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ABSTRACT The launch of ChatGPT in 2022 garnered global attention, marking a significant milestone
in the Generative Artificial Intelligence (GAI) field. While GAI has been in effect for the past decade, the
introduction of ChatGPT sparked a new wave of research and innovation in the Artificial Intelligence (AI)
domain. This surge has led to the development and release of numerous cutting-edge tools, such as Bard,
Stable Diffusion, DALL-E, Make-A-Video, Runway ML, and Jukebox, among others. These tools exhibit
remarkable capabilities, encompassing tasks ranging from text generation and music composition, image
creation, video production, code generation, and even scientific work. They are built upon various state-
of-the-art models, including Stable Diffusion, transformer models like GPT-3 (recent GPT-4), variational
autoencoders, and generative adversarial networks. This advancement in GAI presents a wealth of exciting
opportunities across various sectors, such as business, healthcare, education, entertainment, and media.
However, concurrently, it poses unprecedented challenges such as impersonation, job displacement, privacy
breaches, security vulnerabilities, and misinformation. To addressing these challenges requires a new
direction for research to develop solutions and refine existing products. In our endeavor to contribute
profound insights to society and advance research on GAI, we present a comprehensive journal which
explores the theoretical and mathematical foundations of GAI state-of-the-art models, exploring the diverse
spectrum of tasks they can perform, examining the challenges they entail, and discussing the promising
prospects for the future of GAI.

INDEX TERMS Generative AI, GPT, bard, ChatGPT, diffusion model, transformer, GAN, autoencoder,
artificial intelligence.

I. INTRODUCTION
The release of ChatGPT on November 30, 2022 [1], [2],
triggered an exponential surge in the groundbreaking and
widespread popularity of GAI to the general public. This
remarkable achievement could be traced to the 1956 summer
project at Dartmouth College spearheaded by McCarthy;
marking the inception of artificial intelligence (AI) [3]. The
endeavor aimed to develop machines with the ability to
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perform tasks typically demanding human intelligence [4],
[5], [6], [7], [8]. These tasks include computer vision,
natural language processing (NLP) [9], [10], robotics, and
many others. Since then, significant advancements have
been achieved in imbuing machines with the capability of
talking, walking, thinking, and acting like humans. Notably,
a series of algorithms, including the Regression model,
perceptron algorithm [11], Decision tree [12], K-Nearest
Neighbor [13], Naive Bayes Classifier, Back Propagation,
support vector machine (SVM) [14], and Random Forest [15]
have emerged. These algorithms in contemporary times
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are commonly referred to as classical/traditional machine
learning algorithms and most of them were developed before
the year 2000. Furthermore, there is an advancement in
deep learning algorithms, including the development of
Convolutional Neural Networks (CNNs) in the 1980s [16],
Recurrent Neural Networks (RNNs) in 1985 [17], Long
Short-TermMemory (LSTM) in 1997 [18], and Bidirectional
Long Short-Term Memory (BiLSTM) [19] in the same year.
However, until recent times, widespread attention has been
limited primarily because of computing resources and dataset
availability limitations [20].
To tackle the constraints imposed by limited datasets,

researchers from Stanford University, Princeton University,
and Columbia University jointly launched the ImageNet
Large Scale Visual Recognition Challenge in 2010 [21]. This
competition played a pivotal role in driving advancements
in neural network architectures, with a particular focus on
Convolutional Neural Networks (CNNs). Since then, CNN
has been established as an algorithm for image classification
and computer vision [22]. The breakthrough achievement
of AlexNet in 2012 [23] marked a significant milestone in
the practical application of deep learning in computer vision
tasks. The success of the ImageNet Competition ignited a
surge in interest and investment in deep learning research.
This newfound enthusiasm resulted in the continuous
evolution of improved architectural innovations, including
models such as ResNet [24], DenseNet [25], MobileNet [26],
and EfficientNet [27]. These models set the gold standard
for various cutting-edge technologies, such as transfer
learning, continual learning, attention mechanisms [28], self-
supervised learning, and generative AI.

Before 2014, all existing deep learning models were pri-
marily descriptive, focusing on summarizing or representing
existing data patterns and relationships. These models aimed
to explain the data patterns and make predictions based on
the information present. However, Goodfellow et al. [29] in
2014 introduced the Generative Adversarial Network (GAN)
ushering in a new era of Generative Artificial Intelligence
(GAI) realization. Unlike their descriptive counterparts,
generative models, such as GANs, are designed to learn the
underlying probability distribution of the data [30]. Their
primary goal is to generate new data samples that closely
resemble the patterns observed in the training data [31], [32].

