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ABSTRACT We tackle the issue of designing a transmit beampattern for multiple-input multiple-output
(MIMO) radar while considering its coexistence with wireless communication systems. Our goal is to
design a beampattern that can steer the mainlobe and regulate its gain level toward the desired direction.
The significant challenge lies in concurrently enforcing the gain constraint along with the constant modulus
constraint on the radar waveform. In our work, we propose a novel approach that entails solving a series of
constrained quadratic programs to achieve constant modulus at convergence. Additionally, we demonstrate
that each problem in the sequence admits a closed-form solution, ensuring analytical tractability. We assess
the effectiveness of our proposed Mainlobe and Interference Control (MAIC) algorithm against state-of-
the-art MIMO beampattern design techniques, illustrating that MAIC attains the desired gain level while
mitigating interference energy in undesired areas.

INDEX TERMS Beampattern design, co-existence, constant modulus, electronic steering, main lobe energy
constraint, MIMO radar, successive algorithm.

I. INTRODUCTION
With the advent of next generation millimeter wave wireless
systems and the newly emerging high-resolution radars, the
radio spectrum has become extremely crowded. One issue
that has been discussed lately is the risk of the spectrum over-
lapping between 5G wireless systems emissions and radar
systems. Recently, the Federal Communications Commission
(FCC) assigned a C-Band radio spectrum (3.7-3.98 GHz) to
operate 5G wireless communication which is very close to
radar altimeters spectrum used by commercial aircrafts [1],
[2]. For that reason, the Federal Aviation Administration
(FAA) exchanged information with the 5G operators and
radar altimeter manufacturers to ensure aviation safety [3].
Ultimately, more work is needed at the practical and
theoretical fronts to tackle such issues.

In the literature, the co-existence of radar and telecommu-
nication systems has been studied [4], [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15]. A priori knowledge about
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the locations of radio frequency users is required to avoid
the interference with each other. Specifically, the MIMO
radar/wireless telecommunication systems should focus the
radiation beam at the expected target/receiver while main-
taining a low interference energy level at other geographic
areas assigned to other licensed wireless systems. These
requirements could be achieved by constrained mathematical
optimization of the transmit beampattren [16], [17].

The optimization of radar waveform to match a desired
spectrum shape has been a topic of much recent interest [18],
[19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29],
[30], [31], [32], [33], [34], [35], [36], [37]. In these methods,
the goal of the optimization problem is to minimize the
total amount of energy at the unlicensed spectrum but not
sharing any frequency bands. However, since the beampattern
is not considered in these studies, it is not able to control
the radiation beam in spatial directions. Some other studies
tackle the spatial domain by beampattern design at the receive
side [26], [32], [33] or at the transmit side [19], [38]. The
joint spatial and spectral design was studied in [39], and [40].
Nevertheless, the recent literature ignore or simplify some of
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important aspects in the optimization process which could
cause unpractical or often unusable beampattern/waveform
design.

A. MOTIVATION AND CHALLENGES
In practical scenarios, the design of the transmit beampattern
is more problematic for several reasons. Foremost among
these is the necessity to adhere to the constant modulus
constraint (CMC) governing the radar transmit waveform,
ensuring a consistent envelope for the transmission signal.
Constant modulus requirement is very crucial for high power
transmission. To achieve the maximum transmission gain,
the signal is transmitted near or at the saturation region (the
non-linear region) of the high-power amplifiers. As a result,
the output signal will be a distorted version of the output
unless it is a constant modulus signal where the envelope
of the transmit signal is constant. However, this requirement
may not be relevant for the receiver side. Since beamforming
is concerned with the received signal, the CMC can be
relaxed. In general, the problem formulation for beamforming
does not have any constraints, which makes it simpler. The
significance of maintaining this constant modulus waveform
has been extensively documented and scrutinized for its
impact on performance, as detailed in [41], [42], and [43].

More important, electronic beam steering constitutes a
critical aspect of array antennas, enable microwave and
millimeter wave radar systems to detect and track targets [44].
Ensuring spatial compatibility between contemporary radars
and telecommunication systems introduces another important
requirement: the need for electronic gain control and steering
constraint.

