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ABSTRACT A charging station that integrates renewable energy sources is a promising solution to address
the increasing demand for electric vehicle (EV) charging without expanding the distribution network.
An efficient and flexible energy management strategy is essential for effectively integrating various energy
sources and EVs. This research work aims to develop an Energy Management System (EMS) for an
EV charging station (EVCS) that minimizes the operating cost of the EVCS operator while meeting the
energy demands of connected EVs. The proposed approach employs a model-free method leveraging Deep
Reinforcement Learning (DRL) to identify optimal schedules of connected EVs in real time. A Markov
Decision Process (MDP) model is constructed from the perspective of the EVCS operator. The real-world
scenarios are formulated by considering the stochastic nature of renewable energy and the commuting
behavior of EVs. Various DRL algorithms for addressing MDPs are examined, and their performances are
empirically compared. Notably, the Truncated Quantile Critics (TQC) algorithm emerges as the superior
choice, yielding enhanced model performance. The simulation findings show that the proposed EMS can
offer an enhanced control strategy, reducing the charging cost for EVCS operators compared to other
benchmark methods.

INDEX TERMS Deep reinforcement learning, electric vehicle, energy management strategy, Markov
decision process, renewable energy, truncated quantile critics.

I. INTRODUCTION

In recent years there have been significant advancements
in battery technology along with increasing awareness of
climate change and global warming. All these resulted
in new opportunities for the widespread deployment of
EVs [1]. The EVs directly replace fossil fuels with electricity,
positively affecting the environment and the economy [2].
The increasing number of EVs on the electric distribution
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grid is beyond the capacity of the existing EVCS. Since
the number of charging stations is not increasing at the
same rate as the number of EVs being produced, there
will inevitably be an infrastructure capacity shortfall issue.
Consequently, more EVCSs are needed in public areas like
highways, office buildings, and residential neighborhoods.
Profit mechanisms should be suitably developed to sustain the
continuing operation of EVCSs, as they are typically affected
by issues related to high investment and costly operations [3].

Incorporating renewables into EV charging infrastructure
offers a global solution to the dual challenges of fossil
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fuel dependence and air pollution [4]. It has several advan-
tages besides reducing harmful emissions, which creates a
healthier earth and cleaner air. EVCS could become energy
independent through on-site renewable energy generation,
eventually making EVCS operation more profitable inspite
of the enormous initial capital required to install renewable
energy sources (RES) [5]. This will also ease the burden
on the grid. Renewable energy surplus can be returned to
the grid, increasing resilience and overall efficiency [6].
However, the energy management of EVCS is a challenging
problem due to the variability in the power from RES.

The increasing number of EVs will significantly change
the electric load profiles of power systems by bringing unpre-
dictable and dynamic electricity needs [7]. This presents new
challenges and limitations for the grid. An optimal charging
strategy for EVs is crucial to overcome these challenges.
Numerous algorithms, encompassing optimization and rule-
based methodologies, have been proposed in the literature.
To ascertain how energy is distributed across several power
sources, rule-based techniques are developed utilizing prede-
termined regulations, human skills or heuristics [8]. These
techniques are quite strong and dependable, but they lack
the adaptability and flexibility required for charging cycles
[9]. Conversely, optimization methods entail the development
of a mathematical model of the environment to compute the
optimal behavior of the system. To improve the optimization
of EVCS infrastructure, Zeng et al. [10] carried out a study
using actual EV travel data and a multi-objective genetic
algorithm. The basic concept is that an optimally designed
charging infrastructure can mitigate load fluctuation and
the high energy consumption costs on the grid. However,
in the context of an EV charging management application,
the system is highly dynamic, making it challenging for
optimization techniques to assess the optimal behavior for EV
charging management systems.

To efficiently supervise and monitor the available energy
resources at EVCS, the implementation of an intelligent EMS
is essential. The International Electrotechnical Commission
defines EMS as a computer system comprising a software
platform offering essential support services and a set of
applications that deliver the required functionality for the
effective operation of electricity generation and transmission
facilities. The primary objective is to ensure a secure and
ample energy supply while minimizing costs [11]. The EVCS
has to manage how energy is distributed among available
renewable energy sources, ESS and the main grid in addition
to dispatching EV charging power. The design of such
systems is intricate due to the intermittent electricity output
of PV systems and the irregular traffic at EVCS [12]. The
uncertainty associated with the arrival and departure times
of EVs significantly affects the energy management and
scheduling techniques of EVCS. It is imperative to guarantee
the stability and dependability of the EMS, particularly when
dealing with uncertainties related to renewable energy and
EV charging demand.
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In [13] the Model predictive control(MPC) strategy is
utilized to develop an EMS for a hybrid charging station
for EVs. MPC is widely used in literature for the effective
implementation of EMS. The MPC strategies use deter-
ministic and stochastic control; the latter can withstand
unforeseen interruptions without compromising performance
quality [14]. MPC is a model-based approach with limited
generalization capabilities and necessitates an accurate and
high-quality system model. It can become computationally
difficult when employed in real-time EMS, which makes it
inappropriate for effective online applications [15].

