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ABSTRACT Grasp detection plays a pivotal role in robotic manipulation, allowing robots to interact with
and manipulate objects in their surroundings. Traditionally, this has relied on three-dimensional (3D) point
cloud data acquired from specialized depth cameras. However, the limited availability of such sensors in
real-world scenarios poses a significant challenge. In many practical applications, robots operate in diverse
environments where obtaining high-quality 3D point cloud data may be impractical or impossible. This
paper introduces an innovative approach to grasp generation using color images, thereby eliminating the
need for dedicated depth sensors. Our method capitalizes on advanced deep learning techniques for depth
estimation directly from color images. Instead of relying on conventional depth sensors, our approach
computes predicted point clouds based on estimated depth images derived directly from Red-Green-Blue
(RGB) input data. To our knowledge, this is the first study to explore the use of predicted depth data for
grasp detection, moving away from the traditional dependence on depth sensors. The novelty of this work
is the development of a fusion module that seamlessly integrates features extracted from RGB images with
those inferred from the predicted point clouds. Additionally, we adapt a voting mechanism from our previous
work (VoteGrasp) to enhance robustness to occlusion and generate collision-free grasps. Experimental
evaluations conducted on standard datasets validate the effectiveness of our approach, demonstrating its
superior performance in generating grasp configurations compared to existing methods. With our proposed
method, we achieved a significant 4% improvement in average precision compared to state-of-the-art grasp
detection methods. Furthermore, our method demonstrates promising practical viability through real robot
grasping experiments, achieving an impressive 84% success rate.

INDEX TERMS Pose estimation, robot vision systems, intelligent systems, deep learning, supervised
learning, machine vision.

I. INTRODUCTION
Grasp configuration generation is a pivotal aspect of robotic
manipulation, with vision-based methodologies serving as
key contributors to addressing this intricate challenge [1], [2],
[3]. While model-based grasp generation has been prevalent,
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its limitations become increasingly apparent, particularly
when dealing with unknown objects [4], [5], [6]. The
reliance on pre-defined 3D models and grasp databases
presents significant constraints in real-world scenarios where
robots encounter diverse, unmodeled objects. Conventionally,
model-based grasp generation methods follow a two-step
process. Firstly, a 6D object pose estimation algorithm
is employed to align a Computer-Aided Design (CAD)
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model with measured data, providing an understanding
of the object’s spatial orientation. Subsequently, grasps
are selected from a pre-computed database based on this
alignment. However, these approaches face challenges when
synthesizing grasps for unknown objects, as they presuppose
the availability of a 3D model and a pre-defined grasp
database [5].

An alternative approach to grasp configuration generation,
also referred to as grasp detection, involves deriving grasp
configurations directly from sensor data, without presuming
knowledge of the object’s 3D model or relying on pre-
computed grasps. This methodology is commonly referred to
as grasp generation or grasp detection [2], [3], [7]. Current
methods within this domain can be broadly categorized into
two groups: planar grasping and six Degrees of Freedom (6)-
DoF) grasping. Planar grasping employs a straightforward yet
effective representation, defining grasps in terms of oriented
bounding boxes [8], [9]. This low degree of freedom (DoF)
representation simplifies the task into a detection problem but
may limit performance in more complex 3D manipulation
tasks. On the other hand, 6-DoF grasping provides greater
dexterity and is more suitable for handling intricate scenar-
ios [2], [10]. However, the accurate generation of 6-DoF
grasps often requires geometric information, leading many
existing methods to depend on 3D point cloud data.

While grasp generation methods utilizing point clouds
have shown progress, they still face significant challenges
in cluttered scenes due to lack of visual cues [5], [7], [11].
Without RGB information, these methods may struggle to
distinguish between objects with similar depth profiles but
different visual appearances. This limitation can result in
difficulty differentiating between objects of interest and back-
ground clutter, leading to inaccurate grasp point detection.
RGB information can provide additional contextual informa-
tion about object texture, color, and shape, which can improve
the robustness and reliability of grasp detection algorithms.
To address the limitations associated with using either depth
or RGB data alone, many researchers have turned to methods
that leverage both modalities simultaneously [12], [13], [14],
[15]. By combining depth and RGB information, these
approaches aim to exploit the complementary strengths of
each modality while mitigating their respective weaknesses.
This integration of multiple modalities has led to significant
advancements in various computer vision tasks [16], [17],
[18], [19], including grasp detection [20], [21]. However,
existing approaches require complex multi-stage processing,
which can be time-consuming and computationally intensive.
In addition, the RGBD methods typically rely on specialized
hardware like depth cameras or stereo camera setups [16],
[22]. This dependency on specific hardware can limit the
accessibility and scalability of these methods. In contrast,
acquiring only RGB images is a more cost-effective and
straightforward approach compared to obtaining RGBD
data. The potential of leveraging RGB images for grasp
detection offers several advantages. Firstly, RGB cameras

are more commonly available and less expensive than
depth sensors, making them more accessible for various
applications. Secondly, deep learning techniques have shown
effectiveness in depth estimation from RGB data as well as
understanding and interpreting RGB images [23], [24], which
can be leveraged for grasp detection tasks. Exploring grasp
detection from RGB images and predicted depth data opens
up new avenues for research and development in robotics
and automation. However, grasp detection from RGB images
with depth estimation remains largely unexplored. Current
RGBD fusion methods [13], [14], designed for integrating
data from depth sensors, may not be directly applicable to
predicted depth maps generated from RGB images using
depth estimation algorithms. Predicted depth maps may
suffer from inaccuracies or noise introduced during the depth
estimation process, leading to discrepancies with true depth
values. Additionally, these maps may exhibit different noise
characteristics compared to depth data obtained from sensors.
For example, depth estimation algorithms may introduce
specific types of noise or artifacts not present in sensor
data, posing challenges for existing RGBD fusion methods.
Addressing these challenges requires the development of
novel fusion techniques specifically tailored to handle the
characteristics and noise patterns associated with predicted
depth maps, thereby enabling more effective grasp detection
from RGB images with depth estimation.

