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ABSTRACT The increasing demand for Cloud service with sudden resource requirements of Virtual
Machines (VMs) with different resource types and sizes may create an unbalanced state in the Cloud
datacenters. In turn, it will lead to low resource utilization and slow down the server’s performance.
This research article proposes an enhanced version of the Artificial Rabbit Optimization (ARO) called
Improved Artificial Rabbit Optimization based on Pattern Search (IARO-PS), where ARO has been utilized
to schedule the dynamically independent requests (tasks) for overcoming the challenges discussed above
and a Pattern Search (PS) method has been hybridized to address the shortcomings of ARO and to provide
better exploration-exploitation balance. The initial step in the proposed approach is to employ a load
balancing strategy by dividing the workloads (user requests) across the available VMs. The next step utilizes
the IARO-PS method to map the workloads (user requests) onto the optimal VMs for the scheduling
process to carry out across the diverse resources. A standard benchmark function (CEC2017) is used
to assess the IARO-PS technique’s efficacy. A comprehensive evaluation has been carried out by taking
an available real-world dataset having different specifications of tasks in the CloudSim to evaluate the
performance of the methodology. Additionally, a simulation-based comparison is carried out with various
metaheuristic-based workload scheduling methods like Genetic Algorithm (GA), Bird Swarm Optimization
(BSO), Modified Particle Swarm Optimization based on Q-learning (QMPSO), and Multi-Objectives Grey
Wolf Optimizer (MGWO). Based on the simulations, the IARO-PS algorithm performed better than the
previously mentioned algorithms, reducing makespan by 10.45% (GA), 2.31% (QMPSO), 4.35% (MGWO),
15.35% (BSO), and 4.17% (GA), 1.03% (QMPSO), 1.44% (MGWO), 7.33% (BSO), in both homogeneous
and heterogeneous surroundings, respectively, and improving resource utilization by 36.74% (GA), 14.31%
(QMPSO), 19.75% (MGWO), 45.23% (BSO) and 12.17% (GA), 6.02% (QMPSO), 9.10% (MGWO),
19.39% (BSO). Furthermore, statistical evaluation through Friedman’s test and Holm’s test has also been
carried out showcasing the decrease in makespan and an increase in VM utilization, which are the outcomes
of the simulated experimental study.
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INDEX TERMS Artificial rabbits optimization, cloud computing, load balancing, pattern search, resource
management, task scheduling.

I. INTRODUCTION
Cloud computing is considered by many researchers and
corporate organizations to be one of the most innovative com-
puter concepts. The pay-per-use model, dynamic resource
scalability, wide network connectivity, and availability of
numerous resources contributed to the widespread adop-
tion of cloud computing [1]. Cloud users can access all
of these services on a reasonable pay-per-use basis. In this
model, a contract between cloud users and the broker (service
provider) develops a Service Level Agreement (SLA). This
agreement specifies the Quality-of-Service (QoS) require-
ments that must be attained and establishes penalties for
noncompliance. It is enhanced as an abstract entity to provide
varying degrees of services to all customer domains [2].
A cloud makes use of datacenter equipment and software
to provide services and applications that are made available
online via the foundational hardware and software [3]. Three
main service models are used to provide the hardware or
software applications. Customers can get ready-to-use apps
through Software-as-a-Service (SaaS). In addition, Platform-
as-a-Service (PaaS) and Infrastructure-as-a-Service (IaaS)
are used to supply the system software and hardware, respec-
tively [4]. It is termed Everything-as-a-Service (XaaS) when
these services are made available to different walks of life
as a utility. Various deployment models are used to supply
services depending on the demands and specifications of the
customer. A public cloud makes its cloud services available
to the general public under a certain pricing plan. An orga-
nization is the only one to use a private cloud. In contrast,
a hybrid cloud is sometimes referred to as the best of both
cloud architectures.

Users are becoming more and more numerous every day
as the necessity for computing grows. Ensuring a balance
between workloads is of utmost importance, as it involves
addressing the growing requirements of the users. Cloud dat-
acenters should offer effective on-demand assignments safely
and flexibly to counteract clients’ varying demands [5]. With
the aid of virtualization technologies, it might be achievable.
The current infrastructure’s capability to carry out duties is
increased by the virtualization technique. Without requir-
ing the underlying hardware, it allows users to configure,
access, and build an abstract surrounding for the VMs [6].
However, using several real hosts, cloud datacentres may
support varying VMs with different characteristics. Because
of the different possible specifications and unpredictable VM
usage, servers in datacenters can be in an unbalanced situation
when it comes to resource usage. Low resource utilization
and performance deterioration might result from unbalanced
server conditions [7]. These issues can be resolved by imple-
menting a load balancing method. This method will evenly
distribute the workload among VMs and keep server loads
consistent.

Load balancing is the process that distributes local work-
loads evenly among cloud VMs. By effectively using the
resources, it ensures that not a single node is either over-
loaded, underloaded, or idle [8]. To meet load-balancing
goals, an efficient scheduling mechanism should be inte-
grated with the load-balancing algorithm. As a result, it can
evenly distribute duties among all of the VMs by mak-
ing the most use of the resources at hand. In addition
to balancing the loads, a suitable load balancing method
improves VM utilization and reduces makespan and reaction
time. As such, it improves the system’s overall performance.
Table 1 presents the list of all the acronyms used in this
research article along with their respective descriptions.

A. MOTIVATION
Due to the complexity of the QoS parameters involved,
scheduling is considered an NP-hard issue [9], [10]. As such,
no particular algorithm provides an optimal solution. It is
thought that the hybrid metaheuristic and metaheuristic algo-
rithms perform better on their target problem [11]. This
work suggests using the PS algorithm in conjunction with
an enhanced version of ARO. The PS was selected due to its
resilience to local optima and its ability to explore. Because
it has a lower computational time complexity than IARO,
the PS is selected to overcome this shortcoming. By bal-
ancing the local and global optima, the suggested hybrid
strategy enhances exploration capability at the expense of
exploitation. The fitness function chosen for the particular
situation determines how resilient the implemented IARO-
PS is. The authors employ a fitness function considering
VM utilization and makespan, which are inversely related
to each other, for the task scheduling strategy. The authors
compare the effectiveness of the present hybrid strategy with
other load-balancing and scheduling methods already in use,
including BSO, GA, MGWO, and QMPSO.