Data-driven methods for modeling and controlling EVCS
infrastructure have drawn more attention in recent times. As a
result, researchers are trying to use machine intelligence.
Algorithms with an artificial intelligence (AI) foundation
are effective methods that offer remarkable benefits in
challenging decision-making situations [16]. They can be
used in systems that undergo constant modification and
uncertainties [17]. The reinforcement learning (RL) method
is a generalized machine learning (ML) method in which an
agent learns from past actions in the environment without
requiring an environment model. It is a powerful tool for
decision-making problems [18]. An MDP model of the EV
charging problem was addressed in most publications in order
to construct an RL model capable of accomplishing a certain
goal for the EVCS [19].

In [20] the authors employed the fitted Q-iteration batch
RL algorithm in to determine the optimal charging policy.
It is possible to scale their proposed MDP formulation to
any number of charging stations. Wang et al. in [21] suggest
an RL method based on SARSA (State-Action-Reward
State-Action) algorithm for charging schedule and pricing
optimization that maximizes an EVCS’s system objective.
The proposed approach is described as model-free, indicating
that it does not depend on assumed probabilistic models for
uncertain events. The drawback of employing RL lies in the
curse of dimensionality, which hinders effective utilization of
numerous input features.

A standard solution to the curse of dimensionality in RL
is the adoption of DRL approaches. Deep neural networks
are used in DRL for identifying patterns in high-dimensional
state spaces and to approximate complex functions. In [22],
Wan et al. implemented a model-free methodology utilizing
DRL to establish the most effective strategy for EV charging.
They employed a Q network to approximate the optimal
action-value function. To minimize charging costs and
maximize customer satisfaction with charging requirements,
the authors in [23] employed a deep deterministic policy
gradient (DDPG) algorithm for EV charging management.
In [24], the DDPG algorithm is utilized to maximize the profit
of a distribution system operator trying to compute an optimal
EV charging strategy in a distribution network.

The focus of this study is optimizing the energy man-
agement of EVCS by incorporating multiple objectives and
considering relevant constraints. The approach employs DRL
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techniques to assess the impact of uncertainties on charging
strategies, conducting thorough simulations based on real-
world data. DRL combines the decision-making process
of RL with the nonlinear perceptual capabilities of deep
neural networks [25]. It makes the technique well-suited for
situations involving continuous action domains, showcasing
superior performance compared to RL algorithms and
deterministic optimization methods, particularly in uncertain
environments.

The model-free technique in DRL is essential for the
adaptive decision-making process employed by agents to
maximize energy-saving measures for EVCS. The model-
free method, in contrast to model-based approaches, allows
agents to learn optimal policies directly from their interac-
tions with the environment, without prior knowledge of its
underlying dynamics [22]. The agent essentially uses trial
and error to determine the optimal course of action as it
investigates its surroundings by taking actions and receiving
feedback in the form of rewards or penalties. This strategy
is especially beneficial in the context of EVCS, where
the environment is characterized by dynamic and uncertain
factors such as fluctuating energy prices, varying grid power
and EV charging demands.

This work aims to develop an EMS for EVCS using
DRL. The problem is framed as an MDP from the per-
spective of the EVCS operator. The main objective is to
discover cost-effective charging schedules that minimize the
EVCS operator charging cost while meeting the energy
demands of EV users. The proposed approach employs
a model-free method leveraging DRL. Unlike traditional
model-based techniques that require a forecast model to
handle uncertainties and optimize energy management,
this approach doesn’t rely on knowledge of the system
model.

The main contributions of this study are as follows.

1) A MDP is constructed from the perspective of the
EVCS operator. The real-world scenarios are formu-
lated by considering the stochastic nature of renewable
energy and the commuting behavior of EVs.

