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ABSTRACT The emerging cryptocurrency market is one of the largest financial markets in the world,
with a market capitalization that is already surpassing the gross domestic product of many developed
economies. Cryptocurrencies are increasingly being adopted as a means of transaction and ownership in the
digital domain, particularly in areas like decentralized finance and non-fungible tokens. Known for its high
volatility, this market offers investors the potential for higher returns than traditional financial markets like
stocks, foreign exchange, and commodities. However, it remains underexplored in academic research. In this
paper, we propose the use of social network analysis to effectively model and analyze the cryptocurrency
market and conduct a comprehensive numerical study to explore its key properties, including correlation
structure, topological characteristics, stability, and influence. Furthermore, we propose the use of centrality
measures as novel indicators to improve the accuracy of cryptocurrency price movement predictions. Our
research introduces a novel method for understanding and navigating the cryptocurrency market, enabling
investors to integrate advanced analytical tools into their decision-making processes.

INDEX TERMS Centrality measures, cryptocurrency, price movement prediction, social network analysis.

I. INTRODUCTION

Over the past decades, an extensive amount of work has
focused on applying social network analysis to model
and analyze conventional financial markets, such as stock,
foreign exchange, and commodity markets [1], [2]. More
precisely, networks can be used to model the interactions
among financial assets in these markets. A well-known
technique involves the use of correlation-based networks to
analyze the correlation dynamics among financial assets with
the aim to build optimal investment strategies. In such a
network, the nodes and edges represent financial assets and
their correlations, respectively. All financial asset nodes are
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initially and fully connected in the network. However, the
network may contain redundant information with no useful
values, e.g., edges with zero correlation. Graph algorithms,
such as the minimum spanning tree (MST), can be used
to simplify the network by incorporating important nodes
and edges only, e.g., those having strong connections and
correlations with other nodes, as they usually convey valuable
information. Centrality measures can then be used in this
simplified network to pinpoint the most crucial or influential
assets, those that hold key positions in the financial markets.

Since the emergence of Bitcoin, the cryptocurrency market
has become one of the largest financial markets in the world,
with trillions of dollars in market capitalization that exceeds
the annual gross domestic product (GDP) of many developed
economies. In recent years, many large global institutions

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

65058

For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 12, 2024


https://orcid.org/0000-0002-2524-6950
https://orcid.org/0000-0002-5930-8814
https://orcid.org/0000-0002-0151-6469

K.-H. Ho et al.: Exploring Key Properties and Predicting Price Movements of Cryptocurrency Market

IEEE Access

have gradually ventured into cryptocurrency assets, from
Facebook’s release of Libra tokens to the huge transactions
of metaverse virtual lands with non-fungible tokens, and
more. Furthermore, the current number of cryptocurrencies
has exceeded 20,000, and the market value of Bitcoin and
Ethereum in 2023 has reached 378 and 189 billion U.S.
dollars, respectively. From these indications, more and more
attention has been paid to cryptocurrency investment, and
their transaction volume continues to grow.

A tremendous amount of research on developing methods
and tools has been dedicated to analyzing conventional
financial markets [1]. However, the emerging yet volatile
cryptocurrency market has not been extensively studied.
A sound understanding of the market could help investors
make informed investment and risk management decisions
to earn profits or avoid losses through data-driven analysis
and predictions. Therefore, the first research objective of this
paper is to apply social network analysis to model the cryp-
tocurrency market using MST networks and explore several
key properties of the market, including (1) its correlation
structure, (2) topological characteristics, (3) stability, and
(4) influence of cryptocurrencies using centrality measures,
at different time periods across the entire dynamic evolution
of the market, and how these change over time.

Additionally, in the case of cryptocurrency market fore-
casting, one may be interested in the prediction of cryp-
tocurrency prices. Nowadays, many investors are attracted to
fundamental and technical analyses to make their investment
decisions. Given the high volatility of the emerging cryp-
tocurrency market, one needs to identify new and effective
predictors to improve the accuracy of the predictions. Since
centrality measures can be used to evaluate the influence of
cryptocurrencies within a network, we propose to combine it
with deep learning to predict the movement of cryptocurrency
prices (i.e., upward or downward).

Il. OUR CONTRIBUTIONS

Using historical daily closing prices of the top 145 cryptocur-
rencies from 2013 to 2022, we obtain the following findings
about the cryptocurrency market:

« Cryptocurrencies are positively and moderately corre-
lated with one another most of the time in recent years;

« Cryptocurrencies are becoming increasingly and tightly
correlated during undesirable critical events;

o The distribution of the cross-return correlation coef-
ficients in the recent cryptocurrency market exhibits
lighter tails compared to the past;

o The structure of cryptocurrency networks changes as
major corrections occur. It becomes more compact
when corrections occur and becomes sparser after the
corrections;

« The return correlations of cryptocurrencies are relatively
stable in the short run but become less stable in the long
run;

« The impact of corrections on the cryptocurrency market
tends to be short-lived;
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TABLE 1. List of acronyms commonly used in this paper.

Acronym | Meaning Acronym | Meaning
ADA Cardano APL Average Path Length
BC Betweenness BNB Binance
Centrality
BNT Bancor Network BTC Bitcoin
Token
CC Closeness Centrality DApp Decentralized
Application
DASH Dash DC Degree Centrality
DeFi Decentralized DOGE Dogecoin
Finance
EC Eigenvector ERC Ethereum Request for
Centrality Comment
ETH Ethereum FCT Factom
FTIT FTX Token LINK Chainlink
LSTM Long Short-term LTC Litecoin
Memory
MAID MaidSafeCoin MKR Maker
MOL Mean Occupation MSR Multi-step Survival
Layer Ratio
MST Minimum Spanning NEO NEO
Tree
NFT Non-fungible Token NS Node Strength
NTL Normalized Tree OMG OmiseGo
Length
SNA Social Network SSR Single-step Survival
Analysis Ratio
TUSD TrueUSD USDT United States Dollar
Tether
XLM Stellar Lumens XRP Ripple
XTZ Tezos ZEC Zcash

o Scale-free (or power-law) behavior is exhibited by
cryptocurrency networks most of the time;

« Centrality measures are useful predictors for short-term
trends of movement in the price of cryptocurrencies.

In summary our main research contributions are (1) the use
of social network analysis as an effective modeling method
to explore key properties of the cryptocurrency market, and
(2) proposing novel centrality-based indicators to improve the
accuracy of cryptocurrency price movement prediction. This
comprehensive research is useful and informative as it could
help investors choose the right cryptocurrencies to build a
portfolio that can generate higher returns or lower risks even
in a crisis.

Table 1 provides a description of the acronyms used in this
paper. The remainder of this paper is organized as follows.
Section III provides a literature review highlighting pertinent
research, and elucidating the distinctive manner in which our
study addresses an identified gap in this scholarly landscape.
The methodology of this study is presented in Section IV.
Sections V and VI present the experimental design and
results for the cryptocurrency market analysis and the price
movement prediction, respectively. Section VII summarizes
our findings and presents future work. Finally, Section VIII
presents the conclusion of this paper.

Ill. LITERATURE REVIEW

Social network analysis has been used to model, analyze, and
understand different conventional financial markets, such as
the stock, foreign exchange, and commodity markets, as well
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as to identify the most important or influential assets in
these markets. A detailed survey of the use of social network
analysis in these financial markets can be found in [1]. The
approach of integrating social and economic aspects into
financial decision-making is further enhanced by generalized
optimal game theory, a branch of game theory that extends
traditional concepts and models to incorporate more complex
scenarios and decision-making processes. Its aim is to find
optimal strategies and outcomes in situations where multiple
players (or investors in this case) have different goals and
uncertainties [3].

Regarding the use of social network analysis for the
emerging cryptocurrency market, the work in [4] conducted
a correlation analysis and found that cryptocurrencies with
similar codebases were positively correlated with each other.
The work in [5] analyzed 16 cryptocurrencies using MST
and found that ETH has taken over BTC as the benchmark
cryptocurrency in the market. Similarly, the work in [6]
revealed that the importance and rankings of cryptocurrencies
have been rising since 2014 and were not negatively affected
by the price crash in 2018. The work in [7] investigated
the systemic risk of the cryptocurrency market and found
that the market was volatile. The work in [8] reported
an increasing price synchronization in the market, and the
work in [9] studied transitions in the cryptocurrency market
during the COVID-19 pandemic and found that the pandemic
significantly affected the market for a short period of time.
The work in [10] studied the correlation dynamics of the
cryptocurrency market and found that it was affected by
some critical events that caused market fluctuation. The
work in [11] discovered that collective behaviours are
present in the cryptocurrency market. To the best of our
knowledge, the key properties of the cryptocurrency market
have not been fully explored. Our study marks the first
contribution towards addressing the gaps in the state of the
art by applying social network analysis for an extensive and
dynamic numerical analysis of the cryptocurrency market.
This encompasses aspects such as the markets’s correlation
structure, topological characteristics, stability, and influence,
with the goal of providing in-depth insights into the market.
These insights are intended to assist investors in making more
informed and effective investment decisions.

