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ABSTRACT This study addresses the persistent challenge of in-vehicle noise, a significant factor affecting
customer satisfaction and safety in the automotive industry. Despite advancements in understanding various
noise sources and mitigation strategies, vehicle noise continues to contribute to driver and passenger
discomfort, impacting stress levels, fatigue, and overall quality of life. Recent research has made significant
strides in classifying in-vehicle noise, yet the complexity of obtaining comprehensive and diverse datasets
remains a major hurdle, given the variability and transient nature of these noises. To overcome these
challenges, our research introduces an innovative approach using Few-shot Learning (FSL). We propose
a unique FSL model that integrates a Triplet-trained Prototypical Network for the classification of in-vehicle
noises. This model is particularly adept at learning robust feature representations from limited data. The
application of triplet sampling and loss significantly enhances the model’s ability to distinguish between
various types of in-vehicle noises. Ourmethodologywas rigorously tested using a specially curated dataset of
in-vehicle noises, reflecting real-world diversity. The experimental results, obtained through 10-fold cross-
validation, demonstrate an exceptional average accuracy of 96.81% on a 9-way 1-shot task. This level of
accuracy, achieved with a limited amount of training data, not only attests to the effectiveness of our model
but also marks a significant advancement in the field of acoustic classification. Our study’s findings highlight
the potential of FSL in addressing complex challenges in the automotive industry, paving the way for more
effective noise reduction strategies and improved vehicle design.

INDEX TERMS Acoustic classification, representation learning, few-shot learning (FSL), in-vehicle noise,
prototypical network, triplet loss.

I. INTRODUCTION
Vehicle noise, a critical concern in the automotive industry,
significantly impacts customer satisfaction and poses poten-
tial safety hazards [1]. The implications of different pavement
types on in-vehicle noise and their potential effects on human
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health have been highlighted by Li et al. [2]. Extensive
research in in-vehicle noise has unearthed numerous sources
and fostered innovative methods for mitigation. For instance,
Alt et al. [3] introduced this field with an interior noise
simulation, which was instrumental in predicting and refining
the overall interior noise landscape, particularly focusing
on the nuances of powertrain noise. Sang-Hyun [4] per-
formed analytical noise and vibration simulations for design
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implementation. Complementing this, Cornish [5] offered a
groundbreaking methodology aimed at optimizing and stabi-
lizing the quality of interior noise, emphasizing the crucial
aspect of aligning with manufacturing realities.

These pioneering studies underscore the paramount impor-
tance of a nuanced understanding and strategic addressing
of various in-vehicle noise sources to enhance the driving
experience’s comfort and enjoyment. Typical noise sources
in vehicles include, but are not limited to, road noise, pow-
ertrain vibrations, braking systems, power electronics, and
aeroacoustics. Each of these sources contributes uniquely to
the overall noise level within the vehicle, affecting the quality
impression of the vehicle. Despite significant advances in
research aimed at mitigating these noises, in-vehicle noise
continues to be a challenging issue, emphasizing the need for
continued efforts in this area. The persistent presence of such
noises underscores the urgency and significance of address-
ing this complex issue, given its extensive implications for
both the user experience and the longevity of the vehicle.

In recent years, there has been a notable surge in
studies focusing on the classification of in-vehicle noise.
Huang et al. [6] implemented deep neural networks (DNNs)
to predict shock absorber squeak noise. Data augmentation by
empirical mode decomposition on neural networks was used
to classify in-vehicle noises by Nam et al. [7]. Meanwhile,
Bu and Cho [8] introduced an advanced deep beamform-
ing network, surpassing existing deep learning algorithms
with an impressive accuracy of 0.9270. In addition to this,
Won [9] developed adaptive audio classification systems,
enhancing accuracy across varied driving environments.
These advancements are particularly commendable, given
the formidable challenge traditionally posed by classifying
diverse in-vehicle noises.

Traditionally, classifying these diverse in-vehicle noises
has been a formidable challenge. The primary obstacle lies in
the requirement for extensive, well-labeled datasets that cover
the wide spectrum of potential noise sources, vehicle types,
and environmental conditions. Compiling such a dataset is
not only labor-intensive but also incurs significant costs.
Furthermore, the conventional deep learning models used for
acoustic classification are often data-hungry, necessitating
large quantities of labeled samples to train effectively. This
requirement becomes a major hindrance, especially when
dealing with the vast variability of in-vehicle noises. The
unique characteristics of the indoor environment cause sound
to reflect, reverberate, and refract, and the distinctive features
of the gearbox components inside the vehicle cause noises to
occur abruptly and temporarily, resulting in very short data
collection times [10]. Every year, various new vehicles are
released, and new noise sources appear inside as time passes,
making data collection very difficult.

