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ABSTRACT To improve the stability and accuracy of temperature control in pellet grill, this article proposes
a method that applies a Fuzzy PID controller optimized with Improved Particle Swarm Optimization (IPSO).
Techniques such as Circle mapping are introduced to enhance the convergence speed and efficacy of the
particle swarm algorithm (PSO). The optimized particle swarm algorithm is used for the identification of
the transfer function of the pellet grill, as well as for the optimization of the quantification factor and the
proportional factor within the Fuzzy PID controller. The IPSO optimized Fuzzy PID control strategy was
then experimentally applied to a prototype pellet grill. The results show that the control system limits the
overshoot to 1.6% and temperature fluctuations to within 1.83◦F, demonstrating good stability and anti-
interference capability, and significantly improving the effectiveness of temperature control. Therefore, the
research findings provide a feasible solution for the temperature regulation of pellet grill.

INDEX TERMS Fuzzy systems, PID control, pellet grill, particle swarm optimization, temperature control.

I. INTRODUCTION
Nowadays, outdoor barbecuing is gaining popularity among
consumers [1]. Traditional outdoor barbecues typically use
coal, electricity, or propane gas as fuel for grilling food.
However, with advances in renewable energy, biomass pellets
are increasingly being utilized in this regard. Pellet grills that
use biomass pellets as fuel are becoming more and more
popular. Biomass pellets are made from renewable resources
such as plant-based materials and waste materials. They have
lower carbon emissions and are environmentally friendly [2].
They are also easy to store and transport [3] and can ignite
quickly and burn completely [4]. Additionally, when food
is cooked on a pellet grill, the Maillard reaction occurs [5],
which enhances the flavor of the food. The smoke produced
by fruit wood pellets imparts a fruity aroma to the meat [6],
satisfying people’s high expectations for the taste and quality
of their food. Therefore, pellet grills are very popular for
outdoor grilling.
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Food baking is closely related to the temperature. In tem-
perature control studies, PID controllers are favored because
of their simple structure, easy operation, convenient imple-
mentation and adjustment [7]. V.G. Ryckaert et al. [8] applied
the PID control algorithm to the temperature control of oven.
However, when faced with complex control objects, PID
often cannot meet the requirements, and an adaptive PID
control algorithm is needed. Bu combined fuzzy control with
PID to solve these problems of temperature variation, non-
linearity, and time delay in the biomass microwave pyrolysis
process [9]. However, traditionally determining the PID val-
ues requires operators’ experience and a large number of
experiments [10]. Xi utilized particle swarm optimization
method to optimize the PID parameters in the control process,
which enhanced the control performance and adaptive capa-
bilities of the PID controller [11]. Tang et al. [12] combined
Particle Swarm Optimization (PSO) with fuzzy PID to solve
the significant nonlinear and large time delay problems in
steam temperature control, demonstrating the control perfor-
mance of the particle swarm fuzzy PID approach. However,
the particle swarm algorithm is prone to getting trapped in
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local optima, making it difficult to achieve timely optimiza-
tion goals and guarantee the best performance of the PID
model [13].

Pellet grills heat food by burning biomass pellets, and their
temperature control presents challenges, such as nonlinearity,
poor stability, and significant time delays. Large temperature
fluctuations significantly affect the appearance and flavor of
food, making it difficult for some consumers to meet their
expectations. Therefore, this study focuses on the temperature
control issues of pellet grills and proposed the design of a
fuzzy PID controller. An IPSO algorithm was used to adjust
the scaling factors and proportional factors in the fuzzy PID
to achieve better control performance. Simulated in Simulink
and prototype tests in real-world environments were con-
ducted to verify the effectiveness of the proposed temperature
control based on IPSO, fuzzy PID, and the traditional PID
methods for pellet grills. This study provided a valuable
reference for the temperature control of pellet grills.