2) A DRL-based model-free technique that doesn’t
require any information about system model is pro-
posed to determine an optimal strategy for the effective
utilization of EVCS resources.

3) Various DRL algorithms for solving the MDP are stud-
ied and the performances are empirically compared.
The DRL algorithms considered are Soft Actor-Critic
(SAC), Proximal Policy Optimization (PPO), Twin
Delayed DDPG (TD3), Deep Deterministic Policy
Gradients (DDPG) and TQC. A comparative analysis
of average rewards among the DRL algorithms shows
the superior performance of TQC algorithm for solving
the problem.

4) The simulation results demonstrate that a well-trained
agent can offer an improved control policy, efficiently
shifting EV charging load to time slots with lower
electricity prices. Maximum utilization of PV power
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is achieved and the cost of the EVCS operator is
minimized. This accomplishment is realized without
relying on any energy storage or backup power
generation systems.

This paper is structured as follows: Section II provides
an overview of the fundamental structure of the EVCS,
section III discusses DRL, Section IV briefly explains the
simulation results and analysis and Section V concludes the
work.

Il. SYSTEM DESCRIPTION

In this section the structure of EVCS considered for this work
is demonstrated. An overview of the configuration of the
proposed EVCS is shown in Fig.1.

A. SYSTEM CONFIGURATION

The EVCS is equipped with photovoltaic (PV) panels for
renewable energy generation and is also connected to the
main electrical grid power. However, the power drawn from
the main grid is limited due to transformer constraints.
By combining the EV chargers, solar panels and the main
power grid into a single direct current (DC) system, the EVCS
can reduce cost on infrastructure and convert energy more
efficiently. Bidirectional AC/DC power converters guarantee
a steady DC power connection, which transmits power
between the EVCS and the main grid. To meet the energy
requirements of EV charging, grid power and PV power
are used. The PV generation system comprises several PV
modules, each with a boost converter directly connected to the
shared DC power line. It is expected that the PV generation
system continually runs at the maximum power point to
achieve optimal utilisation. When solar power from the PV
system is available, it is primarily used to fulfill the charging
requirements of EVs. Any surplus PV power is sent back
to the main grid. However, if the power generated by the
PV system is insufficient to meet the EV charging demand,
the connected EVs are charged using power from the main
grid [26].

The operation of an EVCS is examined across a time
frame divided into 7 time slots and the time index
t € T ={1,2,...,T}. When there is low or insufficient
PV power, the total available charging power for EVs needs
adjustment. At the start of each time slot, the EV charging
schedule based on past and present factors are performed.
These factors include the charging demand, departure times
of already arrived EVs and electricity prices. The decisions
made by the EMS impact the remaining charging demands
for future time slots. The number of charging ports available
in the charging station is given by N,. It is assumed that
the arrival of N,, EVs are in sequential order, denoted from
1 to N,, with an index j € N,, = 1,2, ..., N,,. The arrival
time and departure time of EV; are designated as #,; and #4j,
respectively. The charging demand of EV; is represented by
D;j. In offline models, the charging station possesses advance
knowledge of EV profiles, including Dj, #,j, and t4;, which is
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FIGURE 1. System structure of EVCS.

impractical. But here the focus is on an online model where
the charging station lacks foresight into future information
regarding EV profiles.

B. PROBLEM STATEMENT

The main objective of the EMS is to minimise the charging
cost of EVCS operator by minimizing power absorbed from
the grid, while still meeting the charging demand of all
connected EVs before their departure. The grid balance
equation is given by (1). Let Ppy(7) as the PV power available
at time ¢, Py(t) total electricity drawn from the grid and Pey(?)
the sum of all connected EV’s charging requirements.

va(t)+Pg(t)_Pev(t)=0 (D

A penalty fee, denoted as Cp, is granted to EV owners if the
charging requirements are not fulfilled before their scheduled
departure time. This fee applies to the portion of the charging
demand that isn’t satisfied. The EVCS operator’s total cost of
operation is given in (2). Excess PV power sold to the grid and
electricity purchased from the grid are denoted by P, ¢(¢) and
P, (1) respectively. The prices for electricity purchased from
and sold to the grid are Cy(f) and C; respectively. P,,; is the
unsatisfied charging demand of j* EV.

r Ney
Cr = D (Po()Cy(t) = Py ((Cs) + D PuiCp  (2)
! j

Ill. DEEP REINFORCEMENT LEARNING

Traditional model-based optimization algorithms face dif-
ficulties in effectively managing the challenges posed by
the uncertainty in the energy demand of EVs and the
variability in PV power. At its core, optimizing the operation
of an EVCS is essentially a stochastic sequential decision
problem. RL emerges as a class of efficient algorithms
designed to address such sequential decision problems by
leveraging MDP [27]. MDP provides a robust framework
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for modeling situations where an agent interacts sequentially
with an environment to maximize a long-term reward.
In reinforcement learning, the main goal is to discover
an optimal policy that maximizes the expected cumulative
reward over time, enabling efficient decision-making.

