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ABSTRACT Large-scale power outages caused by extreme weather events are one of the major factors
weakening grid resilience. In order to prevent the critical infrastructure from cascading failure, power lines
are often proactively de-energized under the threat of a progressing wildfire. In this context, the potential of
microgrid (MG) functioning in islanded mode can be exploited to enhance the resiliency of the power grid.
However, there are numerous uncertainties originating from these types of events and an accurate modeling
of the MG is required to harness its full potential. In this paper, we consider the uncertainty in line outages
depending on fire propagation and reduced solar power generation due to the particulate matter in wildfire
smoke. We formulate a two-stage stochastic MG optimal power flow problem by utilizing a second-order
cone relaxation of the DistFlow model. Leveraging an effective approximation of the resistive heat gain,
we separate the complicating constraints of dynamic line rating from the resulting optimization problem.
Extensive simulation results corroborate the merits of our proposed framework, which is tested on amodified
IEEE 22-bus system.

INDEX TERMS Extreme weather events, microgrid energy management, stochastic optimization, wildfire
smoke effect.

NOMENCLATURE

Sets and Indices
N ES/NMS Set of all buses having energy storage

systems (ES) / mobile ES(MS).
N L/NQS Set of all load bus/ buses equipped

with emergency generators or quick
start (QS) units.

NMT/N PV/NWT Set of all buses connected with micro-
turbines (MT) / PV cells / wind
turbines (WT).

S/T Set of all scenarios / Set of hours
for second stage variables T ≜
{1, 2, . . . ,T }.

i, j/ij Indices for buses/Distribution line
between i and j.

t/s Index of hours / Index for scenarios.

The associate editor coordinating the review of this manuscript and

approving it for publication was F. R. Islam .

T ′ Look ahead window for first stage
variables.

Parameters
ℓ̄ij Maximum squared magnitude of

current flowing through line ij.
N̄MS/C̄MS Maximum number/allocated budget

for MS units.
P̄B/P̄S Maximum amount of power to be

bought from/sold to the upstream
network (MW).

P̄ES,ch/P̄ES,dis/
P̄MS,ch/P̄MS,ch Upper limit of ES/ MS

charging/discharging power (MW).
P̄MT MT maximum power output (MW).
X̄ Maximum amount of fuel reserve that

can be bought.
Ȳ δ/Y δ Upper/lower limit of QS fuel

expenditure.
β/ϵ Load criticality factor / Solar

absorptivity.
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ηch/ηdis ESS charging/discharging efficiency.
ηQS Conversion factor of QS fuel expendi-

ture and power output.
γ L Incentive for serving per unit of load

($/MW).
γMS Transportation cost of carrying an MS

unit ($).
γMT/γQS Marginal cost of active power generation

from MT/QS units ($/MW).
γ RF Price for buying per unit of renewable

fuel ($/L).
κa Absolute viscosity of air (kg/ms).
κB Stefan-Boltzmann constant

(W/m2/K4).
µa Thermal conductivity of air (W/mK).
8s/Tf Solar radiation (W/m2) /Flame zone

temperature (K).
πs Probability of each scenario.
ψw Angle between wind direction and

conductor(rad).
ρa/ρb Air density / Density of bulk fuel

(kg/m3).
σ f/σ c Emissivity of flame zone / conductor

(dimensionless).
τ a Atmospheric transmissivity

(dimensionless).
ϱ/H Conductor diameter/Flame height (m).
ϑw/ϕ Wind speed (m/sec) / Flame tilt angle

(rad).
ζ Thermal resistivity coefficient of the

conductor (K−1).
Cp Relative heat capacity (J/kg/K).
F Effort level for extinguishing fire

(dimensionless).
kp/kv Droop constants.
M Indicator for uphill (0) and downhill (1).
N Indicator for presence (10) or absence

(0) of nearby natural obstacles.
PL/QL Active/reactive power demand

(MW/MVar).
PMT,ru/PMT,rd MT ramping up/down limit (MW).
rij/xij Line resistance/reactance between bus i

and bus j (�).
Scenario
Generation
Variables
Ť/ϑ f Ambient temperature (K) / Fire spread

rate(m/sec).
8f Radiative heat flux emitted from

wildfire (W/m2).
θ f View angle between the flame and the

conductor (rad).
d f Distance between fire and power line

(m).

qs/qf Radiative heat gain rate from
solar/fire (W/m).

ql Resistive heat gain rate (W/m).
qr/qc Radiative/Convective heat loss rate

(W/m).
Tij Temperature of conductor

connecting bus i and j (K).
uij Binary variable indicating line

outage status.
Decision Variables
αls/αch/αdis Ratio of the served load to its

actual demand/binary indicator for
charging/discharging status for MS
units.

ℓij Squared magnitude of current
flowing through line ij.

PES,ch/PES,dis

/PMS,ch/PMS,dis Scheduled ES/MS charging/
discharging active power (MW).

Pij/Qij Active/reactive power flow through
branch ij (MW/MVar).

Pi/Qi Active/reactive power injection at
bus i (MW/MVar).

SSi /S
M
i State of charge of the i-th ES/MS

unit.
vi Squared voltage magnitude at bus i.
Xi/Yi Renewable fuel reserve /

Remaining fuel of the i-th QS
unit.

Zi Binary indicator whether an MS
unit is sited at bus i.