This study introduces a deep learning framework designed
for model-free 6-DoF grasping, exclusively relying on an
RGB image for accurate grasp estimation, building upon
our previous work VoteGrasp [2]. While VoteGrasp achieved
promising results with its voting module, it suffered from
limitations due to the absence of appearance information.
In contrast to VoteGrasp, which relies solely on 3D point
cloud data, our proposed method integrates both color and
depth images to extract discriminative features and generate
collision-free grasps. Figure 1 illustrates the distinctions
between the proposed approach, VoteGrasp, and conventional
methods. The key components of our developed system
include depth estimation, attention-based adaptive fusion
utilizing visual-guided 3D geometric feature learning (VGG)
and geometric-guided visual feature learning (GGV), and
voting-based grasp generation. While the voting module is
adapted from VoteGrasp, the other components are novel.
To extract essential geometric information for prediction,
we leverage recent advancements in monocular depth esti-
mation to generate 3D point clouds. Notably, this represents
the first deep learning network utilizing 3D point clouds
derived from estimated depth maps for grasp generation.
Given an RGB image and a predicted 3D point cloud, our
proposed method incorporates adaptive fusion modules to
extract discriminative features. We facilitate bidirectional
information flow through VGG and GGV modules, enabling
mutual utilization of local and global information and
enhancing the representation learning process for both
branches. We evaluate the proposed method on both a
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FIGURE 1. Comparison between the proposed approach and
conventional methods, as well as our previous work, VoteGrasp [2].

standard dataset and in a real robot grasping application. The
results showcase that, even when utilizing only RGB images
with estimated depth maps, our approach outperforms state-
of-the-art methods that rely on depth images from sensors.

The key contributions of this study include:

• Innovative Grasp Detection Network: We present a
deep learning network designed specifically for grasp
detection, leveraging estimated depth maps alongside
RGB images, thus eliminating the reliance on measured
depth images.

• Attention-Based Adaptive Fusion: We introduce an
attention-based adaptive fusion technique that incor-
porates visual-guided 3D geometric feature learning
(VGG) and geometric-guided visual feature learning
(GVV), enhancing the robustness and accuracy of our
model.

• Voting-Based Framework: We integrate our adaptive
fusion module with the voting-based grasp generation
module from VoteGrasp to enhance resilience to noise
and occlusion. This framework effectively improves the
system’s robustness in cluttered scenes with multiple
objects.

• Performance: Through extensive experimentation on a
publicly available dataset [3], our proposed approach

TABLE 1. Vision-based grasp detection methods.

consistently outperforms state-of-the-art methods. Fur-
thermore, we validate its practical applicability by
integrating the system with real robot platforms and
conducting successful grasping experiments.

The remainder of this article is organized as fol-
lows: Section II, Related Work, provides an overview of
Learning-based Grasp Generation (II.A), Monocular Depth
Estimation (II.B), and RGBD Fusion (II.C). In Section III,
Methodology, we introduce the proposed framework. This
includesDepth Estimation (III.A) and details our innovations:
the Attention-based Adaptive Fusion Network (III.B) incor-
porating Visual-Guided 3D Geometric Feature Learning and
Geometric-Guided Visual Feature Learning, as well as the
Voting-based Grasp Generation (III.C) approach. Section IV,
Evaluation, includes Dataset (IV.A) and the Implementation
Details subsection (IV.B), discussing the technical specifics
of our methods. The Evaluation on GraspNet-1Billion (IV.C)
subsection presents the results and analysis based on the
GraspNet-1Billion dataset. Finally, the Robotic Grasping
Experiment (IV.D) subsection provides insights derived from
real-world experiments in robotic grasping. Lastly, SectionV,
Conclusions, provides a summary of the key contributions
and findings presented in this article. It also outlines potential
avenues for future research, paving the way for further
advancements.

II. RELATED WORK
In this section, we review relevant works, specifically
focusing on existing vision-based grasp detection methods,
monocular depth estimation, and RGBD fusion.

A. VISION-BASED GRASP DETECTION
Vision-based grasp detection for robot manipulation refers
to the use of visual information, typically obtained from
cameras or other imaging devices, to identify suitable grasp
poses on objects [7], [9], [10]. The goal is to enable a
robot to autonomously plan and execute grasping actions
with precision. Table 1 provides a comparative overview of
various vision-based grasp detection methods, highlighting
their utilization of RGB and depth information, ability
to estimate 6-DoF grasp poses, and whether they offer
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end-to-end learning. Earlier approaches [31], [32] assumed
complete 2D or 3D object knowledge or simplified objects as
primitive shapes, facing limitations in obtaining accurate 3D
models. Learning-based methods have emerged, leveraging
large-scale data and automated feature extraction. Some
initially focused on 4-DoF grasp poses on the camera plane,
referred to as top-down grasping [8], [9], [26]. However, this
approach restricts degrees of freedom and may miss crucial
grasp poses, especially those along object edges. In contrast,
6-DoF grasp poses offer increased flexibility and complexity,
allowing grasping from various directions [7], [10], [11],
[25]. They necessitate six parameters to define location and
rotation, with the potential inclusion of additional degrees
of freedom, such as gripper width or height. Learning-
based grasp generation can be categorized into two primary
algorithmic methodologies for grasp synthesis: grasp pose
sampling and direct regression of grasp pose. Sampling-based
approaches, like GPD [7] and PointNetGPD [11], evaluate
individual grasp samples. However, despite dense sampling,
they struggle in regions like the rims of objects where
surface normals estimation is unreliable. Some methods,
such as Redmon and Angelova [25], sample wrist angles
independently, while others, like Kokic et al. [27], sample
grasp, roll angles, and offset distances. These approaches
often trade computation time for generated grasp poses,
resulting in limited poses per scene and a focus on local
object features. Direct regression methods, exemplified by
Schmidt et al. [28] and Yang et al. [29], predict grasp
poses or transformation matrices directly from visual data,
processing information holistically. Yet, approaches like
GraspNet [3] and PointNet++ [30], utilizing entire scene
point clouds, lack consideration for inter-object relationships,
limiting performance in cluttered scenes and under occlusion.
To overcome these limitations, our previous work [2]
leveraged a voting mechanism and contextual information to
directly generate grasp configurations from 3D point clouds,
addressing challenges in occlusion common in manipulation.
The proposed method presented in this study builds upon our
prior research [2]. However, instead of exclusively relying on
3D data from depth sensors, we investigate the utilization of
both color and depth images for grasp detection. Especially,
we incorporate depth images estimated from a monocular
depth estimation framework, eliminating the need for depth
sensors while enhancing the robustness and versatility of our
approach.