B. CONTRIBUTIONS
To summarize, the salient features of this paper are outlined
as follows:

• This paper proposes an enhanced version of the ARO
using a PS algorithm, called IARO-PS to schedule the
dynamically independent requests (tasks) for optimizing
task scheduling and load balancing parameters in Cloud
environment,

• The IARO-PS has been verified using standard bench-
mark function CEC2017 for its effectiveness,

• The proposed IARO-PS based task scheduling and load
balancing method takes a real-time dataset (NASA) [43]
to map the workloads onto appropriate VMs, and evenly
distributes the workload across resources by taking into
account the job compatibility of both underloaded and
overloaded VMs,
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TABLE 1. List of acronyms used.

• Transforms the continuous solution using a binary ver-
sion of the IARO-PS method into a discrete solution,

• Analyzes the statistical significance of the algorithms
employing the Friedman test, and

• Evaluates the proposed IARO-PS algorithm’s efficacy
against several QoS metrics for both homogeneous and
heterogeneous resources using a real-world workload
from NASA in CloudSim. It also makes comparisons
with various load balancing and task scheduling algo-
rithms, such as GA, BSO, QMPSO, and MGWO.

The sections that follow are organized methodically. The
literature on various scheduling and load-balancing strategies
is reviewed in Section II. The Cloud scheduler model and the
related problem formulations are shown in Section III. The
suggested IARO-PS load balancing technique is explained in
Section IV by emphasizing the flowcharts. The experimental
setup and the simulation findings are highlighted in Section V.
An account of the results is given in Section VI. Finally,
Section VII provides a summary of the findings and some
implications for the future.

II. REVIEW WORKS
Every static as well as dynamic load balancing method
has certain drawbacks. Combining these with other meta-
heuristic strategies is the most effective means to overcome
these restrictions because it allows us to combine the bene-
fits of different algorithms to overcome their shortcomings.

A hybrid algorithm combines two algorithms into one. There
are hybrid strategies in the literature that combine heuris-
tics and metaheuristic algorithms with other strategies to
overcome their shortcomings. These hybrid approaches elim-
inate those inherent shortcomings while demonstrating a
performance and efficiency that is noticeably better. The
researchers’ related works on cloud-based system hybridiza-
tion approaches have been presented. Table 2 presents the
related literature works highlighting the contributions and
limitations of the existing approaches.

A new Cloud job scheduling technique called SG-PBFS
has been proposed by Murad et. al. [12] to tackle the
challenges of dynamic Cloud environments. SG-PBFS com-
bines prioritizing jobs by using PBFSwhile fitting them
into the smallest available gaps whereShortest Gap strategy
is utilized. While simulations show SG-PBFS outperforms
existing algorithms in terms of completion time and tardi-
ness, the research doesn’t address how it handles interrupting
jobs for higher priorities (i.e., pre-emption). Additionally,
real-world testing would strengthen the understanding of
SG-PBFS effectiveness in Cloud environments.

To overcome the load balancing problem, Jena et. al.
[23] finally created a hybrid mechanism in conjunction with
the modified PSO and Q-learning technique. To gauge the
fitness of the particles, a fitness function is used, taking
load-balancing and power consumption into consideration.
The resources used in simulations are uniform. To ver-
ify the algorithm’s efficacy, however, diverse resources and
real-world datasets ought to have been used. Given their
importance in load balancing, the makespan and VM uti-
lization may have been included in the fitness function to
accomplish the load balancing goal. This technique is being
contrasted with the present one.

The present approach focuses on combining PS with a
hybrid task scheduling technique called IARO. The low com-
putational complexity of the IARO algorithm overcomes the
constraint of PS. PS is used to generate the first solution.
Nevertheless, those tasks are mapped onto the appropriate
VMs via IARO.

III. PROPOSED CLOUD FRAMEWORK AND PROBLEM
DEFINITIONS
Table 3 denotes all the symbols used in this research article
along with their respective descriptions.

A. CLOUD SCHEDULING FRAMEWORK
As shown in Figure 1, let us consider a cloud scheduling
paradigm that consists of numerous VMs running on mul-
tiple hosts. The entities that make up this architecture are as
follows:

• Cloud user: This is the customer requesting cloud facil-
ities to request that a broker or supplier of cloud services
assist them in carrying out specific tasks.

• Cloud broker: It is also known as CSP. The CSP
uses a pay-as-you-go pricing model to provide its
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TABLE 2. (Continued.) Literature review.

FIGURE 1. Scheduling model in cloud.

customers with on-demand services. They use several
VMs deployed on fewer hosts to provide services. In this
case, one cloud/datacenter is assumed. In consultation
with a CIS, the broker forwards requests during peak
demand to any additional cloud or any other underuti-
lized hosts located within the same cloud/datacenter. It is
also in charge of assigning user tasks to VMs so they can
be executed under a schedule.

• Cloud Information Service (CIS): It is a storehouse
which includes every crucial feature of the component,
including the host, scheduling policy, VM, cloudlet
(task), and so forth. Before allocating any work to an
underlying VM, the broker confers with the CIS after it
has arrived. The CIS stores the attributes of each task.

These elements oversee handling task assignments which
are described as follows. The broker verifies the availability
of VMs andmaintains the workloads in a waiting queue when
a user requests that they be executed. The broker assigns jobs
to VMs that are compatible and have a minimal completion
time requirement. The workload moves on to the host’s ready
queue, where VMs are housed after a suitable VM has been

FIGURE 2. IARO-PS-based scheduling framework.

found. According to how each VM is used, the broker assigns
all requests that arrive to the appropriate VMs in this manner.
The broker attempts to divide up all incoming loads across
the VMs so that no VM is left idle or overloaded. According
to a scheduling strategy that must be created to minimize the
makespan by efficiently using the VMs, the broker allocates
the work to the appropriate VMs. As seen in Figure 2, we sug-
gest an IARO-based scheduling system. The IARO approach
will be used by the broker to schedule tasks. The status of
load imbalance would be resolved by assigning jobs to VMs.