I. INTRODUCTION
Extreme weather events pose a great threat to the system
planning and operation of electrical grids. They severely
affect the reliability and resiliency of the power system by
damaging critical infrastructure like power lines and other
electrical equipment. This leads to prolonged power outages
to a large customer base and critical loads in the system.
According to the U.S. Energy Information Administration,
customers faced over eight hours of power interruption on
average in 2020, which has doubled in just five years [1].
More frequent power outages due to high-impact, low-
probability events result in tremendous financial losses,
roughly $150 billion per year [2]. As one of the most
devastating natural disasters, wildfires take a toll on human
beings and the environment by emitting tons of greenhouse
gases. Moreover, to reduce the risk of power line induced
fires, frequent public safety power shutoffs (PSPS) also cause
huge economic losses. The disrupted power supply caused
by a wildfire can be overcome by deploying microgrids
(MG). A big advantage of a MG is that it can perform as an
independent entity to serve its loadwhen getting disconnected
from the main grid. On top of that, MG makes the grid
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greener and more sustainable by integrating distributed
energy resources (DER), including the microturbine (MT),
renewable energy from photovoltaic (PV) panels, and wind
turbines (WT).

A. MOTIVATION
The optimal operation of a MG during a wildfire is subject
to several uncertain factors. First of all, the progression
of the fire and its degree of devastation depends upon a
lot of features, including but not limited to wind speed,
wind direction, and the amount of flammable fuel in the
surrounding area. The onset of any contingency in the electric
distribution system depends upon the fire dynamics. Further-
more, the generation portfolio of PV and WT is inherently
stochastic, unlike conventional generators. During a wildfire,
aerosols produced by the burning of organic substances
visibly block sunlight from reaching the earth’s surface and
make the atmosphere darker. Therefore, the output from PV
panel drops down due to the presence of smoke and soot
containing different airborne particulate matter. According
to California Independent System Operator (CAISO), the
solar powered electricity generation declined more than 30%
in the first half of September 2020 in just 2 months when
the state was experiencing one of the biggest fires in its
history [3]. Similarly, the power output from WT and the
load consumption profile of the customers are also contingent
upon different scenarios. Therefore, these components need
to be analyzed carefully to ensure the optimal scheduling of
a MG.

B. LITERATURE REVIEW
Ensuring power supply to customers threatened by wildfire
risks is a highly multi-disciplinary field of research encom-
passing geography, meteorology, engineering, and resource
management. From a holistic point of view, we break down
this broad topic into several key aspects as presented in
Table 1. Predicting an extreme weather event is the first step
to dealing with the adverse effects it takes along. To get off the
ground, an effective model for wildfire prediction is essential
to estimate the chance of a fire-induced power outage in a
region. Authors from [4], [5], [6], and [7] investigate the
underlying factors e.g. temperature, humidity, wind speed,
vegetation condition, and topology that can initiate a fire.
However, these works do not comprise a fire propagation
model through which the risk and scale of an imminent
fire can be determined. To overcome this challenge, [8]
and [9] incorporate wildfire dynamics in their model for
determining line outage by a progressing fire and achieving
an optimal distribution system operation. A spatiotemporal
fire monitoring technique in combination with a decision
support tool for fire management is used by [10] in order to
mitigate the impacts of wildfires on the power grid. Dian et al.
design a framework by integrating a prediction model and
line outage probability to get an early warning of disrupted
power lines [11]. Nonetheless, their efforts are limited by

strong assumptions, complicated problem formulation, and
the absence of fire-extinguishing efforts.

Apart from the necessity of having dynamic wildfire
prediction models, the energy management of a MG in a high
fire risk zone is challenged by numerous uncertainties such as
repair time of damaged equipment, islanded status, and inter-
mittent renewable generation. Reference [12] co-optimizes
system operation and repair crew routing considering the
uncertainty in repair time and load demand. A stochastic opti-
mization framework is developed for scheduling resources
considering the uncertain duration of islanded operation of
MG in [13] and [14]. While their effort is important for the
optimal operation of the power network, however, there are
missing factors like fire extinguishing works that can alter
the duration of the islanded condition.

Renewable energy resources such as PV panels and WT
are one of the key distributed generation components in MG
which are inherently stochastic. The survey [15] covers the
recent advancements in stochastic optimization for modeling
the uncertainties in renewable energy applications. The
stochasticity of these resources is further captured through
a robust optimization-based model in [16] and [17], by an
approximate dynamic programming-based approach in [18]
and as a security-constrained stochastic framework for the
economic dispatch of flexible resources in [19]. Besides,
several data-driven models are also proposed to approximate
the uncertain sets originated by high penetration of renewable
energy and load in [20], using a hierarchical hybrid control
method [21], distributionally robust approach [22] and an
adaptive robust formulation [23]. Although these works
significantly enhance the efficiency of renewable energy
based models, nevertheless, they lack in assessing the adverse
effects on solar power generation stemming from the fire
smoke. Few works exist in the literature exploring the
smoke effect by analyzing different molecules and particles
produced by smoke [24], [25]. Reference [26] develop a
model to estimate the power output reduction on different PV
cell technologies. Using the optical properties of smoke and
the spectral response of PV cell materials, an estimated PV
power reduction approach is presented in [27]. Due to this
sudden drop in power generation, [28] studies the frequency
stability on the power grid. Despite all, there remains a
research gap in arranging a compensation strategy for the
likely unserved loads during blackouts caused by the reduced
generation.