Some past efforts have aimed to directly enforce the
constant modulus constraint, leading to improved perfor-
mance. However, these approaches typically involve semi-
definite relaxation (SDR) with randomization [45], [46].
This entails solving a semi-definite programming (SDP)
problem to determine a waveform distribution, followed
by generating a large number of random waveforms based
on this distribution. Subsequently, an exhaustive search is
conducted to identify the waveform that best satisfies the
constraint. Despite the success of SDR in addressing constant
modulus constrained problems, two main challenges persist:
first, extending these techniques to incorporate gain and
steering control, which involve quadratic inequalities, is not
straightforward; second, the computational burden associated
with these methods remains high.

The design of beampatterns under the constant modulus
constraint, excluding gain control and steering constraints,
has been explored in several studies [15], [19], [20], [21],
[30], [31], [47]. In these studies, approaches have been devel-
oped to approximate the constant modulus using the peak-
to-average power ratio (PAPR) waveform constraint [27],
[30]. Although the constant modulus constraint is not directly
incorporated into the optimization process, the resulting
solution is adjusted to the nearest constant modulus solution
post-optimization. Similarly, as mentioned before there is

active interest in radar-comm co-existence where the transmit
waveform is optimized but without the constant modulus
constraint [4], [6], [7], [8], [12], [13], [14]. To the best of
our knowledge, no work considers the constant modulus and
mainlobe energy constraints jointly.

In some recent development, neural networks have been
utilized in beampattern design/beamforming optimizations
and have shown promising results [48], [49], [50], [51],
[52]. Nevertheless, their current application relies on uncon-
strained problems or problems having at most one constraint.

A noteworthy approach to the joint design and operation
of shared spectrum access for radar and communications
(SSPARC) [13]. Their work focuses on optimizing transmit
waveforms at both radar and communication nodes to maxi-
mize signal power through the forward channels (main beam)
of radar and communication systems, while simultaneously
minimizing interference in the co-channels between radar
and communications. This optimization can also extend to
achieving low probability of intercept capability in specific
angular keep-out zones where [13] (as well as other studies
that design beam patterns for co-existence) lies in the
inclusion of the hard gain control constraint as well as CMC.

B. OUR CONTRIBUTIONS
Our principal aim is to develop an algorithmic approach for
steerable main lobe with a minimum gain constraint MIMO
beampattern design. Closeness to an ideal beampattern that
limits radar energy in the direction of wireless communica-
tion receivers while maintaining a large directive gain at the
targets.

Specifically, this paper makes the following contributions:
• An algorithmic solution beampattern design under
both the ‘main lobe gain’ constraint and the constant
modulus constraint. To address the aforementioned
challenges, we’ve devised a novel algorithm for MIMO
beampattern design. This approach tackles the complex
non-convex constraint of main lobe and breaking it
down into a series of convex inequality constrains.
This sequential approach will convergence to constant
modulus.

• Feasibility of algorithm. Provided that the initial
non-convex challenge of beampattern design is feasible,
i.e. the constant modulus and gain constraints intersect
effectively, we formally establish that every quadratic
program (QP) formulated within the MAIC sequence
mentioned earlier is also guaranteed to be feasible.

• Convergence of theMAIC algorithm.We demonstrate
that the sequence of cost functions representing the
overall interference energy is non-increasing, (indicat-
ing improvement) with each problem solved in the
sequence, ultimately converging.

• Experimental validation. Experimental validation is
conducted in two main scenarios: 1) mainlobe design
with a single interference sector, where the MAIC
algorithm exhibits notable power suppression in desired
region despite the gain constraint, and 2) mainlobe
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FIGURE 1. Configuration of ULA antenna.

steering problem, wherein the proposed MAIC achieves
the desired gain at the target/receiver direction while
reducing the energy at the unlicensed areas.

The rest of the paper is organized as follows. Section II
provides brief background on the structure of the radar
antenna array and the corresponding design criterion and
shows the problem formulation details. Section III develops
the proposed MAIC algorithm for beampattern design and
reports derivations of its analytical properties. Section IV
evaluates the proposed MAIC method against state-of-the-art
alternatives. Concluding remarks with directions for future
work are presented in Section V.

