrix

lattice as a platform, we only collect all the major 3-
feature-categories and arrange them onto the column-axis
in Fig. 10. Memberships of each major 3-feature-category
is represented by the corresponding binary column-vector.
The column-axis is framed by a hierarchical clustering (HC)
tree derived by using Euclidean distance, while the row-axis
is also rearranged in a response-category specific fashion.
That is, subjects belonging to the same response-category
are arranged by its own HC-tree. So subjects of different
response-categories do not fix together. Such a heatmap
is created purely for easy visualization purpose. We wish
to convey that response-category specific patterns in such
heatmaps could help shed light on how major 3-feature-
categories collectively work out their roles for the dynamics
of Y .

FIGURE 10. Heatmap of binary bipartite network matrix 1776 × 31 with
31 major 3-feature-categories selected with respect to the threshold
Error − I&II ≤ 0.1.

1) INDIVIDUAL RISK-LANDSCAPE INTERPRETATION
The chief merit of employing a heatmap here is to
explicitly reveal the concept of individual risk-landscape
and foster authentic understanding from collective patterns
of such risk-landscapes. We first recall that the heatmap
shown in Fig. 10 has a format of 1776 × 31 matrix
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FIGURE 11. Heatmap of binary bipartite network matrix 1776 × 41 with
41 major 3-feature-categories selected with respect to the threshold
P-value ≤ 0.05.

with 31 identified and confirmed major 3-feature-categories
arranged along the column-axis. The binary memberships
among the 1776 subjects each of 3-feature-category is listed
as one column. As such each subject is represented by a
31-dim binary row-vector across the 31 major 3-feature-
categories. Such a 31-dim binary vector indeed explicitly
indicates what kinds of positive or negative disease risks
this subject is facing simultaneously. Specifically speaking,
along the column-axis with 31 columns, each subject within
this sub-population (GenHL = 5 and Age = 1) embraces
potential positive disease risk via memberships of 11 major
3-feature-categories marked with ‘‘+’’ signs and potential
negative disease risk via memberships of 20 major 3-feature-
categories marked with negative‘‘−’’ signs.

As such a 31-dim binary vector endorses a subject’s
individual-risk-landscape that becomes the most critical
information pertaining to this individual’s health. In com-
parison with the 31 major 2-feature-categories presented in
Fig. 3, all major 3-feature-categories in Fig. 10 by-and-large
have higher disease-to-non-disease odds. Such higher odds
would render clearer and more informative disease-related
mechanistic patterns as would be derived below.

All 1776 subjects’ individual 31-dim individual risk
landscapes indeed collectively constitute visible patterns of
various scales. The heatmap shown in Fig. 10 is framed by a
hierarchical clustering (HC) tree on column-axis and 4 color-
coded bivariate diseases categories. At its top internal node,
HC-tree splits into left and right branches, coded as L1 vs. R1,
respectively. The L1 branch consists all 11 positive disease
risk major 3-feature-categories, while the R1 branch consists
all 20 negative disease risk 3-feature-categories. Branch L1
further splits into L1L2 and L1R2 subbranches which are

color-coded gray on 4 and green on 7 major 3-feature-
categories of positive disease risk, respectively. Likewise R1
splits into R1L2 and R1R2 subbranches color-coded red on
3 and blue on 17 major 3-feature-categories negative disease
risk, respectively.

These four subbranches indeed embrace their charac-
teristics due to their distinct compositions of major 3-
feature-categories. It becomes natural to take these four
characteristics into considerations when thinking about the
similarity or dissimilarity among study subjects. That is,
we make the membership-sums of these four subbranches
into four extra feature-variables. The 35-dim Euclidean
distance is used to remake an extended version of heatmap
as shown in Fig. 12. This heatmap embraces more evident
blocks than the one in Fig. 10.

FIGURE 12. Extended version heatmap with 35-dim Euclidean distance
from the orignal version based on the binary bipartite network matrix
1776 × 31 with 31 major 3-feature-categories selected with respect to the
threshold Error − I&II ≤ 0.1.