A. MARKOV DECISION PROCESS FORMULATION

MDP has five-tuple structures, denoted as (S, A, P, R, y)
which capture the essence of sequential decision-making
under uncertainty. S denotes a finite set of states the agent
can occupy. The set of available actions is given by A, the state
transition probabilities P under each action, a reward function
R defining immediate rewards for state transitions and a
discount factor y weighing future rewards. During each time
step, the agent which is situated in a particular state, selects
an action based on a policy and the environment responds
by transitioning to a new state according to a probabilistic
transition model. The agent then receives a reward associated
with the chosen state-action pair. A pivotal assumption in
MDPs is the Markov property, stipulating that the future state
is solely dependent on the current state and action, rendering
the entire past history irrelevant.

Environment: The environment denotes the system
employed in the training algorithm. In this study the
environment refers to the EVCS which is shown in Fig.1.

Agent: The agent serves as a substitute for the system
operator. Following training, a well trained agent can offer
an optimal or close-to-optimal energy management strategy
for the EVC, based on the real-time information.

State space: The state space should reflect the total
electricity demand of the charging piles, available PV power
at the current time slot and predicted PV power during further
time slots, Time of Use ( TOU ) price of electricity from the
grid. The EVCS state at each time is defined as

Sy ={t, TOU, Ppy, Ppy(t + 1), Ppy(t + 2),
Ppy(t +3), Eq(1), EVépe. 15} (3)

where ¢ is the information regarding the current time slot,
TOU is the time of use price of electricity, Ppy is the PV
power available at the time slot 7, Ppy(t + 1), Ppy(t +
2), Ppy(t + 3) are the predicted PV power during the next
3 time slots, E;(¢) is the total EV charging demand at the
current time slot for all N, charging ports available at the
charging station, EVé‘OC and t§ are the State Of Charge(SOC)
and departure time of the EV connected to the k" charging
port.

Action space: It represents all valid actions for a given
environment in each time slot. It includes a, and ai. where
ag represent the grid power purchased from the grid and gy
represent the charging rate of k”* charging port. The charging
action of EV batteries is constrained by the maximum power
that can be transmitted through the EV battery socket.

Reward: In an MDP, the agent executes an action that
transitions from the current state to the next state and
calculates the reward associated with that transition. The
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FIGURE 2. EMS using DRL.

goal of the DRL algorithm is to optimize the cumulative
reward, in alignment with the objective function given in (2).
As a result, the algorithm incorporates the current decision
period’s objective function value as an immediate reward for
the agent. The aim is to minimise the operating cost of the
EVCS operator which is given by (2). The reward function
can be defined as (4)

rn=—Cr “

In the " time step, considering the state S; obtained
through interaction with the environment, the agent issues an
action to the environment. Subsequently, the agent receives
an immediate reward. The environment then transitions to
the next state S;y;. However, due to the environment’s
inherent randomness, repeating the same action may not yield
the same reward. Therefore, the introduction of a discount
factor(y) accounts for the environment’s unpredictability.
This approach converts the energy management of the EVCS
into the task of training an agent to acquire the optimal control
policy aiming to maximize the discounted cumulative reward.

B. TRUNCATED QUANTILE CRITICS(TQC)

Policy iteration and value iteration are classical algorithms
designed for solving MDP. These methods necessitate an
exhaustive enumeration of the entire state space, making
them impractical for realistically sized problems due to
computational constraints. To address this limitation, this
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study introduces a DRL algorithm, specifically TQC. Unlike
traditional methods, TQC does not require explicit enumer-
ation of the complete state space. Instead, it utilizes neural
networks to generalize and approximate the optimal policy
based on experiences. This approach proves advantageous
in handling large-scale problems where explicit enumeration
becomes computationally. This enhances the suitability of
DRL methods for real-world applications [28].