C. NOTATION
We denote vectors and matrices by boldface letters, e.g. a
(lowercase) andA (uppercase), respectively. The l-th element
of a is denoted by al and the element located in the m-th
row and l-th column of the matrix A is denoted by A(m, l).
We denote by ∥a∥2 the l2 norm of the vector a. The Hermitian,
conjugate and transpose operators are denoted by (.)H , (.)∗

and (.)T , respectively. For a complex number a, we denote
Re(a) and Im(a) to the real and imaginary part a, respec-
tively; also we denote |a| and arg a to the amplitude and phase
of a, respectively. We use j =

√
−1 as the imaginary unit

number. Finally, we use ⊗ to denote the Kronecker product.

II. SYSTEM MODEL
Consider a MIMO radar having a uniform linear array (ULA)
ofM antennas and a spacing distance of d as shown in Fig. 1.
The signal transmitted from the m-th element is denoted by
zm(t). Let zm(t) = xmy(t)ej2π fct where y(t) is the baseband
signal and fc is the carrier frequency. Here, y(t) is assumed to
be a narrowband signal (i.e. B ≪ fc where B is the bandwidth
in Hz) and xm ∈ C is the complex wight of the m-th element.
The beampattern at the angle θ for a λ

2 ULA in the far-field
can be given by

P(θ ) = |aH (θ )x|2 (1)

where

a(θ ) = [1 ejπ sin θ . . . ej(M−1)π sin θ ]T (2)

and

x = [x0 x1 . . . xM−1]T (3)

Defining the electrical angle as ξ = π sin θ , the ULA
beamforming gain is expressed as:

G(ξ ) =

∣∣∣∣∣
M−1∑
m=0

xme−jmξ

∣∣∣∣∣ (4)

The total energy transmitted in the spatial range 4k
=

[ξ k1 , ξ k2 ] can be expressed as

Ek =
1
2π

∫ ξ k2

ξ k1

G2(ξ )dξ = xHGkx (5)

where Gk is an M ×M matrix defined as

Gk (i, j) =


ξ k2 − ξ k1

2π
, if i = j

ejξ
k
2 (i−j) − ejξ

k
1 (i−j)

2jπ(i− j)
, otherwise

(6)

Therefore, using Parseval theorem, the total energy ET of CM
vector x is given by:

ET =
1
2π

∫ π

−π

G2(ξ )dξ = xHx (7)

On the other hand, the mainbeam total energy should be
larger than some threshold value E0. The total mainlobe
energy in the spatial range 1 = [δ1, δ2] can be expressed
as:

EML =
1
2π

∫ δ2

δ1

G2(ξ )dξ = xHMx ≥ E0 (8)

whereM is defined as

M(i, j) =


δ2 − δ1

2π
, if i = j

ejδ2(i−j) − ejδ1(i−j)

j2π(i− j)
, otherwise

(9)

We would like to conceder the following the minimization
problem with mainbeam control:

min
x

f (x) =
∑K

k=1 ckx
HGkx − c0xHMx

s.t.: xHMx ≥ E0
|x| = 1,
AH
0 x = 0

(10)

III. PROPOSED SOLUTION
Problem (10) is a non-convex NP-hard problem due to the
CMC (|x| = 1) and main lobe constraint (xHMx ≥ E0).
While the CMC has been well tackled in the literature [53],
[54], and [55] by iterative algorithms, themain lobe constraint
has not been considered yet. There are two main challenges
with the main lobe constraint: Firstly, it is a non-convex con-
straint that needs an accurate convex relaxation. Secondly, the
feasible set of the CMC is already very tight, therefore, adding
another constraint will make it even more tighter. Therefore,
any solution to this problem must ensure the feasibility of the
joint CMC and main lobe constraint all together.
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In the following, we will tackle the non-convexity of the
problem of the main lobe constraint. Problem (10) covert the
quadratic in quality constraint to a linear one, we have the
following ob servation:
Lemma 1: Let M ∈ CM×M be a positive-definite

Hermitian matrix having the following eigenvalues: λ1 >

λ2 > . . . > λM corresponding to the eigenvectors
v1, v2, . . . , vL , respectively. Then:

Re{vHi x} ≥

√
E0
λi

(11)

for any λi ≥ E0, implies that xHMx ≥ E0.
Proof. see Appendix subsection A.
Remark: For small spatial ranges 1, the matrix M usually

have one dominant eigenvalue λ1 (i.e. xHMx ≥ λixvivHi x).
This is the case in general, since the mainlobe in most
applications should be as narrow as possible. Therefore,
we will use the dominant eigenvalue λi = λ1 in our
optimization problem.