This revised heatmap clearly reveal block-patterns as
demonstrated in Fig. 12. Apparently, each block in is jointly
framed by membership-cluster of a subbranch of major 3-
feature-categories, which are more or less constant, and
a cluster of study subjects, who are rather similar for
their individual risk-landscapes. These blocks collectively
convey explicit pattern-dynamics underlying Y . In particular,
a series of horizontally displayed blocks will characterize a
cluster of study subjects with visible and explainable pattern
information. In the next subsection, we elaborate merits and
importance of such characterization in details.

As each horizontal series of blocks induced a well-
defined neighborhood for all study subject participating in
this block, this heatmap can be taken as an informative
display of ‘‘topology’’ defined on the collection of 1776 study
subjects. In mathematical term, this topological space here
is equipped with the 35-dim Euclidean distance that defines
neighborhoods for all study subjects. In covariate information
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term, a subject’s neighborhood is meant to be a set of
subjects having very similar individual risk-landscapes. This
heatmap as a topological display is one of our chief
summarizing statistics. The reasons underlying this statement
are given as follows. The relational pattern information
regarding dynamics of Y is in full display: [response-
category]-vs -[individual risk-landscape], in the heatmap.
Further, the topological insights will have profound impacts
on Data Analysis as a scientific discipline. In contrast, from
this topological perspective, many statistical and machine
learning topics: ranging from classification to clustering, are
not rigorously formulated when facing real-world complex
systems, also see [8].

2) SUMMARIZING STATISTICS BASED ON SUBJECTS’
TOPOLOGY
To explicitly seemerits of the topology-bearing heatmap from
another aspect of summarizing statistics, we specifically look
at one positive and one negative disease risk subbranches:
L1R2 and R1R2, respectively, among the four aforemen-
tioned subbranches on column-axis. And for expositional
simplicity, we interpret the disease risk pertaining to Y ∈

{(1, 0), (0, 1), (1, 1)} against Y = (0, 0) via the odds. The
baseline or overall disease odds in this (GenHL = 5 and
Age = 1) subpopulation as 404

1372 = 0.2944.
Upon the L1R2 subbranch, which consists of 7 major

3-feature-categories of positive disease risk, each subject’s
total memberships of this subbranch ranges from 0 to 7. The
odds for subjects, who accumulate 4 up to 7 memberships,
is 109

119 = 0.9160. This odds indicates that a subject having
4 or more memberships within this subbranch has probability
of belonging to the diseased with probability nearly 0.5.
The odds-ratio is calculated as 0.9160

0.2944 = 3.1114. This ratio
indicates that these subjects are at least 3 times more likely
to be diseased: either Stroke or Heart disease, than subjects
in the entire subpopulation in general. In sharp contrast,
the odds for subjects, who accumulate 1 membership up
to 3 memberships is 168

397 = 0.4232. And the odds-ratio is
calculated as 0.4232

0.2944 = 1.4375. This ratio indicates that these
subjects nearly 1.5 times likely to be diseased as the subjects
in this subpopulation in general. Further, subjects have zero
memberships on this subbranch have an odds 127

856 = 0.1484.
That is, such subjects have an odds-ratio 0.1484

0.2944 = 0.5041,
that is, subjects in this sub-population in general are twice as
likely to be diseased as such subjects with zero memberships
in this subbranch. These three spreading widely odds-ratios
indicates the informativeness of L1R2 subbranch on the
positive disease risk.

However, the heatmap shown in Fig. 12 reveal much
more important visual patterns beyond the above three
widely spreading odds-ratios and their interpretations based
on results associated with L1R2 subbranch. Here are the
essences of three implications derived from the visual
patterns:

1. The superficial disease-imbalance phenomenon
indeed is embedded with somehow surprising hid-
den structural causes: ‘‘atypical subjects’’, as would
be described below. Such causes render any predic-
tive approaches unsustainable because of not only
having very high error-rates, but also being neither
informative nor scientifically correct.

2. The precise and drastically distinct multi-scale
block-patterns of topological individual risk-
landscapes of all involving subjects are critical for
understanding the dynamics of Y = (STK ,HD).

3. The high vs zero intensities of memberships within
each block across positive and negative disease
risks of major 3-feature-categories pave ways for
distinguishing high risk subjects against lower risk
ones.