B. TASK-RESOURCE PROBLEM FORMULATIONS
Definition 1 (Datacentre): It is the cloud architecture

made up of virtual machines running on physical hosts. For
the simulation work, we take into consideration one datacen-
ter in this research. Another name for it is cloud.
Definition 2 (Host Lists): These are numerous servers

kept in a cloud to plan out user requests for services.It is
identified as HO = {HO1,HO2,HO3, . . . ,HOh}.
Definition 3 (VM Set): Factor in a set ofR = {R1,R2,R3,

. . . ,Rm} where Rj, 1 ≤ j ≤ m is a set of VMs hosted under
numerous servers. A Rj ∈ R, 1 ≤ j ≤ m has the processing
speed Pjr in MIPS.
Definition 4 (Task Set): Take into account a task set W =

{W1,W2,W3, . . . ,Wn} of dynamic and non-pre-emptive
workloads, where Wi, 1 ≤ i ≤ n is the ith task with the
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million sets of instruction (MI) as Ii.In this case, the set of
real-world workloads is handled like a collection of tasks to
be performed on several VMs.

TABLE 3. (Continued.) List of notations used.

Definition 5 (QoS): It serves as a gauge to determine
how successful any algorithm is. The services are provided
based on these metrics. Therefore, before using the ser-
vices, clients must enter into an SLA-based agreement with
the CSP regarding this QoS. To fulfil the requirements of
the customers promptly and without delay, it deals with

VOLUME 12, 2024 67135



S. K. Paul et al.: Optimizing Task Scheduling and Resource Utilization in Cloud Environment

the throughput, response time, VM utilization, processing
time, power usage, scalability, and availability. The QoS
metrics taken into consideration in this work include VM
utilization, response time, DoI, and makespan.
Definition 6 (Completion Time): It is the amount of time

neededby aRj to complete carrying out ataskWi. It is stated as
the difference between a workload’s start time

(
ST (Wj)

)
and

finish time
(
FT (Wj)

)
by a Rj indicated as Tj. The workload

completion time (TCT ij ) is defined in Eq.(1).

TCT ij = FT
(
Wj
)
− ST (Wj) (1)

Definition 7 (Makespan): It specifies the total amount of
time spent on execution

(
max

(
TCT ij

))
by a task Wi among

the VMs. For scheduling to be effective, this time must be
shortened. It is defined using Eq.(2) [24], [25].

MS = max{TCTij |i = 1, 2, . . . , n; j = 1, 2, . . . ,m} (2)

Definition 8 (Utilization): It speaks of the extent to which
VMs are used [26], [27]. It is a major contributing factor
in active load balancingstrategy. The relationship between
makespan and VM utilization is inversely proportional to
each other and is as follows:

RURij =
TCT ij
MS

(3)

Average resource utilization is calculated using Eq. (4).

AvgRURij =

∑m
j=1URij
m

(4)

where, m is the total set of VMs.
Definition 9 (Fitness Function): It is the procedure for

assigning and planning tasks to the VMs in a cloud setting.
This work employs a fitness function that maximizes resource
utilization while being subject to a loss in makespan. Eq. (5)
defines the fitness function (fnval) in terms of the average
resource utilization and makespan. A lower fitness value,
according to Eq. (5), suggests that a task is in the optimal
location. Thus, it is shown as:

fnval =
1
MS

× AvgRURij (5)

The challenge of task scheduling is expressed as fol-
lows:consider a number of tasks W and a number of VMs
R. The issue is how to assign W to the underlying VMs
(fn : W → R) generated over several hosts with various
technical setups via the cloud service broker to reduce the
overall completion time (i.e., makespan) and increase VM
utilization.

1) DEGREE OF IMBALANCE (DOI)
It operates on the following Eq. (6) and Eq. (7) [29] and deter-
mines the workload imbalances across VMs [28]. Where,
Tmax means maximum processing time, and Tmin meansa
minimum processing time of task Ti amidst VMs. And Tmean
is the meancompletion time of tasks. L indicatesthe length of
total instruction, num (PNs)Rj indicates the set of processing

elements in the jth VM, and MIPS (PNs)Rj is the million
instructions per second of the jth VM.

DoI =
Tmax − Tmin

Tmean
(6)

Ti =
L

num (PNs)Rj ×MIPS (PNs)Rj
(7)

2) POTENTIAL OF A VM
The VM’s potential

(
Pj
)
is defined using the following

equation [47].

Pj = num (PNs)Rj ×MIPS (PNs)Rj × B
(
Rj
)

(8)

where B
(
Rj
)
is the bandwidth of a VM.

The overall VMs’ capacity (P) is expressed as follows.

P =

∑m

j=1
Pj (9)

3) WORKLOAD OF A VM
Wemust gauge the loads on each VM and arrange them based
on the loads to trade off across VMs. It can be defined as the
ratio of a VM’s processing time to the total number of tasks
allocated to it at a given time t [24], [30]. Thus, Eq. (10) and
Eq. (11) can be used to determine both the burden on a VM
and the overall workload.

Wl
(
Rj
)

=
NT (W , t)
PT (Rij, t)

(10)

The mean system load on a server and the workload of all
VMs are computed as:

Wl =

∑m

j=1
L(VM j) (11)

AvgLoad =
1
m

∑m

j=1
Wl(Rj) (12)

4) STATE OF THE VM GROUP
To determine the status of every VM, the workload of each
VM

(
Rj
)
is compared to the average workload of the system

(AvgLoad). This will determine if the VM’s state is normal-
ized (NV ), overloaded (OV ), or underloaded (UV ).

if


Wl
(
Rj
)

< AvgLoad → UV
Wl
(
Rj
)

> AvgLoad → OV
Wl
(
Rj
)

= AvgLoad → NV

(13)

5) TASK MIGRATION PROCEDURE
The broker locates the VM group and then starts the process
of moving the workload from the OV to the UV . To map the
jobs onto UV , it would be beneficial to verify the complete
available resources at the UV before migration. Eq. (14) and
Eq. (15) are used to estimate it [31].

