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ABSTRACT In the artificial intelligence (AI) community, accurately interpreting the semantics of complex
sceneries is a critical component across various systems. This paper introduces an effective pipeline that
intelligently merges multi-channel perceptual visual features to identify scenic images with intricate spatial
layouts. Our focus is on developing a deep hierarchical model that proactively identifies where human gaze is
directed in a scenery. Overall, our method includes three key modules. First, we employ the BING objectness
descriptor for the swift and precise localization of objects or their elements across multiple scales within a
scene. Meanwhile, an algorithm for the local-global fusion of features is formulated to represent each BING
patch, integrating various low-level attributes from different channels. Second, to mimic the human process
of identifying semantically or visually significant patches within a scenery, we employee an active learning
algorithm to localize those scenic patches that are semantically or visually salient. They further constitute the
so-called Gaze Shift Path (GSP). Finally, an aggregation-guided deep neural network is designed to calculate
the deep GSP features, which are subsequently applied to a multi-label SVM to distinguish among various
scenic categories. Empirical evaluations reveal that our method’s categorization accuracy outperforms
existing models on six generic scenic datasets by 2% ∼ 4.5%. Besides, we observe a higher stability of
our method according to the repetitive experiments. Furthermore, our method demonstrates exceptional
discriminative power on a specially compiled sports educational image collection, wherein the accuracy
exceeds the second best performer by 8%. These results showed the huge potential to computationally
discover human gaze behavior in different visual recognition tasks.

INDEX TERMS Perceptual, feature fusion, local-global, active learning, deep architecture.

I. INTRODUCTION
The accurate attribution of multiple labels to each scene
plays a pivotal role in the architecture of contemporary
artificial intelligence (AI) systems. This paper presents
instances where such recognition is crucial: for instance,
intelligent navigation systems require the computation of
the shortest route from start to finish. This necessitates
the integration of various scene-related attributes, including
transportation network configurations, directional flows of
streets, and the morphology of urban landscapes, to refine
pathfinding algorithms. Furthermore, in the domain of
public security frameworks, the extraction of diverse scene-
aware characteristics, such as road markings and elevation
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changes, is fundamental to augment the real-time monitoring
capabilities for pedestrians and vehicles. It is observed that
vehicular accidents predominantly occur at intersections
rather than on uninterrupted stretches of road. Through rapid
and precise classification of scenic types, the deployment
of multi-camera surveillance networks at critical junctions
becomes feasible, allowing for the detailed observation of
unusual vehicular and pedestrian activity. Overall, by enhanc-
ing the capability to swiftly and accurately identify distinct
scenic categories, we facilitate the strategic placement of
surveillance systems and the optimization of navigational
algorithms, thereby significantly contributing to the safety
and efficiency of urban infrastructure.

Within the scholarly domain, a multitude of algo-
rithms for visual categorization and annotation tailored to
scenic imagery of varying resolutions has been developed.
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FIGURE 1. A Synopsis of Our Scenery Classification Approach through
Perceptual Aggregation-based Deep Model (The red windows denote the
BING object patches. The multiple BING patches are fed into the
corresponding CNNs for calculating the deep features, which are further
aggregated into an image-level deep features. Such image-level deep
features are leveraged to train an image kernel machine for
categorization.)

Prominent methodologies can be classified into three
main categories: 1) Multiple Instance Learning (MIL) and
CNN-guided region detection utilizing weak supervision
techniques [49], [50]; 2) semantic-aware graph models
designed for complex scene parsing [54], [55]; and 3) sophis-
ticated hierarchical structures dedicated to the annotation of
scenic photographs [51], [52], [53]. Despite these advance-
ments, existing approaches often struggle to faithfully
represent scenic images, attributed to several challenges:

• A plethora of visually appealing objects or their compo-
nents are present within high-resolution scenic imagery,
as shown in Fig. 1. Identifying semantic labels for these
images necessitates a biologically-inspired algorithm
that emulates human perception of salient regions. Craft-
ing a deep learning solution capable of both identifying
these regions and enhancing their visual representation
presents multiple hurdles, including: i) delineating the
gaze shifting path (GSP) as individuals sequentially
focus on engaging image patches; ii) mitigating the
effect of label noise inherent in large-scale training
datasets; and iii) semantically integrating labels from
the overall image down to specific patches within each
scene;

• The accurate depiction of semantically or visually
significant areas within a scene often relies on diverse
low-level descriptors, each isolating scenic elements in
a unique channel. Achieving a complementary fusion of
these descriptors necessitates a method for intelligently
determining the significance of each feature channel.
However, formulating a mathematically tractable model
for this purpose is challenging. Practical issues include:
i) integrating local features from spatially adjacent
regions within a scene; ii) maintaining global compo-
sitional integrity across various internal scenic areas;
and iii) dynamically tuning channel weights to cater to
distinct sets of scenic images.