The breakthrough of GAN marked a significant departure
from traditional deep learning methods, opening exciting
possibilities for Generative artificial intelligence. GAI has
since garnered widespread attention due to its transformative
impact across various domains of life. It offers elegant
solutions to complex problems [33] enabling the creation of
synthetic data, artistic content, and realistic simulations. This
paradigm shift in AI technology has profoundly influenced
the new perception, implementation, and utilization of arti-
ficial intelligence, sparking innovation and new application
opportunities across industries.

The rise of GAI has sparked countless inquiries, prompting
the necessity for comprehensive GAI exploration. Despite

numerous recent studies to address the surge of GAI [31],
[31], [34], [34], [35], [35], [36], [36], [37], [38], [39],
[40], [41], [44], [45], [46], discussing challenges, tasks, and
models, there still needs to be more thorough exploration
into the theoretical and mathematical foundations of the
recent GAI models and their related aspects such tools which
are evolving exponentially as schematically presented on
Figure 1. Motivated by this observation, our goal is to fill
this gap by conducting an in-depth review of the state-of-
the-art in GAI. Our contribution involves scrutinizing the
most commonly used models, delving into their technical and
mathematical backgrounds, listing their latest associated end
products (tools), describing task categorization, applications,
areas of impact, challenges, and prospects. Through this
study, we aim to provide the broader public and new
researchers with profound insights into GAI and facilitate its
advancement as we enter a new era of advanced AI.

The rest of the work is structured as follows: Section II
introduces contemporary generative models. Section III
elaborates on the various tasks within GAI. Section IV
examines the diverse applications of GAI. Section V delves
into the outlook for GAI. Lastly, Section VI offers a
conclusion.

II. GENERATIVE MODELS
There has been a shift in the focus of researchers from
discriminative learning to generative learning in the contem-
porary era.Multiple generativemodels have emergedwith the
capability of generating new data points like the training data
inputs based on learning their distribution. This section will
discuss current state-of-the-art theoretical and mathematical
foundations of generative models.

A. AUTOENCODER
Autoencoder (AE) is an unsupervised machine learning
neural network model that encodes the input data using an
encoder into a lower-dimensional representation (encoding)
and then uses a decoder to decode it back to its original form
(decoding) while reducing the reconstruction error [47]. This
model was primarily designed for Dimensionality Reduction,
Feature Extraction, Image Denoising, Image Compression,
Image Search, Anomaly Detection and Missing Value
Imputation [47].

Both encoder and decoder of themodel are neural networks
written as a function of input and a generic function of code
layer respectively [48]. Based on Figure 2, autoencoder is
made up of four components namely:

• Encoder: This component reduces and compresses the
input data into lower dimensions. As a result of its
output, it creates a new layer called code.

• Code/Bottleneck: a layer that contains a compressed
and the lowest possible dimensions of input data
representation. Consider equation 1 below.

hi = f (Xi) (1)
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FIGURE 1. The schematic overview of GAI, including a comprehensive list of the most used models, their tasks, and tools use cases.

whereby hi is code layer after function f with user
defined parameters is applied to the input X i

• Decoder: Reconstructs the code layer from lower
dimension representation to input.

• Reconstruction Loss: Defines the final output of the
decoder, measuring how closely the output resembles
the original input.

X̃i = g (hi) (2)

where X̃i is the output of encoder after second generic
function to the code layer.

The training of the autoencoder involves minimizing the
dissimilarity between the input and the output [48], as shown
in Equation 3.

Argminf ,g < 1
(
X i,X̃i

)
(3)

The encoder and the decoder are composed of fully connected
feedforward neural networks where the input, code, and
output layers consist each of a single neural network layer
defined by the user. Like other standard neural networks,
autoencoders apply activation functions such as sigmoid

FIGURE 2. Autoencoder architecture1 describing the main components of
AE such as encoder, decoder, and code.

and Relu. Various variants of autoencoder exist, such
as contractive, Denoising, and sparse autoencoder [49].
Generally, the plain autoencoders prior mentioned are not

1Source: https://towardsdatascience.com/applied-deep-learning-part-
3-autoencoders-1c083af4d798.
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TABLE 1. VAE state-of-the-art.

generative since they do not generate new data but replicate
the input. However, the variational autoencoder is the variant
that is generative [47].