B. MONOCULAR DEPTH ESTIMATION
Monocular Depth Estimation (MDE) is a crucial computer
vision task that involves predicting the depth information
of a scene using a single 2D image captured by a
monocular camera. Accurate depth information is paramount
for comprehending the three-dimensional structure of a
scene. The origins of monocular depth estimation can be
traced back to pioneering work by Saxena et al. [33],
[34], which utilized hand-engineered features and Markov

Random Fields (MRF). The landscape of depth estimation
underwent a revolutionary transformation with the advent of
deep learning, notably led by Eigen et al. [35]. However,
challenges arise in learned depth regression during the
decoder phase, as fine details may be lost in successive
convolution layers of neural networks. Addressing this issue,
[36] introduced multi-scale networks to predict depth at
various resolutions, while Laina et al. [37] enhanced a ResNet
architecture with improved up-sampling blocks to mitigate
information loss. Xu et al. [38] combined deep learning with
conditional random fields (CRF) for feature fusion at dif-
ferent scales. Another research direction explored multitask
learning, incorporating simultaneous predictions of semantic
labels [39], depth edges, and normals [40], [41], [42] to refine
depth predictions. Kendall et al. [43] investigated the impact
of uncertainty estimation on scene understanding, while
Yin et al. [44] used surface geometry to estimate 3D point
clouds from predicted depth maps. Recent works, such as
that by Bhat et al., propose a classification-based formulation
for distance prediction. Chen et al. [45] integrated attention
blocks into the decoder, and Transformer-based architectures
gained traction [46], [47]. The estimation of depth is a
pivotal component in understanding geometric relations
within a scene. This understanding contributes to richer
representations of objects and their environment, leading
to improvements in existing recognition tasks and enabling
diverse applications, including 3D modeling, physics and
support models, robotics, and reasoning about occlusions.
In this study, we explore how monocular depth estimation
can enhance the performance of grasp detection for robot
manipulation.

C. RGBD FUSION
In recent years, there has been significant attention given
to RGBD feature fusion, particularly in the domains of
semantic segmentation [50], [51], [52], [53] and autonomous
driving [54], [55], [56], [57], [58]. Chen et al. [50] introduced
a unified cross-modality guided encoder for recalibrating
RGB feature responses and distilling depth information
across multiple stages. The innovative separation-and-
aggregation gating operation jointly filters and recalibrates
both representations before cross-modality aggregation. The
fusion module serves the dual purpose of propagating and
fusing information between modalities while preserving their
specificity throughout the long-term propagation process.
In [51], depth features are fused into the RGB encoder at
each of the five resolution stages. Leveraging a Squeeze and
Excitation (SE) module, features from both modalities are
reweighted and then summed element-wise. This channel
attention mechanism enables the model to learn which
features to focus on and which to suppress based on the
input, leading to notable improvements in segmentation.
Wang et al. [52] proposed TokenFusion, a multimodal token
fusion method tailored for transformer-based vision tasks.
TokenFusion dynamically identifies uninformative tokens
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FIGURE 2. Network Architecture Overview: The diagram highlights the essential components of our network, encompassing monocular depth
estimation, a 2D backbone (ResNet [48]), a 3D backbone (PointNet++ [49]), geometric-guided visual feature learning (VGG), visual-guided 3D
geometric feature learning (GGV), and voting-based grasp generation [2].

and substitutes them with projected and aggregated inter-
modal features. Residual positional alignment is incor-
porated to explicitly utilize inter-modal alignments post-
fusion. TokenFusion’s design allows the transformer to learn
correlations among multimodal features while maintaining
the largely intact structure of the single-modal transformer
architecture. Addressing the limitation of fusion quality due
to the sparsity of Light Detection and Ranging (LiDAR)
points, Bai et al. [54] introduced a LiDAR-Camera fusion
module. Instead of fetching a limited number of image
features based on the hard association between LiDAR
points and image pixels, this module retains all image
features in a memory bank. The cross-attention mechanism
in the transformer decoder then performs sparse-to-dense
and adaptive feature fusion. Chen et al. [55] developed
a cross-domain DeformCAFA module to tackle the com-
putational cost issue introduced by global-wise attention
networks. Similarly, [56], [57], [58] proposed camera-LiDAR
fusion architectures to bridge the gap between feature
representations of cameras and 3D point cloud data. Building
on the motivation from these works [50], [51], we intro-
duce a bi-directional multi-step fusion network with an
attention mechanism to enhance RGB and geometry feature
representation.

III. METHODOLOGY
Let E denote the environment, encompassing the robot
and objects, and s(E, I,G,G) represent a binary variable
indicating grasp success or failure. Here, G represents the
Grasp Pose defined by a tuple G = (x, y, z, rx, ry, rz,w),
where x, y, and z denote the translation of the gripper, while
rx, ry, and rz denote the rotation, and w denotes the width
accordingly. I = (Iv, Id ) stands for the RGBD Image. Here,
Iv = R3×H×W denotes the RGB image, and Id = RH×W

denotes the depth map. For simplicity, we consider only the
most common parallel-jaw gripper, with its configuration
G defined by a tuple: G = (h, l,wmax), where h, l, and
wmax represent the height, length, and maximum width of the
gripper, respectively.

Given an RGBD image I and a gripper configuration G,
our objective is to determine a set of grasp poses G =

{G1,G2, . . . ,Gm} that maximizes the grasp success rate,
with m being a fixed parameter. This entails our algorithm
predicting a diverse array of grasp poses to adequately cover
the scene, providing multiple candidates for grasp execution.
It’s important to note that instead of directly capturing
depth data from a sensor, we assume the availability of
predicted depth maps from off-the-shelf depth estimation
frameworks. To enhance the reliability of the predicted depth
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FIGURE 3. Examples of input RGB images, depth maps predicted by
DPT [46] and iDisc [59], and 3D point cloud extracted from predicted
depth maps.

data, we perform depth refinement before feeding it into our
network.

Figure 2 provides an overview of our proposed method.
The key components include depth estimation, attention-
based adaptive fusion incorporating visual-guided 3D geo-
metric feature learning (VGG) and geometric-guided visual
feature learning (GVV), and voting-based grasp generation.
The synergy among these components enhances feature
discriminability and robustness, resulting in more accurate
and efficient grasp pose generation. In the subsequent
sections, we provide a comprehensive explanation of each
component.