Addressing the challenges outlined previously, we intro-
duce an innovative scenery categorization framework that
intricately and actively simulates human gaze dynamics.
This approach entails representing each scenic image patch

through the strategic amalgamation of various low-level
features. Specifically, as shown in Fig. 2, our method contains
three main modules. within a comprehensive collection of
scenic images where labels may be compromised, we initially
apply the popular Binarized Normed Gradients (BING)
algorithm [58] to extract numerous object-centric patches
across the dataset. Each patch is then characterized through a
novel fusion algorithm for low-level features, which simulta-
neously encodes the local as well as the global topological
structures of samples (module 1). Further advancing our
methodology, we introduce a novel aggregation-based deep
framework (as shown in Fig. 1) to emulate human gaze
patterns in scene perception. This framework excels in
calculating the Gaze Shift Path (GSP) and deriving a deep
representation of GSPs (module 2). By leveraging the learned
deep representations, we construct a kernelized machine. It is
used to train a multi-label Support Vector Machine (SVM)
tasked with the categorization of scenic imagery (module
3). Our empirical assessments, conducted across six public
scenic datasets and a specially assembled sports education
image collection, showed the overwhelming performance of
the designed recognition pipeline.

Nevertheless, our approach may encounter a limitation
in the form of discrepancies between generated GSPs and
natural human gaze patterns. To overcome this challenge,
we plan to conduct comprehensive user studies to compare
our GSPs with actual human gaze data. The aim is to
refine our Low-rank Active Learning (LRAL) algorithm to
more accurately replicate human visual behavior, thereby
improving the quality of architectural categorization results.

In summary, the innovations introduced in this research
are twofold. Firstly, we develop an aggregation-based deep
learning model capable of actively learning and precisely
modeling human gaze behavior, while concurrently extract-
ing gaze-guided visual features. Secondly, we implement
a sophisticated feature fusion approach that dynamically
assesses and integrates the significance of various feature
channels for each scenic image patch, enhancing the accuracy
and relevance of the extracted features.

II. RELATED WORK IN SCENE CATEGORIZATION
The field of computer vision has seen the advent of numerous
deep learning models for scene categorization. Hierarchical
Convolutional Neural Networks (CNNs), augmented with
intricately devised deep structures, have demonstrated effi-
cacy in recognizing scenes from vast image collections such
as the well-known ImageNet dataset [41]. A significant
advancement was introduced in [5], where researchers
developed a massive-scale deep neural network utilizing a
subset of ImageNet [41], achieving remarkable accuracy in
categorization tasks. Despite their generalist design, CNNs
trained on ImageNet have proven to bolster a variety of
computer vision applications, including video parsing and
anomaly detection. Over the last decade, enhancements
to standard ImageNet-based CNNs have occurred in two
primary dimensions. Firstly, efforts have been made to amass
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FIGURE 2. The pipeline of our scenery categorization.

extensive sample collections to bolster the training of multi-
layer architectures. Techniques like selective search [42] have
merged enumerative search principles with semantic-level
annotation, facilitating the generation of category-agnostic
patch samples conducive to deep learning. Secondly,
the introduction of region-level CNNs (R-CNNs) [43]
marked a strategic move towards sampling high-quality
patch samples. Further contributions include [14], where
researchers enriched CNN-based scene categorization by
curating a vast collection of Internet-scale, scenery-related
images. However, training deep visual models using entire
scenic images or arbitrary patches has often been deemed
inefficient. To address this, [45] utilized a pre-trained
hierarchical CNN to identify local, representative scenic
patches, thereby refining deep scene categorization learning.
Moreover, [4] introduced a multi-task and multi-resolution
algorithm for scene categorization that preserves intrinsic
feature distribution with a manifold-based regularizer. In [7],
a novel framework for scene semantic annotation was
proposed, leveraging low-rank deep features to estimate
category-specific posterior probabilities and employing a
Markov probabilistic model to capture contextual features.
The relationship between different deep layers was explored
in [8], where an unlabeled learning model was developed
to iteratively learn deep features based on the geometric
attributes of scenes. Lastly, [47] innovatively integrated
discriminative feature and weak label learning within a
comprehensive scene analysis model, introducing a stacked
discriminative sparsity autoencoder for computing advanced
visual representations.