The design of TQC incorporates three concepts: distribu-
tional representation of a critic, truncation of approximated
distribution and ensembling [29]. The foundational idea
in TQC is to use a distributional representation for the
critic, as opposed to a single scalar value as in traditional
Q-learning. This means that instead of estimating just the
expected return, TQC aims to model the entire distribution
of returns. This is achieved by training multiple Q-networks,
each representing different quantiles of the return distri-
bution. The ensemble of these networks provides a richer
understanding of the uncertainty and variability associated
with different actions in a given state.

The concept of truncation involves limiting the number
of quantiles considered during the training process. Not all
quantiles need to be explicitly represented. By truncating
the distribution, the algorithm focuses on learning the most
relevant and informative parts of the distribution. This
can help reduce computational complexity and improve
the stability of the learning process. Truncation is a key
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mechanism in TQC for managing the complexity of the
distributional representation. Ensembling involves training
and combining multiple neural networks, each with different
initializations or architectures. In TQC, ensembling is used to
capture diverse perspectives on the value distribution. Each
network in the ensemble represents a different quantile of
the distribution and by combining their outputs. TQC gains
the benefit of both exploring various aspects of uncertainty
and mitigating the impact of neural network approximations.
Ensembling contributes to the robustness and generalization
capabilities of the TQC algorithm [30]. The pseudo-code
outlining the methodology is presented in Algorithm 1.

Algorithm 1 TQC Algorithm

1: Initialize Q-networks Qp, fori = 1,..., N and policy
network g with parameters 6;, ¢
2: Initialize target networks Q’e_, <« Qg fori=1,...,N

3: Initialize replay buffer D with capacity B
4: Initialize temperature parameter o, entropy target H, and
other hyperparameters

5: for each episode do
6:  Observe initial state s
7:  for each time step do
8: Sample action a; from the policy my(a;|s;) with
exploration noise
9: Execute a;, observe next state s,y and reward 7;
10: Store transition (s;, a;, 1, Sy+1) in replay buffer D
11: if training step and buffer size is sufficient then
12: fori=1,...,N do
13: Sample batch of transitions from D
14 Compute target values using truncated mixture
of quantiles
15: Update Qg, by minimizing the quantile regres-
sion loss
16: end for
17: Sample batch of transitions from D for actor
update
18: Update policy 7y by maximizing the entropy-
regularized objective
19: Update target networks Q{Q_, <~ 109 +(1—-17)0, /
fori=1,...,N ’ I
20: end if
21:  end for
22: end for

IV. RESULTS AND DISCUSSION

Several case studies based on the real world data are
conducted to demonstrate the feasibility and effectiveness of
the proposed algorithm.

A. INPUT DATA AND PARAMETER SETTINGS

The power grid has a maximum capacity restriction of
60 kW due to transformer limitations. The assigned upper
limit for the PV system’s output power is 50 kW. All EVs
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TABLE 1. TOU price of electricity.

Time of use Price of electricity
9 pm to 8 am $0.12/kWh
8 am to 4 pm $0.10/kWh
4 pmto 9 pm $0.23/kWh

are assumed to have identical specifications, with battery
ratings set at 40 kWh. It is assumed that the charging station
is equipped with 10 charging ports. PV power prediction
is very important for the effective implementation of the
algorithm. The utilization of machine learning models for
forecasting solar power based on weather features is crucial
for addressing uncertainties arising from the time-dependent
and nonlinear parameters of PV systems [31]. To ensure the
reliable integration of PV power plants in EVCS, accurate
solar power prediction measures are essential. An effective
approach involves employing the eXtreme Gradient Boosting
(XGBoost) algorithm, a gradient boosting machine intro-
duced by Chen and Guestrin [32]. This algorithm, known
for its dynamic selection properties, achieves high prediction
accuracy with an efficient trade-off between accuracy and
complexity. The dataset utilized for the PV power forecast
model is sourced from reference [33].

The gradient boosting algorithm, implemented in an
iterative manner, combines weak ‘‘learners’ to create a robust
single learner. The process is easily explained in the context
of least-squares regression, where the objective is to train
a model F to predict values (5) by minimizing the mean
squared error.

y=F(x) 5)
1 =2
min Z,: Oi — i) (6)

where y; is the predicted value of F(x) which is compared
to the observed value y; and i indexes over training set of
size n. Here,y; corresponds to the observed PV power and
x represents the available weather data in the short-term
PV power prediction model. Further information can be
found in reference [34]. The ACN dataset, which can be
accessible from [35] via a web portal or a python application
programming interface, contains the data on EV charging.
We have used a scaled version of TOU electricity pricing
scheme in [36] which is given in Table 1.