Using Lemma 1, problem (10) becomes:
min
x

f (x) =
∑K

k=1 ckx
HGkx − c0xHMx

s.t.: Re{vH1 x} ≥

√
E0
λ1

|x| = 1,
AH
0 x = 0

(12)

Moreover, problem (12) can be converted to the following
function with real (as opposed to complex) variables:

min
s

sT (R + βI)s

s.t.: sTEls = 1, l = 1, 2, . . . ,M

uT s ≥

√
E0
λ1

BT0 s = 0

(13)

where β is an arbitrary positive number,

s = [Re{x}TIm{x}T ]T ,

R =

[
Re{P} −Im{P}

Im{P} Re{P}

]
,

P =

K∑
k=1

ckGk−c0M,

B0 =

[
Re{A0} −Im{A0}

Im{A0} Re{A0}

]
,

and

u = [Re{vH1 } Im{vH1 }]T .

A. ALGORITHM STEPS
For the CMC in the optimization problem (13), we will use
the same relaxation method used in BIC algorithm [39], [40].
It involves solving a sequence of convex problems. First, let
us consider the following sequence of constrained QPs where

the n-th QP is given by

(CP)(n)


min
s

sT (R + λI)s

s.t.: B(n)
c s = 1
BT0 s = 0

u(n)T s ≥

√
E0
λ1

(14)

where B(n)
c = [b(n)c1 ,b(n)c2 , . . . ,b(n)cM ]T ∈ RM×2M such that the

line defined by b(n)Tcl s = 1 is a tangent to the circle sTEls =

1 for l = 1, 2, . . . ,M . Specifically, bl is given by

b(n)cl (i) =


cos(γ (n)

l ) if i = l

sin(γ (n)
l ) if i = l +M

0 otherwise.

(15)

for l = 1, . . . ,M where γ
(n)
l = 2 arg(x(n−1)

l )−γ
(n−1)
l and x(n)l

is the l-th elements of x(n) which is the complex version of the
optimal solution of (14), s(n), that is, x(n)l = s(n)l + js(n)l+M and
conversely s(n) = [Re{x(n)}T Im{x(n)}T ]T and u(n) is given
by:

u(n) =

[
Re{v∗

1e
−j arg(vH1 x

(n−1))
}

Im{v∗

1e
−j arg(vH1 x

(n−1))
}

]
(16)

Without the main lobe constraint (u(n)T s ≥

√
E0
λ1
), it has

been shown in [40] that sequence of the resulting problems
are always feasible by the construction made in eq. (14).
Note that, the vector u(n) is changes with each iteration n.
In the followingwe prove that the sequence problem is always
feasible for the joint main lobe constraint and CMC.
Lemma 2: The feasible set of problem CP(n) contains the

optimal solution of problem CP(n−1).
Proof. see Appendix subsection B.
Problem (14) is a convex quadratic minimization with

linear constraints. It has been shown that the solution of this
problem is:

s(n) = R̄−1B(n)T (
B(n)R̄−1B(n)T )−11 (17)

where

B(n)
=

[
B(n)
c

B(n)
0

]
(18)

If s(n) satisfies u(n)T ŝ(n) −

√
E0
λ1

≥ 0. Otherwise,

s(n) = µ(n)R̄−1(I − B(n)T R̂B(n)R̄−1)u(n) + ŝ(n) (19)

where

R̂ =
(
B(n)R̄−1B(n)T )−1 (20)

µ(n)
=

1
α(n)

(
u(n)T ŝ(n) −

√
E0
λi

)
(21)

α(n)
= −

[
u(n)

0

]T [
R̄ B(n)T

B(n) 0

]−1[
u(n)

0

]
(22)
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Algorithm 1Mainlobe and Interference Control (MAIC)
Inputs: Gk , ck , for k = 0, 1, 2, ..,K , M and ζ (the
stopping threshold).
Output: A solution x⋆ for problem (10).
(1) Set n = 1 and an initial value for x(0).
(2) Compute B(n)

c as in (15).
(3) Compute ŝ(n) via eq. (17) and u(n) via eq. (16).
(4) Check the following:
if s̄(n)T ŝ(n) −