The field of computational vision has seen a plethora of
models developed for the analysis of aerial imagery. For
instance, a multi-modal learning technique for annotating
high-resolution (HR) aerial images was introduced in [48],
while a novel multi-attention-based algorithm for evaluating
representations of aerial photos was proposed in [27]. These
image-level visual models have been effectively applied
to classify aerial images of varying resolutions. However,
they face limitations in modeling low-resolution (LR) aerial
images, primarily due to the challenge of accurately identify-
ing small yet critical objects that appear blurred. To address
the need for detecting discriminative objects across multiple

scales, an efficient region-level modeling technique is
essential. Such an approach enables the precise localization of
diminutive objects within each LR aerial photograph. In the
pursuit of robust face recognition, a group sparsity regularizer
was designed in [62], introducing an upper-bounded function
to enhance the sparsity-seeking capabilities of the l1-norm,
effectively mitigating bias and outlier impacts. Additionally,
the challenge of incomplete multi-view clustering was
tackled in [44] by transforming it into a task of upgrading
incomplete similarity graphs and learning a complete tensor
representation. For regional characterization of aerial images,
a multi-layer deep learning model focused on identifying
significant ground objects across scales was developed
in [23]. Furthermore, a focal-loss-based deep learning model
for precise vehicle localization within both LR and HR
aerial photographs was formulated in [59]. A geographic
object detection model, capable of intelligently extracting
roads and intersections fromHR aerial images, was presented
in [61]. Lastly, an innovative visual detector combining
feature engineering with soft-label calculations for aerial
image analysis was proposed in [60].

In [16], the authors introduce a Self-Guided Separation
Network for the classification of remote-sensing scenes.
Uniquely, this approach leverages background information
beyond the primary target in the image, employing a
target-background separation strategy as a supportive tool
for decision-making. This technique enhances the ability
to differentiate between samples that share similar targets
but have distinct backgrounds. Additionally, the network
enhances the variety of feature focuses across its branches
using contrastive regularization, boosting the distinction
between target and background information. In [17], the
researchers explore both the local and global structures
of scene images, merging these insights to enhance scene
recognition accuracy for both indoor and outdoor environ-
ments. In [18], Zhao and colleagues develop an advanced
efficient multisample contrastive network that assimilates
knowledge from multiple samples. This involves creating a
dynamic dictionary, updated through momentum, to identify
positive and negative sample pairs throughout the dataset.
A contrastive module is then used to aggregate similarity
and discriminative knowledge between samples, with the
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insights gained subsequently integrated into the main clas-
sifier through knowledge distillation. In [25], the authors
introduced a methodical strategy to address the challenge
of benchmarking in the context of saliency detection. They
distinguished between saliency models, maps, and metrics
by adopting principles from Bayesian decision theory.
This approach defined a saliency model as a probabilistic
framework for predicting fixation densities, while a saliency
map was conceptualized as a prediction tailored to a
specific metric, optimized to enhance expected performance
based on the model’s density predictions. Additionally, the
authors formulated these optimal saliency maps tailored
to several widely utilized saliency metrics. Many saliency
models struggle to effectively capture the significant mutual
information between an image’s content and the locations
of viewer fixations. This challenge is addressed through a
transfer learning approach, utilizing the DeepGaze I model,
which employs features learned from object recognition tasks
to predict where viewers will focus. Building on this, the
authors introduce a newer version, ‘‘DeepGaze II’’ [26],
which transforms an image into the high-dimensional feature
space provided by the VGG network. Following this trans-
formation, a straightforward readout network is employed to
generate a density prediction of fixation points. This readout
network undergoes initial training on the SALICON dataset
and is subsequently fine-tuned using the MIT1003 dataset,
enhancing its predictive accuracy.