1) VARIATIONAL AUTOENCODER
Variational autoencoder (VAE) evolved as a result of the
introduction of variational inference (A statistical technique
for approximating complex distributions) to Autoencoder
(AE) by Kingma et al. [50]. It’s a generative model
that utilizes Variational Bayes Inference to describe data
generation using a probabilistic distribution [51].
Unlike traditional AEs, VAEs have an extra sampling layer

in addition to an encoder and decoder layer as depicted in
Figure 3. Training the VAEs model involves encoding the
input as a distribution over the latent space and generating the
latent vector from the distribution sampling. Afterward, the
latent vector is decoded, the reconstruction error is computed,
and the reconstruction error is backpropagated through
the network. During the training process, regularization is
introduced explicitly to prevent overfitting.

Probabilistically, VAE is composed of a latent represen-
tation z, drawn from the prior distribution p(z) and the data
x drawn from the conditional likelihood distribution p(x|z)

FIGURE 3. The VAE architecture showing its modification from AE
incorporating additional layer such as sampling layer, latent distribution,
and vector.

which is referred to as probabilistic decoder and can be
expressed as:

p(x, z) = p(x | z)p(z) (4)

The inference of the model is examined by computing the
posterior of the latent vector using the Bayes theorem shown
in equation 5.

p(z|x) =
p(x|z)p(z)
p(x)

(5)

With any distribution variant such as Gaussian, variational
inference can approximate the posterior, and its reliability
in approximation can be assessed through Kullback-Leibler
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divergence which measures the information lost during
approximation. This model has significantly influenced
GAI, as demonstrated in Table 1, which highlights a few
outstanding state-of-the-art examples using VAE across
various domains.

B. TRANSFORMER
The ground-breaking work of Vaswani et al. . ‘‘Attention Is
All You Need’’ by the Google Brain team introduced a trans-
former model which can analyze large-scale dataset [28].
Transform was initially developed for NLP but was subse-
quently adapted to other areas of machine learning, such
as computer vision [72], [73], [74]. This model aimed
to solve RNNs, and CNNs shortcomings such as long-
range dependencies, gradient vanishing, gradient explosion,
the need for larger training steps to reach a local/global
minima, and the fact that parallel computation was not
allowed [28]. Thus, the proposed solution presented a novel
way of handling neural network tasks like translation, content
generation, and sentiment analysis [75]

FIGURE 4. The transformer architecture [28] including Self-attention,
multi-head attention and word embedding.

Transformer Architecture: Vaswani et al. [28], introduced
three main concepts in their study as depicted in Figure 4,
including self-attention, which allows a model to evaluate
input sequences according to their importance, thus reducing
long-range dependencies, multi-head attention which allows
the model to learn multiple means of the input sequence, and
word embedding, which transforms inputs into vectors.

Encoder and Decoder: It is worth mentioning that the
transformer architecture (Figure 3) inherits the encoder-
decoder structure [76] that utilizes stacked self-attention and
point-wise layers, fully connected layers for both the encoder
and decoder [77]. The encoder consists of a stack of N
= 6 identical layers, each with two sublayers, including a
multi-head self-attention mechanism and a fully connected
feedforward network. A decoder is like an encoder, but with
an additional sublayer which masks the multi-head attention.
Encoders and decoders both apply residual connections to the
sublayers, followed by normalization of the layers.
Self-Attention: Attention describes the mechanism for a

better understanding of theword’s context by paying attention
to the vital part of the sentence or any input. It involves
mapping a vector of query and a set of key-value pairs to
an output vector. According to [28], self-attention refers to
Scaled Dot-Product Attention consisting of queries and key
dimensions dk , and dimension dv values computed according
to the following formula:

Attention(Q,K ,V ) = softmax(
QKT
√
dk

)V (6)

Figure 5 depicts the structure attention whereby the SoftMax
activation function is used to compute the weights on values.

FIGURE 5. Detailed description self-attention architecture [28].

Multi-Head Attention: A multi-head attention mechanism
proposes that self-attention can be run multiple times in
parallel mode combining knowledge of the same attention
pooling via different representation subspaces of queries,
keys, and values. Afterward, the independent attention
outputs are concatenated and linearly transformed into the
expected dimension, as portrayed by equation 5 and Figure 6.