B. TRAINING PROCESS

The DRL framework implementation comprises two pri-
mary components: offline training and online application
processes. The training phase is crucial for the neural
network to acquire sequential decision making skills from
data generated through interactions with the environment.
Each training episode represents a simulated day, featuring
varying solar energy production, TOU pricing profiles and
EV schedules and demands. The DRL algorithms employed
undergo training using diverse sets of data. The online
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TABLE 2. Hyperparameter configuration.

Parameters Value
learning rate 0.0003
number of epochs 50
number of iterations per epoch 20000
buffer size 1000000
batch size 256
Discount factor 0.99

TABLE 3. Actor and critic network architectures.

Component  Architecture

Actor

Input: State vector
— MLP with ReLU activation
— Hidden Layer 1: 256 units
— Hidden Layer 2: 256 units
— Output Layer: 2 X action_dim (mean and log std)
Output: Action vector (tanh-squashed)

Critic
Input: Concatenation of State and Action vectors
— MLP with ReLU activation
— Hidden Layer 1: 512 units
— Hidden Layer 2: 512 units
— Hidden Layer 3: 512 units
— Output Layer: n_guantiles
Output: Quantiles of the value distribution

application flow of DRL algorithm is shown in Fig.2. The
hyperparameter configurations for the TQC algorithm are
outlined in Table 2.

In Table 3, we present the architectural details of the
actor and critic components in our model. The actor
network takes the state vector as input and consists of a
multi-layer perceptron (MLP) with Rectified Linear Unit
(ReLU) activation. The architecture includes two hidden
layers with 256 units each, followed by an output layer with
2 x action_dim units representing the mean and log standard
deviation of the action vector. The output is transformed
using the tanh function to ensure values are within the range
[—1,1].

On the other hand, the critic network takes the con-
catenation of state and action vectors as input. It also
employs an MLP with ReLU activation, featuring three
hidden layers with 512 units each. The output layer produces
a distribution of values with n_guantiles quantiles, providing
a comprehensive representation of the value function.

C. TRAINING RESULTS

The training phase plays a crucial role in determining
the effectiveness and robustness of the learned policy in
achieving optimal charging strategies for EVCS. Various
training metrics are analyzed to provide insights into the
learning process and the quality of the learned policy [30].
These metrics have been carefully selected to evaluate
key aspects of the method’s performance, including reward
maximization, policy adaptability, value estimation accuracy,
and exploration-exploitation trade-off. By examining these
training results, a comprehensive understanding of the TQC
method’s capability to learn and execute effective energy
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FIGURE 3. Comparison of Mean Episodic rewards.

management strategies is sought, ultimately contributing to
the advancement of sustainable and efficient electric vehicle
charging infrastructure. The training results for the TQC
algorithm are presented in Table 4. The table summarizes
the performance metrics of the algorithm across different
episodes during the training process.

Throughout the training, the average reward steadily
increases, indicating that the algorithm is effectively learning
and improving its performance over time. The actor loss,
which measures the adaptability of the policy network,
decreases consistently, suggesting that the policy network
is becoming more proficient in selecting actions that lead
to higher rewards. Similarly, the critic loss, representing
the quality of learned state-action values, demonstrates
a decreasing trend, indicating improvements in value
estimation.

The entropy coefficient and entropy loss also exhibit
consistent behavior during training. The entropy coefficient,
which reflects the level of exploration in the policy, decreases
gradually, suggesting a shift towards exploiting known
strategies. Conversely, the entropy loss, which measures the
adjustment of the entropy regularization term, fluctuates
slightly but remains within acceptable bounds. Notably,
the algorithm achieves a peak average reward of 40.93 at
the 50th episode, indicating its effectiveness in maximizing
rewards in the given environment. The actor loss and critic
loss reach their respective minima at this point, indicating
optimal performance of the policy and value networks.
Overall, the training results demonstrate the capability of
the TQC algorithm to effectively learn and adapt to the task
environment, ultimately achieving high rewards and stable
performance.