III. OUR ALGORITHM
A. INTEGRATING OBJECT-AWARE PATCHES INTO SCENE
CATEGORIZATION
Research in visual cognition and psychology [56], [57] has
consistently shown that human observers tend to focus on
semantically or visually significant regions when viewing
diverse sceneries. This suggests that only select discrimina-
tive regions are considered during visual processing. Recog-
nizing the importance of mimicking this selective attention
in scene categorization, we have developed a methodology
that includes efficient detection of object-aware patches and a
geometry-preserved deep active learning approach to identify
semantically or visually crucial scenic patches, thereby
emulating human visual perception. The human visual system
is naturally drawn to semantically or visually critical objects
or their components, such as vehicles and skyscrapers,
which, along with their spatial distribution, significantly
influence the perception of different scenes. To pinpoint
objects or components likely to capture human attention,
we utilize the BING [58] objectness metric to extract a
collection of high-quality object-aware patches from various
scenes. The BING approach offers three principal advantages
that are crucial for our scene categorization model. Firstly,
it demonstrates exceptional efficiency in detecting object
patches with minimal computational demand. Secondly, the
quality of Gaze Shift Path (GSP) extraction is significantly
improved by identifying a superior set of object-level patches.
Thirdly, BING’s outstanding generalization capability across

unseen object categories ensures the adaptability of our scene
categorization model across diverse datasets, enhancing its
utility in practical applications.

B. OPTIMAL INTEGRATION OF PATCH FEATURES
Through the systematic extraction of object patches using the
BING [58] algorithm within scenic images, we successfully
gather a collection of low-level features for each scenic patch.
Based on this, a novel multi-channel feature fusion scenario
is designed to intelligently incorporate the low-level visual
features. The algorithm is designed using in a local-global
fusion architecture, which has three advantageous attributes:
1) Preservation of the local distribution in the low-level
feature space is encoded, as scenic patches practically share
visual similarities with their spatial neighbors. 2) Mainte-
nance of the global distribution within the low-level feature
space is significant as well, as it represents the overall
composition of the scenery. 3) Feature weights are adaptively
tuned toward each particular set of scenic images, ensuring
the fusion process is optimal toward each unique each scenic
dataset. This algorithm not only enhances the descriptiveness
of visual features extracted from each scenic patch but
also ensures that both local and global scenic context are
optimally captured, thereby facilitating the accuracy of scene
categorization.

1) MAINTAINING PATCH LOCAL DISTRIBUTION
For this objective, we define x ij as the visual feature extracted
from the j-th scenic patch within the i-th feature channel.
Additionally, x ij and its L spatially neighboring features
are collectively represented as Xji = [x ij , xj1

i, · · · , x ijL].
Similarly, Yji = [yij, yj1

i, · · · , yijL] denotes the outcomes of
feature fusion for Xi

j. By leveraging the above definitions,
the objective of preserving the local distribution among
L spatially adjacent scenic patches can be formulated as
follows:

argminYij

∑L

l=1
||yij − y

i
jl ||

2(r ij )l, (1)

In this framework, r ij is defined as an M -dimensional vector
that quantifies the correlation between the scenic patch x ij and
its spatially neighboring patch. Specifically, the l-th element
of r ij , denoted as (r ij )l, is calculated using the expression

exp
(
−
||xij−xjl

i
||
2

t2

)
, where t denotes the standard deviation

of a Gaussian distribution.
Following some mathematical derivations, we can trans-

form the above objective function into amatrix representation
as follows:

argminYij tr(Y
i
jB
i
j(Y

i
j)
T ), (2)

Within this formulation, the matrix B = [−eTM , IM ]T diag(r ij )
[−eTM , IM ] is defined in the space R(M+1)×(M+1). It is
important to note that eM = [1, · · · , 1] is an M -dimensional
vector consisting entirely of ones, IM signifies an M × M
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identity matrix, and diag(r ij ) is an M × M diagonal matrix
with its diagonal entries being the elements of r ij .
From a mathematical perspective, the local optimization of

the H features can be described as follows:

argminY={Yij}Hi=1,κ
∑H

i=1
κitr(Yi

jB
i
j(Y

i
j)
T ), (3)

In our model, κi quantifies the significance of each feature
channel.