Moreover, an increasing number of recent studies have also
begun examining ways of predicting the price of financial
assets. Some of the latest applications of deep learning in
stock market prediction are presented in [12]. Specifically
for the cryptocurrency market, a detailed survey of prediction
methods using time series and machine learning techniques
can be found in [13] and [14]. Some studies have found
that machine learning has better prediction accuracy than
time series [15], [16]. Specifically, LSTM performs better
in predicting BTC prices compared to other deep learning
models such as CNN, RNN, and GRU. On the other hand,
few studies have attempted to find valuable predictors
for predicting cryptocurrency prices or their movements.
Some of the predictors that have been proposed include
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technical and market-based indicators [17], news and social
media sentiment, and blockchain trading [18]. Specifically,
technical indicators have proven useful for predicting BTC
prices. Public attention (e.g., Google Trends and Twitter data)
[19], social media remarks (e.g., statements from influencers
like E. Musk and D. Trump) [20], Bitcoin blockchain data,
including users, miners, and exchanges [21] and economic
variables such as stock market indexes, crude oil prices
and exchange rates [22] were found to be effective in
forecasting. Since centrality measures examine the influence
of a node in a network, they have been effectively used
for prediction in different domains, such as justice [23] and
social reputation [24]. Our study makes a second contribution
by leveraging centrality measures as predictors, aiming to
improve the accuracy of cryptocurrency price movement
forecasts based on their network significance. This approach
is unprecedented for price-related analysis in any financial
market.

To effectively address the objectives outlined, this study
enhances our previous research efforts [25], [26] by incor-
porating an updated and more comprehensive dataset. This
strategic update allows us to delve deeper into the subject
matter, yielding a range of new and significant findings and
insights that contribute to the current state of the art in the
field:

Objective #1 (Social network analysis in cryptocurrency
market dynamics related):

« We investigate the proportional distribution of cross-return
correlation coefficients and their strong connection
to unfavorable critical events, particularly major
Bitcoin corrections. This reveals an important insight:
cryptocurrencies tend to respond more collectively
during adverse market events;

o Our analysis shows that the recent cryptocurrency mar-
ket’s cross-return correlation distribution has become
more pronounced and features lighter tails with fewer
extreme values compared to the past. This insight
indicates a growing interconnectedness among cryp-
tocurrencies and a trend towards more stabilized returns;

« We demonstrate the effectiveness of MST in accurately
modeling cryptocurrency networks, thereby confirming
the practicality of social network analysis in this sector;

o We analyze the impact of several major market cor-
rections on the cryptocurrency network’s structure.
Our findings indicate that the network becomes more
interconnected following these corrections but tends to
revert to its original state or a relatively stable condition
shortly afterward, suggesting that the market’s response
to corrections is typically transient or short-lived.

Objective #2 (Centrality measures as predictors related):

« Our study evaluates the utility of centrality measures as
predictive tools, specifically identifying which centrality
measures are most effective for forecasting the price
movements of particular cryptocurrencies. This provides
the insight that different centrality-based predictors are
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suitable for different cryptocurrencies, depending on
their unique attributes;

« We assess the robustness of predictions based on central-
ity measures in both static and dynamic environments
(utilizing a rolling window technique). Our findings
reveal that forecasts based on these centrality measure
predictors are more effective than forecasts which
rely on price and technical indicators only, suggesting
that centrality-based indicators maintain their predictive
strength over time.

IV. METHODOLOGY

Social network analysis (SNA) is a methodology for the
in-depth study of relationships and interactions between
individuals, groups, or organizations within a social system.
Its main goal is to map and analyze complex patterns
of connections, nodes, and interactions, providing valuable
insights into the structure and dynamics of social networks.
In particular, centrality measures are quantitative measures
used in SNA to determine the importance or influence of
individual nodes in a network. These measures evaluate
the relative importance of a node based on its connections,
location, and interactions with other nodes. Centrality mea-
sures help identify nodes that play a key role in maintaining
connectivity, information flow, or control within a network.
Nodes with high centrality scores are generally considered
influential or central to network functionality.

Both SNA and centrality measures are very useful in

cryptocurrency analysis for the following reasons:

o Understand the network structure: Cryptocurrencies
run on a decentralized network and transactions occur
between them. SNA helps analyze the relationships and
connections between these cryptocurrencies, revealing
the underlying network structure. This understanding is
critical for identifying clusters, hubs, and communities
within cryptocurrency networks, providing insights
into how information, transactions, and influence flow
through the system;

« Identifying influential actors: SNA, especially through
centrality measures, helps identify the most influential
or important nodes in a cryptocurrency network. These
nodes can represent key cryptocurrencies that have a
significant impact on network dynamics. By identifying
influential players, analysts can gain insights into
cryptocurrency market dynamics and the potential for
market manipulation;

« Uncovering hidden connections: SNA can reveal hidden
connections between cryptocurrencies that may not
be immediately apparent. This information is valu-
able for understanding the interrelationships between
different cryptocurrencies and identifying potential
collaborations or dependencies involving multiple
cryptocurrencies.

In summary, social network analysis and centrality mea-

sures are invaluable tools in cryptocurrency analysis as they
provide insight into network structure, identify influential
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actors, and discover hidden connections. By leveraging these
technologies, stakeholders can gain a deeper understanding
of the complex dynamics within the cryptocurrency market,
allowing for more informed decisions and improved risk
management practices.

To begin, we transform the prices into log returns as:

pi(t)
pi(t — Ar)

where p;(t) and r;i(¢) are the closing price and return
of cryptocurrency i on day ¢, respectively. The return is
computed on two consecutive days (i.e., At = 1). The
reason for this price-to-return transformation is to make r;(¢)
stationary and independent of the price scale. For instance,
a change in the BTC price from USD 10 to 11 has the same
difference as a change from USD 500 to 550. This allows for
meaningful comparisons of cryptocurrencies across different
price ranges.

One additional challenge, however, is that as the cryptocur-
rencies enter the market at different times, the number of
cryptocurrencies that appear on the market during any two
time periods may differ. Therefore, normalizing our empirical
results by the number of cryptocurrencies in each time period
is necessary to enable meaningful comparisons between time
periods.

ri(t) = In( ) =Inpi(t) = Inpi(t = Ar) (1)

A. CROSS-RETURN CORRELATION COEFFICIENT MATRIX
Social network analysis models each time period of cryp-
tocurrency market evolution through a network. The input
for constructing a cryptocurrency network for analysis is the
correlation of returns between all the cryptocurrency pairs.
We first create a cross-return correlation coefficient matrix
using the Pearson product-moment correlation for each pair
of cryptocurrencies i and j as follows:

S ilrk = i)Grk —Jr)
NS BT A LD > AU

where i, and j.; are the returns of cryptocurrency i
and j, respectively, on day k of time period 7, while i,
and j, are the average returns of cryptocurrencies i and
J, respectively, during the same period. We chose T =
182 days (or six months) as the window length of each time
period because the cryptocurrency market is so volatile that
we want to trace its dynamics over a reasonable window
size [27]. The value range of each cross-return correlation
coefficient in the matrix is —1 to 1. When the value is close
to 1, the returns of the two cryptocurrencies move similarly
(i.e. when the returns of one cryptocurrency increase, the
returns of the other also increase). Conversely, when the value
approaches —1, one cryptocurrency’s returns move in the
opposite direction of another. When the value is 0, the two
cryptocurrencies are completely independent, so their return
moves vary arbitrarily. The output from (2) isan N x N cross-
return correlation coefficient matrix, where N is the number
of cryptocurrencies in the network at the given time period.

@)

Cij =
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The diagonal of the matrix is always equal to 1, since any
cryptocurrency has a perfect correlation with itself.

B. NETWORK CONSTRUCTION

In a cryptocurrency network, each node represents a cryp-
tocurrency, whereas each edge connecting two nodes repre-
sents their return correlation coefficient. A cryptocurrency
network that fully connects all the cryptocurrency nodes
(i.e., clique) is thus formed. However, this network may con-
tain a certain amount of redundant information that might not
be useful (e.g., edges with zero correlation). One approach
to streamline the cryptocurrency network is by utilizing
graph-based algorithms such as the minimum spanning tree
(MST), threshold network (TN), or plane maximum filter
graph (PMFG). These algorithms help identify and retain
nodes and edges with strong connections and correlations,
which in turn provide valuable and informative insights [19].
MST is the subset of edges of the graph that connects
all nodes without forming any cycles and has the smallest
total cost among all possible spanning trees. TN is a graph
that only retains edges between nodes that exceed a certain
threshold. PMFG, on the other hand, is a planar graph that
can be drawn on a flat surface without edge crossing, and it
contains MST as a subgraph, thus retaining more information
about the network than MST (Tumminello et al. [40], 2005).
To effectively filter relevant information from large and
complex cryptocurrency networks, we choose MST over TN
and PMFG for the following reasons:

« Efficiency: The time complexity of MST is O(ElogV),
where E is the number of edges and V is the number
of nodes. On the other hand, the time complexities of
TN and PMFG are O(V?2) and O(V?3), respectively. This
makes MST computationally efficient and scalable for
large-scale cryptocurrency networks;

o Completeness: MST guarantees that all nodes in the
network are connected, which helps maintain the
integrity and efficiency of the network to facilitate more
comprehensive cryptocurrency network analysis. On the
other hand, TN and PMFG do not necessarily guarantee
connectivity (e.g., TN is based on hard-to-determine
thresholds), which may lead to cryptocurrency orphans
or disconnections.