To circumvent these challenges, our research pivots toward
the cutting-edge field of Few-shot Learning (FSL). FSL,
a paradigm in machine learning, emphasizes the development
of models that can learn and make accurate predictions from

a limited dataset [11], [12], [13], [14], [15], [16], [17], [18].
This methodology is exceptionally suited to scenarios like
in-vehicle noise classification, where obtaining large and
diverse datasets is impractical. By leveraging FSL, we aimed
to create a model that can effectively generalize from a small
sample of data, thus overcoming the traditional data con-
straints.

This study introduces a novel FSL model for in-vehicle
noise classification, which incorporates a Triplet-trained
Prototypical Network shown in Figure 1. This model
distinguishes itself by adeptly learning robust feature rep-
resentations from limited data. Employing STFT-based
Mel-spectrogram embeddings, it effectively extracts key fea-
tures from raw noise data, retaining critical information while
simplifying the data’s complexity [19], [20]. The application
of triplet loss is a significant facet of our approach, enhancing
the model’s ability to discern between different in-vehicle
noises. By minimizing the distance between similar noises
and maximizing it between dissimilar ones, the model learns
to identify subtle acoustic differences with remarkable effi-
ciency [21], [22]. The incorporation of a prototypical network
furthers our methodology’s efficacy. This network excels in
learning a metric space where classification is performed
based on the proximity of embedded features to the prototype
representation of each label [14].
This study leverages a specially curated dataset of in-

vehicle noises, recorded under a variety of vehicles to mirror
real-world diversity. By conducting rigorous evaluations,
we seek to not only validate the efficacy of our proposed
model but also contribute significant advancements to the
field of acoustic classification. This research is composed
to offer insights into the potential of FSL methodologies in
achieving high accuracy in noise classification tasks, high-
lighting its advantages over traditional deep learning models
and existing FSL approaches, particularly in scenarios
characterized by data scarcity.

II. RELATED WORKS
FSL is a compelling paradigm addressing the data scarcity
problem prevalent in various machine learning domains.
The Model-Agnostic Meta-Learning (MAML) framework
has been a pioneering force in this area, renowned for
its versatility and model-agnosticism. MAML’s approach to
meta-learning, wherein models are trained to swiftly adapt to
new tasks with minimal data, has significantly advanced FSL
across multiple disciplines, including image classification
and reinforcement learning [11]. It is particularly noted for its
ability to fine-tune models rapidly, as evidenced by its state-
of-the-art performance in image classification benchmarks.

Graph Neural Networks (GNNs) have further enriched
the FSL landscape, offering a novel perspective through
the lens of graphical model inference. By synthesizing tra-
ditional message-passing algorithms with neural network
architectures, GNNs have birthed a framework that not only
excels in numerical performance but also adapts seamlessly

66802 VOLUME 12, 2024



R. I. Kee et al.: Disentangled Prototypical Convolutional Network for FSL

FIGURE 1. Overview of Triplet-trained prototypical network based FSL: collection of noise data, transformation into Mel-spectrogram embeddings,
triplet loss-based disentanglement process, subsequent classification in a learned feature space.

TABLE 1. FSL methods for classification tasks under limited data
conditions.

to FSL variations such as semi-supervised and active learn-
ing [12]. Their relational task proficiency has been pivotal in
expanding the boundaries of FSL applications. Frog-GNN,
introduced by Xu and Xiang [23] combines a pre-trained
language model and GNN, outperforming existing few-shot
approaches in both few-shot text classification and relation
classification. This further demonstrates the versatility and
potential of GNNs in the domain of FSL.

In addressing the challenges of one-shot learning,
Memory-Augmented Neural Networks (MANNs) have
emerged a promising solution. Equipped with enhanced
memory capabilities, these architectures exhibit remark-
able efficiency in data assimilation and retrieval, thereby
mitigating the limitations of conventional gradient-based
models [13]. This leap in rapid data encoding and utilization
marks a significant departure from the iterative training that
plagues traditional networks. Generalized model-agnostic
meta-learning (GMAML), presented by Lin et al. [24],
involves constructing a channel interaction feature encoder

using multi-kernel efficient channel attention, and has
improved the overall generalization performance in various
few-shot cross-domain scenarios. This further illustrates the
potential of MANNs in the domain of FSL.