TRusd
(
UV j

)
=

∑n

i=1
Ti (14)

TRavl
(
UV j

)
= TR − TRusd (15)
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where, TRusd
(
UV j

)
is the total resources usedby tasks of an

underloaded VM, TRavl
(
UV j

)
is the availability of under-

loaded resources and TR is the total resources. Assuming
100% of the available resources are being utilized.

Underloaded VMs’ resources that are available are shown
by TRavl

(
UV j

)
, and overloaded VMs’ workloads are repre-

sented by TK . Prior to migration, compatibility (θ) is to be
calculated between TK and TRavl

(
UV j

)
by a process known as

cosine similarity (η). Makespan, the utilization of resources,
and the value of η are used to convey it [32]. A larger degree of
commonality amongworkloads TK and TRavl

(
UV j

)
is present

when the value of η is less. Therefore, in this article, the value
of µ is fixed to 0.5 and the job having the highest degree of
compatibility for a UV is chosen. η and θ are evaluatedby
Eq.(16) and Eq.(17):

η = cos−1

(
TK × TRavl

(
UV j

)
|TK |

∣∣TRavl (UV j
)∣∣
)

(16)

θ = µ × η + (1 − µ) × RUVM ij (17)

6) IDENTIFYING THE LACK OF LOAD DEVIATION
It is necessary to compute the load’s standard deviation to
determine the overall system’s degree of balance. If the
standard deviation’s value is within the acceptable range of
threshold value (Tsh[0 − 1]), the system is called balanced.
Because a system’s average system load shouldn’t be greater
than its maximum capacity, the threshold value depends on
the system’s maximum capacity. Without a doubt, the crite-
rion Tsh for a fully utilized system is 80% or 90% [33]. TSsh
is therefore set to the value 0.9.Eq. (18) is used to estimate it
where the execution time of a task i on jth VM is PT ij andthe
total VM execution time is denoted by PT .

σ =

√
1
m

∑m

j=1
(PT ij − PT )2 (18)

where, PT ij =
Wl(Rj)
AvgLoad

(19)

PT =

∑m

j=1
PT ij

if

{
σ ≤ Tsh (0 − 1) → Balanced
otherwise → Imbalanced

(20)

IV. THE HYBRID IARO-PS-BASED TASK SCHEDULING
The regular ARO method, IARO, and a binary version of the
IARO-PS approach are all briefly outlined in this section.
Furthermore, it provides a comprehensive understanding of
the suggested IARO-PS data scheduling methodology by
emphasizing the logical process.

A. ARTIFICIAL RABBIT OPTIMIZATION (ARO)
The ARO algorithm is a novel and potent metaheuristic
method that draws inspiration from rabbit survival strate-
gies [49] such as randomized sheltering and detour foraging.
The algorithm models the foraging mode, where rabbits
attempt to eat plants near other burrows to deceive predators

and protect their burrows. Instead of consuming nearby food,
rabbits search for it in distant locations. The swarm popula-
tion size in ARO is determined by the number of rabbits, and
every rabbit has a grassy and plant-filled feeding area, as well
as several burrows. During foraging, rabbits randomly visit
other rabbits’ burrows for food, updating their locations based
on the chosen individual and introducing disruptions. This
foraging activity can be mathematically described as follows:

⇀

1i (t + 1) =
⇀z j (t) + ρ.

(
⇀z i (t) −

⇀z j (t)
)

+ round (0.5. (0.05+g1)) .n1, i,

j = 1, 2 . . . . . . ,Mandi ̸= j (21)

ρ = E .c (22)

E =

(
e− e

(
1−t
T

)2)
.sin(2πg2) (23)

c (k) =

{
1 if k == h (u)
0 else

, k = 1, . . . , d&

u = 1, 2, . . . , ⌈g3.d⌉ (24)

h = randperm(d) (25)

n1 ∼ N (0, 1) (26)

where⇀z i (t) ,
⇀

1i (t + 1) ,M ,T , d, randperm, andE describes
the candidate’s recent position of ith candidate at time t , ith

updated candidate at time t+1, the total number of iterations,
the size of the rabbit population, the problem dimension,
the random permutation function that spanned from 1 to the
problem dimension, and the running length during foraging,
in that order. Here n1 signifies the function of the normal
distribution, and g1, g2, g3 specify consistent random values
between [0, 1]. The variation in Eq. (26) helps ARO perform
a thorough search and avoid local maxima/minima. To carry
out the exploration and exploitation modes, respectively, the
running distance (E) aids in navigating longer distances in
the initial iterations and less distances in the subsequent
iterations.Here, c is a vector that is utilized in the process of
searching to choose many individuals, and ρ is a mathemati-
cal function that mimics rabbit movement. Consequently, the
ARO algorithm’s exploration and global identification ability
are enhanced during this foraging stage.

To avoid predators, rabbits use a haphazard concealment
technique during the exploitation phase. They dig a few holes
close to where they started. A rabbit constantly produces b
burrows in every dimension throughout an ARO iteration.
Then, it chooses one of these holes at random to conceal
itself from predators.The ith rabbit with the jth burrow can
be expressed mathematically in the following way:

B
⇀

U ij (t) =
⇀z i (t) + H .h.⇀z i (t) , i = 1, 2 . . . . . . ,

Mandj = 1, 2 . . . . . . ,d (27)

H =
1 − t + T

T
g4 (28)

n2 ∼ N (0, 1) (29)
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h (k) =

{
1 if k = =j
0 else

, k = 1, . . . ,d (30)

where, H stands for the hiding function and d stands for
creating burrows inside the rabbit’s territory. A rabbit’s large
region is mostly where holes are made. As the number of
iterations increases, the neighborhood’s size decreases. The
following is the available random concealing mode:

⇀

1i (t + 1) =
⇀z i (t) + ρ.

(
g4.BUir (t) −

⇀z i (t)
)

,

i = 1, 2, . . . . . .M (31)

hr (k) =

{
1 if k = = [g5.d]
0 if k = = [g5.d]

, k = 1, . . . ,d (32)

BUir (t) =
⇀z i (t) + H .hr .