MultiHead (Q,K ,V ) = concat (head1, . . . headh)W o (7)

where head i = Attention (QWQ
i ,KW k

i ,VW
v
i )
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FIGURE 6. The scaled dot product of self-attention architecture [28].

Since the Transformer’s invention, several variants have
been developed to solve different machine-learning tasks
in computer vision and NLP. It’s imperative to note that
the state-of-the-art models are built on the foundation
transformer architecture [72]. In the following subsection,
we will discuss the contemporary generative models.

1) GENERATIVE PRE-TRAINED TRANSFORMER (GPT)
A Generative Pretrained Transformer (GPT) describes the
transformer-based large language model (LLM) that utilizes
deep learning techniques to generate a human-like text [78].
Themodel was introduced byOpenAI in 2018 [79], following
Google’s 2017 invention of a transformer. It is made of
a stack of transformer decoders. They proposed a model
consisting of two stages: learning a high-capacity language
model from a large corpus of text and fine-tuning it with
labeled data during the discriminative task, as depicted
in Figure 7.

FIGURE 7. The self-attention architecture of GPT [79].

GPT or GPT-1 was trained on the BooksCorpus dataset,
which consists of over 7,000 unique unpublished books in

many genres, such as Adventure, Fantasy, and Romance,
all with long stretches of contiguous text, allowing the
generative model to learn on long-range information [61],
[62], [65]. The model training specification included the
following:

• 12-layer decoder-only transformer.
• Masked self-attention heads (768-dimensional states
and 12 attention heads).

• Position-wise feed-forward networks.
• Adam optimization.
• Learning rate: 2.5e-4.
• 3072-dimensional inner states.

The assessment tasks for the model were drawn from four
primary categories within NLP: these encompass natural
language inference, question answering and common-sense
reasoning, semantic similarity, and classification. Following
the initial release, OpenAI has produced a series of variant
models known as GPT-n series as summarized in table 2,
where every successor model is more substantial and efficient
than the predecessor. GPT-4 is the most recent variant release
in March 2023.

2) GPT-2
After the great success of GPT-1, OpenAI released a second
version (GPT-2) in 2019 with 1.5 billion learnable parame-
ters, ten times more in pre-training corpus and parameters
than its predecessor trained on WebText, a collection of
millions of webpages [80]. As a result, this model can handle
complex problems and generate coherent and contextually
relevant texts across a wide range of topics and styles.

3) GPT-3
This version was released in 2020 and had 2048-token
contexts, 175 billion learnable parameters, which is more
than 100 times its predecessor, and required 800GB of
storage [81]. CommonCrawl was used to train the model,
which was tested on all domains of NLP, and it had promising
few-short and zero-shot performance. This version was
further improved to GPT 3.5, which was used to develop
ChatGPT. Considerable research work has been conducted,
incorporating GPT-1 to GPT-3.5 across various task such as
Speech Recognition [82], [83], [84], Text Generation [85],
[86], [87], [88], [89], [90], [91], [92], Cryptography [93],
[94], [95], [96], Computer Vision [97], [98], and Question
Answering [99], [100], [101], [102], [103].

4) GPT-4
In March 2023, the most recent GPT model was released by
OpenAI [104]. It’s a multimodal transformer model, A large-
scale language model that accepts image and text inputs
and produces text outputs. GPT-4 exhibits high performance
comparable to that of humans when tested in several number
of professional and academic benchmarks, including passing
a bar and medical exam [105], [106]. The model was trained
using publicly available internet data and data licensed from
third parties and then fine-tuned using Reinforcement Learn-
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TABLE 2. GPT’s summary.

ing from Human Feedback (RLHF). It was compared with
state-of-the-art models using Measuring Massive Multitask
Language Understanding (MMLU) [107] that covers 57 tasks
in elementary mathematics, US history, computer science,
law, and more and outperformed them all.

C. GENERATIVE ADVERSARIAL NETWORK (GAN)
1) GAN OVERVIEW
A generative adversarial network (GAN) is an unsupervised
generative model that consists of two neural networks:
a generator and a discriminator. A generator attempts to
fabricate new data (fake) that is indistinguishable from real
data, while a discriminator tries to distinguish between real
and fabricated data [108]. Figure 8 illustrate the schematic
architecture of GAN (Also known as a vanilla GAN). The
generator network takes noise as input and generates fake
data. The discriminator network takes both real and fake data
as input and classifies them as real or fake using a sigmoid
activation function and binary cross-entropy loss [109]. Since
the generator does not have direct access to authentic images,
it only learns through interactions with the discriminator; the
discriminator has access to synthetic and authentic images.
Upon completion of classification, backpropagation takes
place to optimize the training process [108]. This process
repeats itself until the difference between real and fake data
samples is negligible.