D. COMPARISON WITH BENCHMARK ALGORITHMS
In this section a comparative analysis of the performance
of various DRL algorithms and TQC is presented. Fig. 3
provides a comparative analysis of average rewards among
other DRL algorithms like SAC [37], PPO [38], TD3 [39]
and DDPG [40]. A higher average reward for TQC compared
to other algorithms would indicate superior performance.
Fig. 4 shows a comparison of mean episodic rewards
during the last 50,000 steps of training. This figure provides
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TABLE 4. Training results for TQC algorithm.

Episode Step Average Reward | Actor Loss | Critic Loss Entropy Entropy Loss
1 1.82e+03 2.782761 -17.414577 1.365271 0.584816 -8.422409
6 1.64e+05 33.835642 16.337158 0.332693 0.006751 0.664340
11 3.52e+05 38.382265 12.435920 0.074012 0.003440 -0.044572
16 5.23e+05 39.128622 11.628864 0.100487 0.003365 1.617796

21 7.18e+05 39.706541 11.326030 0.053088 0.003311 1.289257
26 8.85e+05 39.860409 10.799242 0.039020 0.003196 -4.312737
31 1.06e+06 40.561131 11.112980 0.040024 0.003155 0.647313
36 1.24e+06 40.606504 11.093746 0.036517 0.003001 -1.364750
41 1.53e+06 40.695110 10.300406 0.049312 0.002940 3.916893
46 1.77e+06 40.789433 10.625885 0.034926 0.002918 2.535536
50 2.00e+06 40.929733 10.125869 0.036132 0.002743 -2.728273
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FIGURE 4. Comparison of Mean Episodic rewards (last 50k steps).

TABLE 5. Training results for different algorithms.

Algorithm Mean Value Median Value | Standard Devi-
ation

TQC 38.30 40.14 5.54

SAC 30.59 32.87 5.81

PPO 35.06 36.45 3.90

TD3 34.58 36.21 5.37

DDPG 33.63 35.76 6.43

insights into the performance of algorithms in the later stages
of training, capturing any convergence or divergence trends.

Table 5 presents the training results for different DRL
algorithms. In this set of training results, the TQC algorithm
exhibits the highest mean and median values, indicating
superior overall performance compared to other algorithms
considered. TQC also has a relatively low standard devi-
ation, suggesting consistent performance. Conversely, SAC
performs the poorest among the algorithms, with the lowest
mean and median values and a higher standard deviation,
reflecting less stable learning.

The percentage increases highlight the relative perfor-
mance differences between the algorithms. TQC outperforms
SAC, PPO, TD3, and DDPG, with percentage increases rang-
ing from 8.45% to 20.12%. Among the other algorithms, PPO
demonstrates a balanced performance, showing percentage
increases against SAC, TD3, and DDPG.

The TQC algorithm demonstrates superior performance
compared to other algorithms, as evidenced by its higher
mean and median values of 38.30 and 40.14, respectively,

VOLUME 12, 2024

with a relatively lower standard deviation of 5.54. This
indicates that TQC consistently achieves higher rewards
across training episodes while exhibiting less variability in
performance. The effectiveness of TQC can be attributed
to its innovative approach of utilizing quantile regression
to predict a distribution for the value function, rather than
solely focusing on mean values. By capturing the entire dis-
tribution of returns, TQC gains a richer understanding of the
uncertainty and variability associated with different actions,
enabling more robust and stable learning. Additionally, the
truncation mechanism in TQC focuses on learning the most
relevant parts of the distribution, enhancing computational
efficiency and improving the stability of the learning process.
Overall, TQC’s combination of distributional representation,
truncation, and ensemble learning contributes to its superior
performance in optimizing the operation of EVCS compared
to other state-of-the-art algorithms such as SAC, PPO, TD3,
and DDPG.

The experiments were carried out on a system running
Ubuntu 22.04.3 LTS with Python version 3.11.5. The
hardware included an AMD Ryzen 5 5600H processor with
12 cores and 6 threads per core, along with an NVIDIA
GeForce RTX 3050 Mobile GPU and 16.0 GB of memory.

E. CASE STUDIES AND PERFORMANCE ANALYSIS

To demonstrate the effectiveness of the proposed EMS,
various case studies and numerical simulations are performed
on the EVCS. This subsection uses EVCS shown in Fig.1
as an example for simulation study. The simulations were
performed over a period of one day, with each day being
divided into 48 intervals, each lasting 30 minutes. The
charging service fee is a¢c = 0.07$/kWh and the PV power
selling price is taken as constant and the value is given by
Cs = 0.09$/kWh. The penalty price for unsatisfied EV
charging demand is taken as C,, = 0.04$/kWh.