Overall, MST is simple, robust, and clear as it visualizes
the linkages, and includes the entire set of the studied
cryptocurrencies to facilitate a comprehensive analysis.
Moreover, MST has the ability to provide economically
meaningful information in many financial networks [28].
Nevertheless, there may be a trade-off between the efficiency
and effectiveness of this information filtering.

Given a matrix of cross-return correlation coefficients,
we construct undirected cryptocurrency networks using
MST. Studying connectivity and correlation patterns in
networks can help us better understand the inner structure
of the cryptocurrency market. Constructing a cryptocurrency
network requires a transformation from the cross-return
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correlation coefficients to distances that can be derived as
in [28] using:

dij = /21 — ¢j) 3)

which satisfies the following axioms:

« positive definiteness: d;; > 0 and d;; = 0 if and only if

1=J

o symmetry: d;j = dj;

o triangular inequality: d;j < dix + dy;
where d;; denotes the distance between cryptocurrency nodes
i and j, computed by their return correlation coefficients.
The value of the distance lies between 0, for a complete
correlation between the cryptocurrencies when ¢;; = 1,
and 2 for a complete anti-correlation when ¢;; = —1. For
uncorrelated cryptocurrencies when ¢; = 0, the distance
is /2. The output of this transformation is an N x N distance
matrix derived from the N x N cross-return correlation
coefficient matrix. We use the MST algorithm outlined
in [28] to construct the network, which connects N nodes
using N — 1 edges without creating cycles such that the
total distance of all the edges is minimal. Therefore, each
cryptocurrency network filters and extracts the most valuable
and useful information using the N — 1 linkages. This enables
us to identify and analyze the cryptocurrency market under
different critical economic events, such as crises and crime.

C. CENTRALITY MEASURES

In the realm of SNA, the centrality of a node determines
its influence or importance within a network. We use five
well-established centrality measures to identify the most
influential cryptocurrencies at different time periods across
the entire dynamic evolution of the cryptocurrency market
over time.

1) DEGREE CENTRALITY (DC)
The degree centrality of a node v is the total number of its
directly connected neighbor nodes, defined as:

ZII,:IEV Avu

N-1"~
where V is the set of nodes in the network, A, is an element
of the adjacency matrix, where the value is equal to 1 if
nodes v and u are directly connected, and equal to O otherwise.
DC values are normalized by the number of edges in the
network (i.e. N — 1), where N is the number of nodes in the
network (i.e. N = |V|[). DC measures the importance of a
cryptocurrency based on its number of adjacent connections,
which can influence the behavior of other directly connected
cryptocurrencies.

v#Eu “4)

cpc(v) =

2) NODE STRENGTH (NS)

A large number of neighboring nodes may not necessarily
indicate a strong correlation with these nodes in general.
NS considers also the strength of node connections in
addition to the DC. The node strength of a node v is the sum
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of the return correlation coefficients of all edges of v. It is
further normalized by the number of edges in the network:

N
A
exs(r) = e ol 5)

NS measures how strongly a cryptocurrency is correlated
with neighboring ones by considering both the node connec-
tions and the correlations between the relevant edges.

3) BETWEENNESS CENTRALITY (BC)

The normalized BC of node v is the sum of the fractions of
the shortest paths (in terms of distance) of all pairs that pass
through v. It is defined as:

cpe(v) =

2 y(s. dIv)
(N = DN =2) dzv o O

where y (s, d) is the number of shortest paths between nodes s
and d, and y (s, d|v) is the number of shortest paths passing
through v between s and d. If s = d, then y(s,d) = 1,
and if v € (s,d) then y(s,d|v) = 0. BC measures the
intermediary control that cryptocurrency nodes have over the
flow of information on a network. The larger the value of BC,
the more likely the node is to act as an important intermediate
node or broker, transmitting or coordinating information in
the network, passing it from one node to another. With respect
to regulation, cryptocurrencies with higher intermediary
abilities can restrain the spread of abnormal price fluctuations
in the market.

4) CLOSENESS CENTRALITY (CC)
The CC of node v is the reciprocal sum of the shortest paths
originating from v to N — 1 other nodes:

cce(v) -1 £ u (7
ccC = —_~
Z]L:]EV dV“

where d,,, is the distance of the shortest path between nodes v
and u. CC measures how close a cryptocurrency node is to the
shortest path length of all other nodes. The larger the CC of a
node, the faster the cryptocurrency can transmit information
to all other nodes. Therefore, CC measures the efficiency of
information dissemination in the network. If a cryptocurrency
can reach other nodes quickly, it is usually at the center of the
network.

5) EIGENVECTOR CENTRALITY (EC)

The DC or NS of a node may not be a sufficient representation
of how influential it is as it does not consider the importance
of the neighboring nodes, e.g., a node with a small DC may
be connected to neighboring nodes with a large DC or NS.
In this case, this node should be regarded as influential.
This centrality, which takes into account the influence of
neighboring nodes, is called eigenvector centrality. We first
define an adjacency matrix, A, whose element A;; is 1 an
immediate connection between nodes i and j exists, and
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FIGURE 1. Parameters of the moving time window analysis.

is 0 otherwise. The EC of node v is defined as:

1
cpc(v) = 5 D Awcpc(v), v # u ®)
ueV

Compared with DC and NS, EC considers not only the
number of connections or the strengths of correlations to
direct neighboring nodes, but also their importance. A node
connected to a few influential nodes is likely to have a larger
EC than one connected to many less influential nodes, thus
revealing their importance in a network.

V. EVALUATION OF THE CRYPTOCURRENCY MARKET
USING SOCIAL NETWORK ANALYSIS

The dataset we used consists of the time series of daily
closing prices of the top 145 cryptocurrencies by market
capitalization as of March 11, 2022, covering the period
from April 28, 2013 (i.e., the first day the dataset has a
closing price of BTC) to March 11, 2022. It is collected
from CoinMarketCap. Some decentralized finance (DeFi)
and non-fungible token (NFT) cryptocurrencies are included
in the dataset. This entire set of cryptocurrencies has been in
the market for at least six months, which can be considered
representative of the market since it covers over 95% of the
total market capitalization as of the above date. There are at
most 3,240 daily closing price observations for each of the
cryptocurrencies as they enter the market at different times,
and all the prices are quoted in USD. There are very few
missing prices for certain cryptocurrencies in the dataset. The
best way to deal with this is open to interpretation. We impute
the missing prices by using the quoted prices on the last day
of trading.

A. MOVING TIME WINDOW ANALYSIS

Since cryptocurrencies enter the market at different time
periods, our work is not limited to dealing with only one
set of cryptocurrencies within a specific time period. Instead,
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FIGURE 2. Proportional distributions of cross-return correlation
coefficients.

we are more interested in the dynamics of the cryptocurrency
market over time. Therefore, as shown in Fig. 1, the moving
time window approach is adopted to study the dynamic
evolution of the market over a nine-year time span. The
entire study period is divided into M time windows ¢ =
1,2,..., M, with a width of T, corresponding to the number
of daily returns in each time window. Consecutive time
windows can overlap each other, expressed by the window
step length parameter 87 (the unit is day), describing the
displacement of the window. Given that the cryptocurrency
market operates 365 trading days a year, our empirical results
are calculated using a time window of T = 182 days
(i.e., six months) [27] and §T = 1 day. Thus, each
time window contains at most 182 daily returns for each
cryptocurrency. With these parameters, the total number of
time windows across the entire studied period is M =
3059. This procedure allows us to study the structural and
evolutionary changes in cryptocurrency networks by using a
relatively small interval between time windows for a large
sample size of the data on cryptocurrency prices. Note
that there are only a few cryptocurrencies in the dataset
during the first few years. Over time, more and more
cryptocurrencies are developed and enter the market. To help
us draw meaningful conclusions, the correlation coefficients
of returns between any pair of cryptocurrencies over a time
window 1is calculated only if the number of daily returns
of both cryptocurrencies is exactly 7 = 182. Otherwise,
the correlation coefficient is not computed, and no edge is
created between the corresponding cryptocurrency nodes in
the network.