Other diverse initiatives to make the power grid resilient
against disasters are extensively studied in the literature.
Public safety power shut-off is one of the emergency mea-
sures where electric components are selectively de-energized
to reduce the risk of fire ignition. This task is formulated
by [29] and [30] to minimize the risk of fire ignition from
grid fault and maximize secure power delivery. Besides
that, researchers also develop strategies for restoring loads
during a natural disaster. Reference [31] coordinates mobile
resources, multiple generating units, and demand response,
thus balancing the supply and demand side for restoring
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TABLE 1. Summary of the literature review.

loads. Another collaborative strategy between network recon-
figuration and spatiotemporal distribution of EV is explored
in [32] while [33] simultaneously combines the repair process
of the distribution system and load restoration problem.
Network configuration is another way of serving critical loads
affected by a natural disaster. An advanced configuration
of the distribution system is presented for restoring such
loads [34].
Besides, securing additional resources is another good

practice that helps in overcoming the service disruption
caused by an extreme weather event. From a resource allo-
cation perspective, researchers propose a stochastic mixed
integer linear programming model consisting of mobile
and labor resources to assist load restoration in the post-
event phase [35]. By forming adaptive multi microgrids
with mobile energy resources [36], topology switching [37],
resilience against extreme conditions is achieved. Besides,
Lie et al formulate security constraints for spinning and
non-spinning reserves in a limited energy resources setup
against contingencies [38]. Moreover, there are efforts in
advancing novel techniques to solve the energy manage-
ment problem involving MG. A combination of two-stage
stochastic programming and model predictive control is
applied for MG energy management under uncertainties [39],
[40]. A quantum teaching learning-based algorithm is also
proposed by [41] that captures the seasonal variation of solar
and wind power generation. Furthermore, demand response
is incorporated in optimal energy dispatch strategies that
potentially can decrease MG operation cost; see [42]. One
key shortcoming of these works is to disregard the uncertain
effects of line outage caused by a progressing fire and smoke
induced reduction in PV generation. Because of these effects,
load service gets disrupted, which eventually affects the
reliability and resilience of the power grid.

C. OUR CONTRIBUTIONS
In this work, we propose a MG scheduling task by formulat-
ing a two-stage stochastic optimal power flow (OPF) problem
considering two significant effects induced by an approach-
ing wildfire, namely line outage and smoke-altered PV
generation. We make reasonable assumptions to convexify
the original non-convex problem and reduce computational
complexity. The proposed framework is tested through
extensive simulation to demonstrate the system’s resilience
compared with some existing schemes. The novelty and
contributions of our work are summarized as follows:

• We comprehensively model wildfire propagation by
incorporating natural and human exertion on top of
meteorological and geographical factors. The inclusion
of these factors captures both the progress and deflection
of the fire front, which determines probable line outages.

• We model the curtailed PV generation originating from
fire smoke using a data-driven approach. We assess
the requirement of securing additional reserves to
compensate for this shortage of generation. This ensures
maximum load supply during service interruption.

• We introduce a simple but effective approximation
of the resistive heat gain rate, which facilitates the
separation of the dynamic line rating constraints from
the optimization problem. It helps in the convexification
of the original problem and significantly reduces the
computational burden.

The rest of this paper is organized as follows. Section II
describes the system modeling consisting of the wildfire
dynamics and smoke effect. In Section III, the formulation
of a two-stage stochastic optimization problem is discussed.
Simulation studies are presented in Section IV. Finally,
Section V provides the concluding remark along with the
future research direction.
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II. SYSTEM MODELING
A. SCENARIO GENERATION
The uncertainties regarding the progression of wildfire
and renewable generation are incorporated in our model
as different scenarios. The stochastic parameters for these
scenarios are wind speed (ϑw), wind direction (ψw) and
solar radiation (8s). Each of them is modeled respectively
by the Weibull, von Mises and Beta distribution function
using historical data for each hour of the day. The other
parameters considered are firefighting efforts, natural barri-
ers, and regional topography as described in (1a). Afterward,
sufficient scenarios consisting of variables (listed earlier
in the nomenclature section for scenario generation) as
functions of these parameters are generated for 24 hours of
a day using Monte Carlo simulation. The output power from
the WT is calculated as mentioned in [44]. For the remaining
parts of this paper, the subscripts {ij, s, t} stand for the line
connecting bus i and j at time t for scenario s.

B. WILDFIRE MODELLING
To incorporate the fire dynamics in ourmodeling, we leverage
a classic heat flux model [45]. One of the limitations of
this model is that it considers neither the human or natural
intervention decelerating fire spread nor the impact of the
topography of a region. To overcome this, our proposed fire
propagation model is given as follows.

ϑ f
s,t = 0.07 ×

(1 + ϑw
s,t )

ρb
× e-F × e-N × e−1M×|slope|

(1a)

d fij,s,t = d fij,s,t−1 − ϑ f
s,t1t cos(ψ

w
ij,s,t ) (1b)

θ fij,s,t = arctan

(
H cos(ϕ)

d fij,s,t−H sin(ϕ)

)
(1c)

8f
ij,s,t = 0.5 × σ fκBτ

aT 4
f sin(θ fij,s,t ). (1d)

First, in (1a), the fire spread rate ϑ f is expressed as a function
of wind speed ϑw, bulk fuel density ρb, natural and human
fire fighting efforts and the type of topography. Fuel density
indicates the vegetation level of the area. We model the
human firefighting factor as an exponential function where
F quantifies different levels of effort. The rationale behind
this modeling is that the growth or decay of any object is
naturally modeled as an exponential function. F can take three
distinct values respectively, indicating no effort, moderate
effort (use of fire hose from ground level), and extensive effort
(combination of fire hose from ground and water planes from
above. The next term (N) indicates the presence of natural
barriers like water bodies and rocky outcrops that hinder fire
growth. The last term (M) in this equation is the contributing
factor by the landscape of an area [11]. M can be either 0 or 1,
standing for uphill and downhill, respectively. Fire spreads
faster on slanted land compared to flat land. Moreover, in the
uphill, the radiant heat from the wildfire pre-heat fuels on the
slope ahead of the fire-front which aids in faster propagation
than in downhill. Afterward, (1b) reflects the dynamics of the

distance, d f between fire and the power line connecting bus i
and j based on the wind speed and direction. Then, the view
angle θ f is calculated according to (1c), which depends on the
distance d f, flame height H and flame tilt angle ϕ. Finally,
we obtain the radiative heat flux 8f

ij emitted from the fire to
the power line, as shown in (1d).