II. PELLLET GRILL OPERATION AND STRUCTURE
The appearance and structure diagram of the pellet grill are
shown in Fig.1 On the left side, there is a pellet hopper for
loading biomass pellet fuel, a screw feeder below the hopper
for fuel feeding, and a fan to provide the oxygen required for
combustion. Themain body structure is on the right side, with
an outlet flue at the top.

FIGURE 1. Structure diagram of the pellet grill.

The system structure of the pellet grill is illustrated in
Fig.2. The grill is powered by 110V, and the hardware mainly
consists of the GD32F130microcontroller as themain control
unit. Temperature sensing is performed using a PT1000 ther-
mistor, and the analog signal from the sensor is transferred
through a 12-bit A/D converter using DMA configuration.
Temperature control is facilitated through a digital display
screen for user interaction, allowing the setting of the desired
operating temperature and mode. The control signals are then
transmitted to the feed motor and heating element to increase
the temperature. The PT1000 thermistor continuously mea-
sures the temperature inside the pellet grill in real-time. The
collected temperature data are fed back to the microcontroller
for analysis and calculation. Based on this information, the
microcontroller adjusts the feeding time to control the tem-
perature effectively.

The pellet grill uses apple wood pellets to bake food,
and its operating process involves loading wooden pellets
into the pellet hopper, placing the food on the grilling
tray inside the grill, setting the temperature and baking
mode through the controller, and feeding the pellet fuel into
the combustion chamber via the fuel inlet at the bottom
of the hopper. The screw feeder, controlled by a motor,
transfers the pellets to the combustion chamber by rotating
the screw rod. The heating element ignites the pellet fuel
in the combustion chamber while a fan at the bottom pro-
vides the necessary oxygen for combustion. The temperature
control of the pellet grill is determined by the duration of
the rotation of the screw feeder motor. A temperature sensor
installed inside the grill detects the temperature and provides
feedback to the digital controller. Based on the relationship
between the actual temperature inside the grill and the set
temperature, the digital controller calculates and controls the
number of pellets fed by the screw feeder motor to achieve
temperature control. However, since it takes time for pellets to
ignite and burn, there is no real-time and accurate temperature
feedback, resulting in inaccurate temperature control and
affecting the texture of the food. To meet the requirements
of food preparation, an intelligent control method is needed
to precisely control the temperature.

FIGURE 2. Pellet grill system diagram.

III. PELLET GRILL CONTROLLER DESIGN
The pellet grills in this instance employed a fuzzy PID control
strategy. PID control is one of themost widely used regulators
in engineering practice, and fuzzy PID can resolve issues
such as lag, oscillation, and time-variability that are difficult
to address with traditional PID control [14]. In the design
of fuzzy control systems, quantization factors and scaling
factors are crucial parameters, they have a decisive impact
on system performance. However, traditional methods rely
on tedious manual tuning and experience-based adjustments,
which are not only time-consuming but also inefficient.
Therefore, this paper adopts a fuzzy PID controller design
based on an IPSO offline optimization algorithm. By using
simulation models and offline optimization techniques, the
quantization and scaling factors of the fuzzy PID are tuned,
and the optimized control parameters are applied to the actual
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system, thereby effectively improving the temperature con-
trol performance of the pellet grills.

A. IMPROVEMENTS TO PARTICLE SWARM OPTIMIZATION
Particle Swarm Optimization is an advanced intelligent
algorithm [14]. At the initial stage, each particle is assigned
an initial position and velocity. In each iteration, particles
update their state by tracking two extreme values. The first is
the personal best solution (pbest), which is the best solution
found by the particle itself. The second is the global best
solution (gbest), which is the best solution found by the
swarm as a whole. The formula for updating velocity and
position are shown below.