B. STATISTICAL PROPERTIES OF DISTRIBUTION OF
CROSS-RETURN CORRELATION COEFFICIENT
We perform a dynamic analysis of the distribution of
cross-return correlation coefficients over the studied period.
Fig. 2 shows the proportional distribution of cross-return
correlation coefficients throughout the evolution of the
cryptocurrency market. Table 2 shows the return correlation
coefficients ¢ for different strength levels as defined in [29].
As is shown in Fig. 2, positive return correlation
coefficients (i.e., ¢ > 0.0) are far more common than
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TABLE 2. Levels of correlation strength.

Correlation coefficient Correlation
Strength Level

08< ¢ <10 or —08> ¢ >—1.0| Very strong

06< ¢ <08 or —06> ¢ >—0.8]Strong

04< ¢ <06 or —04> c > —0.6|Moderately strong

02< ¢ <04 or —-0.2> ¢ >—0.4|Weak

00< ¢ <02 or 00> c >—0.2| Very weak

c=0.0 No correlation

anti-correlations (i.e., ¢ < 0.0). Moreover, the overall
proportional distribution is dominated by weak to moderately
strong correlations, and the level of correlation tends to
become stronger since 2016. This reveals that, overall, the
cryptocurrencies are positively and moderately correlated
with one another most of the time in recent years. Hence,
they are not totally independent or uncorrelated from one
another, but their return movements tend to follow the same
direction. In other words, any return or price fluctuations on
some cryptocurrencies are likely to affect the prices or returns
of the other cryptocurrencies.

Interestingly, we observe a remarkable change in the
correlation distribution in Fig. 2 around September 12, 2019.
On this day, the cryptocurrency Tether migrates millions of
its coins in USDT from the Omin protocol on the Bitcoin
blockchain network to the ERC-20 protocol on the Ethereum
blockchain network. As a result, it produces negative return
correlation coefficients not only between USDT and some
other major cryptocurrencies, including BTC, but also
between the TUSD, which is an Ethereum-based ERC-20
token, and other cryptocurrencies. This observation signals
that the return correlations of the cryptocurrencies are
sensitive to critical events in the market.

To verify this observation, we compute the first four
moments (i.e., mean, variance, skewness and kurtosis)
of cross-return correlation coefficients across the entire
evolution of the cryptocurrency market in Fig. 3. The greater
the mean correlation, the higher the interdependence among
the cryptocurrencies. Fig. 3 shows that the mean correla-
tion increases when undesirable critical events, particularly
corrections, occur in the market. Correction is defined as
a significant decline in the price (i.e., bear period) of a
security, asset, or financial market (i.e., the cryptocurrency
market in our work) primarily due to crises or crime (e.g.,
a large number of cryptocurrencies have been stolen from
exchanges) in the market (see “Cryptocurrency bubble”
and “Cryptocurrency and crime” at Wikipedia for crises
and crime, respectively). Moreover, other corrections are
caused by negative news in the market, e.g., Elon Musk
tweeted that Tesla would stop accepting BTC payments
in 2021, leading to a drop in BTC of 52%. As BTC is
the most popular and valuable cryptocurrency, we create
a list of major BTC corrections and their descriptions in
Fig. 4 and Table 4, respectively. Many of them take place in
mid 2013-mid 2014, mid 2016-early 2018, mid 2019—early
2020, and mid 2020-early 2022 (i.e., the correction periods)
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FIGURE 3. Mean, variance, skewness, and kurtosis of cryptocurrency
cross-return correlation coefficients as a function of time.

due to various significant BTC crashes. Upon the occurrence
of these corrections, the correlations of all cryptocurrencies
seem to follow one another and move in the same direction,
thus confirming the presence of increasing inter-correlations
among them. These corrections are mapped by the corre-
sponding grey shadows and alphabetical labels in Fig. 3
and Fig. 4.
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TABLE 3. Pearson correlation coefficients on returns among the first four
moments.

Mean Variance Skewness Kurtosis
Mean 1.0 0.33 -0.77 -0.64
Variance 1.0 -0.32 -0.32
Skewness 1.0 0.63
Kurtosis 1.0
No Correction Correction  # Daysin  Bitcoin high Bummr low Decline Decline
start date enddate correction price $ price $ % $
al 1 11 Apr 2013 12 Jun 2013 60 266.34 70.00 -74% 196.34
b 2 19 Nov 2013 19 Dec 2013 30 1,242.00 600.00 -52% 642.00
3 5Jan 2014 11 Apr 2014 95 1,000.00 440.00 -56% 560.00
C 4 16 Sep 2014 29 Mar 2015 200 465.86 25274 -46% 21312
5 17 Jun 2016 2Sep 2016 78 770.50 57095 -26% 199.55
6 10 Mar 2017 25 Mar 2017 16 1,350.00 891.33 -34% 458.67
7 25 May 2017 27 May 2017 3 2,760.10 1,850.00 -33% 910.10
8 12 Jun 2017 16 Jul 2017 35 2,980.00 1,830.00 -39% 1,150.00
d 9 2 Sep 2017 15 Sep 2017 14 497990 297201 -40% 2,007.89
10 8 Nov 2017 12 Nov 2017 5 7.888.00 555555 -30% 233245
11 17 Dec 2017 22 Dec 2017 5 19,783.06 13,800.00 -31% 5,983.06
12 22 Dec 2017 5 Feb 2018 14 13,800.00 6,200.50 -55% 7.599.50
el 13 5Sep 2018 16 Dec 2018 100 7,361.46 3,236.27 -56% 4,125.19
14 27 Jun 2019 15 Dec 2019 195 13,017.12 711628 -45% 5,900.84
f 15 13 Feb 2020 19 Mar2020 36 10,361.76 5,29536 -49% 5,066.40
glie 71 Aug 2020 TT Sep 2020 z 12,486.61 J8I3.01 ~ZT% 7573.60
17 8 Jan 2021 22 Jan 2021 15 41,986.37 78,732.01 -3T% 13,254.36
h 18 14 Apr 2021 22 Jun 2021 69 64,706.86 29,031.74 -55% 35,675.12
i 19 10 Nov 2021 22 Jan 2022 73 68,991.76 35,030.27 -49% 33,961.49

FIGURE 4. Major BTC corrections between 2013 and 2022 [Last accessed:
http://www.cnn.com/bitcoin-crash-the-history-of-bubble-bursts].

On the contrary, the mean correlation decreases during
relatively calm periods, such as mid 2015-mid 2016, mid
2018-mid 2019, and mid 2020-early 2021. These results
support our aforementioned finding that cryptocurrencies
are sensitive (i.e., more likely to be correlated) to critical
events (e.g., corrections) in the market. Although the work
in [7] has conducted a dynamic correlation analysis, they
have not uncovered such a relationship between correlation
and critical events. Hence, our finding adds to the literature
by showing that undesirable critical events, such as major
cryptocurrency corrections due to crises, crime, and nega-
tive news, usually lead to an overall increase in the return
correlations in the cryptocurrency market. This has also
been observed in the conventional financial markets [30].
Thus, any undesirable critical event will likely influence how
cryptocurrencies behave and react collectively.

With respect to the variance, its movement generally
follows the mean correlation as the correlation between
them is moderate, as shown in Table 3. Nevertheless, their
movement patterns are getting more similar in recent years.
This implies that when the mean correlation increases,
usually after the occurrence of an undesirable critical event,
the variance (or risk) increases, as does the dispersion of the
resulting correlation coefficients. Like the mean correlation,
during the correction periods, the return correlations among
the cryptocurrencies vary slightly more than in the calm
periods, when volatility is lower. By considering both
the mean correlation and the variance, we can observe
that the return correlations of the cryptocurrencies become
stronger during volatile periods than during calm periods.
Moreover, the increased variance since 2017 indicates that
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TABLE 4. Key Bitcoin correction events.

Label Some key correction events
a » Mt. Gox exchange suffered a sustained attack by hackers.
b, c * Mt. Gox exchange went bankrupt.

* Some banks were banned from handling Bitcoin trade.
d,e * Coincheck exchange suffered a massive hack resulting in

a loss of cryptocurrencies worth USD 530 million.

» Tech giants (e.g., Facebook and Google) prohibited ad-
vertising initial coin offerings and token sales on their
platforms.

e The U.S. Securities and Exchange Commission (SEC)
rejected Bitcoin ETF application.

f,g ¢ COVID-19 outbreak.

h * Growing media reported that Bitcoin mining has caused
problems related to environmental, social, and corporate
governance.

* Tesla stopped accepting Bitcoin for car payments.

* Crackdowns were launched on some Bitcoin mining
farms.

i * A major algorithmic stablecoin, USTC, lost its 1:1 peg
with the U.S. dollar, which triggered panic in the cryptocur-
rency market.

the return correlations tend to vary more than in the past,
primarily owing to the more frequent occurrence of major
cryptocurrency corrections.