2) PATCH GLOBAL DISTRIBUTION
Building on our earlier discussion, integrating the global
spatial structure of object-aware patches within a scenic
image is crucial. We propose that Yi

j = YAi
j, where the

matrix Ai
j ∈ RN×(M+1) acts as a selector matrix. This setup

indicates that scenic patches are locally correlated to the
entire set of patcheswithin the image, suggesting a distributed
approach to understanding scene composition. Consequently,
the objective function previously defined can be modified as
follows:

argminY={Y}Hi=1,κ
∑H

i=1
κitr(YAi

jB
i
j(A

i
j)
TYT )

= argminY={Y}Hi=1,κ
∑H

i=1
κitr(YDiYT ), (4)

We notice that B = [−eTL , IL]
T diag(r ij )[−e

T
L , IL], by reor-

ganizing (4), the following equation can be received:

Di
= Ci

− Si, (5)

In this model, Ci is defined as a diagonal matrix where each
entry, Ci

jj, is derived by summing over l as follows: Ci
jj =∑

l[S
i]jl . Here, S is an N × N matrix with elements [Si]uv =

exp(− ||xu−xv||
2

t2
), encapsulating the interaction between pairs

of scenic patches. Herein, N counts scenic patches in each
scenic image. Importantly, Ci serves as the unnormalized
Laplacian matrix [21], playing a crucial role in our analysis.

To enhance computational efficiency, we apply a normal-
ization procedure to Di, outlined as follows:

Di
n = (Ci)−1/2Di(Ci)−1/2, (6)

In this context, Di
n denotes the normalized version of Di.

Our approach to feature fusion, which transitions from
local to global considerations, is encapsulated in the follow-
ing objective function:

argminY,κ
∑H

j=1
κitr(YDj

nY
T ),

s.t., YYT
= I,

∑H

j=1
κj = 1, κj > 0. (7)

Observations from minimizing equation (7) indicate that
κi = 1, which leads to the selection of multiple highly
informative features. However, employing a hard constraint
in this context is considered sub-optimal since the goal is
to utilize a combination of features for effective scenery
categorization. To address this, we adopt a strategy as
suggested in [24], specifically modifying the setup to
κi ← κoi with o > 1. This modification implies

that the ideal value of κi for multi-channel features needs
dynamic adjustment. Theoretically, each feature channel
should contribute distinctively to the composite feature,
ensuring an optimal representation of each scenic patch.

C. AGGREGATION-BASED DEEP MODEL
Based on the patch-level fused feature, we leverage the
geometry-preserved active learning algorithm [10] to selected
multiple visually/semantically salient scenic patches inside
each scenery, they are then seqentially linked to from a
Gaze Shift Path (GSP). Upon deriving the GSP from each
scenic imagery, we construct a sophisticated deep learning
framework aimed at learning and integrating these paths
into an kernel-induced feature vector, facilitating enhanced
scenery classification. This framework is structured around
two main elements: 1) An Adaptive Spatial Pooling (ASP)-
enhanced CNN, tailored for detailed scene region analysis,
and 2) A method for amalgamating regional hierarchical
visual representations into a cohesive feature at image-level.
Element 1: In the community of image understanding,

preserving the input size as well as the aspect ratio of
each image has been acknowledged as crucial for accurately
modeling scene spatial dynamics [11]. It has also been
established that objects with arbitrary shapes convey richer
semantic information about the scene compared to standard
rectangular patches [9]. To address these insights, we refine
the conventional five-layer CNN architecture [15] to accom-
modate inputs of varying shapes and sizes. This enhancement
is achieved through the integration of an Adaptive Spatial
Pooling (ASP) layer [11], which introduces the flexibility
of adjusting pooling dimensions to suit input regions of
any geometry, thereby preserving the integrity of scene
representation.

Each deep CNN, as illustrated in Fig. 1, begins with
processing a bunch of salient scenic patches identified
via our adopted active learning technique. To enhance the
generality of each patch, we introduce random jitter and apply
horizontal/vertical flipping with a probability of 0.5. The
architecture progresses through four stages, encompassing
convolution, Adaptive Spatial Pooling (ASP), and local
response normalization, culminating in a fully connected
layer with 2048 units. Subsequently, the network divides into
a fully connected layer with H units of 256 dimensions,
representing H hidden topics related to scenery, such as
‘‘beach’’ and ‘‘forest’’. The utilization of shared lower
layers helps in minimizing parameter count while leveraging
the foundational CNN structure common across low-level
features.
Element 2: As depicted in Fig. 1, for a GSP comprising

a set of sequentially connected regions of arbitrary shapes,
we extract an L-dimensional deep representation for a scenic
patch utilizing the aforementioned regional CNN model. The
above visual features are subsequently aggregated to form a
comprehensive feature descriptor of the GSP.