A widely acknowledged and commonly employed charg-
ing methodology known as First-Come First-Served (FCFS)
is considered as a benchmark method. FCFS charging, also
referred to as immediate charging, is a prevalent approach in
EVCSs. This strategy entails initiating the charging process
for an EV immediately upon its arrival, and the process
persists until the battery attains full charge. In the FCFS
charging model, the EV is charged promptly upon arrival at
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FIGURE 6. Charging load profile of EVCS.

the EVCS, disregarding the availability of PV power or the
prevailing electricity price.

Various test cases are simulated to study the effectiveness
of the proposed EMS.

Case 1: In this case study EV charging demand is met
through a combination of the grid power and PV power.
Dynamic scheduling outcomes from a randomly chosen day
in the test set are illustrated in Fig.5. The EV charging profile,
PV power and power received from the grid for the EV
charging purpose are depicted. The proposed EMS aims to
maximize the utilization of available PV power. If the grid
power is utilized, the EMS tries to shift the EV load to time
periods where the energy price is low. From hours 16:00 to
21:00, the energy price reaches its peak. Upon examining
the results, it is evident that the EV load is minimal during
these periods of high energy prices. Eventhough after hour
18.00 when PV power is unavailable and the grid power
becomes the sole available source.

The comparison of EV charging profiles for the proposed
EMS employing DRL with TQC algorithm and FCFS
strategy is shown in Fig.6. When the TOU price of electricity
is higher, that is from hours 16.00 to 21.00 FCFS consumes
more power compared to the proposed EMS. In contrast,
in the proposed EMS the EV charging is systematically
scheduled within specific time slots. This scheduling takes
into account periods when there is a surplus of PV power or
when electricity prices are lower. Unlike the FCFS charging
approach, the scheduling in EMS with DRL ensures that
EV charging aligns with optimal conditions, optimizing the
utilization of available PV power and minimizing electricity
costs.

65964

Power(kW)
w
(=]
~

%)
S
'~
e
\
\
7/

0 2 4 6 8 0 12 14 16 18 20 22 24
Time (hr)

FIGURE 7. Charging load profile of EVCS when there is no PV power.

TABLE 6. Comparison of cost of EVCS based on the control strategy.

Control strategy Cost in case 1 | Cost in case 2
DRL 88 $ 106 $
FCFS 115$ 130 $

Case 2: The EV power demand is met by power from
the grid alone, that is during cloudy or winter days, when
sufficient PV power is not available. Both FCFS and DRL
charging schemes has initially same charging power. The
proposed EMS employing DRL with TQC algorithm can
effectively transfer EV charging load to those periods were
TOU electricity price is lower. It could maximizes charging
power at each time step without sacrificing profit, allowing
for greater flexibility to reduce charging power during peak
hours. From the Fig.7 we can infer that in the EMS using
DRL, the grid power is not exceeding its maximum limit
of 60kW at any of the time slots. But in FCFS strategy,
the grid power is reaching its maximum and more power
is consumed during peak demand periods from 16.00 to
21.00. This considerably increases the charging cost of EVCS
operator.

The benefits of the suggested scheme are also demon-
strated by cost comparisons of various charging schemes. The
daily cost comparison of the two methods for both cases is
given in Table 6. It can be seen that the EMS using DRL has
almost 23% cost reduction compared to FCFES in case 1 and
almost 18% reduction in case 2.

V. CONCLUSION

In this work, an EMS for PV powered EVCS is developed.
The EMS minimizes the operating cost of the EVCS operator
while meeting the energy demands of connected EVs. A MDP
model is constructed from the perspective of the EVCS
operator. The real-world scenarios are formulated by taking
into account the stochastic nature of renewable energy
and the commuting behavior of EVs. Unlike traditional
model-based techniques that require a forecast model to
handle uncertainties, this approach doesn’t rely on the system
model. Five different DRL algorithms are implemented for
addressing MDP and their performances are empirically
evaluated and compared. Out of the selected algorithms,
TQC shows better performance. Various case studies are
simulated to show the effectiveness of the proposed EMS.
The simulation results demonstrate that a well-trained agent
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can provide a better control policy and reduce charging cost of
EVCS operator in comparison with other benchmark method.
EMS with DRL ensures that EV charging aligns with optimal
conditions, maximizing the utilization of available PV power
and minimizing electricity costs. This is accomplished
without relying on any energy storage or backup power
generation systems.
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