Equation (1) is the formula for updating particle swarm
velocity:

v(k + 1) = ωv(k) + c1r1(pbest(k) − present(k)

+ c2r2(gbest(k) − present(k)) (1)

Equation (2) represents the position and the new formula:

present(k + 1) = present(k) + v(k + 1) (2)

The basic Particle Swarm Optimization algorithm has the
problem of slow convergence and a tendency to get trapped
in local optima. To address them, the following improvement
measures are proposed in this paper:
(1) In the basic Particle Swarm Optimization algorithm,

particle initialization is set randomly, and particle dis-
tribution is also randomized. This paper uses the Circle
mapping method for population initialization, which
generates a more uniform and diverse initial popula-
tion, which helps to improve the convergence speed
and accuracy of the algorithm [16]. The expression for
generating chaotic sequences using Circle mapping is
as shown in (3), where xi represents the i-th chaotic
sequence number, and mod(a, b) represents the modulo
operation of a with respect to b.

xi+1 = mod( xi + 0.2 −
0.5
2π

× sin( 2π × xi), 1) (3)

(2) In the Particle Swarm Optimization algorithm, the
inertia weight and learning factor are important param-
eters that control particle movement [17]. A higher
inertia weight can increase the particles global search
capability, enabling them to escape from local optima.
Conversely, a lower inertia weight can enhance the
particles’ local search ability [18] allowing them to
fine-tune their positions near local optima for higher
precision [19]. Therefore, in this study, a non-linearly
decreasing inertia weight value, as shown in (4).
is adopted. In the early stages of the algorithm, a larger
inertia weight helps particles to conduct global search
efficiently and explore the solution space extensively.
As the algorithm progresses, gradually reducing the
inertia weight allows particles to focus on local search
near the local optima, thus improving convergence

performance.

w(j) = wmax − (wmax − wmin) × (
j

Tmax
)
2

(4)

where w(j) is the jth iteration, wmax is the maximum
value of the set inertia weight, wmin is the minimum
value of the set inertia weight, and Tmax is the total
number of iterations.
The learning factor is divided into individual learning
factor and social learning factor. The individual learn-
ing factor controls the particle’s local search capability
in the solution space, while the social learning factor
controls the particle’s global search capability. A larger
learning factor can accelerate the search process, while
a smaller learning factor improves the accuracy of the
search [20] In this study, the learning factor variation
strategy given by (5) is adopted.

c1(j) = c1max − (c1max − c1min) ×
j

sizepop

c2(j) = c2max − (c2max − c2min) ×
j

sizepop

(5)

Among them, sizepop is the size of the particle swarm,
c1max and c2max are the maximum and minimum
values of the set individual learning factor, and c1min
and c2min are the maximum and minimum values of
the social learning factor.

(3) During the update iterations of the algorithm, it is
quite possible that the global optimal solution is not
updated even after multiple iterations, indicating that
the algorithmmay fall into a local optimum. Therefore,
in this paper, a scheme is established for the population
to escape from the local optimum: if the fitness value of
the optimal particle in the population does not change
during K iterations, it is determined that the algorithm
has fallen into a local optimum. At this point, the posi-
tion information of a certain proportion of the particles
within the population is reset.

During the optimization process, it is necessary to evaluate
the performance of the control system, the Time Integral of
Absolute Error JITAE function is used for this purpose [21]
in (6), e (t) represents the error value and t represents the
sampling time of the system. By evaluating this function, the
fitness value of the particle can be calculated, and a smaller
fitness value is better.

JITAE =

∫ ts

0
t |e(t)| dt (6)

Based on the improved particle swarm optimization
algorithm, the complete parameter adjustment steps of the
PID controller can be summarized as follows:
Step 1. Initialize the particle swarm, define particle dimen-

sions, learning factors, inertia weights.
Step 2. Calculate the fitness value for each particle.
Step 3. Based on the values calculated for each particle,

select the individual best value pbest and global best
value gbest. If the fitness value improves compared
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to the respective pbest or gbest, update the particle’s
velocity and position using (1) and (2).

Step 4. Check if the global best value has reached the termi-
nation condition K. If it has, return to Step 1.