These are three chief findings in our CEDA based data
analysis and chief characteristics of resultant ICiD of locality
nature.

The above three chief finding of CEDA data analysis are
even more evident via interpretations of results from the
branch R1R2. This branch consists of 17 major 3-feature-
categories of negative disease risk. There are total 51 subjects
having 8 or more memberships. Strikingly, this group of
subject have zero odds. This result is indeed striking. There
are 280 subjects who have at least 3, but no more than
7 memberships. This group of subjects’ odds is 13

267 =

0.0487, and odds-ratio 0.0487
0.2944 = 0.1654. The probability

of being diseased for subjects in this group is as low as
0.05, and its relative risk of this group to the whole sub-
population is less than one fifth. There are 253 subjects have
one or two memberships. This group’s odds is 30

223 = 0.1345,
so its subjects’ probability of being disease is less than 1

8 .
Its odds-ratio is less than 1

2 . Finally, there are 1192 subjects
who do not own any memberships out of these 20 major
3-feature-categories. There are 360 having diseases among
these 1192 subjects, that is, the odds is 361

1192−361 =
361
831 =

0.4344, and the probability is 0.3029. The odds-ratio is
1.4755. That is, subjects with zero memberships on R1R2
branch will have 1.5 times of the relative risk of subjects
within sub-population in general.

The above topological risk-landscape based findings of
positive risk based on the branch L1R2 and of negative
risk on the branch R1R2 together clearly spell out the
essential merits of identified and confirmed high orders
effects of feature-categories. It is somehow revealing to see
such significant results and informative patterns via such
simplistic computations. More revealing is that the amount
of branch-memberships becomes a synthesized variable. That
is, L1R2 and R1R2 can be transformed into two very
informative variables that more precisely prescribe positive
and negative disease risks, respectively, than any feature-sets.
Such consequential synthesizing mechanism of risk factors is
amazingly achieved without any man-made structures.
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We respectively transform themembership in branch L1R2
and in branch R1R2 into two new variables: Syn[L1R2] and
Syn[R1R2], in the following fashions. Denote a subject’s total
memberships on branch L1R2 and R1R2 as two variables:
#[L1R2] and #[R1R2], respectively.

1. [On branch L1R2:] Syn[L1R2] = 4+ if #[L1R2] ≥

4 ; Syn[L1R2] = 1+ if 1 ≤ #[L1R2] ≤ 3;
Syn[L1R2] = 0+ if #[L1R2] = 0.

2. [On branch R1R2:] Syn[R1R2] = 8− if #[R1R2] ≥

8 ; Syn[R1R2] = 3− if 3 ≤ #[R1R2] ≤ 7;
Syn[R1R2] = 1− if 1 ≤ #[R1R2] ≤ 2;
Syn[R1R2] = 0− if #[R1R2] = 0.

We then build the following odds and odds-ratio table. Let
n4+,8− = d4+,8− + nond4+,8− be the number of subjects
belonging to the (Syn[L1R2], Syn[R1R2]) = (4+, 8−),
which is the sum of d4+,8− as the number of diseased
subjects and nd4+,8− as the number of non-diseased subjects.
This table reveals that the bivariate (Syn[L1R2], Syn[R1R2])
is capable of a wide spectrum of odds, so it is rather
informative to dynamics underlying Y . That is to say that the
topological individual risk-landscape via heatmap, shown in
Fig. 12, indeed captures the very essential associative patterns
regrading this Re-Co dynamics.

TABLE 3. Odds table of Syn[L1R2] − vs − Syn[R1R2] division of the
sub-population of heterogeneity (GenHL = 5, Age = 1).

Likewise we make two synthesized variables: Syn[L1] and
Syn[R1], based on the two major branches L1 and R1. The
odds table of Syn[L1]− vs−Syn[R1] is given in Table 4. The
information content is relatively similar with that in Table 3.

TABLE 4. Odds table of Syn[L1] − vs − Syn[R1] division of the
sub-population of heterogeneity (GenHL = 5, Age = 1).