⇀z i (t) (33)

where, BUir (t) indicates the burrow that the rabbit has
selected using the hiding mode; g4 and g5 specify random
integers that fall between 0 and 1. Following either a random
concealment procedure or a detour foraging mode, the posi-
tion of the ith rabbit is updated as follows:

⇀z s (t + 1) =

{
⇀z s (t) f (⇀z s (t) ) ≤f (

⇀

1s (t + 1))
⇀

1s (t + 1) f (⇀z s (t)) > f (
⇀

1s (t + 1))

(34)

The rabbit leaves its present spot and remains in the candi-
date location indicated by either Eq. (21) or Eq. (31) if the sth

rabbit’s candidate fitness is greater than the position’s current
fitness. As repetition progresses, rabbit energy decreases,
aiding in the shift from exploratory to exploitative mode,
which is expressed as follows:

EA (t) = 4(1−
t
T
)ln(

1
α
) (35)

where a random integer is defined by α. The method looks
locally for the solution (exploitation) when EA (t) ≤ 1, and
globally for the solution (exploration) when EA (t) > 1.

1) IMPROVED VERSION OF ARTIFICIAL RABBITS
OPTIMIZATION (IARO)
This work discusses an enhanced version of the AROmethod,
called IARO. ARO has shortcomings when it comes to tack-
ling complex issues, but it has benefits in simplicity and quick
convergence. ALS and EPL techniques are used by IARO
to overcome these problems. While EPL strikes a balance
between exploration and exploitation, ALS assists in concen-
trating on prospective locations while avoiding local optima.
IARO exhibits improved efficacy overall for optimization
tasks.

Rabbits follow one another in the population as part
of a novel exploration technique introduced by the IARO
algorithm. This revised plan, therefore, may result in inva-
sive diversification patterns. To improve exploration and
find more attractive regions inside the feasible search space,
the algorithm integrates the EPL technique. First, the mean
(1it

mean) and deviation (1
it
dev) of a randomly selected solution

are computed about the best solution(1best ) identified thus
far in the EPL process. After that, a perturbed term and these
data are used to update the new solution. The following is an
expression for the updated solution:

1it
mean = (zbest + zitI )/2 (36)

1it
dev = abs(zbest − zitI ) (37)

1it
C = 1it

mean + rand1.1it
dev (38)

zitnew = 1it
C + rand2.(zbest − 1it

C ) + 0.95it

.(rand3−0.5).abs(zmax,j − zmin,j),zmax,j

= max j
{
ziti
}

, zmin,j = minj
{
ziti
}

∀ (39)

where rand1, rand2, and rand3 defines three random inte-
gers elicited accordance to the uniform distribution within
the interval [0,1], and 1it

I stands for any arbitrary solution
picked at random. In this case, perturbed solutions inside the
dynamical bounders (1maxand1min) are performed using the
third element of Eq. (39). By incorporating Exploration and
Exploitation into the IARO algorithm, EPL improves search
performance and accelerates converging to optimal solutions.

We suggest an ALS technique to increase accuracy through
the process of iteration and encourage exploitation within the
promising space. This guiding approach makes use of shared
data between the top rabbit group and their worst individual
(zworst ) and best individual (zbest ). First, using the fitness
function, we identify the elite group and, within it, the worst
and best individuals (zB and zW). The updating phase then
uses three different sorts of movements: (1) pushing zW in
the direction of zB, (2) pushing zW in the direction of zbest ,
and (3) pushing zW in the way of the average of zB and zbest .
These exercises are done one after the other until one of them
achieves a higher level of fitness. This strategy’s update phase
can be stated as follows:

zit+1
I =



zALS1 = 2×r1 ×

(
zB − zW

)
+ zW

iff (zALS1 ) ≤f (zitI )

zALS2 = 2×r2 ×

(
zbest − zW

)
+ zW

elseiff (zALS2 ) ≤f (zitI )

zALS3 = 2×r3 ×

((
zB + zbest

)/
2 − zW

)
+ zW

otherwise

(40)

where zitI and z
it+1
I stand for the present and updated solutions

of the ith solution inside the elite class.

2) THE PATTERN SEARCH METHOD
It is a derivative-free evolutionary optimization approach that
is preferred for resolving a variety of optimization issues that
fall outside the purview of conventional optimization meth-
ods. Due to some of its advantages over other evolutionary
techniques, such as conceptual simplicity, ease of implemen-
tation, and effective computational efficiency, this algorithm
is well-liked among optimization experts. It’s an appropriate
optimization technique with a flexible and well-balanced
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FIGURE 3. Pattern Search mesh points with patterns.

operator to improve and adjust global search and fine-tune
local search [50]. The PS method typically computes a series
of points that might or might not result in the optimal point.
The basic first step begins with a mesh of points surrounding
the initial points. Such starting points, or current points, are
provided by the IARO approach. The current point is then
added to a scalar multiple of a pattern, which is a collection of
vectors, to create the mesh. The mesh point with the modified
objective function value is chosen as the current point for the
subsequent iteration.

The PS begins at the initial point (I0), which is the result of
the IARO algorithm. In the first iteration, the direction vectors
or pattern vectors are created as [01], [10], [−10] and [0− 1]
for the mesh size with scalar = 1. Next, as shown in Figure3,
the summation of the starting point I0 and pattern vectors for
calculating the mesh points as I0+[01], I0+[10], I0+[−10]
and I0 + [0 − 1]. The approach computes the goal function
in the same order at the mesh locations. The method polls the
mesh points by computing their cost function values until it
finds one value that is smaller than the cost function value
of I0.

If the objective function’s value decreases at a few mesh
points and the algorithm designates this point as I1, the poll
will be considered successful in this case. The algorithm will
advance to the next iteration and multiply the current mesh
size by two, known as the expansion factor, after each suc-
cessful result. The second iteration repeats the process until
the halting criteria are satisfied, with the mesh points being
I1+2∗ [01], I1+2∗ [10], I1+2∗ [−10] and I1+2∗ [0−1].
The current point is passed to a subsequent iteration for better
usage if the poll is deemed unsuccessful at any iteration due
to a smaller objective function value. In this iteration, the
algorithm multiplies a contraction factor of 0.5 to the current
mesh size, which is reduced until the stopping condition is
met. Figure 4 shows the suggested IARO-PS method flow
chart.