Step 5. Update the inertia weight and learning factors
using (4) and (5).

Step 6. Repeat Steps 2 to 5. If the maximum number of
iterations is reached, stop the computation.

B. PARTICLE GRILL TRANSFER FUNCTION
IDENTIFICATION
This paper simulated the temperature control of a pellet
grill in MATLAB’s Simulink, where the temperature model
of the system was represented by a transfer function. The
self-balancing system transfer function was expressed as
shown in Equation (7).

G(s) =
Ke−τ s

(T1s+ 1)(T2s+ 1) · · · (Tns+ 1)
(7)

In control processes, designs of high-order models involve
numerous parameters, complex computations, lengthy opti-
mization times, and precision is often challenging to ensure.
Generally, complex systems are reduced to low-order transfer
functions. [22] This paper focuses on the temperature con-
trol system of a pellet grill as the object of control, which
possesses self-balancing capabilities and time-delay charac-
teristics under step input conditions. It can be described by a
second-order transfer function, as presented in Equation (8).

G(s) =
Ke−τ s

(T1s+ 1)(T2s+ 1)
(8)

The rotational duration of the screw feeder was used as a
step input to obtain the temperature data of the pellet grill.
The screw feeder was set to a rotation cycle of 35%, and
the ambient temperature of 83◦F was set as the zero-starting
point. Only the data during the temperature rise was recorded,
and the recording stopped after the temperature stabilized at
an increase of approximately 120◦F. The temperature change
data are shown in Table 1.

This paper employed the IPSO algorithm for parameter
identification [23], [24], [25], focusing on the transfer func-
tion of the pellet grill, as defined in Equation (8). To import
the temperature data into MATLAB, the population size
was set to 100 and the number of iterations to 400. The
algorithm then optimized the unknown variables in the trans-
fer function, namely k , τ , T 1, and T2, yielding the following
results: k =120, τ =10.1, T1=110.4, and T2=691.7. The
resulting transfer function for the pellet grill is presented in
Equation (8), and the fitting effect is illustrated in Fig.3.

G(s) =
120e−10.1s

(110.1s+ 1)(691.7s+ 1)
(9)

C. IMPROVED PARTICLE SWARM OPTIMIZATION BASED
FUZZY PID DESIGN
The improved particle swarm fuzzy PID temperature control
is built upon the foundation of fuzzy PID control. First,

FIGURE 3. Temperature fitting diagram for open loop testing.

FIGURE 4. Principle of fuzzy PID control.

a fuzzy PID controller needs to be constructed. Fuzzy PID can
dynamically change the three parameters of PID in real-time
during the process, making the control more accurate and
stable. In the pellet grill, a PT1000 thermistor is used to
measure the temperature inside the grill and compare it with
the set temperature to obtain the error e and the change
rate of error ec. These values serve as inputs to the fuzzy
PID controller. Fuzzy rules are formulated based on fuzzy
inference in the fuzzy system. The three output parameters are
then defuzzied to obtain values 1kp, 1k i, and 1kd. Finally,
these values are fed into the PID controller of the pellet grill.
The detailed process is shown in Fig.4.

Given kp=0.49, ki=0.00026, kd=16, the fuzzy set-in
which NB represents negative large, NM represents nega-
tive medium, NS represents negative small, ZO represents
zero, PS represents positive small, PM represents positive
medium, and PB represents positive large. Based on the
characteristics of the pellet grill, temperature control require-
ments, and expert experience, the domain of error e is set
as {−6, 6}, and the domain of change rate of error ec is
set as {−6, 6}. Gaussian membership functions are used for
e, while triangular membership functions are used for kp,
ki, and kd with domains {−1, 1}, {−3, 3}, and {−5, 5}
respectively. Triangular membership functions are used for
other variables. Mamdani fuzzy inference algorithm is used
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TABLE 1. Measurement data of temperature variation of pellet grill over time.