Additionally, Fig. 3 shows the skewness of time-varying
return correlation coefficients. Skewness is the inverse of the
mean correlation, as is confirmed by their anti-correlation
in Table 3. Interestingly, the return correlation coefficients
before 2017 are positively skewed. This reveals that the
market exhibits weaker return correlations than the average
among the cryptocurrencies. By contrast, beyond 2017,
the continuous negative skewness indicates that the market
exhibits stronger correlations than the average. This again
confirms that the return correlations among cryptocurrencies
in recent years have become stronger than in the past.

Finally, as shown in Fig. 3, a high degree of positive
excess kurtosis (i.e., leptokurtic, for which kurtosis is greater
than kurtosis 0 of normal distribution) indicates that the
market has a higher probability of experiencing extreme
return correlations. It can be observed by the spikes around
2016 and 2018 in the figure that a few cryptocurrency
pairs have extreme return correlations, which results in more
outliers than in the normal distribution (e.g., a very strong
correlation coefficient of 0.83 between BTC and LTC around
2016, while a majority of the other cryptocurrency pairs
have weak return correlations of between (0.0 and 0.2).
One may also find that the return correlation coefficients
in recent years are negatively skewed while the kurtosis
is mostly close to 0 (i.e., it is mesokurtic, and the return
correlation tends to follow a normal distribution). Hence,
the return correlations in recent years are becoming less
extreme compared to the past. This finding concludes that
the distribution of the cross-return correlation coefficients
in the recent cryptocurrency exhibited lighter tails.

The findings above lead us to conclude that the return
correlations among cryptocurrencies in recent years have
become stronger and have fewer extreme values than in
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the past. Investors should pay attention not only to the
cryptocurrencies they have an interest in (e.g., to look beyond
the basic characteristics of these cryptocurrencies in order to
understand how their values will evolve as suggested in [4]),
but also investigate other cryptocurrencies correlated with it
when making investment decisions.

C. DYNAMIC STRUCTURE OF CRYPTOCURRENCY MST
NETWORKS

As MST networks can model the cryptocurrency market, it is
useful to understand their dynamic structure, particularly the
topological characteristics and stability of the networks.

We use three evaluation criteria to analyze the topological
characteristics of cryptocurrency networks. The first is the
normalized tree length (NTL), which is used to analyze the
effects of linkages among cryptocurrencies by measuring
the average distance in the network in a time window [31]:

— ! 4
NTL() = s d{z;i df; ©

where df is the distance between nodes i and j in time
window t, E; denotes the set of edges in the network in time
window ¢, and N — 1 is the number of edges in the network.
The larger the NTL is, the longer is the average distance and,
thus, the smaller are the mean return correlations, and vice
versa.

Second, we use the average path length (APL) to analyze
network density [32], which is defined as:

2
APL() = 5o, %ll{j (10)

where lfy i is the number of links (or hops) in the shortest path
between nodes i and j in the network in time window ¢, N
is the number of nodes and N-1 the number of edges in the
network. The smaller the APL, the closer the nodes are in the
network.

Third, the mean occupation layer (MOL) proposed by [31]
is used to evaluate the change in density or spread of nodes
in a MST network, which is defined as:

N
1
MOL(t,V.) = N ZLev(vﬁ) (1)
i=1

where v/, and v} are the central node ¢ and node 7, respectively,
in time window ¢, and Lev(v?) is the difference in level
between nodes i and ¢ in time window ¢ when the level of
the central node c is set to zero. The smaller the MOL, the
higher the density or compactness of the network (i.e., the
nodes tended to crowd the area around the central nodes
in the network). The central node can usually be the node with
the highest DC or NS. In such case, we choose the node with
the highest DC as the central node, then if two nodes have the
same DC, use NS as the tiebreaker. Furthermore, the central
node can be static (i.e. fixed in all time windows) or dynamic
(i.e. continuously updated in each time window). Since the
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FIGURE 5. Mean, variance, skewness, and kurtosis of normalized tree
lengths for cryptocurrency networks as a function of time.

cryptocurrency market may not always be dominated by one
cryptocurrency, we adopt the dynamic approach.

Fig. 5 shows the time-varying results of NTL. It shows
that NTL decreases when the mean correlation in Fig. 3
increases, and vice versa. In other words, the networks
shrink during undesirable critical events, which increases
the interdependence among the cryptocurrencies, and this
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TABLE 5. Pearson correlation coefficients on network distance among
the first four moments.

Mean Variance Skewness Kurtosis
Mean 1.0 -0.39 -0.68 0.38
Variance 1.0 0.28 -0.40
Skewness 1.0 -0.63
Kurtosis 1.0

TABLE 6. Pearson correlation coefficients between return and network
distance among the first four moments.

Mean Variance Skewness Kurtosis
Mean -0.92
Variance 0.92
Skewness -0.72
Kurtosis 0.68

shrinkage is most significant around the frequent correction
periods.

Table 5 shows that the mean and the variance of the NTL
are anti-correlated, and the skewness and the mean continue
to be anti-correlated. This implies that after the impact of
undesirable critical events has been absorbed by the market,
the network shrink and the mean NTL decreases, while the
variance and the skewness increases. The skewness is almost
always negative (positive) before (after) mid-2017, showing
that the network contains more edges with longer (shorter)
distances than the average, which is opposite to the skewness
of the mean return correlation in Fig. 3.

Examining the cross-corrections of the first four moments
between the return correlation coefficients and the network
distances can help us assess the effectiveness of using
MST networks to model the cryptocurrency market. When
comparing their first four moments in Fig. 3 and Fig. 5, the
elements of the distribution of network distance have strong
correlations or anti-correlations with those of the return
correlation coefficients, as shown in Table 6: The Pearson’s
linear correlation between the skewness (kurtosis) of the
return correlation coefficients and the skewness (kurtosis)
of the network distance is —0.72 (0.68). On the contrary,
the mean and the variance of the network distance are
also strongly correlated with those of the return correlation
coefficients. These striking correlations imply that MST
networks are a good representation of the cryptocurrency
market and can capture important correlation information
well.

Fig. 6 shows the results of APL and MOL. The grey
shadows in the figure correspond to the major BTC
corrections in Fig. 4. APL decreases during the corrections
and thus shortening the network distances among the
cryptocurrencies. This reveals that the cryptocurrencies are
getting closer to one another and are more strongly and
directly correlated during the corrections. Nevertheless, the
overall uptrend of the APL reveals that the networks are
expanding with deeper branches. Hence, more intermediary
cryptocurrencies are required to deliver pricing information
from one cryptocurrency to another.
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FIGURE 6. Time-varying APL and MOL of cryptocurrency networks.

Similar to APL, MOL also decreases during the correc-
tions. A low MOL reveals that the networks shrink and
become denser and more compact, i.e., the nodes are more
concentrated around the central node. An economic interpre-
tation of this observation is that common factors should drive
returns during a market crisis, and a denser network reveals
the increasing importance of these factors [31]. As a result,
a denser and more compact network is expected because
crises, crimes, and negative news are common causes of
cryptocurrency corrections. Nevertheless, an overall uptrend
in the MOL indicates that the networks over time are
becoming less compact when major cryptocurrency correc-
tions occur less frequently. The overall results of the APL
and MOL reveal that cryptocurrencies are agglomerating
around some key cryptocurrencies and starting to form
blocks (e.g., like blocks in stock markets) that consist of
cryptocurrencies possessing common characteristics, such as
a codebase, underlying technologies, and similar application.
Clustering cryptocurrencies into blocks is a popular subject
of research in finance. Instead of studying each of thousands
of cryptocurrencies, investors may save time and effort by
analyzing the characteristics of blocks for portfolio selection
and optimization.

In summary, our analysis reveals that cryptocurrency
networks tend to become more compact during significant
market corrections, while conversely, when such corrections
occur less frequently, the networks become increasingly
sparse. Notably, these major corrections are associated with a
decrease in the values of key topological characteristics, such
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FIGURE 7. Time-varying SSR and MSR of cryptocurrency networks.

as the Average Path Length (APL) and the Mean Occupied
Layer (MOL). Consequently, the networks are evolving to
be denser and more compact, with internal correlations
strengthening and becoming more direct. However, with a
declining mean correlation, alongside an increase in mean
distance and mean occupied layer, these dynamic indicators
point to a gradual decompression of MST. This suggests
a weakening in the degree of interaction or integration
among cryptocurrencies over time, indicating enhanced
diversification benefits throughout the period under study.