√
E0
λi

≥ 0 then

s(n) = ŝ(n).
else

s(n) = µ(n)R̄−1(I − B(n)T R̂B(n)R̄−1)u(n) + ŝ(n)

where µ(n) is defined in (21).
end if
(5) Construct x(n) where x(n)l = s(n)l + js(n)l+M for l =

1, . . . ,M . Check the following:
if f (x(n)) − f (x(n−1)) < ζ then

STOP.
else

set n = n+ 1 GOTO step (2).
end if
Output: x⋆

= exp{j arg(x(n))}.

The value of the objective function of the problem (14) is
monotonically decreasing in each iteration n. We have the
following theorem:

Theorem 1: Define g(s) = sT (R + λI)s. Then

g(s(n−1)) ≥ g(s(n)) (23)

In other words, the sequence {g(s(n))}∞n=0 is non-increasing.
Moreover, the sequence {g(s(n))}∞n=0 converges to a finite
value g⋆.
Proof. see Appendix subsection C.
Computational Complexity: The main computational cost

in the MAIC algorithm comes from solving the linear system
of equation (17) in each iteration, the overall computational
complexity of BIC isO(FM2.373)−O(FM3) [56] where F is
the total number of iterations.

IV. NUMERICAL RESULTS
We assess the effectiveness of the proposed MAIC by
comparing it with the following established methods:

• Phase-only variable metric method (POVMM) [19]:
POVMM achieves null forming beampattern design by
optimizing the waveform phases under the constant
modulus constraint, without incorporating any main
lobe energy constraint.

• Successive closed forms method (SCF) [53]: Same as
POVMM but with a better performance and a faster
convergence.

• JDO SSPARC [13]: An approach to beamforming
that aims to maximize signal power through forward
channels while minimizing response at co-channels.

FIGURE 2. Plot of the beampattern of a single interference sector.

FIGURE 3. Plot of the beampattern of a single interference sector.

A. MAINLOBE DESIGN WITH A SINGLE INTERFERENCE
SECTOR
We compare the proposed algorithm to state-of-the-art phase-
only variable metric method (POVMM) method [19], JDO
SSPARC [13] and successive closed forms method (SCF)
[53]. The numerical set up is as follows: We simulate a
ULA of M = 16 elements with half-wavelength spacing.
In Algorithm 1 we set ζ = 10−5. Further, the interfernce
spatial range is set to be4 = [−62◦, −58◦] and the mainlobe
energy in the spatial range 1 = [−18◦, −22◦].

Fig. 2 shows the results for null forming beampattern of
MAIC versus POVMM, SCF and JDO SSPARC. Note that,
the result of JDO SSPARC design is not constant modulus
(energy constraint only), it is used here as a benchmark for
the other methods. The proposed MAIC method provides
an excellent interference energy suppression, better than
POVMM and comparable to SCF, while maintaining the
desired mainlobe at−20◦. In Fig. 3, the value of the objective
function of the MAIC algorithm decrease rapidly in each
iteration until convergence at around about 12 iterations. The
time response of this scenario for different antenna sizes
M = 8, 16, 32, 64 is shown in Table 1. The computer used
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TABLE 1. Time response of the MAIC algorithm.

in this numerical simulation was an Apple iMAC with M1
chip and 8 GB of RAM running MATLAB version 2023b.

B. MAINLOBE DESIGN WITH TWO INTERFERENCE
SECTORS
In Fig. 4, we examine the proposed algorithm for multiple
interference sectors. Namely, we assume three interference
sectors: 41 = [−62◦, −58◦] and 42 = [15◦, 20◦]. MAIC
method has been plotted with two different energy levels
E0 = 1.6 and E0 = 0 (no main lobe constraint). The
other numerical set up is the same as in section IV-A: a
ULA of M = 16 elements with half-wavelength spacing,
ζ = 10−5 and the mainlobe energy in the spatial range
1 = [−18◦, −22◦]. For no mainbeam constraint (E0 = 0),
it seems that the MAIC method outperform the state-of-art
methods, thanks to the new construction of the objective
function to capture the total energy and not only for some
specific points as in POVMM or SCF. In this case, the
minimum attenuation in the sector 42 = [15◦, 20◦] is around
−61.8 dB versus −50.5 dB and −41.9 dB for SCF and
POVMM, respectively. Remarkably, if the mainlobe energy
increased to E0 = 1.6, the minimum attenuation of MAIC
method is still better than POVMM and slightly above SCF
at −48 dB while maintaining a mainlobe at −20◦.
In Fig. 5, we show the same set-up but with higher