Prototypical Networks have played a pivotal role in FSL
particularly in few-shot classification tasks, with their sim-
ple yet effective approach that relies on learning a metric
space [14]. The study in [25] innovates further by inte-
grating causal intervention with these networks, enhancing
their performance in relation classification tasks. In [26]
a specialized adaptation of Prototypical Networks signifi-
cantly boosts few-shot handwritten character recognition for
Urdu, a language with limited resources. Moreover, [27]
illustrates the application of these networks in the culinary
domain, integrating attention mechanisms for more robust
food image recognition. He et al. [28] proposed virtual
prompt pre-training method for prototype-based few-shot
relation extraction, delivering a novel learning paradigm
to model entities and relations via the probability distri-
bution and Euclidean distance of the predictions of query
instances and prototypes. Recently, a novel approach, SSL-
ProtoNet, has been proposed by Lim et al. [29], which
leverages self-supervised learning, Prototypical Networks,
and knowledge distillation to enhance sample discrimination
in few-shot learning tasks. Also, Wang et al. [30] intro-
duces an innovative application of Prototypical Networks in
FSL, where it leverages the prototypical concept to calibrate
and enhance the discriminability of new class prototypes
effectively.

The culmination of these approaches has paved the way
for our work, where we aim to leverage the strengths of
FSL in the nuanced domain of in-vehicle noise classifica-
tion. By integrating a Disentangled Prototypical Network
trained via Triplet Loss, our method not only aims to excel in
classification accuracy but also maintain scalability and effi-
ciency within the challenging automotive industry landscape.
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This research echoes the advancements made by predecessors
while extending their principles to the auditory realm, mark-
ing a novel contribution to both the fields of acoustic signal
processing and FSL.

Algorithm 1 Triplet Training for Disentanglement of
Embedding Space
This algorithm is designed to train a neural network to learn
to disentangle the embedding space optimized by triplet loss.
It generates triplets of anchor, positive, and negative samples
and optimizes the network to bring the anchor closer to the
positive sample while pushing it away from the negative
sample in the embedding space.
Input:
X: Preprocessed impact noise data
Y: Corresponding labels
Output:
Z: Trained model that disentangles the embedding space
optimized by triplet loss.
1: Generate triplets using X and Y, consisting of an anchor,
a positive sample (same label as anchor), and a negative
sample (different label from anchor).
2: Compute triplet loss for each triplet, considering the dis-
tance between anchor-positive and anchor-negative pairs in
the feature space.
3: Create a convolutional neural network for feature extrac-
tion, taking X as input and returning a feature vector.
4. Train and optimize the network to minimize triplet loss,
resulting in a model that generates distinct embeddings for
different labels.
5: Return the model Z.

III. METHOD
A. IMPACT NOISE PREPROCESSING
In our approach to in-vehicle noise classification, the ini-
tial step involves a meticulous noise preprocessing rou-
tine. This process commences with the Short-time Fourier
Transform (STFT) to convert time-domain impact noise
data into the frequency domain, with a window length of
2048 frames (0.08 seconds) and overlapping samples of
512 steps. Which facilitated the extraction of spatiotemporal
features.

Subsequent application of a Mel Filter Bank (Mel-fb)
emphasizes perceptually relevant frequencies, aligning the
data representation. Finally, sliding window segmentation
was applied with a size of 16 to structure the noise data
into consistent, analyzable segments, enhancing the model’s
capacity to learn from these transient noise events. The culmi-
nation of this preprocessing is a detailed noise spectrogram,
serving as the input for the FSL model. This preparatory
stage is crucial, transforming raw audio signals into a refined
form suitable for advanced analysis, which is illustrated in
Figure 2, visually showcasing the result of the preprocessing
of the impact noise data.