TABLE 2. Fuzzy rule table for 1kp, 1ki, and 1kd .

FIGURE 5. Simulation model of temperature control system using fuzzy PID controller and PID controller.

for reasoning [26], and the weighted average method is used
for defuzzification. The fuzzy rules for membership 1kp,
1k i, and 1kd can be found in Table 2. The simulation of the
fuzzy PID and PID is shown in Fig.5.

When the IPSO algorithm was combined with the Fuzzy
PID, the quantification factors ke, kec, and the propor-
tional factors kp, ki, kd , were set as the parameters to be
optimized. The simulation model is constructed as shown
in Fig.6.

IV. SYSTEM TESTING AND VALIDATION
A. SIMULATION EXPERIMENT
The target temperature was set at 300◦F, and the performance
of three control strategies was assessed based on overshoot,
rise time, and steady-state error. The particle swarm had a

size of 100 with 50 iterations. The initial inertia weights
were wmax = 0.9 and wmin = 0.3, while the learning factors
were c1min = c2min = 1, and c1max = c2max = 2. Upon
completion of the iterations, the calculated results yielded a
proportional gain kp=3, integral gain ki=1.42, and derivative
gain kd=2.76, with the quantization factors ke=0.93 and
kec=0.2. The comparative simulation responses were illus-
trated in Fig.7., with specific performance metrics detailed in
Table 3.
Under the condition of undisturbed experiments, it can

be observed from Fig.7 that the traditional PID controller
exhibits an overshoot of 13.6%, a temperature rise time of
932 seconds, and a steady-state error of 2.04◦F upon reach-
ing the set temperature. However, with the implementation
of the fuzzy PID controller, the overshoot is reduced to
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FIGURE 6. Improved particle swarm fuzzy PID Simulink model.

FIGURE 7. Response diagrams of three types of PID controllers.

TABLE 3. Three control performance indicators.

11.3%, the heating time is decreased to 730 seconds, and
the steady-state error is lowered to 1.19◦F. This indicates
that the introduction of the fuzzy controller has significantly
improved the performance of the control system. The fuzzy
PID controller optimized with the IPSO demonstrates an
overshoot of only 0.4%, a reduced temperature rise time to
624 seconds, and a substantial decrease in steady-state error
to 0.14◦F. The IPSO algorithm not only inherits the dynamic
performance advantages of the fuzzy PID but also meets

the requirements of temperature stability. The simulation
results suggest that the IPSO optimized fuzzy PID achieves
superior control effects compared to the previous two
algorithms.

FIGURE 8. Disturbance response graph of the three PID controllers.

TABLE 4. Three control performance indicators for interference test.

In the disturbance tests, the temperature was set to 225. The
disturbance signal amplitudewas set to 20. As shown in Fig.8,
with specific performance metrics detailed in Table 4. among
the three control modes under the influence of disturbances,
the improved particle swarm algorithm optimized fuzzy PID
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FIGURE 9. Pellet grill testing environment.

controller took 463s to reach the set temperature, which
was the shortest time. The IPSO algorithm, when disturbed,
is able to re-attain the set temperature with a deviation range
within 1.25◦F, which is the best performance among the three
types of controllers tested. In comparison, the Fuzzy PID
controller has a deviation of 2.47◦F, while the conventional
PID controller exhibits a deviation of 4.49◦F. From this,
it is evident that the IPSO algorithm significantly enhances
the adjustment capability of the Fuzzy PID controller fol-
lowing a disturbance, demonstrating superior disturbance
rejection performance. This aligns with the temperature con-
trol requirements of a pellet grill.

B. PROTOTYPE EXPERIMENT
Building on the foundation of simulation experiments, the
optimized parameters were applied to a prototype pellet grill.
Keil software was used to program and flash onto a control
board based on GD32F130, aiming to conduct a perfor-
mance comparison among PID, Fuzzy PID, and Fuzzy PID
controllers optimized by IPSO. Ultimately, the temperature
testing environment depicted in Fig.9. was established. The
AT4564 multiplex temperature tester was utilized for temper-
ature data detection and recording.