A. DEPTH ESTIMATION
Monocular depth estimation, the task of predicting the
depth of a scene from a single 2D image, has seen
significant advancements in recent years [23]. However,
many existing methods are designed with a focus on
large outdoor scenes [24], [46], [59], [60], making them
less suitable for smaller objects intended for manipulation.
Inspired by Kim et al.’s work [61], where they introduced a
mask-guided depth refinement method using generic masks,
we recognize the importance of refining depth predictions
to attain higher accuracy in robotic grasping tasks. However,
their method’s reliance on high-quality masks for refinement
introduces limitations, as the refinement performance is
inherently constrained by the quality of the mask. Moreover,
the integration of their method into our system presents
complexities that may compromise real-world deployment
due to increased computational overhead. To address these
challenges, we introduce an uncertainty-based depth refine-

ment approach. This method is simpler yet effective, focusing
on enhancing depth information for robotic grasping tasks
without compromising computational efficiency.We leverage
two distinct depth estimation networks, DPT [46] and
iDisc [59], to generate individual depth images denoted as
D1 andD2, respectively. By calculating the disparity between
these images, we can identify regions with significant
differences beyond a predefined threshold τ as uncertain
areas. Our approach involves excluding these uncertain
regions from the depth images and replacing the depth
values within other areas with their mean values. Specifically,
we first compute the disparity between the two depth images:

δ(x, y) = |D1(x, y) − D2(x, y)| (1)

Subsequently, we compute the mean depth values:

D(x, y) =
D1(x, y) + D2(x, y)

2
(2)

Afterwards, we replace depth values in certain regions with
the mean depth, ensuring a more robust and accurate depth
image:

Id (x, y) =

{
D(x, y) if δ(x, y) < τ

NaN if otherwise
(3)

Through this refinement process, we aim to enhance depth
information specifically for scenes in robot manipulation
application, resulting in an improved andmore accurate depth
image denoted as Id . Examples of estimated depth maps and
3D point clouds extracted from Id are showcased in Figure 3.

B. ATTENTION-BASED ADAPTIVE FUSION NETWORK
Given an RGB image Iv and an estimated depth map Id,
our initial step involves transforming the depth image Id
into a point cloud P using the camera intrinsic matrix.
Subsequently, we utilize ResNet34 [48] for extracting
visual features Fvis from the RGB image and PointNet++

[49] for obtaining geometric features Fgeo from the point
cloud P. These networks enable bidirectional information
flow through Visual-Guided Geometric Feature Learning
(VGG) and Geometric-Guided Visual Feature Learning
(GGV) modules, facilitating mutual utilization of local and
global information. This enhances the representation learning
process for both branches.

1) VISUAL-GUIDED 3D GEOMETRIC FEATURE LEARNING
To integrate visual information from F i

vis into geometric
features F i

geo in the i-th stage, we introduce a novel
Visual-Guided Geometric Feature Learning (VGG) module.
Rather than globally compressing the RGB feature map and
potentially losing intricate details, we utilize the aligned
RGBD image. Each pixel’s depth contributes to deriving its
corresponding 3D point, establishing an XYZ map aligned
with the RGB map. For every geometric feature paired with
its 3D point coordinate, we retrieve visual features from
Fvis by projecting its neighborhood, with a radius r1, onto
the image. Subsequently, we sample the k1 nearest neighbor
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pixels within this region, gathering their visual features.
In cases where fewer than k1 pixels exist in the corresponding
region, null features are padded. These collected visual
features are integrated using max pooling and processed
through Multi-Layer Perceptrons (MLPs) to match their
channel size with the point cloud feature. This stage produces
modified visual features F ′

vis. Subsequently, we concatenate
the integrated visual featuresF ′

vis with the geometric features
F i
geo and apply a shared MLP to obtain the fused geometric

featureF fus
geo. Consequently, the network enrichesN 3D points

with high-dimensional features, denoted as P = {pi}Ni=1 and
F fus
geo = {fi}Ni=1, where pi = [xi; fi]. Here, xi ∈ R3 signifies the

point’s location in 3D space, and fi represents the associated
feature vector. The enriched points {pi}Ni=1, now imbued with
the fused features, are then inputted into our self-attention
module to enhance the featuresFei

geo. In accordance with [62],
[63], the self-attention module is defined as follows:

yi =

∑
pj∈P(i)

(α(γ (pi, pj) + δ) ⊙ β(pj)) (4)

P(i) ⊆ P refers to a set of points in the local neighborhood
of pi. α, γ, δ, and β signify a mapping function, a relation
function, a position encoding function, and pointwise feature
transformation, respectively. The relation function γ uses
subtraction to output a vector representing the features of pi
and pj:

γ (pi, pj) = ϕ(pi) − ψ(pj) (5)

Here, ϕ and ψ represent trainable transformations using
multilayer perceptrons (MLPs). The mapping function α is
an MLP with two linear layers and one ReLU nonlinearity,
allowing the module to compute attention weights spatially
and across channels while maintaining computational effi-
ciency. To adapt to local data structures, we introduce spatial
context using a trainable and parameterized position encoding
function δ:

δ = φ(xi − xj) (6)

xi and xj denote the 3D point coordinates for points i and j,
respectively. The encoding function φ is an MLP with two
linear layers and one ReLU nonlinearity.

2) GEOMETRIC-GUIDED VISUAL FEATURE LEARNING
TheGeometric-GuidedVisual Feature Learning (GGV)mod-
ule provides an alternative approach to integrating geometric
information from F i

geo into visual features F i
vis during the

i-th stage. Rather than naively concatenating global point
features, this module densely fuses features by identifying
k2 nearest points for each pixel from the point cloud,
collecting corresponding point features, and integrating them
via max pooling to produce F ′

geo. These features are then
passed through a spatial attention block Msa1 [64]. This
mechanism is designed to discern informative regions,
eliminating redundant geometric-guided features that may

arise from noise or irrelevant areas, thereby facilitating amore
effective integration with the visual features F i

vis. The block
utilizes average-pooling to highlight informative regions,
resulting in Favg

geo ∈ RW×H . Subsequently, Favg
vis undergoes

a k × k filter convolution and normalization via the sigmoid
function. The output, denoted asMsa1(F i

geo), is then element-
wise multiplied with the original geometric features, F i

geo,
to acquire the initial enhanced geometric-guided features,
F sa
geo. The summarized attention process is illustrated as:

Msa1(F i
geo) = σ (f k×k (AvgPool(F i

geo)) (7)

F sa
geo = Msa1(F i

geo) ⊗ F i
geo (8)

Here, ⊗ denotes element-wise multiplication, σ represents
the sigmoid function, and f k×k denotes a convolution
operation utilizing a k × k filter. We empirically chose
k = 7 following the setting in [64]. Subsequently, F sa

geo is
integrated with the visual features F i

vis through element-wise
summation to produce the fused features F fus

vis :

F fus
vis = F i

vis ⊕ F sa
geo (9)

where ⊕ signifies element-wise summation. To further refine
the fused features F fus

vis , a channel attention block Mca [65]
is introduced. This block utilizes global average pooling
to reduce each feature map within F fus

vis to a single pixel,
generating a 1D vector of length C . The vector undergoes
an MLP network with a hidden layer and sigmoid activation,
followed by element-wise multiplication with F fus

vis . This
process recalibrates the feature responses, accentuating
important channels while suppressing less relevant ones. The
output ofMca, denoted as Fc

vis, can be summarized as:

Mca(F fus
vis ) = σ (MLP(AvgPool(F fus

vis )) (10)

Fc
vis = Mca(F fus

vis ) ⊗ F fus
vis (11)

Moreover, Fc
vis undergoes re-weighting by another spatial

attention block, Msa2, with components akin to Msa1,
producing Fcs

vis. Finally, F
cs
vis is integrated with the visual

features Fvis through element-wise summation, yielding the
enhanced feature representation Fei

vis.

3) FUSION
Following bidirectional fusion in both VGG and GGV
modules, distinct features are extracted by the visual and
geometric branches. To generate reliable correspondences
and obtain more distinctive features, a simple undirected
fusion is performed in the final stage. By projecting each
point to the image plane with the camera intrinsic matrix,
correspondences between visual and geometry features are
established. These pairs are concatenated to form the
extracted dense fused feature F , subsequently utilized in the
voting-based grasp generation module in the subsequent step.

C. VOTING-BASED GRASP GENERATION
Given the extracted dense fused feature F = {fi}, we predict
grasp poses using the voting-based grasp generation module
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in our previous work [10]. Each grasp comprises a center
point p ∈ R3, a gripper orientation R ∈ SO(3), a gripper
width w ∈ R, and a grasp score q ∈ [0, 1]. We generate
M seeds {si}Mi=1, where each seed si = [xi, f si ] holds the 3D
spatial location xi ∈ R3 and the corresponding feature vector
f si ∈ RF . Processing these seeds through an MLP computes
J votes {{vij = [yij; f vij ] ∈ R3+F

}
M
i=1}

J
j=1, leveraging fully

connected layers, ReLU activation, and batch normalization.
Each vote vij comprises a 3D point yij close to a grasp center
in Euclidean space and a F-dimensional feature vector f vij .
Clustering the votes via uniform sampling and Euclidean
distance identifies K votes {vk}Kk=1. Using iterative farthest
point sampling (FPS) based on {yi}, K clusters form from the
sampled votes, employing a ball query to gather votes within
a set radius of the query vote vk .

To achieve collision-free grasps in complex environ-
ments, comprehending object relationships and contextual
cues within features is essential. Our VoteNet integrates
a contextual module inspired by self-attention models.
It utilizes an MLP and max-pooling to process cluster
votes, aggregating into f ck ∈ RF ′

. These vectors compile
into a map f c = [f c1 ; f c2 ; . . . ; f cK ] ∈ RK×F ′

, fostering
inter-cluster feature communication, significantly enhancing
grasp detection performance.

Following the computation of the contextual feature map,
our model employs an MLP network to detect a ranked list
of grasps G = (p,R,w, q). The prediction layer includes
5 + V + 2A channels: 3 for grasp center regression values,
1 for gripper width regression value, 1 for grasp confidence
regression value, V for viewpoint scores, and A each for
angle scores and angle residual regression values for in-plane
rotation. Here, V and A represent the numbers of sampled
viewpoints and in-plane rotations, respectively.
Loss Function: The learning of modules is supervised

jointly using a multi-task loss:

L = λ1Lvote + λ2Lgrasp (12)

The voting loss Lvote is a regression loss formulated as:

Lvote =
1
Ms

∑
i

∥yi − cgi ∥H · 1(xi) (13)

Here,Ms represents the total number of seed points on the
object surface, cgi is the closest ground truth grasp center,
∥·∥H denotes the Huber norm, and 1(·) is a binary function
determining whether a seed point si belongs to an object.
The grasp loss function Lgrasp is defined as:

Lgrasp = Lcenter + αLrot + βLwidth + γLscore (14)

The Lgrasp comprises losses for grasp center regression
(Lcenter ), rotation (Lrot ), gripper width regression (Lwidth), and
grasp confidence score regression (Lscore). The grasp center
loss includes viewpoint classification loss (Lviewpoint ) and
in-plane rotation loss (Lin−plane), which consists of classifica-
tion (Langle−cls) and regression (Langle−reg) losses. Regression
losses employ L1-smooth loss, while classification losses use
standard cross-entropy loss [10].

FIGURE 4. Learning curves of our model trainning on GraspNet-1Billion
dataset [3].

With the loss function L in Eq. 12, our network training
becomes independent of object category labels. This unique
feature empowers the trained model to generate grasp
configurations seamlessly, even in the absence of object
category information during inference, thus enhancing its
generalization to novel objects. However, real-world scenar-
ios often involve specific target objects-items that robots
are anticipated to manipulate in predefined ways or tasks.
Such target objects may include items on a production line
requiring sorting or assembly, or household objects needing
precise picking and relocation. To effectively handle this
challenge, we propose a modification that incorporates an
additional loss function tailored for grasping target objects,
defined as follows:

L = λ1Lvote + λ2Lgrasp + λ3Lsem (15)

The semantic classification loss,Lsem, utilizes cross-entropy
for NC classes. When extended to target objects, this
adaptation allows the model to generate grasp configurations
for specific objects without the necessity of explicit object
detection or pose estimation. Here, NC corresponds to
the number of classes for known objects. The semantic
classification loss, expressed through cross-entropy, is given
by:

Lsem =

NC∑
i=1

qilog(q̂i) (16)

where qi represents the true probability of the grasp belonging
to object class i (ground truth), and q̂i is the predicted
probability for the same class.