According to Goodfellow et al. [29], the generator (G) and
discriminator (D) are trained together in a minimax game
(zero-sum game). In this game as demonstrated by equation 8,
G is trying to maximize the probability that D misclassifies
its output as real data, while D is trying to minimize the
probability that it misclassifies G’s output.

minGmaxDV (D,G) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[ log(1 − D(G (z) ))]

(8)

where E is the Expected Value, pdata(x) is Real data
distribution and pz (z) implies Noise data distribution.

FIGURE 8. The schematic GAN architecture consisting of Discriminator
and Generator model.

2) GAN CHALLENGES
Despite their robustness, traditional GANs suffer from
limitations such as:

Mode collapse: In this phenomenon, the generator can
only produce a single type of output or a limited number of
outputs [110]. This is because the generator becomes stuck
in a particular mode or pattern, failing to generate diverse
outputs that cover the entire data range [111]. There are
two main causes of mode collapse in GANs. The first is
catastrophic forgetting [112], which occurs when learning in
a current task destroys knowledge learned in a previous task.
The second cause is discriminator overfitting, which results
in the generator loss vanishing [113].
Non-convergence and Instability: The loss function in

equation 8 can cause the generator to suffer from gradient
vanishing [114]. This can happen when the discriminator
learns too quickly and can easily distinguish between real
and fake samples. However, the generator may have a lower
learning rate and be unable to keep up. This can lead to the
training process stalling, as the generator cannot learn from
the feedback provided by the discriminator. GANs are also
known to be sensitive to the choice of hyperparameters, such
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FIGURE 9. (a) Detailed ChatGPT chatbot and (b)-(d) bard (Now Gemini) outputs for prompts ‘‘Briefly describe Bard in one paragraph’’, ‘‘ChatGPT’s brief
description in one paragraph’’ and a Swahili question, ‘‘Habari za saa hizi’’.

as the learning rate and the batch size. This means that it
can be challenging to train GANs consistently, as even small
changes to the hyperparameters can significantly impact the
results [115].

Gradient vanishing can be addressed using a different loss
function, such as the Wasserstein loss. The Wasserstein loss
is less sensitive to the discriminator’s learning rate, and it can
prevent the generator’s gradients from disappearing. Another
solution would be to use a generator with a smaller learning
rate. This will prevent generator weights from becoming
too large, which can also contribute to gradient vanishing.
In addition, a good initialization technique must be used for
the generator. In this manner, the generator will start well, and
the training process will likely be successful.

3) GAN VARIANTS
In response to the aforementioned GAN challenges,
various variants have been developed to address the

weaknesses and optimize the model. Here are some of
the most famous variants of GAN since its emergence
in 2014:

Conditional Generative Adversarial Network (cGAN)
cGAN was introduced by Mirza and Osindero [116]

in 2014, this variant enhances the classical GAN by
incorporating extra auxiliary information into the Generator
and Discriminator networks, such as class labels or style
attributes. This integration is achieved by introducing an
additional layer that includes the conditional information
input to the generator, instructing it on what to produce [117].
For instance, in an image generation scenario, this condition
might consist of a class label that precisely defines the type
of image to be generated.

The Deep Convolutional GAN (DCGAN) framework
employs a deep learning model for discriminator and
generator components, specifically a Convolutional Neural
Network (CNN). In the architectural design defined by

VOLUME 12, 2024 69819



S. Bengesi et al.: Advancements in Generative AI

FIGURE 10. (a) Demonstrate the image generated by the Adobe Firefly tool, while (b) showcase a stable
diffusion-generated image both using the ‘‘college Student Programming’’ prompt.