We define 8 = {φi}i∈[1,K ], where φi ∈ RM represents the
each region’s deep representation along the GSP, and Sm as
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the ensemble of them-th feature dimension across all φi ∈ 8,
i.e., Sm = {ψmj}j∈[1,K ]. The aggregation process employs
a collection of statistical functions, 5 = {πu}u∈[1,U ],
including minimum, maximum, mean, and median, applied
to the regional deep representations. The outcomes from 5

are merged and then processed based on a fully-connected
module, yielding an L-dimensional vector that encapsulates
the deep representation of the GSP, thereby enhancing scene
categorization through a methodologically grounded fusion
of local to global visual features.

F(9) = P× (⊕Uu=1 ⊕
M
m=1 πu(Sm)), (8)

where P ∈ RL×UM denotes a matrix that includes deep
aggregation layer’s parameters. We set U to four as there
exists four different operations inS.Within this structure,P ∈
RL×UM is the parameter matrix of the aggregation module,
whereU is set to four to match the four statistical functions in
S. The operator ⊕ represents vector concatenation, merging
the UM-dimensional vectors φu(Sm) into an extended vector.

1) TRAINING THE MULTI-LAYER AGGREGATION NETWORK
In our forward propagation stage, the output oi from the
i-th neuron in the statistic layer is calculated as oi =∑K

a=1
∑M

m=1 ram→io′am, with ram→i representing the ‘‘con-
tribution’’ of neuron dkm to neuron i in the statistic layer.
The error ηi received by the i-th neuron at this layer
allows us to determine the back-propagated error η′km for
neuron dkm, calculated as η′km =

∑
i rkm→iηkm. The overall

multi-layer deep model is optimized through standard error
back-propagation [5], employing stochastic gradient descent
for error minimization.

2) KERNEL-INDUCED FEATURE VECTOR
Given that each scenic picture is characterized by a GSP
in R2, traditional classifiers such as SVMs, which require
1-D vector features, face a challenge in directly categorizing
scenes based on these paths. To address this, we introduce
a kernel machine that transforms the multidimensional paths
into 1-D vectors.

The effectiveness of the image kernel-induced feature
depends on calculating distances between scenic pictures
based on their GSPs. For each scenic picture, its paths P∗
are transformed into vectors a⃗ = [α1, α2, · · · , αN ], with each
element defined as:

αi ∝ exp
(
−

1
j2 · T 2

∑T

j=1
d(y(P∗j ), y(P

i
j ))

)
, (9)

In this formulation, d(·, ·) is used to represent the distance
of pairwise vectors, where y representations the deep visual
feature extracted in an GSP. The parameter N counts the
training scenic images, while T refers to the quantity
of regions along each path. Additionally, P∗j and P i

j
correspond to the j-th regions within the paths P∗ and P i,
respectively.

Utilizing the feature vector derived as mentioned, we pro-
ceed to train a multi-class SVM [6] for scene categorization.

GivenR distinct scenery categories, our approach involves the
training of C2

R binary SVM classifiers to distinguish between
scenes from the p-th and q-th categories by establishing a
specific binary SVM for each pair.

max
β∈RNpq

ω(β) =
∑Npq

i=1
βi −

1
2

∑Npq

i=1
γiγjliljk(αi, αj)

s.t. 0 ≤ γi ≤ C,
∑Npq

i=1
γili = 0, (10)

In this scenario, γi ∈ RN represents the deep feature
for the i-th training scenic image, with li representing its
class label (where +1 corresponds to the p-th category
and −1 to the q-th category). The variable α describes
the hyperplane that distinguishes between scenic images
belonging to the p-th category and those in the q-th category.
The parameter C > 0 is utilized to balance the complexity
of the model against the proportion of scenic images that
cannot be discriminated, while Npq counts the training scenic
images from either the p-th or the q-th category. In practice,
given R distinct scenic categories in total, we will produce
(R− 1)R/2 binary SVMs to differentiate between the entire
R categories.

IV. TESTING OUR METHOD
In this section, we assess the performance of our scene
classification framework, which leverages the designed
aggregation-based CNNs, across four distinct experimental
setups. Initially, we outline the experimental design and
introduce six benchmark datasets for scene classification.
Following this, we engage in a comparative study against a
range of both shallow and deep learning-based recognizers.
We then investigate the influence of critical parameters
within our model. Finally, we demonstrate the applica-
tion of the deep GSP features extracted by our model
to enhance the classification of education-related sports
scenes.

A. DATASETS AND EXPERIMENTAL SETUP
Our categorization model is thoroughly tested across six
varied scenic image collections, which encompass both
established benchmarks and more contemporary datasets.
Representative images from these experimental scenery
collections are displayed in Fig.3. Among these, the two
foundational datasets employed are Scene-15 [19] and MIT
Indoor Scene-67 [20].