IV. EVALUATION
To assess the efficacy of our vision-based grasp detection
system, we conduct evaluations on a publicly available
dataset [3]. Additionally, we integrate the system with real
robot platforms and perform grasping experiments to validate
its performance in practical scenarios.We chose theGraspNet
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TABLE 2. Layer parameters of PointNet++ [49] based feature learning
network.

dataset [3] for several reasons. Firstly, GraspNet is widely
utilized in recent studies, enabling direct comparisons with
state-of-the-art methods. Secondly, it offers an extensive
collection of diverse objects, encompassing variations in
shape, size, and material properties. Thirdly, the dataset
provides rich annotations and labels, including grasp points
and object attributes, essential for training and evaluating
our algorithm effectively. Furthermore, GraspNet features
real-world scenes, capturing environmental complexities
and occlusions commonly encountered in practical robotic
applications. Lastly, its availability to the public promotes
collaboration within the research community, facilitating
advancements in robotic grasping technology.

A. DATASET
We conduct evaluations and comparisons on the publicly
available GraspNet-1Billion dataset [3]. This dataset consists
of 97,280 RGBD images captured in 190 cluttered scenes,
offering a vast repository of over one billion grasp poses for
88 distinct objects. The objects in these scenes vary in shape,
texture, size, material, and occlusion conditions, presenting
an ideal benchmark to gauge our model’s generalization
capacity and robustness in the face of occlusions. Each
object in the dataset is annotated with an accurate 3D
mesh model, camera poses, 6D object poses, object masks,
and bounding boxes for all frames. This rich annotation
enables the straightforward generation of ground truth votes
and grasp configurations. Following [3], we partitioned the
dataset into distinct training and testing sets. Specifically,
100 scenes were designated for training purposes, while the
remaining 90 scenes were set aside for testing. To further
assess themodel’s generalizability, the test dataset is stratified
into subsets: scenes featuring novel objects, scenes with
previously unseen yet similar objects, and scenes containing
objects encountered during training. This deliberate partition-
ing allows for a comprehensive evaluation of our model’s
performance across a spectrum of diverse scenarios.

B. IMPLEMENTATION DETAILS
In our implementation, we utilize a pre-trained ResNet34
model, pretrained on the ImageNet dataset, as the encoder
for RGB images. The output appearance feature from
this architecture comprises 256 channels. For point cloud
feature extraction, we randomly sample 12,288 points from
depth images and employ a PointNet++ [49]-based feature
learning network, which also yields a 256-channel output.

The detailed layer parameters of PointNet++ [49] are
presented in Table 2. In the voting and context learning
modules, we form K = 128 clusters, producing a new feature
map Fcontext ∈ 128 × 512. Subsequently, 128 grasps are
generated from this new feature map. The prediction layer
comprises 5 + V + 2A channels, with V = 120 and A = 6.
We set λ1 = λ2 = 1.0 and α = β = γ = 1.0. Our network
is trained entirely using a batch size of 8 and optimized with
Adam, employing a learning rate of 0.001 for 200 epochs.
Training on a single Nvidia GeForce RTX 2080 Ti 11GB
GPU takes approximately 20 hours. Figure 4 shows learning
curves.

C. EVALUATION ON GRASPNET-1BILLION
Evaluation metric: We adopt Precision@k [3] as a key
measure to evaluate the accuracy of our predicted grasp poses,
particularly focusing on the top-ranked predictions. For each
predicted grasp poseGi, we determine its correctness by asso-
ciating it with the target object based on the point cloud inside
the gripper and considering the force-closure metric [72]
under different friction coefficientsµ.Precision@k measures
the precision of the top-k ranked grasps. It quantifies the
ratio of correct grasps among the top-k predicted grasps.
To compute Precision@k , we rank the predicted grasp
poses based on their confidence scores, select the top-k
ranked grasp poses, and evaluate the precision of these
top-k grasps by determining the proportion of true positive
grasps among them. To provide a comprehensive evaluation,
we compute the Average Precision@k (APk ) across a range
of values for k , specifically ranging from 1 to 50. The APk
metric is crucial for assessing the accuracy of our grasp
detection algorithm in cluttered scenes, where prioritizing
the precision of top-ranked grasps is essential for successful
robotic manipulation. We report the results of APk in
our experimental evaluation, including comparisons across
different scenarios and friction coefficients µ, allowing us to
demonstrate the robustness and effectiveness of our 6-DoF
grasp detection approach.

Figures 5, 6 and 7 show some qualitative results from the
baseline VoteGrasp [2] and the proposed method. Tables 3
and 4 demonstrate the performance comparison between
our approach and state-of-the-art methods [1], [1], [3],
[7], [11], [12], [66], [68], [69], [71]. We have chosen
to compare our method with these particular approaches
because they are considered state-of-the-art in vision-based
robot grasping. Their implementations are publicly available.
Additionally, all of these methods are capable of generating
grasp configurations suitable for a parallel-jaw gripper, which
aligns with the focus of our research. By benchmarking
our approach against these established methods, we aim
to provide a comprehensive evaluation of its performance
and demonstrate its effectiveness in comparison to existing
state-of-the-art techniques. For a fair comparison, we re-
implemented and re-trained each method using the provided
code and settings from their original papers. The table
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FIGURE 5. Examples of input scenes and predicted grasps from VoteGrasp [2] and the proposed method. Grasps are color-coded using an RGB
scale, with red indicating lower confidence or quality and green indicating higher confidence or quality. Performance disparities between VoteGrasp
and the proposed method are discernible, showcasing contrasting performance in equivalent scenarios.

TABLE 3. The table shows the results on GraspNet-1Billion test set captured by RealSense sensors.

showcases the evaluation outcomes categorized into ‘‘Seen,’’
‘‘Unseen (but similar),’’ and ‘‘Novel’’ objects, aiding in
assessing the model’s generalization capability.

For the RealSense sensor data, our method consistently
outperforms existing approaches across all evaluation met-
rics. Notably, our approach achieves an impressive Average
Precision (AP) of 38.5 for seen objects, 37.2 for unseen
(but similar) objects, and 21.5 for novel objects. These
results surpass the performance of the baseline method
VoteGrasp [2] in all categories, showcasing the efficacy of
the proposed enhancements. When considering precision at

various thresholds (AP0.8, AP0.6, and AP0.4), our method
consistently maintains superior performance, indicating its
ability to generate more accurate and reliable grasps across
different scenarios.