3) ATYPICAL SUBJECTS
As the [response-category]-vs-[individual risk-landscape]
relational pattern information of dynamics of Y being in
full display via block-patterns embedded within the heatmap
shown in Fig. 12, we clearly see that there are 3 types of
non-diseased subjects in the category Y = (0, 0). The three
types are: 1) zero positive risk with prevalent memberships in
R1 branch; 2) some positive and some negative risk; 3) zero
negative risk with prevalent memberships in L1 branch across
the 31 major 3-feature-categories. These three types are
seemingly seen within the diseased subjects in the categories

Y = {(0, 1), (1, 0), (1, 1)} as well. Immediately, we realize
contradictingmechanisms through the simultaneous presence
of these three types of [response-category]-vs -[individual
risk-landscape] relational patterns in both diseased and non-
diseased categories.

Intuitively and ideally speaking, the category Y = (0, 0)
should be full of the type-1 subjects, or at most include some
type-2, and the categories Y = {(0, 1), (1, 0), (1, 1)} should
be full of type-3 subjects. But, apparently, this is not case
in the heatmap in Fig. 12. Counter-intuitive and non-ideal
situations are observed: a large group of type-3 subjects in
the category Y = (0, 0) and a group of type-1 subjects in the
categories Y = {(0, 1), (1, 0), (1, 1)}.
In particular, a large group of type-3 subjects in the

category Y = (0, 0) are those who resist the trend
to go much higher odds-ratios than 3 in the bivariate
cell (Syn[L1R2], Syn[R1R2]) = (4, 0) in Table 3 or
(Syn[L1], Syn[R1]) = (4, 0) in Table 4. For this reason,
we term such subjects: ‘‘atypical subjects’’ in Y = (0, 0).
Likewise, we have ‘‘atypical subjects’’ in the categories Y =

{(0, 1), (1, 0), (1, 1)}. To better visualize the presence of such
atypical subjects, we build another heatmap by lifting off the
response-category constraint in Fig. 13. It is clearly seen that
subjects with similar individual risk-landscapes are grouped
together, while their response-category-marks are mixed.

FIGURE 13. Extended version heatmap with 35-dim euclidean distance
and without response-categories constraints on the row-axis.

At the end of this subsection, we mention the following
obvious implications of ‘‘atypical subjects’’ within calY -vs-
IRL topological relations. Though the nature of ‘‘atypical
subjects’’ is to be discovered, the graphic displays of
mapping out and displaying all such ‘‘atypical subjects’’
within the heatmap indeed reveal full [response-category]-
vs-[individual risk-landscape] relations. Thus, Fig. 12 and
Fig. 13 are essential computational results in data analysis.
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The existence of ‘‘atypical subjects’’ also points out the
superficial nature of so-called ‘‘imbalance’’ phenomenon
when analyzing this Kaggle data set in Statistics andMachine
Learning literatures. Further, any validity of ‘‘re-balancing’’
operations as seen in [13], [14], and [15], which are
created to remedy or lessen the impact of such ‘‘imbal-
ance’’ between non-diseased and diseased, are by-and-large
questionable.

B. RESULTS OF MFCI-3 STEP AT AGE = 3 AND 4
In this subsection, we present computed relational patterns
from Age = 3 and 4 and compare them in a side-by-side
fashion. Such representations are designed for the purposes
of convenient comparisons to figure out evolving changes
between these two sub-populations.

FIGURE 14. Two heatmaps of binary bipartite network matrices of major
3-feature-categories selected with respect to the threshold
Error − I&II ≤ 0.1: (a) 3244 × 44 for Age = 3; (b) 4819 × 70 for Age = 4.

By applying Step[3]-2 of MFCI-3 step of the MFCI
algorithm upon the two sub-populations of Age = 3

and 4, we respectively identified and confirmed
44 (= 28(−)+16(+)) and 70 ( = 62(−)+8(+)) major
3-feature-categories, see two panels of Fig. 14: (a) for
Age = 3 and (b) Age = 4.

Upon the 3244 × 44 heatmap of Age = 3, almost
all 16 out of 44 are positive-diseased risk oriented
major 3-feature-categories. The three feature-members of
these 16 major 3-feature-categories primarily consisting
two features from {DiffWalk, Diabetes, HighBP, High-
Chol} coupled with one feature from {Income (group-1),
Smoker, Sex (male)}. One worth noting major 3-feature-
category is {(HighChol, Income, Smoker) = (1,1,1)} in
this young-adult sub-population. As for the 28 negative-
diseased risk oriented major 3-feature-categories, their
members of three selected features maintain the same
structure as the positive risk ones, while the category
of {Sex} is female and category of {Income} is the
group 3.