Algorithm 2 Prototypical Network for Disentangled
Embedding Space FSL
This algorithm is designed for performing FSL on a disentan-
gled embedding space using prototypical networks. It creates
prototypes for each label using the support set and computes
the distance between the query samples and the prototypes
in the embedding space. It predicts the labels of the query
samples based on the nearest prototype.
Input:
x_support: Support set of impact noise data
y_support: Corresponding labels of the support set
x_new: Query set for prediction of impact noise data
T_model: Triplet-Trained embedding model
Output:
Y: Prediction of corresponding labels of the query set.
1: Embed x_support set using T_model and obtain the feature
vectors.
2: For each label, compute the mean of the feature vectors of
the x_support samples belonging to that label. These are the
prototypes.
3: Embed the x_new set using the T_model and obtain the
feature vectors.
4: For each x_new sample, calculate the Euclidean distance
to each prototype.
5: Assign the label of the nearest prototype to the x_new
sample.
6: Return the predicted label Y.

FIGURE 2. Visual representation of noise preprocessing. (a) displays the
impact noise heatmap captured within the vehicle interior. (b) shows the
resulting preprocessed noise spectrogram.

B. TRIPLET LOSS-BASED DISENTANGLEMENT
Before the FSL process, the embedding space of in-vehicle
noise features is disentangled via a deep learning architec-
ture employing triplet sampling. The method harnesses a
triplet sampling mechanism, where each triplet comprises an
anchor, a positive sample with the same label as the anchor,
and a negative sample with a different label. The feature
embedding function learned by the network f (·) processes
these instances, projecting them into an embedding space
where the triplet loss function takes effect. The triplet loss
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function is defined as equation (1).

Tloss =

∑
i

[
∥f (ai) − f (pi)∥2 − ∥f (ai) − f (ni)∥2 + α

]
+

(1)

where 6i is a summation of all the triplets in the batch.
It quantifies the distance between an anchor instance f (ai) and
a positive instance f (pi), which shares the same label, in con-
trast to a negative instance f (ni), which has a different label.
The parameter α is a margin that enforces a minimum gap
between positive and negative pairs. The L2 norm squared
∥·∥

2 calculates the squared Euclidean distance between two
embeddings. To ensure the loss remains non-negative, [·]+ is
a hinge function, which is equivalent to max(·, 0).

The anchor aims to minimize the distance to the positive
while maximizing the distance from the negative, thus disen-
tangling the embedding space. This loss facilitates a learning
dynamic that not only focuses on correct classification but
also on the relative positioning of similar and dissimilar
examples, thus enhancing the model’s discriminative ability.

This strategic approach underscores the balance between
precision in classification and robustness against dataset vari-
ability, crucial for real-world application in acoustic signal
processing.

C. NOISE PROTOTYPING FOR FSL
In the domain of FSL, the Prototypical Network framework
forms the backbone of our methodology, which is adept at
learning a metric space where classification is performed
based on the proximity to prototype representations of each
label. The process begins with the generation of prototypes
for each label through the averaging of embedded features
from support queries shown in equation (2). This yields a
centroid that embodies the essence of each label within the
embedding space. Subsequently, classification of a new query
involves computing its distance to these prototypes, utilizing
a Euclidean distance function, equation (3). The query is then
assigned the label of the nearest prototype, thus effectuating
the classification, equation (4).

ck =
1

|Sk |

∑
(xi,yi)∈Sk

fφ (xi) (2)

d (xnew, pi) =

√∑
(xnew − pi)2 (3)

ŷ = argmin
i
d (xnew, pi) (4)

Here, xi, yi is a set of support queries with its corresponding
label, and ck is the prototype of the k th label. fφ is the
embedding function which is made from the deep learning
process of Part B, and d is the Euclidian distance function to
calculate the distance between a new query sample xnew and
the prototype pi corresponding to its label. ŷ represents the
predicted label for xnew.
This strategy is particularly potent in scenarios where

data is scarce, and yet, the embedding space is richly
structured by prior triplet loss disentanglement, ensuring

a well-organized and discriminative feature landscape for
accurate classification.

IV. EXPERIMENTAL RESULTS
A. IN-VEHICLE NOISE DATASET IN REAL-WORLD
To preserve the frequency characteristics of the impact noise
that is propagated along the vehicle steering system, the sam-
pling process is conducted in the faulty vehicle. One of the
globally renowned motor groups collected 9 noise types from
22 different vehicles including sedans and SUVs under the
same sampling condition shown in Table 2. A 25,600Hz sam-
pling rate is chosen, a specification for common smartphone
microphones on the market, to ensure practicality. Each noise
sample is 2 seconds long and contains 10 to 12 impact signals.