Similar trends are observed in the evaluation results
for the Kinect sensor data. Our method outshines existing
approaches, including the baselinemethod, across all metrics.
The AP values for seen, unseen (but similar), and novel
objects are 39.2, 38.0, and 21.2, respectively, demonstrat-
ing the robustness and generalization capabilities of our
approach. The precision at various overlap thresholds further

65050 VOLUME 12, 2024



P. X. Tan et al.: Attention-Based Grasp Detection With Monocular Depth Estimation

TABLE 4. The table shows the results on GraspNet-1Billion test set captured by Kinect sensors.

FIGURE 6. An illustrative example highlighting the performance disparity
between our proposed method and the baseline approach. In this
scenario, the presence of tape inside the bowl complicates object
distinction. VoteGrasp, lacking color information, fails to generate grasps
for the tape, whereas our method, leveraging fusion of appearance and
geometry information, comprehends the contextual cues and successfully
generates grasps for both objects.

reinforces the effectiveness of our method in generating
high-quality grasps. With AP0.8, AP0.6, and AP0.4 values
consistently surpassing those of other methods, our approach
excels in providing grasps that exhibit strong alignment with
ground truth annotations.

These results suggest that the proposed method not only
achieves superior performance on familiar objects but also
demonstrates a remarkable ability to generalize to unseen
and novel objects. The inclusion of advanced feature learning
components in our methodology contributes to its success
in generating accurate and robust grasps across diverse
scenarios.
Inference Time: Our experiments were conducted on an

Intel Xeon E-2716G CPU clocked at 3.7 GHz, paired with
an Nvidia GeForce RTX 2080 Ti GPU featuring 11GB of
memory. The runtime analysis of all evaluated methods is
graphically represented in Figure 8. Our approach achieves
a runtime of 100 ms per RGBD image. This fine balance

FIGURE 7. An illustrative example showcasing the performance contrast
between our proposed method and the baseline approach. In this
scenario, the highlighted objects are closely clustered together, making it
challenging for baseline methods to generate high-quality grasps due to
the proximity and occlusion. Our method, however, adeptly leverages
fusion of appearance and geometry information to provide reliable
grasps even in complex scenarios, demonstrating its superior
performance in handling close proximity and occlusion challenges.

TABLE 5. Ablation study on the GraspNet-1Billion test set captured by
RealSense and Kinect sensors. Performance comparison includes our
method without Visual-Guided 3D Geometric Feature Learning (Ours
(-VGG)), our method without Geometric-Guided Visual Feature Learning
(Ours (-GGV)), our method with all components enabled (Ours (Full)), and
our previous work with the same voting module [2] (VoteGrasp).
Evaluation results are reported for seen, unseen (but similar), and novel
object categories with AP metric.

between accuracy and speed empowers our method to
proficiently generate grasp configurations in cluttered scenes,
rendering it well-suited for diverse real-world scenarios.

D. ABLATION STUDY
We conduct an ablation study on the GraspNet-1Billion
test set, captured using RealSense and Kinect sensors,
to assess the impact of different components in our proposed
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FIGURE 8. Comparison of running speed (Hz) and AP on
GraspNet-1Billion dataset.

method. Table 5 presents the performance comparison across
various configurations. Our previous work, VoteGrasp [2],
achieved AP values of 36.0 for seen objects, 34.5 for unseen
(but similar) objects, and 17.3 for novel objects. In the
ablation study, Ours (-VGG) and Ours (-GGV) represent
our method without Visual-Guided 3D Geometric Feature
Learning and without Geometric-Guided Visual Feature
Learning, respectively. Ours (-VGG) reports AP values of
34.2, 32.7, and 14.6, while Ours (-GGV) reports values
of 33.7, 31.3, and 14.5 for seen, unseen (but similar), and
novel objects, respectively. The full configuration of our
method, Ours (Full), demonstrates superior performance
across all categories, achieving AP values of 38.7, 37.6,
and 21.3 for seen, unseen (but similar), and novel objects,
respectively. This emphasizes the synergistic effect of
integrating Visual-Guided 3D Geometric Feature Learning
and Geometric-Guided Visual Feature Learning, leading to
a more robust and effective grasp generation pipeline.

The distinctions between Ours (-VGG) and Ours (-GGV)
when compared to our complete approach Ours (Full) show-
case the significant impact of these modules.When excluding
the VGG module, the method lacks the ability to effectively
integrate RGB features, leading to a considerable reduction in
performance across all evaluation categories: Seen, Unseen
(but similar), and Novel objects. Similarly, without the GGV
module, the model fails to appropriately fuse depth-based
features, resulting in notable performance degradation in
grasp detection across the board. The performance drop in
both cases reaffirms the critical role played by these modules
in amalgamating complementary information from RGB
and depth data. It highlights their significance in capturing
nuanced visual cues from different sources, which are vital
for accurate and robust grasp detection. This clear decline
in performance underlines the necessity of the VGG and
GGV modules in our model’s architecture, demonstrating
their collective contribution to a more comprehensive under-
standing of the scene by integrating information from diverse

TABLE 6. Results of real robot experiments. The networks were trained
on the GraspNet-1Billion dataset. The table shows the number of
attempts, the number of successful attempts, and the grasp success rate.

modalities. The substantial discrepancy in results showcases
that these modules are not just supplementary but rather
pivotal components in leveraging the combined strengths
of RGB and depth information. Their absence leads to a
significant loss in the model’s ability to discern crucial
features necessary for precise grasp detection, emphasizing
the vital role of these fusion modules in enhancing the
model’s performance across various object scenarios.

E. ROBOTIC GRASPING EXPERIMENT
The experiments were conducted with a Franka Emika Panda
robot arm with 7-DOF, equipped with a parallel-jaw gripper
as shown in Figure 9. To capture RGBD data, we used either
ASUS Xtion PRO LIVE sensor or Microsoft Kinect sensor
v2. The whole system is implemented using the ROS and
MoveIt! frameworks.