In contrast, upon the 4819× 70 heatmap of Age = 4, only
8 out of 70 major 3-feature-categories are positive-diseased
risk oriented. Interestingly, the three feature-members of
these 13 major 3-feature-categories primarily consist 3 fea-
tures from {DiffWalk, HighBP, HighChol, Income, Smoker},
excluding {Diabetes}. In particular, the female gender is
coupling with the lowest income-group: {Income = 1} at
this late-adult sub-population. As for the 62 negative-diseased
risk oriented major 3-feature-categories, their members of
three selected features again maintain the same structure
as the positive risk ones, while the category of {Sex}
remains female and category of {Income} is the group 3.
Another evident change in Age = 4 is that categories:
{Edu = 3} and {BMI = 2}, are involved in more than
10 selected major 3-feature-categories on the side of negative
disease risk.

Further evident and significant patterns are found in
Age = 3 and Age = 4. First, the major 1-feature-categories
of negative disease risk never involve in major 3-feature-
categories of positive disease risk. This pattern is also seen in
major 2-feature-categories presented in the previous section.
The second pattern is that major 1-feature-categories of
positive disease risk are involved in many major 3-feature-
categories of negative disease risk. This observation strongly
indicates the complexity embraced by the disease dynamics
of response variable Y = (STK ,HD).

Furthermore, since the positive disease risk effects are
possible to be compensated by multiple negative disease
risks. Such a possibility indeed offers for individuals to
alter their disease risks by making some behavioral changes.
We take this possibility is one of the chief merit of
displaying computed and confirmed pieces of information
in a format of heatmap of individual risk-landscape. This
pattern is seen much more prevalent in Age = 4 than
Age = 3. One interpretation of this age-related difference
is tentatively attributed to more complex disease dynamics
of response variable Y = (STK ,HD) in Age = 4 than that
in Age = 3.
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FIGURE 15. Two heatmaps of binary bipartite network matrices of major
3-feature-categories with extra dimensions and modified Euclidean
distances: (a) 3244 × 44 for Age = 3 with 4 extra dimensions;
(b) 4819 × 70 for Age = 4 with 5 extra dimensions.

From the perspective of ‘‘atypical subject’’, the Fig. 15 and
Fig. 16 together reveal its existential evidence in diseased and
non-diseased categories within both Age = 3 and Age = 4.
Such an existence of ‘‘atypical subjects’’ strongly indicates
the importance of recognizing the true goal of data analysis
as constructing graphic displays that can explicitly exhibit
detailed individual risk-landscape. Upon these heatmaps,
we can visualize the topological relations pertaining to each
subject’s neighborhoods under the same platform, with which
subject-specific similarity and dissimilarity become natural
and obvious. Such topologies immediately link to many
essential scientific issues, such as how to design randomized
trials, how to design experiments for finding extreme high
(or low) disease risk subjects and how to properly understand
causal effects under observational study and many others.

At the end of this subsection, we again present the
synthesized bivariate (Syn[L1], Syn[R1]) as an identified

FIGURE 16. Two heatmaps of binary bipartite network matrices of major
3-feature-categories with extra dimensions and modified Euclidean
distances, but without constraints on response categories on row-axis:
(a) 3244 × 44 for Age = 3 with 4 extra dimensions; (b) 4819 × 70 for Age
=4 with 5 extra dimensions.

informative summarizing 2D statistics for complex disease
dynamics of Y = (STK ,HD) within the sub-populations
Age = 3 and 4, respectively. Two corresponding contingency
tables: Table 5 for Age = 3 and Table 6 for Age = 4, are
seen to capture a wide spectrum of disease risk potentials
and characteristics: from very low disease risk to rather high
disease risk in terms of cell-specific odds comparing with the
odds pertaining to the sub-population. It is evident that the so-
called imbalance phenomenon is no longer present in these
two sub-populations. However, the presence of ‘‘atypical
subjects’’ remains. That is, any predictive approaches are
to suffer very high error rates and to be seen as being
impractical. Once again, this presence of ‘‘atypical subjects’’
is a clear and strong reminder regarding the fact that some
important risk-factors might still be missing in this Kaggle
version of BRFSS data set.
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TABLE 5. Odds Table of Syn[L1] − vs − Syn[R1] division of the
sub-population of heterogeneity (GenHL = 5, Age = 3).