B. THE BINARY IARO-PS ALGORITHM
The IARO-PS is not appropriate to describe the task-resource
allocations in cloud computing since it is meant to handle the
restricted and unconstrained optimization issue, which yields
continuous solutions. These have since been extended to deal

with binary value-only optimization difficulties. It must be
expressed in the form of 0s and 1s, just as the scheduling issue
is in our method. Like how scheduling problems are assigned
in cloud computing, in binary IARO-PS the particles aremov-
ing in a limited direction that is limited to either 0 or 1. The
resulting continuous solutions should be transformed into dis-
crete solutions since the representation of the task-resource
assignment depends on binary values. Therefore, the tangent
hyperbolic logistic transfer function [40], [41] is used in this
work to translate generated continuous values into discrete
values that are represented by Eq. (41) and Eq. (42).

tanh
(∣∣∣X k+1

i

∣∣∣) =
e

(∣∣∣2X k+1
i

∣∣∣)
− 1

e

(∣∣∣2X k+1
i

∣∣∣)
+ 1

(41)

Using Eq. (42), the binary solution for the revised value of
X k+1
i is produced.

X k+1
i =

{
1, if rand() < tanh

(∣∣∣X k+1
i

∣∣∣)
0, otherwise

(42)

V. EXPERIMENTAL SETUP AND SIMULATION RESULTS
This work’s experimental configuration can be divided into
two test scenarios. In the first example, MATLAB is used
to assess the suggested IARO-PS algorithm’s effectiveness
against a benchmark function. The outcome is then displayed.
In the second trial scenario, CloudSim [34], [35] is used to
evaluate the effectiveness of the suggested IARO-PS for a
variety of QoS scheduling metrics on a baseline dataset that
includes both homogeneous and diverse VMs.

A. TRIAL CASE 1: EFFECTIVENESS OF HYBRID IARO-PS
TECHNIQUE IN MATLAB
Using many standard benchmark functions (CEC2017), the
effectiveness of the developed IARO-PS is assessed, and the
fitness values’ worst, best, standard deviation, and mean are
determined. The simulation runs in MATLAB R2023a with
an Intel i7 processor runningWindows 11 and 8 GB of RAM.
We ran 100 runs in all, taking into account 50 dimensions
for every function. The region of the search space that is
being evaluated is [−100, 100]. We used the Friedman rank
test to create ranks and comparisons. The assessment results
of the QMPSO [23], GA, and MGWO [42] algorithms are
contrasted with the IARO-PS algorithm. Tables 4 and 5 list
the parameters for the algorithms for IARO-PS and the com-
putational index for BSO, QMPSO, GA, and MGWO. The
simulation’s results are listed in Table 6 (refer Appendix),
and Table 7 (refer Appendix) displays the average rank of
the suggested hybrid technique and different methodolo-
gies discussed according to the CEC2017 baseline function
employing Friedman’s rank test.

B. TRIAL CASE 2: EFFECTIVENESS OF HYBRID IARO-PS
FOR SCHEDULING IN CLOUDSIM
To model our simulation, we have extended the classes in
CloudSim. The datacenterBroker class’s bindCloudletToVM
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FIGURE 4. Flowchart for the proposed IARO-PS.

() function has been extended by the authors to assign tasks to
VMs. The Space-shared policy is the basis for assigning tasks
to VMs in the simulation. To reduce the average of the QoS
management settings, independent jobs are picked for the
randomized processing. The average value of 10 executions
is the outcome that we have obtained. A 3-month workload
dataset is considered to assess the performance of IARO-PS
under real-world workload conditions. The Ames Research

Centre, NASA, uploaded this dataset from 128 iPSC/860
servers [43]. 42,240 jobs with their completion times are
included in the dataset; each work is regarded as a task. The
simulation’s population consists of ten potential solutions,
with a maximum iteration of 100. Two experimental config-
urations are used to run divergent simulations to examine the
range of resources available in the cloud. The outcomes are
contrasted with those of other scheduling algorithms, such as
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TABLE 4. The algorithmic computational settings for IARO-PS.

TABLE 5. The algorithmic computational parameters for GA, QMPSO,
MGWO and BSO.

MGWO [42], GA, BSO [48], and QMPSO [23]. Table 7 lists
the specifications for technical modelling that were employed
in simulation modelling in CloudSim.

1) EXPERIMENTAL SETUP 1: SIMULATION RESULTS WITH
HOMOGENEOUS VMS (THE NUMBER OF VMS ARE KEPT
CONSTANT AND THE NUMBER OF TASKS VARY)
Between 500 and 3000 autonomous, dynamic workloads are
taken into consideration to complete the simulations. The
600 uniform virtual machines have been set up to schedule
these jobs. Every simulation is run 10 times autonomously,
and the average outcome is noted. For the duration of the
simulation, the time span among two consecutive implemen-
tations is kept at 300ms.

Maintaining load balance is crucial for cutting down on
makespan by keeping loads in balance. The suggestedmethod
combines the IARO-PS scheduling methods with load bal-
ancing. Evidently, in Figure 5 (a), the suggested technique
allows for load trade-offs, which reduces the makespan,
particularly in situations where there are more activities.
Employing an efficient load balancing mechanism, the sug-
gested method may be able to shorten the makespan. The
workload collection is represented on the X-axis whereas
the makespan is displayed on the Y-axis. Because there are
more control parameters in MGWO [42] than in BSO and
GA, it performs better for makespan. Despite being a use-
ful method for striking a balance between exploration and
exploitation, MGWO has produced noteworthy outcomes.
Compared to QMPSO [23], the hybrid GAYA technique that
has been suggested performs better for makespan reduction
since QMPSO focuses more on task scheduling than load
balancing. The suggested approach performs better than all
other algorithms described because it can shorten response
times, as seen in Figure 5 (b). Figure 5 (b) clearly shows
that the overloaded state causes the latency (response time)
to be higher at the early stages for a couple of workloads than
it is for the duration with fewer workloads. The IARO-PS
algorithm responds with a significantly shorter reaction time
because of the minimization of makespan and appropriate
usage of VM. The number of workloads is shown in the