D. STABILITY OF CRYPTOCURRENCY NETWORKS

In addition to topological characteristics, we studied the
stability of cryptocurrency networks using the single-step
survival ratio (SSR) [31] to measure the evolution and
survivability of edges across networks:

SSR(1) = ﬁw(r) NE{ — 1) (12)

where E(t) is the set of edges in the network at time . The
larger the SSR is, the more stable networks are in the short run
as edges survive from one network to the next (i.e., from time
window t to ¢ 4+ 1). Fig. 7 shows that the overall trend of the
SSR is stable as its average value is 0.9523, which indicates
that, on average, 95.23% of the edges in the network in time
window ¢ survived in the network in time window ¢ + 1.
Hence, the structure of dependence on the cryptocurrency
market in the short run (e.g., one day) is relatively stable. This
reveals that short-lived and strong correlations among some
cryptocurrencies have been formed.
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To study the evolution and survivability of edges in the
long run, we use the multi-step survival ratio (MSR) in time
window ¢ with different step lengths:

MSR(t, k) = Iﬁm(z) NE@F — 1N

L Et—k+DNE¢—Fk)| (13)

where k is the step length. MSR computes the ratio of
edges that survive in all the networks across the time
window k steps from the given initial one. A small value
of k measures the short-term network stability, whereas a
large value evaluates the long-term stability. For small and
large values of k, MSR(t, k) quantifies short-term and long-
term network stability, respectively. SSR(¢) is a special case
of MSR(t, 1). We measure edge survivability by computing
MSR with different step lengths. We use step lengths of 7,
14, 21, and 28 days, corresponding to 1, 2, 3, and 4 weeks,
respectively. We also include step length of 1 for reference.

Fig. 7 shows that the downtrend across increasing step
lengths reflects changes in the network structure after a longer
period. This implies the stability of cryptocurrency networks
in the long run decreased. Specifically, the average MSR
drops rapidly (from 0.9523 to 0.7985) after only seven days.
When the step length is increased to 14 days, the average
MSR is 0.6910. When it is further increased to 28 days, the
average MSR drops significantly to 0.5589, suggesting that
only 55.89% of the edges in the network have survived over
the previous 28 days. Thus, the survivability of the edges
decreases rapidly as the step length increases. Nevertheless,
a set of edges constantly survive in the networks for a
very long period of time, thus creating persistently stable
and strong correlations on some pairs of cryptocurrencies.
To understand this long-term stability, we set the step length
to a large value, e.g., 365 days.

Some edges survive across the networks over a
year, such as BTC-LTC in 2014-2015, ETH-BNT in
2017-2018, ETH-MKR in 2018-2019, ZEC-DASH in
2019-2020, LINK-XTZ in 2020-2021. Such enduring sta-
bility can be explained by their commercial and technological
relationships. For example, LTC is a “lite” version of BTC,
designed to facilitate faster and cheaper transactions. ZEC
and DASH are privacy coins designed to prioritize user
privacy and anonymity. LINK and XTZ, on the other hand,
have a partnership that helps smart contract developers
working on XTZ access a decentralized oracle network
managed by LINK.

These results are important for portfolio selection as the
return correlations of many cryptocurrencies start to diminish
gradually, whereas some structures of the cryptocurrency
networks are always preserved and stabilized. This indicates
that the structure of the return correlation of the cryptocur-
rency market is stable in the short run but becomes less
stable over time, whereas the return correlations between
some pairs of cryptocurrencies remain persistently stable
in the long run. Drastic changes in the cryptocurrency
network structure are also highlighted in [10] through the
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FIGURE 8. Time-varying power-law distribution of cryptocurrency
networks.

Jaccard distance. However, such network stability is not
analyzed dynamically on both a short-term and long-term
basis. Thus, investors can manage investment risks by making
timely and diverse adjustments to their portfolios, e.g.,
selecting a well-diversified portfolio with “uncorrelated”
cryptocurrencies.

E. SCALE-FREE STRUCTURE OF CRYPTOCURRENCY
NETWORKS

It is beneficial to explore whether cryptocurrency networks
exhibit characteristics of scale-free (or power-law) networks.
In such networks, a small subset of nodes have numerous
connections, while the majority of other nodes have only
a limited number of edges, exhibiting a star-like structure.
Many empirical networks, e.g., the Internet, have a scale-free
structure. We denote p(k) as the probability that a node has
k edges (i.e., node degree). If p(k) of a network follows the
power law, i.e.,

plk) ~ k= (14)

the network is scale-free. A small value of « indicates
that a node may have a high edge density and vice versa.
We adopt the analytical methodology in [33] to evaluate if
the cryptocurrency networks are scale-free. It combines the
maximum likelihood estimation (MLE) with goodness-of-fit
and the Kolmogorov—Smirnov (KS) tests to derive [33]:

@l Ky (15)

kmin kmin

plk) =

and MLE can be used to estimate the exponent « [33], i.e.,

N r -1
a=1+N|> In— (16)
where k; is the observed node degree of k > kmin for
i=1,2,...,N, and kpjj is the lower bound for power-law

behavior estimated by choosing the value of k; that minimizes
the standard KS statistic [32]:

dist = maxy>j,;, |y(k) — (k)| 7)
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where y(k) is the cumulative distribution function (CDF) of
node degree data with a value of at least kpin, and y(k) is the
power-law model that best fits the data in the region k > kpip.
Therefore, dist is the maximum distance between the CDF
of the data and the fitted model.

The p-value of the KS test can be used to reject or accept
the power-law distribution hypothesis. Following the work
in [33], the power-law hypothesis holds when the p-value
exceeds 0.1. The closer the value is to 1, the more likely the
node degree is from a power-law distribution.

Fig. 8 shows the p-value of the cryptocurrency networks.
Like many other real networks that usually have 2 < o <
3, the mean « over all cryptocurrency networks is 2.3427,
and their p-values are larger than 0.1 most of the time (>
99%). However, a few p-values are smaller than 0.1, which
reveals that the node degree distribution of the networks in
these time windows does not follow a power-law behavior.
This demonstrates that crypfocurrency networks typically
exhibit a scale-free nature and predominantly adhere to the
power-law distribution. As a result, some cryptocurrencies
always play a dominant role as they have the vast majority
of connections to other cryptocurrencies. Investors can keep
a close eye on the movements of these key cryptocurrencies
when making investment decisions.

Fig. 9 also shows that this power-law characteristic is
supported by the increasingly maximum number of links
of the most connected nodes (i.e., maximal node degree)
in the networks. With the increase of the maximal node
degree, certain nodes become more prone to assuming central
roles — those directly linked to numerous other nodes within
a network. In contrast, the remaining nodes have fewer con-
nections, giving rise to the formation of power-law networks.
This observation supports our previous finding that when
major cryptocurrency corrections occur, the networks shrink
and become denser and more compact. This is accompanied
by an increase in their node degree, leading to a smaller
value of « to form power-law networks. This confirms our
previous finding that cryptocurrencies are agglomerating into
different blocks around key cryptocurrencies (to be identified
by centrality measures in the next section). Fig. 10 shows
the cryptocurrency network for the six most recent months
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FIGURE 10. The power-law cryptocurrency network for the six most
recent months of the studied period.

TABLE 7. Four phases across dynamic evolution of the cryptocurrency
market.

Phase | Period Cryptocurrencies with Main feature
relatively high centrality
measures

1 Early 2013 - | BTC, DOGE, XRP, XLM, | Payment transactions
Mid 2016 LTC

2 | Mid 2016 - | MAID, FCT

Security-driven

Mid 2017 blockchains

3 Mid 2017 - | ETH, OMG, NEO, ADA Smart contracts
Early 2020

4 Since early | BNB, XTZ, BNT Emerging services
2020

of the studied period in the cryptocurrency market. It exhibits
power-law characteristics (e.g., a star-like structure around a
few key cryptocurrencies such as BNT) as well as increasing
the APL and MOL (e.g., branches extending from the key
cryptocurrencies as well as a high network density and a large
number of layers).

F. CENTRALITY MEASURE EVALUATION

Nodes with high centrality are typically located in the core
part of a network (i.e., central nodes) and thus can be regarded
as influential. Cryptocurrencies that obtain the highest and
second-highest values for each of the centrality measures
are plotted in Fig. 11. The cryptocurrencies that have never
been in one of the two with the highest centrality are not
included in the figures. Typically, a cryptocurrency that ranks
highest in one centrality is likely to also attain a high rank
in some other centrality measure as well. Therefore, these
figures show a similar pattern, and we can identify four
phases of the entire evolution of the cryptocurrency market,
as shown in the Table 7.
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The first phase, from early 2013 to mid 2016, is domi-
nated by cryptocurrencies developed for financial services.
As expected, the most influential cryptocurrency is BTC,
which is mainly used for transaction payments and currency
mining. Other influential cryptocurrencies, such as LTC,
XRP, XLLM, and DOGE, serve a similar purpose and use
similar underlying blockchain technologies as BTC does.
This confirms the findings in [34] and [35] that there is a close
relationship between these cryptocurrencies at this phase,
with BTC and LTC being close to each other, and XLM,
XRP, and DOGE belonging to the same community within
the network.