Our evaluation encompasses a broad spectrum of scenic
image datasets, detailed as follows:

• Scene-15: This dataset includes 15 diverse categories,
with 13 initially introduced by Li and Perona [22]. Each
category contains between 200 to 400 scenic images,
averaging a resolution of 320 × 250. The images are
primarily sourced from COREL, individual collections,
and Google.

• Scene-67: This collection features a comprehensive
array of indoor scenes, aggregated from three primary
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FIGURE 3. Sample images from the six scene datasets mentioned above.

sources: 1) Picasa and Altavista, 2) various photography
sharing websites, and 3) LabelMe images.

• Additionally, we incorporate four more recent scenic
image sets into our evaluation: ZJU Aerial Imagery [3],
ILSVRC-2010 [41], SUN [46], Places [14].

Furthermore, we introduce a proprietary dataset, the
Massive-Scale Sport Educational Images (MSEI), consisting
of sports scenes utilized for educational purposes. This
dataset is composed of approximately 920,000 images
across nine sports categories: basketball, football, volley-
ball, outdoor golf, athletics, table tennis, rowing, base-
ball, and equestrian. A visual snapshot of this dataset is
illustrated in Fig. 4, with detailed statistics provided in
Table 1.

FIGURE 4. Sample images from our sport educational image collection.

Before delving into the comparative analysis with baseline
algorithms, we detail the empirical configurations of our
methodology: 1) Object Patches: Utilizing the BING [58]
algorithm, we standardize the number of scenic patches

TABLE 1. Details of our sport educational image set.

to 1000 across all six scenic image datasets to ensure
comprehensive localization of potential objects. 2) Spatial
Neighbors: The number of spatial neighbors (L) for each
patch is consistently set to five, facilitating a balanced local
context assessment. 3) Low-Level Features: For each object
patch, we incorporate three types of low-level features to cap-
ture comprehensive visual characteristics: a 16-dimensional
color moment [63], a 64-dimensional Histogram of Oriented
Gradients (HOG) [64], and a 160-dimensional combined
edge and color histogram [13]. 4) GSP’s Internal Regions:
The quantity of internal regions within a Gaze Shifting Path
(GSP), denoted by K , is established at five. This decision is
based on empirical evidence suggesting that human attention
typically focuses on up to five prominent regions within a
scene. 5) Patch-Level Deep Feature: The dimensionality of
our deep feature, extracted at the patch level, is standardized
at 212, ensuring a detailed yet manageable representation
for each patch. These settings aim to strike an optimal
balance between capturing intricate details and ensuring
computational efficiency, while aligning with the observed
tendencies of human visual focus and the way objects are
depicted in scenic imagery.
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TABLE 2. Averaged categorization accuracies on the compared models on the aforementioned data sets (we repeatedly experiment each baseline
algorithm 10 times, based on which the average categorization accuracies are reported. the results showed the overwhelming performance of our
perceptual scenery categorization model.)

B. COMPARISON WITH OTHER RECOGNITION MODELS
1) SCENERY CATEGORIZATION TASK EVALUATION
Our perception-guided scenery categorization model is
benchmarked against four widely recognized shallow clas-
sification algorithms: 1) Fixed-Length Walk Kernel (FWK)
and its Tree Kernel version (FTK) [28]. 2) Multi-Resolution
Histogram (MRH) [34]. 3) Kernel Machine Learning by
Spatial Pyramid (SP), with variants including LLC-SP [29],
SC-SP [30], and OB-SP [31]. 4) Image Representation
by Super Vector (SV) [32] and Supervised Image Coding
(SSC) [33].
In our comparative analysis, algorithm configurations are

standardized. FWK and FTK lengths are adjusted between
two and ten. MRH employs RBF-based smoothing with
12 gray scales for scenic image preprocessing. For SP and its
variants, SIFT descriptors are extracted from 16 × 16 grids
across all training images, followed by the construction of a
400-sized codebook via k-means clustering.