To ensure a robust and comprehensive evaluation,
we implemented a series of carefully considered factors
to standardize experimental conditions and facilitate fair
comparisons among the tested grasp detection methods.
Firstly, we adopted a standardized object set comprising
various shapes, sizes, materials, and weights representative
of the objects commonly encountered in the robot’s intended
application domain. This consistent set of objects ensured
that each method was evaluated on a diverse range of manip-
ulation tasks, enhancing the validity of the comparisons.
In addition, we randomized the initial poses and orientations
of the objects in the scene for each trial. Objects were
placed in different configurations, including upright, tilted,
and partially occluded positions, to simulate the variability
of real-world scenarios. By randomizing object poses and
orientations, we introduced a degree of unpredictability that
closely mimicked the challenges encountered in practical
robotic manipulation tasks. Furthermore, we maintained
a consistent number of objects in each trial to ensure
comparability between different grasping methods. Whether
testing with a single object, multiple objects, or cluttered
scenes, the number of objects remained constant across
experiments, enabling fair assessments of performance.
Consistency in environmental conditions, including lighting,
background textures, and workspace cleanliness, was crucial
to maintaining experimental integrity. By ensuring these
factors remained constant throughout the experiments,
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FIGURE 9. Examples of input scenes and predicted grasps from VoteGrasp [2] and the proposed method. The different intensity of grasp color
denotes the confidence score of grasps. Green refers to the highest quality grasps and red refers to the lowest ones.

we minimized external influences that could impact the
robot’s perception and grasping performance. Moreover,
we kept the robot configuration, including arm configuration
and gripper type, consistent throughout the experiments. This
approach isolated the effect of grasping methods and enabled
direct comparisons between different approaches. To account
for variability and ensure statistical significance in the results,
we employed randomization and replication techniques. The
order of experiments was randomized, and each experiment
was replicated multiple times.

Specifically, we conducted a real-world evaluation of
state-of-the-art grasp detection methods, each trained on the
GraspNet-1Billion dataset for a fair comparison. Further-
more, we implemented measures to standardize the exper-
imental setup, including the careful selection of objects to
match the gripper’s shapes and sizes. This approach ensured
that each method encountered objects that were represen-
tative of real-world manipulation tasks, contributing to the
validity of the comparisons. Moreover, in each experimental
scenario, we deliberately arranged a random subset of 10-15
objects on the table in a haphazard manner. This arrangement
aimed to mimic the unpredictability and variability inherent
in real-world environments, thus providing a challenging yet
realistic testing scenario for the evaluated methods. By ran-
domizing the objects’ positions and orientations, we further
enhanced the fairness and robustness of the comparisons,
ensuring that each method faced similar challenges and
scenarios during evaluation. Throughout the experiments,
each method underwent 200 grasp attempts, with the robot
randomly selecting objects for interaction. A grasp was
considered successful only if the robot could grasp and lift
the object within a single attempt, reflecting the practical
requirement for efficient and reliable manipulation. This

strict evaluation criterion maintained consistency across the
experiments and enabled a clear assessment of each method’s
performance under real-world conditions. The results in
Table 6 demonstrate our method’s superiority, achieving an
84% success rate outperforming all other methods. This
highlights the proposed framework’s efficacy in real-world
grasping scenarios, attributing the increased success rate to
the integration of estimated depth data, underscoring the
significance of richer input data for precise and effective.

We further demonstrate the adaptability and ease of
modification that our new loss function (Eq. 15) brings
to our method in real-world applications, we conducted
experiments in which specific objects were designated for
robot manipulation. We performed 100 attempts at grasping
each of specified objects and recorded the success rates
as shown in Table 7. It is clear from the table that our
method outperforms state-of-the art model-based methods
also known as 6D object pose estimation. The results
suggest that the proposed approach for grasp generation is
more robust and generalizable than 6D pose-based grasp
generation methods, making it suitable for target object
grasping applications.

The success demonstrated in our experimental evalua-
tions underscores the potential impact of our method in
advancing the field of robotic manipulation. However, the
current study represents a stepping stone, and future work
could explore several promising directions. One avenue for
further investigation is the extension of our approach to
handle dynamic and cluttered environments. Adapting the
model to dynamically changing scenes and improving its
robustness in cluttered scenarios would be crucial for real-
world deployment. Moreover, exploring the integration of
additional sensory information, such as tactile feedback or
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TABLE 7. Comparison of our method with 6D object pose estimation
approaches in real robot grasping. The networks were trained on the
GraspNet-1Billion dataset. The table shows the number of attempts, the
number of successful attempts, and the grasp success rate.

proprioceptive data, could further enhance the versatility and
adaptability of the grasp generation system. This multi-modal
integration might enable the model to refine grasp configu-
rations in response to real-time environmental changes and
uncertainties. Additionally, addressing the transferability of
the trained model to various robotic platforms and scenarios
remains a vital aspect of future research. Investigating
methods to facilitate domain adaptation and transfer learning
could enable the seamless deployment of our approach in
diverse robotic applications, ranging from industrial settings
to domestic environments.

V. CONCLUSION
In this study, we addressed the fundamental challenge of
grasp generation in robotic manipulation by introducing an
innovative approach that bypasses the need for specialized
depth sensors. Our method revolutionizes grasp generation
by leveraging tailored deep learning techniques to estimate
depth from color (RGB) images directly. This paradigm shift
allows the computation of predicted point clouds solely from
RGB inputs, eliminating the dependency on traditional depth
sensors. A pivotal contribution lies in the development of
a fusion module adept at seamlessly integrating features
derived from RGB images with those inferred from predicted
point clouds. This fusion process harnesses the strengths
of both modalities, significantly enhancing grasp configura-
tions. Our experimental evaluations unequivocally validate
the efficacy of our approach, demonstrating its superiority
in generating grasp configurations compared to existing
methods. We achieved a remarkable 4% improvement in
average precision compared to state-of-the-art grasp detec-
tion methods. Moreover, in real robot grasping experiments,
our proposed method exhibited a 6% increase in success
rate compared to state-of-the-art grasp detection methods
and a 5% improvement compared to object pose estimation
frameworks. Our future work will focus on extending the
capabilities of the proposed approach to handle dynamic,
cluttered environments, exploring multi-modal integration
for improved adaptability, and ensuring the transferability of
the model across different robotic platforms and scenarios.
These endeavors hold the promise of further elevating the
versatility, adaptability, and real-world applicability of grasp
generation in robotics.
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