In the second phase, from mid-2016 to mid-2017, MAID
and FCT replace BTC as the most influential cryptocurren-
cies. This shows that BTC is starting to lose its dominance
in the cryptocurrency market (e.g., BTC’s dominance in
market capitalization drops from 85% in 2010 to less than
50% in 2018). Therefore, cryptocurrencies with the highest
market capitalization, like BTC, may not always be the most
influential, which is also highlighted in [5] and [8]. This
change in influential cryptocurrencies may have occurred
owing to the frequent BTC corrections starting from mid
2016. In addition, reports of some crimes in Table 4, e.g.,
the Mt. Gox event between 2011 and 2014, and the Bitfinex
theft in mid-2016, drive the market to pay increasing attention
to security-driven cryptocurrencies like MAID and FCT. The
work in [11] and [31] show that MAID and FCT have
been among the top central cryptocurrencies since 2016, and
that MAID is one of the largest communities in terms of
the number of cryptocurrencies in it (including FCT). The
results of this phase reveal that significant events may change
influential cryptocurrencies in the market.

In the third phase, from mid 2017 to early 2020, ETH
is the most influential cryptocurrency, primarily due to
its promising feature of smart contracts that allows to
encode pre-determined rules of any activity into unbreakable
contracts. It then automatically executes these contracts when
the agreed upon conditions are met. Other cryptocurrencies
that run on Ethereum-based blockchain networks, such as
ADA, NEO, and OMG, are therefore strongly correlated with
ETH (0.8 — 0.87) and have been regarded as influential.

Finally, in the fourth phase since early 2020, we observe
that some emerging cryptocurrencies intermittently replace
ETH as the leading cryptocurrencies, such as BNB, XTZ, and
BNT, which are well connected with two blockchain fron-
tiers, DeFi and NFT. This reveals that the cryptocurrency mar-
ket is no longer dominated by the most popular cryptocurren-
cies (e.g., BTC and ETH), but is also affected by other emerg-
ing and contemporary cryptocurrencies, as discussed below.

First, cryptocurrencies developed by exchanges (or so-
called platform coins), notably BNB and FTT, have been
receiving increasing attention, primarily due to the reduced
transaction costs (or gas fees) charged by the exchanges.

Second, towards the end of the studied period, DeFi
has caught the attention of the financial industry, which
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is a collective term for financial products and services
that are accessible to anyone without any centralized
authority blocking payments or denying access to anything.
A cryptocurrency that supports DeFi is Tezos (its coin is
XTZ). It is a fourth-generation blockchain network that
incorporates the self-amending capability with a unique
on-chain governance mechanism for managing protocol
upgrades without requiring the networks to hard-fork (e.g.,
leading to the creation of Ethereum Classic from Ethereum,
and Bitcoin Cash from Bitcoin). Tezos has completed
its latest upgrade, “Delphi,” which aims to reduce smart
contract gas fees by 75% to motivate DeFi developers to
build on top of its blockchain. Moreover, Tezos’s smart
contract capabilities allow it to support not only DeFi, but
also a range of decentralized application (DApp) and NFT
projects that are becoming popular nowadays. Because of its
flexible governance, Tezos has become a leading competitor
of Ethereum as the DApp, DeFi, and NFT projects continue
to grow.

Another cryptocurrency that supports DeFi is BNT, the
native currency of Bancor which is a DeFi network. It enables
users to swap digital currency tokens automatically through
the Bancor protocol within the network without any exchange
platform or intermediary. Hence, it can efficiently process
token trades across different blockchains.

Most of the centrality analyses in the literature [6], [8], [9],
and [10] are static (i.e., for one specific time period). On the
other hand, the dynamic (or time-varying) analysis in [7] also
reveal that BTC and ETH are leading cryptocurrencies before
2018. Our study extends their finding to uncover additional
contemporary cryptocurrencies that are closely related to the
emerging DeFi and NFT era beyond 2020. Based on the
results discussed above, we find that social network analysis
and centrality measures can adequately capture critical trends
in the evolution of the cryptocurrency market. For making
investment decisions, the results of social network analysis
and centrality measures can provide useful insights about
cryptocurrencies at any given time.

Using social network analysis and centrality measures,
we also evaluate the impact of corrections on the cryptocur-
rency market. Fig. 12 shows the NS (i.e., correlation strength)
and CC (i.e., network tightness) of the cryptocurrency
network during major corrections with the most significant
price decline rates (e.g., event No. 12, 13, 15 an 18 in
Fig. 4). The horizontal lines in the graph represent the
corresponding average values. From all results, we observe
a consistent finding that NS and CC increase significantly
when corrections begin, which makes cryptocurrency net-
works tightly interconnected. After that, the market gradually
and relatively quickly returns to its original state (i.e., before
the correction begins) or relatively steady state. Therefore,
it can be concluded that the impact of corrections on
the cryptocurrency market is often short-lived (i.e., only
last for a short period of time). Investors can still take a
long-term perspective to whether the temporary downturn and
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FIGURE 12. Network of the cryptocurrency market, in terms of closeness
centrality and node strength, along with their average during four
particular events in Fig. 4 highlighted by grey color: (a) No. 12, (b) No. 13,
(c) No. 15 and (d) No. 18.

potentially benefit from future growth despite short-term and
non-structural market volatility.

VI. PREDICTION OF THE MOVEMENT IN PRICE OF
CRYPTOCURRENCY USING CENTRALITY MEASURES

As centrality measures aim to identify cryptocurrencies
capable of influencing the prices of other cryptocurrencies
in the market, we believe this influence can be a useful
predictor of short-term cryptocurrency prices, which is of
interest to investors looking for price increases or decreases in
cryptocurrency markets. However, owing to the short history
and high volatility of cryptocurrency prices, we consider a
binary classification problem that predicts if prices will go
up or down only with respect to historical prices.

The centrality measures of a cryptocurrency in different
time windows may return different values. A centrality
measure with identical values in two different networks may
indicate different levels of influence. We, therefore, transform
their raw values into normalized ranking scores between
0 and 1 to represent their relative position of influence in the
network in each time window. For example, the normalized
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FIGURE 13. LSTM model for cryptocurrency price movement prediction.

ranking score of DC is defined as:

pers = DG
’ DCmax,t
where DC;; is the DC value of cryptocurrency i in time
window ¢ and DCj,4y ; is the highest DC value among all
cryptocurrencies in time window ¢. This transformation also
applies to the other four centrality measures (i.e., NS;}, BC;},
CCl”t, and EC”

To evaluate the power of centrality measures to predict
the movement in the price of cryptocurrencies, we built a
long short-term memory (LSTM) model as shown in Fig. 13.
LSTM has been widely used for stock price prediction [36],
[37] as they are able to learn the dependencies between data
points on a long-term basis and, from which, to extract useful
features automatically. Hence, it is suitable for modeling
time series data over other conventional machine learning
algorithms, such as logistic regression. In our LSTM model,
one sequence is defined as a sequential collection of the daily
features of any cryptocurrency in a time window. The model
contains 3 LSTM layers, each followed by a 20% dropout
layer to reduce overfitting for regularization purposes. The
first layer is the input layer, which takes as input all the
features that a sequence may contain. The final dense layer
is the output layer, which generates the predicted price
movement (i.e. upward or downward) of the cryptocurrency.

We used different predictors to forecast the short-term
movement of prices of the top 4 cryptocurrencies in terms
of the highest market capitalization, namely BTC, ETH,
BNB, and XRP. These cryptocurrencies have covered 65%
of the market capitalization, and hence, can be considered
as representative. As shown in Table 8, the ‘“‘ohlc” fea-
ture dataset uses only the fundamental pricing data (i.e.,
Open, High, Low, and Close) as predictors, whereas the
“ohlc_tech” and “ohlc_cent” feature datasets additionally
take into consideration the technical indicators and ranking
scores of the five centrality measures (i.e., DC™, NS™,
BC™, CC™, and EC"™), respectively. Technical indicators
are obtained from mathematical and statistical calculations,
which are widely used by traders and investors to analyze
market trends and make informed decisions about buying

(18)
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or selling assets. These indicators are typically based on
historical price data and are used to identify patterns, trends,
and potential reversals in the market. We have selected and
implemented some commonly used technical indicators from
the TA-Lib library, including volatility features (volatility
and average true range), overlap features (SMA, EMA,
DEMA and correlation) and momentum features (MACD,
RSI, William’s %R, ROC, ROCP, Aroon Oscillator and
Commodity Channel Index).

A. STATIC PRICE MOVEMENT PREDICTION

We first perform the evaluation using a static approach
that covers the entire studied period of pricing data for
each of the cryptocurrencies. The dataset is divided into
80% for training and 20% for testing. The labels of the
data (i.e., upward or downward) are determined by the
return: If a return is smaller than 0O, the label is set to
0 to represent a downward movement; otherwise, the label
is set to 1 to represent an upward movement. We find
that the number of data points with class labels 0 and
1 is balanced (e.g., 53% representing upward and 47%
representing downward for BTC, 51% representing upward
and 49% representing downward for ETH, 52% representing
upward and 48% representing downward for BNB, and 47%
representing upward and 53% representing downward for
XRP). Therefore, no label-class imbalance is observed. Each
sequence of predictors is normalized to a value between 0 and
1 by min-max normalization.