mainlobe energy values, namely, E0 = 4 and E0 = 3.52.
Depending on the application, E0 = 3.52 seems to have
the best trade-off between minimum attenuation and high
mainlobe energy. At E0 = 4, the MAIC method could not
reduce the energy at 41 = [−62◦, −58◦] very well, however,
it has the lowest side-lobe level at around −10.4 dB.

C. MAINLOBE DESIGN WITH MULTIPLE INTERFERENCE
SECTORS
In Fig. 6, we examine the proposed algorithm for multiple
interference sectors. Namely, we assume three interference
sectors: 41 = [−61◦, −59◦], 42 = [10◦, 30◦] and 43 =

[50◦, 70◦]. MAIC method has been plotted with two different
energy levels E0 = 1.6 and E0 = 0 (no main lobe constraint).
The other numerical set up is the same as in section IV-A:
a ULA of M = 16 elements with half-wavelength spacing,
ζ = 10−5 and the mainlobe energy in the spatial range 1 =

[−18◦, −22◦]. Again, for no mainbeam constraint (E0 = 0),
the MAIC method outperform the state-of-art methods,
thanks to the new construction of the objective function to
capture the total energy and not only for some specific points
as in POVMMor SCF. For example, theminimum attenuation
in the sector 42 = [15◦, 20◦] is around −31.4 dB versus
−23.8 dB and −23.7 dB for SCF and POVMM, respectively.

FIGURE 4. Plot of the beampattern of two interference sectors at
41 = [−62◦, −58◦] and 42 = [15◦, 20◦]. MAIC method performance for
E0 = 1.6 (black line) and E0 = 0 (Blue line).

FIGURE 5. Plot of the beampattern of two interference sectors at
41 = [−62◦, −58◦] and 42 = [15◦, 20◦]. MAIC method performance for
E0 = 4 (black line) and E0 = 3.52 (Blue line).

Remarkably, if the mainlobe energy increased to E0 = 1.6,
the minimum attenuation of MAIC method is still better than
POVMM as well as SCF at −28.8 dB while maintaining a
mainlobe at −20◦.

In Fig. 7, we show the same set-up but with higher
mainlobe energy values, namely, E0 = 4 and E0 =

3.52. Depending on the application, E0 = 3.52 seems to
have the best trade-off between minimum attenuation and
high mainlobe energy. At E0 = 4 (very high mainlobe),
the MAIC method could not reduce the energy at 41 =

[−62◦, −58◦] very well having the lowest side-lobe level at
around −18.3 dB.

D. MAINLOBE STEERING PERFORMANCE
In Fig. 8, the mainlobe steering performance of the algorithm
is shown with a couple of interference sectors. Namely,
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FIGURE 6. Plot of the beampattern of three interference sectors at
41 = [−61◦, −59◦], 42 = [10◦, 30◦] and 43 = [50◦, 70◦]. MAIC method
performance for E0 = 1.6 (black line) and E0 = 0 (Blue line).

FIGURE 7. Plot of the beampattern of three interference sectors at
41 = [−61◦, −59◦], 42 = [10◦, 30◦] and 43 = [50◦, 70◦]. MAIC method
performance for E0 = 4 (black line) and E0 = 3.52 (Blue line).

we assume two interference sectors: 41 = [−61◦, −59◦]
and 42 = [50◦, 70◦]. MAIC method has been plotted with
an energy level of E0 = 3.2. As shown in Fig. 8, the MAIC
method managed to steer the mainlobe while keeping a very
low interference energy at around −49 dB.
For an energy levels of E0 = 3.76 or above (relativity

high mainlobe energy), the MAIC algorithm will have a
lower performance as shown in Fig. 9. Although it manages
to steer the mainlobe correctly, it was unable to reduce the
interference energy below −23 dB due to the very tight
mainlobe constraint. The feasible region of the optimization
problem is small and, hence, the optimumvalue prioritizes the
mainlobe steering instead of reducing the interference energy.