TABLE 2. Sample length and number of in-vehicle noise data.

Since 10-fold cross validation was used to prove robust-
ness, 90% of the total data for each fold was used for the
triplet train, and 10% was used as test data, that is, for
prototyping and prediction.

B. CLASSIFICATION PERFORMANCE WITH LIMITED DATA
The experimental results shown in Table 3 demonstrate the
superior performance of the proposed model in in-vehicle
noise classification under limited data conditions. Hyper-
parameters of all models were not optimized in these
experimental results.

TABLE 3. 9-Way FSL average accuracy (%).

In a 9-Way 10-Shot and 9-Way 5-Shot setup, our model
achieved an exceptional 99.57% and 99.51% accuracy, sur-
passing traditional methods such as CNNs, MANNs, GNNs,
and Prototypical networks. The robustness of the model is
further evidenced in the challenging 9-Way 1-Shot scenario,
where it maintained a high accuracy of 96.81%.
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FIGURE 3. Accuracy degradation comparison according to the data limits. This graph illustrates the classification accuracy of the proposed model
against traditional methods across different few-shot scenarios in a data-decreasing order, from 9-Way 10-Shot to 9-Way 1-Shot.

FIGURE 4. Visualization of embedding space disentanglement.
(a) exhibits the raw embeddings from in-vehicle noise data, depicting a
high degree of overlap among different noise types. (b) illustrates the
clarity achieved in the embedding space after applying the triplet-based
embeddings.

The degradation of data limit is well shown in Figure 3.
These results confirm the efficacy of the FSL approach in
accurately classifying noise with minimal data, showcasing
the model’s potential for practical applications where data is
sparse.

C. DISENTANGLEMENT OF TRIPLET-TRAINED MODEL
Our triplet-based disentanglement method significantly
improves howwe classify in-vehicle noise with FSL. Figure 4
clearly shows how effective this method is. Before using our
method (shown in part (a) of Figure 4), the noise features are
mixed together, making it hard to tell different noises apart.
This entanglement makes accurate classification difficult,
especially when noises are subtle or similar.

After applying our triplet-trained embeddings, as shown
in part (b) of Figure 4, there’s a remarkable change. The
noise features are now separated clearly, making it much
easier to identify and classify different types of noises. This
clear separation is crucial for our model to classify noises
accurately, especially when it has only a few examples to
learn from.

What makes our approach stand out is its ability to handle
the complexity and variety of noises inside vehicles better
than previous methods. Traditional methods often struggle
with similar sounding noises, but our approach can
distinguish these subtle differences reliably.

V. CONCLUSION
The study culminated in a robust FSL model adept at
classifying in-vehicle noise with minimal data. Notably,
it outperformed existing methodologies in a 9-Way 1-Shot
scenario with an accuracy of 96.8%, showcasing the model’s
proficiency with limited datasets. The method’s success is
attributed to the novel integration of a triplet loss-based
disentanglement in conjunction with a prototypical network,
leading to substantial accuracy improvements.

Reflecting on the work’s implications, it becomes clear that
this research marks a significant leap in few-shot in-vehicle
noise classification. It confronts the prevalent data acquisition
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challenges and efficiently handles the diversity of noises
within vehicles. The approach’s effectiveness is underscored
by a comparison with several established models, where it
consistently delivers superior performance.

However, the research acknowledges certain limitations,
including the need for further validation of noisy datasets.
Also, the hyperparameter optimization was not conducted for
any of the methods evaluated, including our proposed model
as well as the traditional methods (CNN, MANN, GNN,
Prototypical Networks). This decision was made to ensure
a consistent and uniform comparison framework across all
methods.

We recognize, however, that this approach may impact
the representativeness of the reported accuracy figures, as
hyperparameter tuning has the potential to significantly
enhance the performance of each method. Also, uniform
noise sampling conditions and the absence of varied environ-
mental acoustic disturbances in the training set could include
potential biases.

Moving forward, the future work will focus on enhancing
the model’s robustness by diversifying the noise conditions,
including urban sounds, and varying vehicle operational
states, implementing a continual learning framework to
adapt to new noise data seamlessly, explore hyperparameter
optimization, and extending the model’s applicability to real-
world diagnostic scenarios. This progression aims not only
to validate the model’s efficacy further but also to translate
the academic findings into practical solutions for vehicle
condition improvement.
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