X-axis, whereas the response time is shown in the Y-axis. It is
crucial to fully use resources when load balancing is done
correctly. Because the suggested methodology distributes
the loads among the VMs in an even manner using a load
balancing strategy, it significantly improves VM utilization.
Figure 5 (c) shows a graphic representation of the simulation
result of VM utilization for different jobs specified. The abil-
ity to distribute loads uniformly makes the suggested strategy
superior to previous approaches in terms of resource utiliza-
tion. Effective equilibrium has been reached by the IARO-PS
in keeping the loads. The reduction in makespan improves
the DoI and keeps the system’s loads consistent. As a result,
the DoI is significantly reduced, as seen in Figure 5 (d).
Simulation results indicate that the IARO-PS algorithm out-
performs the previously mentioned algorithms by improving
usage of resources by 45.23%, 36.74%, 19.75%, 14.31%,
and reducing makespan by 15.35%, 10.45%, 4.35%, and
2.31%, respectively when compared with GA, QMPSO [23],
MGWO [42], and BSO [48].

2) EXPERIMENTAL SETUP 2: SIMULATION RESULTS WITH
HETEROGENEOUS VMS (NUMBER OF VMS DOES VARY, BUT
THE NUMBER OF TASKS ARE CONSTANT)
This simulation has between 50 and 300 distinct kinds of
VMs. 750 jobs are run through 10 independent executions,
and the average results of these autonomous implementations
are noted. For all of the simulations, the time delay between
two consecutive implementations is kept constant at 300 ms.
The minimizing of the makespan for the various VMs is

shown in Figure 6 (a). The makespan is shown in the Y-axis
whereas the number of VMs is displayed on the X-axis.When
there are 300 VMs, the performance of the QMPSO [23] and
the IARO-PS is nearly the same. The IARO-PS technique
outperforms the others in makespan reduction as the VM size
grows with the jobs. When compared to the other methods
given, the figure demonstrates a noteworthy performance.
The suggested method performs better for reaction time
than the other examined methods, as shown in Figure 6 (b).
The number of VMs is represented on the X-axis while the
reaction time is shown on the Y-axis. Because load bal-
ancing is taken into account and makespan is minimized,
the suggested IARO-PS technique has better response times.
As previously noted, Figure 6 (c) displays the experimental
evaluation of resource utilization combined with additional
techniques with heterogeneous VMs. The total number of
VMs is displayed on the X-axis, while the amount of VMs
utilized is shown on the Y-axis. The decrease in makespan is
the reason for the success of increasingVMusage. The fitness
function in our suggested strategy is taken into consideration
in part because of the rise in VM utilization.

According to the simulation results, when compared to the
aforementioned algorithms, the IARO-PS performs signifi-
cantly better. Resource utilization is improved by 19.39%,
12.17%, 9.10%, and 6.02%, and makespan is reduced
by 7.33%, 4.17%, 1.44%, and 1.03% when compared to
BSO [48], GA, MGWO [42], and QMPSO [23], respectively.
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FIGURE 5. Simulation results for varying tasks (a) Makespan, (b) Response Time, (c) Resource or VM utilization, and (d) Degree of Imbalance.

When there are fewer jobs and VMs, there is no need for
task scheduling or load balancing because there won’t be any
overloaded scenarios. When more jobs need to be scheduled
across a variety of VMs, an issue occurs.

C. STATISTICAL ANALYSIS
Statistical analysis has been used to determine the IARO-
PS’s statistical significance, subjected to overall effective-
ness. The performance of examined algorithms is compared
using the Friedman test to identify any significant differ-
ences [44]. The outcomes of simulations are used to calculate
Friedman’s average ranking for each algorithm. To calculate
the statistical significance, it is assigned to determine how one
method differs from the others. Appendix Table 7 displays the
algorithms’ respective Friedman average rankings. To deter-
mine the statistical difference between the studied algorithms,
the following null hypothesis (NH0) is considered:
NH0 : Every scheduling algorithm operates similarly.
Four algorithms and three performance parameters are

taken into consideration for assessing the statistical signif-
icance. From 1 to k(k being the collection of techniques),
the ranks are assigned, based on the values acquired for each
algorithm’s performance criteria. For example, the algorithm

with the lowest average value (mean) is rated 1, and the
method with the highest average value is ranked 4. When
two or more algorithms provide the same result, the rank is
determined by taking into account the average rank for each
algorithm. For each technique, the ranks are shown inside
the bracket in Table 7. The test’s α is configured with a
confidence level of 0.10. Eq. (43) is used to determine the
Friedman average rank Ri of the ith method.

Ri =
Sum of total ranks obtained by the ith algorithm

Total number of performance parameters
(43)

The statistics provided by the Friedman test are indicated
in Eq. (44).

FF =
(P− 1)X2

F

P (k − 1) − X2
F

(44)

where X2
F =

12P
k(k+1)

[∑4
i=1 R

2
i −

k(k+1)2
4

]
, k being the col-

lection of methodologies andthe collection of performance
parameters is P.

Depending on the DoF, or the F-distribution with (k −

1)(P − 1) and (k − 1), the Friedman statistics (FF ) are
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FIGURE 6. Simulation results for varying VMs (a) Makespan, (b) Response Time, and (c) Resource or VM utilization.

computed. For 4 methods and 3 performance factors, the
estimated DoF ranges from 3 to 6. Consequently, for α =

0.10, the critical estimation of F(3, 6) is 5.28473 [45]. When
the value of FF exceeds the critical value, the null hypothesis
NH0 is discarded. The FF estimation in our instance is 7.42,
exceeding the criticalestimation of 5.28473. Consequently,
the null hypothesis is disproved. It is evident from the Fried-
man statistical evaluation that the IARO-PS outperforms the
other scheduling algorithms in terms of statistics. All other
scheduling algorithms do not perform statistically identically.