E. SIDELOBE REDUCTION
In Fig. 10 we examine the proposed algorithm for sidelobe
reduction. A couple of sidelobe reduction sectors have been

FIGURE 8. Plot of the beampattern of different desired mainlobe
directions at E0 = 3.2.

FIGURE 9. Plot of the beampattern of different desired mainlobe
directions at E0 = 3.76.

FIGURE 10. Plot of the beampattern of different with four undesired
sectors to reduce interference and sidelobe for E0 = 6 and E0 = 5.4.

added around the mainlobe and two interference sectors.
Namely, we assume four undesired sectors: for the sidelobe

VOLUME 12, 2024 65925



O. Aldayel: MIMO Radar Mainlobe Gain Control Design for Co-Existence

reduction 41 = [−15◦, −8◦], 42 = [−30◦, −24◦] and for
the interference 43 = [20◦, 30◦], 44 = [−65◦, −55◦]. Note
that, the total amount of energy in all directions is a fixed
amount, as shown in equation (7). Therefore, if the amount
of energy was reduced at the interference sectors, there must
be an excess of energy at the other sectors. Nevertheless, it is
possible to reduce side lobs by adding more sectors around
the main lobe, as shown in the next section.

V. CONCLUSION
Our research accomplishes comprehensive beampattern
design for MIMO radar while accommodating constant
modulus and mainlobe gain constraints. The core concept of
our analytical contribution involves progressively achieving
constant modulus (upon convergence) by solving a quadratic
program with linear equality and inequality constraints at
each step of the sequence. With each problem in the sequence
admitting a closed form solution, our method becomes com-
putationally appealing. We establish novel analytical prop-
erties of the MAIC algorithm, including a non-decreasing
cost function in each iteration and assured convergence.
Furthermore, through experimentation, we demonstrate that
the proposed MAIC outperforms numerous state-of-the-
art methods in terms of beampattern accuracy, even when
addressing a gain constrained problem. Future endeavors
could explore a wideband beampattern design and delve
into further optimality properties of the MAIC solution
and the utilization of other array types such as planner
arrays.

A. PROOF OF LEMMA 1
Proof:We have the following:

xHMx ≥ λixvivHi x = λi|vHi x|
2 (24)

this implies,
√

xHMx ≥

√
λi|vHi x| ≥

√
λiRe{vHi x} (25)

since xHMx ≥ E0 is equivalent to
√
xHMx ≥

√
E0,

therefore, Re{vHi x} ≥

√
E0
λi

implies xHMx ≥ E0. □

B. PROOF OF LEMMA 1
Proof: Let s(n−1) be the optimal solution of CP(n−1). It has

been shown in [40] that the new CMC set is feasible i.e. the
new constraint include the old solution or B(n)

c s(n−1)
= 1

Here, we need to show that u(n)T s(n−1)
≥

√
E0
λ1
, let

us define ū to be the complex version of u, i.e., ū =

v∗

1e
−j arg(vH1 x

(n−1)) as in (16). Then we have√
E0
λ1

≤ u(n−1)T s(n−1) (26)

= Re{ū(n−1)Hx(n−1)
} (27)

= Re{vH1 x
(n−1)e−j arg(v

H
1 x

(n−2))
} (28)

≤ |vH1 x
(n−1)e−j arg(v

H
1 x

(n−2))
| (29)

= vH1 x
(n−1)e−j arg(v

H
1 x

(n−1)) (30)

= u(n)T s(n−1) (31)

□

C. PROOF OF THEOREM 1
Proof:Denote the feasible sets of CP(n−1) and CP(n) byFn−1
and Fn, respectively. From Lemma 2, s(n−1)

∈ Fn. Since
CP(n) is a convex problem and s(n) is the optimal solution of
CP(n),

s(n−1)T (R + λI)s(n−1)
≥ s(n)T (R + λI)s(n) (32)

Therefore, the sequence {g(s(n))}∞n=0 is non-increasing. Since
g(s) ≥ 0 for all values of s, it is bounded below. Hence,
it converges to a finite value s⋆ according to the monotone
convergence theorem [57]. □
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