C. DYNAMIC LINE RATING (DLR)
The temperature of an overhead conductor (power distribu-
tion line) is constantly changing in response to changes in
weather conditions and the current flowing through it. In this
subsection, we study the impact of the nearby fire and other
factors on the conductor’s temperature according to the IEEE
standard 738-2012 [46].
The dynamics of the line temperature Tij,s,t are quantified

in heat balance equation (2a), where three heat gain sources,
respective from fire, solar and line current {qf, qs, ql}ij,s,t
and two heat loss sources through radiation and convection
{qr, qc}ij,s,t are modeled by equations (2c)-(2g). As shown
in the big-M constraint (2b), if Tij exceeds the maximum
permissible temperature T̄ij, this line is switched off (uij = 0)
to ensure safe operation.

Tij,s,t+1 − Tij,s,t

=
1t
mCp

×
(
qfij,s,t + qsij,s,t + qlij,s,t − qrij,s,t − qcij,s,t

)
(2a)

Tij,s,t ≤ T̄ij +
(
1 − uij,s,t

)
×M (2b)

qfij,s,t = ϱij8
f
ij,s,t (2c)

qsij,s,t = ϱijϵij8
s
ij,s,t (2d)

qlij,s,t = Rij,s,t (Tij,s,t ) × ℓij,s,t (2e)

qrij,s,t = 1.78 × 10−7
× ϱij × σ c

× (T 4
ij,s,t − Ť 4

ij,s,t ) (2f)

qcij,s,t = µaχij,s,t × (Tij,s,t − Ťij,s,t ) × f (Reij,s,t ) (2g)

where in (2e) and (2g) we have

Rij,s,t (Tij,s,t ) = Rrefij ×

(
1 + ζij × (Tij,s,t − T ref

ij )
)

Reij,s,t =
ϱijρ

aϑw
s,t

κa

f (Reij,s,t )=max
{
1.01 + 1.35×Re0.52ij,s,t , 0.754 × Re0.6ij,s,t

}
χij,s,t = 1.194 + 0.194 × cos(2ψw

ij,s,t )

+ 0.368 × sin(2ψw
ij,s,t ) − cos(ψw

ij,s,t ).

D. SMOKE EFFECT
Solar panels produce energy by absorbing sunlight passing
through the atmosphere. The total solar irradiance emitted
from the sun is termed as global horizontal irradiance (GHI).
However, the output from a solar panel depends upon a
fraction of GHI that incidents perpendicularly on the solar
panel, namely direct normal irradiance (DNI). The rest of
the GHI is diffused by different molecules and particles in
the atmosphere and contributes little to the PV generation.
Wildfire smoke can severely affect the PV generation
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capacity by blocking the effective solar irradiance. The
presence of particulate matter (PM), specifically PM2.5 and
PM10 in the smoke plume mainly affects PV production
while clouds and some other meteorological parameters
contribute there too. The atmospheric clouds reflect and
scatter the sunlight and prevent them from reaching the
PV panels. Hence, the thicker the cloud is, the less the
power generation will be. Similarly, the higher concentration
of PM attenuates PV output. Moreover, a higher relative
humidity indicates the presence of more water vapor in the
atmosphere, which causes more refraction and reflection of
direct insolation of sunlight.

In [43] the effect of a short-span prescribed fire burn on
solar irradiance and PV power was investigated. There was
no conclusive correlation among the factors causing the PV
output reduction. Reference [25] studied the effect of aerosol
on surface solar radiation considering a clear sky condition.
Reference [8] used Beta distribution to model the GHI while
ignoring crucial factors such as the existence of airborne PM
caused by a fire. Without considering the cloud and all types
of PM, [24] measured the effect of certain environmental
factors causing a reduced PV generation. Hence, during
a contingency, the PV generation forecast can be highly
overestimated. Moreover, a theoretical model was developed
by [27] to estimate the PV output reduction by using
the optical properties of smoke. The impact on frequency
stability arising from this sudden reduction in generation
on the power grid was analyzed by [28]. Reference [26]
developed another data-driven model to study how solar
power reduction varies in different PV cell technologies.

To this end, in order to quantify the smoke effect more
accurately, we postulate the following multivariate regression
model:

PPVs,t = α0 + α1Z1 + α2Z2 + α3Z3 + α4Z4
+ α5 ln(Z5) + α6 ln(Z6), (3)

where the target value is the measured PV generation
output PPV. The features include temperature Z1, relative
humidity Z2, DNI on the PV panel Z3, cloud opacity Z4,
the concentrations of PM2.5 Z5 and PM10 Z6. For the last
two factors, natural logarithm is applied because the solar
irradiation changes exponentially with the presence of the
particulate matter. Z3 is the net solar irradiation reaching the
PV panels, which is equal to the DNI multiplied by the cosine
of solar zenith angle θz. All the variables are standardized
by subtracting their mean values and divided by the standard
deviations.

III. PROBLEM FORMULATION
We represent a MG as a directed tree graph G ≜
(N , E), where N is the set of buses and E denotes the
set of power lines (branches). We assume that buses can
either be connected with a load, microturbines (MT), quick
start generators (QS), wind turbines (WT) or PV panels.
In addition, all PV and WT buses are equipped with energy
storage systems (ES) and a mobile energy storage (MS) unit

can be sited to any bus other than the load buses. Therefore,
we have N = N L

∪ NMT
∪ NQS

∪ N PV
∪ NWT, N ES

=

N PV
∪ NWT and NMS

= N \ N L. Unless specified
otherwise, the objective function and constraints described in
this section hold for all scenarios s ∈ S.