Simulation tests were conducted on different types of meat.
In the first test, the scenario simulated was the long-term
baking of steaks and beef ribs [27], [28], with the pellet grill
set to a target temperature of 300◦F. The curve illustrating the
heating and temperature increase is shown in Fig 10. and the
corresponding indicators are presented in Table 5.

After the initial ignition of the pellet grill, the tempera-
ture began to rise approximately 6 minutes later. In terms
of reaching the set temperature, the IPSO Fuzzy PID mode

FIGURE 10. 300◦F temperature rise curve.

TABLE 5. Three control performance indicators.

took 18 minutes, the Fuzzy PID mode took 13 minutes, and
the traditional PID mode required 24 minutes. Although the
temperature rise time for the IPSO Fuzzy PID was not the
shortest, its overshoot was mere 1.6%, which was signifi-
cantly better than the 4% of traditional PID, and 7.7% of
Fuzzy PID. Additionally, its average fluctuation was only
1.83◦F, a reduction of 46.9% and 65.1% compared to the
traditional PID’s 3.45◦F and Fuzzy PID’s 5.25◦F, respec-
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tively, demonstrating the best control performance. These
results clearly indicate that compared to traditional PID
systems, the IPSO Fuzzy PID control strategy significantly
improved the precision and stability of temperature control,
fulfilling the temperature control requirements for the pellet
grill.

FIGURE 11. Temperature rise curve at 225◦F.

TABLE 6. Three control performance indicators for interference test.

In the second test, a scenario of baking fish fillets and
chicken legs [27], [28] was simulated. After the temperature
had stabilized, the lid above the oven was opened to simulate
actual cooking conditions where people would open the lid to
observe or flip the food, thus affecting the temperature. The
heating and temperature increase curve is shown in Fig. 11.

With the temperature set to 225◦F, the experimental pro-
cess included a disturbance test where, after temperature
stabilization, the oven door was opened for 2 minutes and
then closed. The temperature rise curve of the pellet grill is
shown in Fig.11, and performance indicators are presented
in Table 6. The Fuzzy PID controller optimized by the IPSO
reached stable temperature at the set point in 345 seconds
post-disturbance, compared to 360 seconds for Fuzzy PID
and 795 seconds for traditional PID. After reaching the set
temperature, the average fluctuation for the IPSO Fuzzy PID
was only 1.55◦F, whereas the Fuzzy PID had a much higher
average fluctuation of 5.65◦F. The results demonstrate that
the Fuzzy PID controller improved through IPSO can respond
quickly and adjust the pellet grill temperature in real-time.

V. CONCLUSION
This paper investigates the temperature control of a pel-
let grill and proposes a control strategy that integrates an

IPSO algorithm with a Fuzzy PID controller. To address
the issue of reliance on extensive experimental adjustments
for the quantification and proportional factors in the Fuzzy
PID controller, an IPSO algorithm is employed for opti-
mization, aiming at achieving better temperature control
performance. Initially, temperature data was collected, and
parameter identification was conducted using the improved
Particle Swarm Optimization to construct the transfer func-
tion of the pellet grill. Subsequently, a simulation platform
was established to compare and analyze PID, Fuzzy PID,
and IPSO-optimized Fuzzy PID controllers, demonstrating
that the IPSO-optimized Fuzzy PID exhibited the least over-
shoot and the fastest convergence among the three controllers.
Finally, the quantification and proportional factors optimized
through simulation experiments were applied to the actual
system for testing, and compared with PID and Fuzzy PID.
The experimental results indicate that the Fuzzy PID con-
troller optimized by the IPSO algorithm provides a pellet
furnace with excellent dynamic performance, strong anti-
interference capabilities, and achieves precise temperature
control, offering insights and references for the intelligent
temperature control of pellet grills.
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