VI. RESULT’S ANALYSIS
The efficacy of the suggested IARO-PS is assessed using
a collection of 30 standard baseline functions, and the
algorithms’ statistical significance is ascertained using the
Friedman test in MATLAB. Unimodal functions make up
the first three and are utilized to determine the suggested
method’s exploitation capabilities based on the simulation
outcomes shown in Table 6 (referAppendix). The suggested
technique outperforms all previous algorithms for these three
functions. Benchmark functions 4 through 10 have numerous
local optima and are multimodal. These are used to determine
the hybrid metaheuristic method’s exploration capabilities.

With the exception of F8 and F9, the proposed procedure
yields a decent result. Benchmark functions 11 through
20 combine multimodal and unimodal elements. With the
exception of F11, F14, F17, and F19, the suggested approach
yields intermediate outcomes for these benchmark functions.
Lastly, functions 21 through 30 in the row’s baseline are com-
position functions that are employed to determine how much
the hybrid method’s capacity for exploration and exploitation
is traded off. With the exception of F30, the applied IARO-PS
approach performs noticeably better than the examined meth-
ods. Applying Friedman’s average rank test, Friedman’s rank
is derived from the standard baseline functions. Table 7
(refer Appendix) illustrates the better value of the suggested
approach over other compared methods.

Finding the optimal mapping for the tasks via a hybrid
technique is the main contribution of this research. A supe-
rior PS with adjustable control parameters may also result
in increased performance. Since these two factors are the
main concerns of task scheduling in the issue space, a tar-
get function that is dependent on makespan and VM usage
is considered in this work. Given these diverse jobs and
VMs, the method might converge quite slowly. The loads are
evenly distributed among the VMs using the suggested load
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TABLE 6. Results in comparison of IARO-PS algorithm with GA, MGWO, and QMPSO in MATLAB.
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TABLE 6. (Continued.) Results in comparison of IARO-PS algorithm with GA, MGWO, and QMPSO in MATLAB.

balancingmechanism. Subsequently, the suggested IARO-PS
method is used to dynamically execute the individual jobs in
the cloud environment. Two distinct experimental setups are
used for the experiments: (1) with homogeneous resources
by altering the assigned workloads, and (2) using diverse
resources while upholding the assigned tasks. In all cases, the
IARO-PS algorithm significantly improves the taken-into-
account QoS scheduling metrics.

To handle work scheduling for the cloud environment,
authors in [23] have merged the altered PSO with the
Q-learning technique. Compared with the present technique,
it is less efficient because the load alone has been taken into
account as a component of the target function. Not taken into
account are makespan and resource utilization, which are the
main goals of the load balancing challenge. Because the load
balancing method hasn’t been put into practice, the resources
haven’t been fully utilized, which prevents it from producing
the best results.

The MGWO algorithm was employed by the researchers
in [42] to schedule tasks. The variety of requests with hetero-
geneous resources has not been considered in this research.
For the aforementioned constraint, the present strategy per-
forms better than this approach due to the lack of makespan
and resource utilization. Because their approach takes into
account a homogeneous environment, it is inefficient while
handling dynamic independent requests. Similarly, the pres-
ence of multiple conflicting control factors renders the
BSO [48] inferior to the existing methodology. Furthermore,
these control factors help the convergence to happen slowly.

Unlike earlier works, the current approach takes into
account incompatible scheduling requirements such as
response time, DoI, makespan, and resource utilization to
develop a load balancing strategy. The efficiency of the

current technique stems from its consideration of task com-
patibility with the VMs on which the jobs are to be processed.
The IARO algorithm does better at convergently reaching the
global optima since it is designed to balance exploration and
exploitation. The current method is scalable and generic due
to the PS’s versatility.

VII. CONCLUSION AND FUTURE INSIGHTS
In cloud computing, creating a task scheduling algorithm
that works well is crucial for improving resource utilization
and cutting down on makespan by maintaining system equi-
librium. Being precise,load balancing and task scheduling
amongst VMs are the primary topics of this study. It focuses
on scheduling the workloads and uniformly mapping those
to the VMs by combining two metaheuristic methodologies.
The current article offers two contributions. To establish a
balance between the VMs’ loads in the initial phase, an effi-
cient load balancing policy is used. The jobs’ compatibility
for the relocation and the resources that are being underuti-
lized are planned to determine which VMs receive which
tasks. The ideal task-resource mapping is called upon in the
second fold by PS, and it is subsequently supplied as input
to IARO. After that, PS schedules the work. By balancing
local and worldwide search, this hybrid approach greatly
enhanced the exploring capability. A baseline function is
used to accomplish the hybridization procedure to assess its
effectiveness. Results from the experiments over MGWO,
QMPSO, and GA is satisfactory. Additionally, CloudSim
uses a mix of baseline datasets of NASA and biological
samples to schedule dynamically separate jobs. Asmentioned
in the previous section, two distinct settings were used for
the simulation. Based on the simulations, the IARO-PS
algorithm performed better than the previously mentioned
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TABLE 7. Friedman rank of the proposed IARO-PS algorithm with GA, MGWO, and QMPSO obtained from benchmark functions of CEC2017.

algorithms, reducing makespan by 10.45% (GA), 2.31%
(QMPSO), 4.35% (MGWO), 15.35% (BSO), and 4.17%
(GA), 1.03% (QMPSO), 1.44% (MGWO), 7.33% (BSO),
in both homogeneous and heterogeneoussurroundings,
respectively, and improving resource utilization by 36.74%
(GA), 14.31% (QMPSO), 19.75% (MGWO), 45.23% (BSO)
and 12.17% (GA), 6.02% (QMPSO), 9.10% (MGWO),
19.39% (BSO).

In the coming years, approaches considering ML algo-
rithms could also be applied to minimize a datacenter’s
power usage and estimate the processing capability of its
computer resources. To assess the variety of scheduling
techniques, other quality of service characteristics like exe-
cution time, energy usage, cost, and migration time could be
included.
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APPENDIX
Simulation results of the IARO-PS algorithm in MATLAB
and Friedman Rankings are shown in Table 6 and Table 7.
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