A. OBJECTIVE FUNCTION
Considering the inherent uncertainty of renewable energy
generation and wildfire dynamics, we formulate the task
of MG optimal power scheduling as a two-stage stochastic
optimization problem. The objective function (4) minimizes
the costs of power generation and load curtailment that
occurred in the first and second stages. The total time
horizon is divided into two segments, T ′ and T which
respectively realize the first and second stage variables. The
first stage variables include siting an MS unit {Zi}i∈N \N L to
bus i and the allocated fuel reserves {Xi}i∈NQS for the QS
generators. Then, we generate a sufficiently large number
of scenarios consisting of various fire dynamics, weather
conditions and the smoke effect. In the second stage, the
goal is to minimize the total expected operation cost while
maximizing prioritized load serving. The variables include
real-time dispatch commands and other network operational
variables in the MG.

minimize C1 ({Zi,Xi}i)+ C2

(
{Pi,s,t , αlsi,s,t }i,s,t

)
(4)

where

C1 ({Zi,Xi}i)=
∑

i∈N \N L

γMSZi+
∑
i∈NQS

γ RFXi (5a)

C2

(
{Pi,s,t , αlsi,s,t }i,s,t

)
=

∑
s∈S

∑
t∈T

πs ×

( ∑
i∈NQS

γQSPi,s,t

+

∑
i∈NMT

γMTPi,s,t

−

∑
i∈N L

γ Lαlsi,s,tβi,tP
L
i,s,t

)
(5b)

The term αlsi,t,sβi,tP
L
i,t reflects the prioritized load serving

amount. In order to prioritize demand satisfaction, the
incentive for serving loads is set large enough.

B. FIRST STAGE CONSTRAINTS
The variables in this stage are decided T ′ hours before the
second stage scheduling begins. The siting of MS units is
constrained by the number of units and the potential budget
allocated for them. (6a) and (6b) denote these constraints.
For simplicity, we assume that all the units are of the same
size, fully charged and each bus can accommodate only one
MS unit. (6c) limits the summation of the total amount of
renewable fuel reserve that can be allocated to all QS units,
i ∈ NQS. ∑

i∈N \N L

Zi ≤ N̄MS (6a)
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∑
i∈N \N L

γMSZi ≤ C̄MS (6b)

0 ≤

∑
i∈NQS

Xi ≤ X̄ . (6c)

C. SECOND STAGE CONSTRAINTS
This subsection explains the operational constraints of the
MG for all time t ∈ T .

1) POWER FLOW CONSTRAINTS
For j ∈ N and (i, j) ∈ E , an SOCP relaxation of the DistFlow
model (7a)-(7d) is adopted to quantify the power flows in
the radial network; see e.g., [47]. Furthermore, (7e)-(7f) set
the lower and upper limits for the nodal voltages and branch
currents to ensure safe operation. The voltage of the reference
bus is also fixed at 1 p.u.

Pj,s,t =

∑
k:j→ k

Pjk,s,t −

∑
i:i→ j

(
Pij,s,t − rijℓij,s,t

)
(7a)

Qj,s,t =

∑
k:j→ k

Qjk,s,t −

∑
i:i→ j

(
Qij,s,t − xijℓij,s,t

)
(7b)

vj,s,t = vi,s,t − 2
(
rijPij,s,t + xijQij,s,t

)
+ (r2ij + x2ij)ℓij,s,t (7c)

P2ij,s,t + Q2
ij,s,t ≤ ℓij,s,tvj,s,t (7d)

v ≤ vj,s,t ≤ v̄, vrefs,t = 1. (7e)

0 ≤ ℓij,s,t ≤ ℓ̄ij (7f)

2) REACTIVE POWER CONSTRAINTS
We assume that all the buses except for the load bus are
equipped with controllable inverters. Hence, reactive power
constraints are given as

|Qi,s,t | ≤ Q̄i, ∀i ∈ N \N L. (8)

3) QS CONSTRAINTS
To be environmentally friendly and cost effective, the MG
leverages renewable fuels for quick start (QS) units as
non-spinning reserves to restore the loads after an islanding
event with PSPS. The following constraints hold for all i ∈

NQS. Yi,s,t is the remaining fuel in the i-th QS unit. (9a) sets
the initial fuel remaining in the i-th unit as the amount of
fuel allocated to that unit in the first stage. This is a coupling
constraint between the first and second stages. (9b) ensures
that these units only start to operate at the next time step
after any of the lines gets tripped off together with a limit
for ramping up and down of the fuel expenditure (9c) relates
the fuel expenditure with the amount of power produced with
a conversion factor ηQS. (9d) represents the non-negativity
constraints for the remaining fuel level and power output,
respectively.

Y int
i,s = Xi (9a)

∏
ij∈E

(1 − uij,s,t ) × Y δi ≤ Yi,s,t − Yi,s,t+1

≤

∏
ij∈E

(1 − uij,s,t ) × Ȳ δi , ∀t ∈ T \ {T } (9b)

Pi,s,t+1 = ηQS × (Yi,s,t − Yi,s,t+1), ∀t ∈ T \ {T } (9c)

Yi,s,t ≥ 0,Pi,s,t ≥ 0 (9d)

4) MT CONSTRAINTS
The generation limits and ramping up/down constraints for
each MT unit at node i ∈ NMT are given as follows.