TABLE 6. Odds Table of Syn[L1] − vs − Syn[R1] division of the
sub-population of heterogeneity (GenHL = 5, Age = 4).

C. FROM REFLECTIONS IN AGE = 5 TO EVOLUTION OF
Y = (STK , HD)
The sub-population Age = 5 consists of 2242 subjects,
which is larger the size of Age = 1. However, we encounter
very striking phenomenons via our CEDA computations
within this sub-populations. The first phenomenon is that
the numbers of positive and negative disease risk major 1-
feature-categories have suddenly shrunk to 3, as seen in the
Age= 5 panel of Fig. 8. The three major 1-feature-categories
are:{HighBP = 1(+), HighBP = 0(−), HighChol = 1(−)}.
Even more dramatic is the second phenomenon that no major
2-feature-categories or 3-feature-categories could be found
and confirmed. That is, all behavioral risk factors can offer
Extra-Info to these three major 1-feature-categories, even
{HighBP} and {HighChol} can not mutually offer Extra-
Info to each other, like what they do in Age = 1, 3 and 4.
In other words, beside these two risk factors, the remaining
15 behavioral risk factors do not matter for the complex
disease dynamics of Y = (STK ,HD).
This is a very strange and striking phenomenon observed

in Age = 5. We collectively term this phenomena in Age =

5 an ‘‘Information Break-down’’. This phenomenon is worth
further looking into from information evolution perspective
of complex disease dynamics along the age-axis.

Finally, we make several concluding remarks on the
evolution of complex disease dynamics of Y = (STK ,HD)
along the age-axis under the constant GenHL = 5 category.
As demonstrated through the series of heatmaps of individual
risk-landscape, the spectrum of major 3-feature-categories of
positive disease risk is expanded from Age = 1 to Age = 3,
then shrinks toward Age = 4 and completely disappears in
Age = 5, while the spectrum of major 3-feature-categories
of negative disease risk is greatly expanded from Age =

1 to Age = 4, then suddenly disappears in Age = 5.
However, the contents of individual risk-landscape based
patterns found within the three heatmaps, like the presence of
‘‘atypical subjects’’, are more or less constant from Age = 1
to Age = 4.

Further, the disease risk evaluations evolve rather distinc-
tively from sub-population (GenHL, Age)= (5,1) to (GenHL,
Age) = (5,4). Since the series of odds tables pertaining
to (Syn[L1], Syn[R1]) evolves rather drastically. In fact, the
information content within the series of sub-populations from
(GenHL, Age) = (5,1) to (GenHL, Age) = (5,4) changes
dramatically. For instance, in comparison of the three tables
of Syn[L1] − vs − Syn[R1] across three age-categories:
Table 4 for Age = 1, Table 5 for Age = 3 and Table 6
for Age = 4, we first look at the cell with the highest risk:
(Syn[L1], Syn[R1]) = (4, 0). For Age = 1, the cell’s sub-
population specific odds-ratio is calculated as 191

255/
404
1372 =

2.5437. For Age = 3, the cell’s sub-population specific odds-
ratio is calculated as 605

698/
1135
2109 = 1.6105. Correspondingly,

for Age = 4, the the cell’s sub-population specific odds-
ratio is calculated as 674

381/
2225
2594 = 2.0624. Thus, from the

highest disease risk aspect, we see very non-linear evolution
of complex disease dynamics of Y = (STK ,HD). Non-
linearity is seen along other evolving patterns for the lowest
disease risk as well, among many others.