Considering the success of multi-layer recognition models,
we extend our analysis to include several deep learning-based
scene recognition models: ImageNet CNN (IN-CNN) [5],
R-CNN [43],Meta Object CNN (M-CNN) [45], DeepMining
CNN (DM-CNN) [35], and Spatial Pyramid Pooling CNN
(SPP-CNN) [36]. Except for [45], the source codes for these
deep models are available, allowing for direct evaluation
with unchanged parameters. For [45], we began by extracting
192 to 384 region proposals per image set using MCG [37],
fixing the visual representation dimension at 4096 based
on the FC7 layer outputs from a combined CNN [14].
Additionally, 400 superpixels per scene are generated
using SLIC [2], optimized via SP-LDA or by selecting
120 visually significant patches as identified by GBV [1]
(SP-GBV).

Our method integrates multiple low-level features, with
the active learning framework identifying semantically or
visually significant superpixels (GSPs) to form Graph-based
Superpixels. These GSPs contribute to the kernel machine
for scene classification. Performance comparisons between
our BING-based rectangular patches and superpixels are
presented in Tables 2 and 3, revealing the superior descriptive
power of BING-guided rectangular patches over superpixels.
Additionally, we conduct comparisons with recent scenery
categorization models by Mesnil et al. [38], Xiao et al. [39],
and Cong et al. [40], showcasing the robustness and efficacy
of our approach.

Reviewing the data in Tables 2 and 3, we conduct a
detailed quantitative analysis comparing the performance of
the previously mentioned deep learning and traditional visual
recognition models. Each experiment is replicated 20 times to
ensure reliability, with the resulting standard deviations also
reported. Our findings indicate that our approach not only
achieves the highest classification accuracy but also exhibits
superior stability across evaluations. Notably, within our
specially curated Massive-Scale Sport Educational Images
(MSEI) dataset, the aggregation-based deep architecture
distinctly outperforms its closest competitor by more than 8%
in categorization precision, underscoring the effectiveness
and adaptability of our model in handling complex visual
categorization tasks.

C. PARAMETER OPTIMIZATION IN PERCEPTION-GUIDED
DEEP RECOGNITION
Our perception-guided deep recognition model is char-
acterized by several critical parameters that significantly
influence the accuracy of scenery categorization. In this
analysis, we evaluate the impact of these parameters on
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TABLE 3. Standard derivations on the compared models on the aforementioned data sets (we repeatedly experiment each baseline algorithm 10 times,
based on which the standard derivations are reported.)

model performance and propose optimal configurations
based on empirical results. Specifically, we examine three
key parameters: i) L, the number of neighbors considered
for reconstructing an object patch in active learning; and
ii) K , the number of object patches selected within a Gaze
Shifting Path (GSP). Due to the extensive computational
demands associated with larger datasets, this parameter
tuning exercise is carried out using the Scene-15 dataset [19],
offering a practical balance between thorough assessment and
computational feasibility.

FIGURE 5. Categorization precision by adjusting L.

Next, L represents the count of neighboring patches
used for reconstructing a scenic patch, a crucial aspect in
preserving the locality of object patches within our feature
fusion process. We incrementally adjust L from one to
15 and document the average recognition accuracies across
15 scenery categories. As depicted in Fig. 5, recognition
precision improves and peaks when L is set between

three to five, after which accuracy begins to decline. This
indicates that utilizing three to five spatially adjacent scenic
patches optimally reconstructs each scenery. Specifically,
in our analysis of the Scene-15 dataset, we observed that
scenic patches typically have three to five spatial neighbors.
This observation suggests that a range of three to five
neighbors for each target patch suffices for effective recon-
struction. Furthermore, Fig. 6 demonstrates that including too
many potentially irrelevant scenic patches not only reduces
reconstruction accuracy but also increases computational
time.

FIGURE 6. Categorization precision by adjusting M.

V. SUMMARY
The ability to accurately classify scenes into distinct cate-
gories holds considerable importance across a spectrum of
artificial intelligence (AI) applications. In this study, we have
introduced an innovative approach, termed aggregation-based
CNNs, which adeptly learn a descriptive image kernel by
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simultaneously discovering and representing human gaze
dynamics. Beginning with a comprehensive dataset of scenic
images, our methodology employs a local-to-global feature
fusion strategy to integrate various features for each region’s
characterization. The active learning technique is then applied
to pinpoint both visually and semantically significant regions
within each scene, thereby constructing a Gaze Shifting
Path (GSP) and deriving its deep representation. These deep
GSP features are subsequently transformed into a kernelized
vector format, facilitating effective scene categorization. Our
extensive experimental evaluations validate the robustness
and efficiency of this biologically-inspired deep learning
pipeline in scene categorization tasks.
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