0 ≤ Pi,s,t ≤ P̄MT
i (10a)

PMT,rd
i ≤ Pi,s,t+1 − Pi,s,t ≤ PMT,ru

i , ∀t ∈ T \ {T } (10b)

5) LOAD SERVING CONSTRAINTS
For each load at node i ∈ N L, the variable αls is the ratio
of the served load to the actual load demand. With a constant
power factor at all load buses, the condition is expressed as

0 ≤ αlsi,s,t =
Pi,s,t
PLi,s,t

=
Qi,s,t
QL
i,s,t

≤ 1 . (11)

6) STATIC ENERGY STORAGE CONSTRAINTS
In order to have fast responses with high ramping rates,
static energy storage systems or ES units are used as an
alternative to traditional spinning reserves, which comes into
effect immediately after a power outage. For every ES unit i ∈
N ES, we have the following constraints. (12a) is the dynamic
equation of the state of charge (SoC)SS with the amounts of
charging and discharging power {PES,ch,PES,dis}, which are
associated with the efficiency factors {ηch, ηdis}. The initial
SoC, and lower/upper limits for all the ES units are specified
in (12b). (12c) ensures the charging and discharging status
with the appropriate upper limit. In order to limit the use
of mixed integer variables, the complementarity constraint is
formulated as specified in (12d). Finally, (12e) gives the net
real power injection at any ES bus.

SSi,s,t+1 = SSi,s,t + ηch1tPES,chi,s,t −
1
ηdis

1tPES,disi,s,t ,

∀t ∈ T \ {T } (12a)

SSi,s,1 = SS,inti,s , S ≤ SS,inti,s,t ≤ S̄ (12b)

0 ≤ PES,chi,s,t ≤ P̄ES,chi , 0 ≤ PES,disi,s,t ≤ P̄ES,disi (12c)

PES,chi,s,t × PES,disi,s,t = 0 (12d)

Pi,s,t = PES,disi,s,t − PES,chi,s,t . (12e)

7) MOBILE ENERGY STORAGE CONSTRAINTS
The MS units follow the same operating principle as ES.
(13a)-(13c) denote the SoC constraints and net real power
injections. Coupling constraints (13d) and (13e) respectively
denote the charging and discharging power limit where anMS
unit is sited. These units can either be charged, discharged or
remain idle at any time as specified by the binary indicators
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αch and αdis in (13f).

SMi,s,t+1 = SMi,s,t + ηch1tPMS,ch
i,s,t −

1
ηdis

1tPMS,dis
i,s,t ,

∀t ∈ T \ {T } (13a)

SMi,s,1 = SM,int
i,s , S ≤ SMi,s,t ≤ S̄ (13b)

Pi,s,t = PMS,dis
i,s,t − PMS,ch

i,s,t . (13c)

0 ≤ PMS,ch
i,s,t ≤ Zi × αchi,s,t × P̄MS,ch

i (13d)

0 ≤ PMS,dis
i,s,t ≤ Zi × αdisi,s,t × P̄MS,dis

i (13e)

αchi,s,t + αdisi,s,t ≤ 1 (13f)

D. OPTIMIZATION PROBLEM AND CONVEXIFICATION
To this end, we formulate the following stochastic OPF
problem for the MG facing a progressing wildfire.

minimize
V1,V2,VDLR

C1 (V1)+ C2 (V2)

subject to (2), (6) − (13). (14)

The optimization variables V1 ≜ {Xi,Zj}i∈NQS,j∈N \N L,t∈T
and V2 ≜ {VMT,VQS,VB,VNC,VES,VMS,VL,VDLR

} are
defined as follows.

VMT ≜ {Pi,s,t ,Qi,s,t }i∈NMT,s∈S,t∈T
VQS ≜ {Pi,s,t ,Qi,s,t ,Yi,s,t }i∈NQS,s∈S,t∈T
VB ≜ {ℓij,s,t ,Pij,s,t ,Qij,s,t }(i,j)∈E,s∈S,t∈T
VNC ≜ {vi,s,t }i∈N ,s∈S,t∈T

VES ≜ {PES,chi,s,t ,P
ES,dis
i,s,t , SSi,s,t ,Pi,s,t }i∈N ES,s∈S,t∈T

VMS ≜

{PMS,ch
i,s,t ,PMS,dis

i,s,t , SMi,s,t ,Pi,s,t , α
ch
i,s,t , α

dis
i,s,t }i∈NMS,s∈S,t∈T

VL ≜ {αlsi,s,t }i∈N L,s∈S,t∈T
VDLR ≜ {Tij,s,t , uij,s,t , ℓij,s,t }s∈S,t∈T

It can be seen that the resulting problem (14) is highly
nonconvex due to (2e), (2f), (7d), (9b), (12d), (13d)
and (13e). Among them (7d) is relaxed to second order cone
constraints [48]. (12c)-(12e) is replaced with the convex hull
of its non-convex feasible region. The closed form of which
is given as [48].

PES,chi,s,t ≥ 0 (15a)

PES,disi,s,t ≥ 0 (15b)

PES,chi,s,t

P̄ES,chi

+
PES,disi,s,t

P̄ES,disi

≤ 1 (15c)

We have bilinear terms in (13d) and (13e). To convexify,
we introduce two new sets of binary variables τ ch and τ dis

and replace the said equations as follows.