The model is trained using 100 epochs and a batch
size of 32. Early stopping as a form of regularization is
adopted to avoid overfitting. More specifically, training stops
when the monitored loss has stopped decreasing. We iterate
the evaluation for 100 independent trials and evaluate the
accuracy of predicting the movement of prices, which is
defined as:

1 i
Accuracy = L (19)

tp+fp+tm+fn

where the accuracy accounts for correct predictions of true
positive (zp) and true negative (¢n), as well as for incorrect
predictions of false positives (fp) and false negatives (fin).

Fig. 14 shows that the prediction accuracy, when the
five centrality measures are also used as predictors (i.e.,
the ‘“‘ohlc_cent” feature dataset), is higher than when
only fundamental pricing data are used (i.e., the “ohlc”
feature dataset). To determine if there is a statistically
significant improvement in the predictive accuracy between
these two scenarios using different predictors, we conduct
the independent samples t-test on the results. For all four
cryptocurrencies, the test produces p-values less than the
specified significance level of 1%. This indicates a significant
statistical difference between the predictive accuracy in these
two scenarios. Therefore, centrality measures help to improve
accuracy. Although the improvement in overall accuracy is
not outstanding from a numerical point of view (e.g., around
3%), it should be considered a significant achievement in
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FIGURE 14. Accuracy of prediction when using different combinations of
predictors on BTC, ETH, BNB, and XRP (static approach).

many domains where forecasting is considered challenging.
On the other hand, the predictive power using the technical
indicators (i.e. the “ohlc_tech” feature dataset) is only
slightly better than the “ohlc” predictors, which is consistent
with the findings in [38] and [39], but it is not as compelling
as using computationally inexpensive centrality measures.
Overall, our findings suggest that centrality measures serve
as valuable indicators to enhance the precision of predicting
short-term fluctuations in cryptocurrency prices, which has
not been studied in the literature.

Since the deep learning LSTM model is unexplainable (i.e.,
a black-box model), we are interested in determining which
of the five centrality measures are significant predictors when
using logistic regression, which is an interpretable model.
The p-value of the model is < 0.05 for all these four
cryptocurrencies, and therefore the models are significant.

As shown in Table 9, BC contributes to the prediction for
BTC at 5% significance (i.e., p < 0.05). On the contrary,
for ETH, DC and CC contribute to the prediction. It is not
surprising that BC and CC are significant predictors for BTC
and ETH, respectively, because both BC and CC measure
the global metric of the entire network. More precisely,
as BTC is the most popular and valuable cryptocurrency,
it has a network-wide impact on the entire cryptocurrency
market that can be measured by BC. By contrast, ETH
establishes an increasing number of localized and close
connections with many other cryptocurrencies running on
the Ethereum-based blockchain networks, which can be
measured by CC. On the other hand, since BNB can be
traded directly with many other cryptocurrencies, DC and NS
are significant predictors as they measure the local metric
of node degree and the strength of the correlation with the
connecting cryptocurrencies. Furthermore, XRP is found to
be strongly and positively correlated with BTC, which is the
leader in the cryptocurrency market. This may explain that EC
is the significant predictor for XRP as it is highly correlated
with other influential cryptocurrencies, such as BTC, which
typically have high centrality measures.
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We can observe from these results that leading cryp-
tocurrencies (e.g., BTC) that may influence the price
fluctuations of other cryptocurrencies in the market can
be associated with BC. Moreover, cryptocurrencies that
play leading roles in clusters, which connect many other
cryptocurrencies with purpose, can be associated with DC,
NS, and CC (e.g., ETH and BNB are being used as utility
tokens on numerous trading applications for many other
cryptocurrencies). Cryptocurrencies (e.g., XRP) that always
maintain a strong correlation with leading cryptocurrencies
can be associated with EC. These observations may serve
as a guideline for determining the right predictors for
cryptocurrencies with different characteristics. Overall, all
the five centrality measures show good predictive abilities,
with different cryptocurrencies using different centrality
measures as their key predictors.

B. DYNAMIC PRICE MOVEMENT PREDICTION

In addition to the previous static evaluation using fixed-
period one-shot forecasts, we employ a dynamic rolling
window-based approach (similar to that in Fig. 1) to assess
the robustness of the predictability of centrality measures.
This dynamic approach uses a window width of 182 days
to predict the price change for the next day outside the
window, for example using days 1 to 182 to predict the price
change for day 183, and so on. Figure 15 shows that the
accuracy of the dynamic approach improves compared to the
static method because it uses an updated window to predict
near-term price movements rather than long-term price move-
ments. Likewise, using centrality measures as predictors can
improve prediction accuracy by 3-5%. Therefore, centrality
predictors perform well under both static and dynamic time
period conditions. In the evaluation we also find that the
accuracy of predicting price decline (65%) is higher than
the accuracy of predicting price increase (55%). This is
because, during corrections, the structure of cryptocurrency
networks change more frequently (such as APL and MOL),
and machine learning algorithms are more adept at capturing
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TABLE 9. Significant predictors of the movements in the price of BTC,
ETH, BNB, and XRP. ***, ** and * represent significance at 1%, 5% and
10% respectively.

Cryptocurrency | Significant Predictors | p-value (p)
BTC BC"* 0.0208**
ETH DC™s 0.0056***
cCrs 0.0142**
BNB DC™s 0.0066***
NS”s 0.0127**
XRP ECTS 0.0368**

and assimilating such fluctuations. On the other hand, similar
to the static prediction results, the predictive power using the
technical indicators (“‘ohlc_tech’) is better than the “ohlc”
predictors, but not as significant as using the centrality
measure indicators (‘‘ohlc_cent’).

VIi. SUMMARY OF FINDINGS, LIMITATIONS AND
FUTURE WORK
All the findings in this study can be summarized as follows:

« In recent years, cryptocurrencies have typically shown
a positive and moderate correlation with one another.
This interdependence suggests that fluctuations in the
price or return of a particular cryptocurrency are likely
to impact the prices or returns of many others in the
market;

« During undesirable critical events, such as significant
cryptocurrency corrections caused by crises, crimes,
or negative news, cryptocurrencies become increasingly
and tightly correlated. Thus, any significant event in the
market is likely to drive cryptocurrencies to behave and
react collectively;

o The cross-return correlation coefficient distribution
in the recent cryptocurrency market has lighter tails
indicating that correlation among cryptocurrencies has
become stronger and has fewer extreme values than in
the past. Investment strategies should involve monitor-
ing not only the targeted cryptocurrency for purchase but
also other correlated cryptocurrencies;

o The structure of cryptocurrency networks evolves in
response to major market corrections. When a correction
takes place, these networks become denser and more
compact. Conversely, they tend to grow sparser once the
correction phase concludes;

o The return correlations of cryptocurrencies are relatively
stable in the short run, but become less stable over
time. Nevertheless, the correlations between some
cryptocurrencies remain consistently strong and stable
in the long run. To minimize risk, it is advisable to
enhance investment strategies by promptly and diversely
adjusting portfolio selection and optimization;

o The impact of corrections on the cryptocurrency market
tends to be short-lived. Investors can take a long-term
perspective to whether temporary downturns and poten-
tially benefit from future growth amid short-term and
non-structural market volatility;
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o Scale-free (or power-law) behavior is observed in
cryptocurrency networks, which reveals that some key
cryptocurrencies always influence prices in the market;

o Centrality measures can adequately capture the key
trends across the evolution of the cryptocurrency market.
They can serve as useful indicators for short-term
movement predictions in the price of cryptocurrencies.

A key limitation of our current study is the exclusion

of emerging and yet-to-mature cryptocurrencies. As a
result, our findings may not fully apply to these nascent
cryptocurrencies. In future research, we aim to incorporate
these emerging cryptocurrencies once the market reaches
relative maturity, allowing us to compare their properties
and behaviors with those of high market capitalization
cryptocurrencies. Additionally, our use of the MST method
to construct cryptocurrency networks is another limitation.
Future analyses exploring alternative methods, such as TN
and PMFG, would be valuable to ascertain if they yield results
consistent with our MST-based study. Moreover, our focus
was primarily on price, technical analysis, and centrality
measures for predicting cryptocurrency price movements,
potentially overlooking the influence of external blockchain-
related factors, which might lead to reduced prediction
accuracy. To address this, we plan to further incorporate
a wider range of predictive factors, including on-chain
and blockchain data, market sentiment, and other centrality
measures such as Katz and PageRank centrality. This holistic
approach is aimed at enriching our exploration of the
cryptocurrency market and enhancing the accuracy of our
predictions.

VIil. CONCLUSION

The emerging cryptocurrency market is one of the largest
financial markets in the world. However, it has not been
extensively studied yet. In this paper, we applied social
network analysis to model and analyze different aspects of
the cryptocurrency market, including correlation structure,
topological characteristics, stability, influence, and price
movement prediction. We believe that our comprehensive
findings can assist in forecasting strategies by offering solid
insights into the cryptocurrency market. This enables the
construction of improved investment portfolios, potentially
leading to higher expected returns and reduced risk, even in
times of crisis.
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