VI. CONCLUSION
We have refined our CEDA algorithmic computing paradigm,
beginning with the recognition of the ‘‘element of infor-
mation’’ inherent in categorical data points and confirming
the 1D histogram of any feature-category as its simplest
form of ‘‘a piece of explainable information’’. Subsequently,
we employ the conditional entropy of the response variable
given a covariate feature-category to unravel directional
associative relationships of locality nature. The CEDA
algorithm then utilizes newly developed algorithms based on
de-associating operations and the concept of Kolmogorov’s
randomness-proper to identify and confirm major feature-
factor-categories from order-1 to higher orders.

We adopt a heatmap platform as a graphic display of
a binary bipartite network matrix recording all presence-
absence memberships of major feature-categories of high
order. Subjects are arranged along the row-axis, while
major feature-categories are arranged along the column-axis,
respectively. Each binary subject-specific row vector not
only provides a dissimilarity measure for its neighborhood
but also facilitates a highly interpretable individual risk-
landscape. The significance of subjects’ individual risk-
landscape extends beyond the scope of our discussion,
influencing real-world issues such as optimal selection and
causality studies.

Moreover, this heatmap undergoes rearrangement opera-
tions by superimposing its row- and column-axes with two
hierarchical clustering trees based on simple and natural
Euclidean distances, respectively. The resulting block-pattern
sustained heatmap serves as a graphic display, illustrating a
topological space annotated with memberships of response-
categories (or labels). Each block represents a relational
construct, showcasing a group of similar subjects against a
cluster of major feature-categories of order-3. Consequently,
any cluster of subjects can be precisely described by its
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corresponding horizontal series of blocks. This block-series
collectively reveals intricate relational information of the
response-variable Y =(STK, HD). Conversely, any cluster
of high-order feature-categories unveils complex structural
dependency among all involving feature-variables. Such
complexity in structural dependency remains unexplored in
the literature.

Additionally, this heatmap-based individual risk-landscape
topology highlights typical subjects versus ‘‘atypical sub-
jects’’ within each response-category. The contrasting pres-
ence of typical versus atypical subjects across distinct
response-categories underscores the importance of com-
puting and displaying pattern information as the primary
objective of data analysis. This elucidates why errors may
occur in predictive approaches within the fields of ML and
Statistics.

Throughout this paper, we employ CEDA to address the
extremely important and fundamental data analysis issue:
What is the information content in data (ICiD)? We propose
a primary approach to answer this question: A heatmap of
individual risk-landscape of high orders, which serves as
the chief component of sub-population specific ICiD in this
paper. We also endeavor to synthesize all findings concerning
the four sub-populations of GenHl=5 and Age=1, 3, 4, and
5 to gain a true understanding of the joint disease dynamics
of multiple chronic diseases. With such results in hand,
we are confident that our computational approach is a critical
method for studying the BRFSS as a complex system and its
evolution over many years.

Although this paper focuses on discussions within a
categorical data world, the entire computational framework
is applicable to all structured databases. Any database
represented in a matrix format inherently contains a cat-
egorical data world. Specifically, any quantitative variable
can be categorized through its histogram as an approx-
imately sufficient statistic. Their joint high-dimensional
histogram would retain almost all essential information
content in data (ICiD). Thus, by accepting a slight amount
of information loss when relinquishing ‘‘smoothness’’, the
gains from applying CEDA are tremendous from many
perspectives. The foremost perspective is the explicit inter-
pretability of ICiD, which is completely free from all man-
made structures and assumptions. Therefore, all CEDA
results are authentic. This fact leads to another essential
perspective in scientific data analysis: Unlike symmetry-
based correlation, which may provide a distorted marginal
version of associative information, our directional asso-
ciative patterns are of a local nature. These patterns are
visible, explicit, realistic, intuitive, and most importantly
explainable.

In conclusion, all heatmaps presented in this paper
explicitly underscore the central role of classification in
the study of complex systems. The scientific value of
a complex system lies in comprehensive explanations of
its dynamic nature, which is expressed through all study
subjects. Therefore, any classification task must be real-

istically approached by revealing and showcasing intrinsic
information related to each individual study subject. In this
manner, we convincingly demonstrate in this paper that our
CEDA paradigm can effectively explore complex systems
and uncover their dynamics captured in ICiD. Furthermore,
we illustrate that CEDA is capable of accommodating highly
complex response variables and relatively small sample sizes.
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