τ chi,s,t ≤ Zi, τ disi,s,t ≤ Zi (16a)

τ chi,s,t ≤ αchi,s,t , τ disi,s,t ≤ αdisi,s,t (16b)

τ chi,s,t ≥

(
Zi + αchi,s,t − 1

)
, τ disi,s,t ≥

(
Zi + αdisi,s,t − 1

)
(16c)

0 ≤ PMS,ch
i,s,t ≤ τ chi,s,t × P̄MS,ch

i (16d)

0 ≤ PMS,dis
i,s,t ≤ τ disi,s,t × P̄MS,dis

i (16e)

For handling the non-convexity in (2e) and (2f), [8], uses
a simple linearization technique as shown in (17a)-(17b).
Specifically, by fixing the line temperature at its maximum
allowable value T̄ ij, the outer approximation (17a) acts as
a surrogate for the resistive heat gain (2e). Regarding the
radiative heat loss (2f), it is linearized with respect to the line
temperature as shown in (17b).

qlij,s,t ≥ Rij,s,t (T̄ ij) × ℓij, s, t (17a)

qrij,s,t = λr × Tij,s,t + βr. (17b)

By using these approximations, (2) becomes a set of linear
equality and inequality constraints in VDLR, which results in
a mixed-integer second-order cone program.
In this work, we observe the fact that the resistive heat gain

qlij,s,t contributes much less to the line temperature change,
compared with all other heat sources in (2a). Therefore, when
dealing with the bilinear term ℓij,s,t ×Tij,s,t in (2e), we fix the
line current at its upper limit. Consequently, the resistive heat
gain qlij,s,t becomes a linear function in line temperature only,
as given below.

qlij,s,t = Rij,s,t (Tij,s,t ) × ℓ̄ij. (18)

Remark 1: The advantage of our proposed approximation
is threefold. First and foremost, detaching the DLR con-
straints helps in shrinking the set of decision variables by
cutting off the squared magnitude of current, ℓij,s,t and the
line outage indicator, uij,s,t from the main optimization prob-
lem. As uij,s,t can be obtained by solving (2) independently,
the computational time gets reduced to one-tenth according
to our simulation. Therefore, we can afford to include more
practical constraints in the optimization problem. Second,
separating DLR also frees the line temperature Tij from being
a decision variable. Hence, we do not need to make any strong
assumption to linearize the quartic function in equation (2f)
unlike some traditional approaches [8], [9]. We can keep it
intact without increasing the degree of complexity as it is
solved outside the main optimization problem. This helps us
to avoid any unnecessary approximation errors. Third, uij,s,t
no more being a decision variable intrinsically solves the
non-convexity in (9b).
Finally, we illustrate the overall scheme of the proposed

framework in Figure 1. Derived from the scenario generation,
binary indicator uij, renewable power generation PPV,PWT,
as well as the load demand PL are provided as the
optimization problem inputs.

IV. SIMULATION RESULTS
In this section, we present extensive simulation results to
show the merits of our proposed framework.

A. SIMULATION SETUP
All the simulations are carried out in a PC with Intel Core
i7, 3.6 GHz CPU and 32GB RAM. A modified IEEE 22-bus
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FIGURE 1. Framework of our proposed model: the generated renewable
power, load demand and tie line outage status serve as the inputs of the
resulting optimization problem from which the DLR constraints are
separated.

FIGURE 2. Outage lines and DER in the simulated system.

distribution system is used which has 3 PV units, 1 WT,
2 MT, and 2 QS generators. An ES is installed with each of
the renewable units. We consider two different cases of line
outage. Case I represents a line outage between buses 1 and
2 while case II is between buses 14 and 15 as specified in
figure 2. The network parameters are listed in Table 2. The
demand profile data are collected from [49]. To focus on the
smoke effect on PV generation, we run the simulations for
daytime from 7 am until 9 pm. We generate 50 scenarios and
use one of them to show the scheduling results by the figures
in Section IV-D.We use Gurobi 9.3 [50] along with CVX [51]
to solve the resulting SOCP.

B. WILDFIRE SIMULATION AND DLR EFFECT
The parameters of the active wildfire simulation are given
in Table 3. Based on our simulation, any power line is
out of service when the line conductor temperature Tij
exceeds 350K. We evaluate the effect of separating the DLR
constraints from the optimization problem by checking the

TABLE 2. Values of the network parameters.

TABLE 3. Parameters of the wildfire simulation.

TABLE 4. The PMAD of the tie line outage indicator including vs
excluding DLR in the optimization problem.

change of the binary indicator variables. Let uinc denote
the optimal solution of the line outage indicator to the
problem (14) with DLR. In contrast, uexc is the counterpart
obtained by independently solving (2), where (2e) is replaced
by (18). The performancemetric is the percentage of themean
absolute difference (PMAD) defined as

PMAD =
1
NsT

Ns∑
s=1

T∑
t=1

∣∣∣uincs,t − uexcs,t

∣∣∣× 100%.

As we can see in Table 4, the difference is quite small, which
decreases with the increased number of scenarios. Thus, this
result corroborates the validity of our proposed method.

Table 5 compares the effect of fire spreading factors on
load shedding. Factors working against fire growth postpone
the line outage time which reduces the amount of load
curtailment. The numbers in the table corroborate this fact.
With higher level of firefighting efforts (F), the load shedding
is less. Similarly, the presence of a water body or similar
structure and downhill topography reduces the curtailed load.

C. SMOKE EFFECT ON PV GENERATION
The PV output data of the Bennion Creek fire in Utah were
collected from [52]. The PM2.5 and PM10 data for the same
location are from [53] while the other meteorological data
can be found in [54]. Based on this data set, the optimal
coefficients of the regression model (3) are given in Table 6.
Clearly, DNI is a leading factor that contributes themost to the
PV output, while temperature also has a positive correlation.
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TABLE 5. Effects of fire spreading factors in load curtailment.

TABLE 6. Learned coefficients of the features for the smoke effect.

Other features including relative humidity, cloud opacity,
PM2.5 and PM10 are all negatively correlated with the
response indicating the inverse relationship. This regression
result confirms our intuition of how those features affect the
PV generation.

D. MG OPERATION
Figure 3 to figure 7 are carried down for case I, with moderate
firefighting effort, without any natural obstacle and a flat
landscape. Figure 3 shows the fuel consumption profile for
the two QS units. As we can see in the figure, before the line
outage takes place at 1 pm, the fuel levels remain the same as
their initially allocated amounts (cf. Table 7). Then, the QS
generators start consuming fuels to support the load demand
from 2 pm.

Figure 4 shows the charging and discharging power
scheduling of all four ES and three MS units. The ES units
keep charging before islanding and discharging afterward
to prioritize load serving. As the MS units were fully
charged at the time of siting, hence they start discharging
as soon as the line gets tripped off. Clearly, the limits of
charging/discharging power and SoC are always respected
during the entire time horizon.

Three MS units are sited at bus 4,5 and 9. Table 8 shows
that without allocating these resources, the total amount of
load shed is higher than having them at the designated buses.

Figure 5 depicts the real power generated by the two MTs.
Before islanding, the MG mainly relies on purchased power
from the upstream grid, which is cheaper than utilizing the
MT units. Hence, the initial power generation of these units
is low. After the tie line outage, the MTs ramp up their
generation to support the critical loads in the absence of
upstream power.

Figure 6 shows the load serving status of each bus
prioritizing the critical loads. The color gradient indicates
the fraction of the picked-up demand αls. According to

FIGURE 3. Fuel expenditure profiles for the QS units.

TABLE 7. Fuel allocation for QS units.

the criticality factor given in Table 2, the least critical
loads are located at bus 2, 3, 7, 8, 11, 12 and 16. Hence, they
are shed as soon as the MG gets islanded and all other loads
are instantly supported by the distributed resources. Then, the
higher priority loads among them i.e. 7 and 8 are gradually
picked up by the QS units.

To show the effectiveness of our proposed approach,
we compare it with two other cases. Case A is MG operation
without considering the smoke effect. Case B is the one
including the smoke effect but no provision of QS units.
case C is our proposed one (including both smoke effect
and QS units). Figure 7 displays the benefit of incorporating
the smoke effect. Without considering the smoke effect,
the PV generation is simply over-estimated and hence less
amount of reserves are bought (cf. Table 7). The reserves
are not sufficient enough to compensate the shortened
generation under an actual smoky scenario. In Figure 7, it is
demonstrated that the total amount of load shedding is higher
in such a case. Themaximum amount of load shedding occurs
right at 1 pm when the islanding happens. From 2 pm, the QS
units start reducing the amount of unserved loads. Clearly,
there is no load shedding for the first 6 hours since all MG
loads can be supported by the power from the upstream grid.

To compare cases B and C, we calculate the total
generation cost and load shedding cost with and without
the QS units. Note that, both of these cases consider the
smoke effect. According to Table 9, the generation cost in our
proposed method (case C) is higher because it involves both
MT and QS units. However, in case B we have to shed lots of
load due to insufficient generation. This inevitably increases
the total cost.

Now, we consider another case (case II) where a leftward
fire affects the line connecting bus 14 and 16, see figure 2.
The load serving status is shown in figure 8. Bus 16,18,21
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FIGURE 4. Optimal scheduling of ES and MS charging/discharging power.

TABLE 8. Impact of allocating MS units.

FIGURE 5. Optimal real power generation by the MTs.

FIGURE 6. Serving status (αls) of each load bus for case I.

and 22 are disconnected from the upper sub-network (bus 1
to bus 15). In the lower network, the lowest priority load at
bus 22 gets curtailed due to insufficient resources. On the
other hand, resources in the upper network can be fully
utilized to serve comparatively low priority loads (load at

FIGURE 7. Total amount of load shedding considering smoke effect (Case
C) and without considering smoke effect (Case A).

TABLE 9. The cost comparison between case B and C (unit in $).

FIGURE 8. Serving status (αls) of each load bus for case II.

bus 11 and 12) which was unserved in case I. Table 10
shows that the total load shed amount is lower with a
higher generation cost in case I while case II experiences the
opposite.

Figure 9 demonstrates the comparison of total load
shedding between an in-sample and an out-of-sample sce-
nario. Depending on the variation of renewable generation
and active power demand, the amount of unserved load
sometimes exceeds the in-sample case, and sometimes
remains lower. Nevertheless, the difference in any time step
is not too big, which shows the robustness of the optimal
solution to our two-stage stochastic program.

Finally, Table 11 lists the optimal objective values and the
computation time for solving the stochastic program.With the
increased number of scenarios, the probability of simulating
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TABLE 10. Comparison between different line outages.

FIGURE 9. The comparison of load shedding in-sample and
out-of-sample cases.

TABLE 11. Comparison among different number of scenarios.

the actual scenario gets higher. By trading off between the
computation time and optimality, we choose 50 as the number
of scenarios.

V. CONCLUSION
In this work, we formulate a two-stage stochastic OPF
in the context of operating a MG during a wildfire.
A comprehensive model of fire dynamics causing line outage
and altered PV generation stemming from the smoke plume
is analyzed. In order to prepare for the upcoming contingency
more accurately while minimizing load shedding, we exploit
renewable fuel driven quick start generators and mobile
energy storage devices. One of the biggest advantages of our
proposed framework is making the computation much faster
by efficiently detaching the DLR constraints from the OPF
problem. The extensive simulations demonstrate the merit
of the proposed model by comparing the power outage and
operational costs in various case studies. Without considering
the smoke effect, PV generation is always overestimated,
which results in higher load shedding and affecting the
resiliency of the system. In future, we plan to utilize advanced
sensors and communication system to characterize the
uncertainties in fire progression more precisely. Moreover,
the inclusion of wind propagation factor can aid in a better
modelling of smoke effect in real PV generation. Another

interesting direction is to leverage clean energy technologies
that helps in making the grid more sustainable and resilient.
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