Radford et al. [118], traditional fully connected layers
situated on top of convolutional features have been omitted.
Additionally, including Batch Normalization plays a pivotal
role in enhancing training stability. This technique normalizes
the input to each neural unit, ensuring a mean of zero and
unit variance, thus facilitating more consistent and efficient

learning. Moreover, DCGAN substitutes conventional pool-
ing layers with strided convolutions in the discriminator
and fractional-strided convolutions in the generator network.
The Rectified Linear Unit (ReLU) serves as the activation
function for the generator, while the LeakyReLU is employed
in the discriminator. These activation functions play a crucial
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FIGURE 11. (b) Depict the generated new living room design using roomGPT from original living room (a) [154].

FIGURE 12. (a)The Bowie State University Natural Science Building (a) [126] used by the runway tool to Generate new building design (b).

role in enabling the networks to capture intricate patterns and
features.

Wasserstein GAN (WGAN) is a GAN variant that
employs the Wasserstein distance (also referred to as the
Earth Mover’s distance) as its loss function, distinguishing
itself from traditional GANs that typically use the Jensen-
Shannon or Kullback-Leibler divergences. The Wasserstein
distance (WD) measures the similarity between the distribu-
tions of real and generated samples [119]. It is grounded in
the solution to a classical optimization problem known as the
transportation problem [120]. In this context, suppose there
exists several suppliers, each endowed with a certain quantity
of goods, tasked with delivering to several consumers, each
having a specified capacity limit. Each supplier-consumer
pair incurs a cost for transporting a single unit of goods.
The transportation problem aims to identify the most cost-
efficient allocation of goods from suppliers to consumers.

W
(
Pr ,Pg

)
= inf

γ∈π (Pr ,Pg)
E(x.y)∼γ [||x − y||] (9)

WD is expressed by equation 9, Pr and Pg denotes
the probability distribution of real ad generated sample

respectively. The Lipschitz constraint was utilized to impose
weight clipping on the discriminator [121]. This measure
enhances training stability, mitigating challenges like mode
collapse and saturation loss.

Cycle GAN is an approach that automates training
image-to-image translation models without requiring paired
examples, leveraging GAN architecture [122]. It utilizes
unassociated image collections from distinct source and
target domains (e.g. Domain X and Domain Y). The
model structure comprises two generators: Generator-
X crafts images for Domain X, and Generator-Y gen-
erates images for Domain Y. Each generator associ-
ated with a its corresponding discriminator for binary
classification.

This variant incorporates three loss functions: firstly, the
cycle consistency losses ensure that translations between
domains maintain a coherent loop, returning to their original
point; secondly, the adversarial loss pits the Generator against
its corresponding Discriminator, with the Generator striving
to generate domain-specific images while the Discriminator
distinguishes between translated and real samples; and
thirdly, the Identity Loss incentivizes the Generator to
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FIGURE 13. Code generation using (a) ChatGPT and (b) Bard tool.

faithfully preserve color composition between input and
output, enhancing translation fidelity.

StarGAN: a method that harnesses the power of the
GAN architecture for versatile multi-domain image-to-image
translation. As outlined by Choi et al [123], this innovative
generative adversarial network masterfully learns mappings
among numerous domains, employing just a single generator
and discriminator, and efficiently trains on images spanning
all domains. This model utilizes an Adversarial Loss to
make generated images virtually indistinguishable from real
ones, a Domain Classification Loss to guarantee precise
classification by the discriminator and a Reconstruction Loss
that minimizes adversarial and classification losses.

In the preceding subsection, we have delved into several
variants of Generative Adversarial Networks (GANs). How-
ever, it is worth noting that the landscape of GANs encom-
passes a myriad of additional variants that have significantly
advanced beyond the foundational GAN framework. These
notable advancements include the Progressive GAN (PGAN)
of 2017 [124], BigGAN of 2018 [125], StyleGAN [126] and
StyleGAN 2 [127] of 2019, along with earlier innovations
such as InfoGAN [128], Stacked GAN [129], Bidirectional
GAN (BiGAN) [130] from 2016.

D. DIFFUSION MODEL
Diffusion model (DM) is a probabilistic generative model
characterized by a two-step process. Firstly, the forward
diffusion process introduces Gaussian noise into the training
data. Then, the reverse diffusion process, known as denoising,
gradually reverses the diffusion step by step to generate
new sample data [131]. These models effectively overcome

challenges encountered in aligning posterior distributions
within VAEs, mitigate the inherent instability in the adver-
sarial objectives of GANs by offering a more stable training
objective, and addressing the computational burdens associ-
ated with Markov Chain methods [132], [133]. DM basically
encompasses three primary formulations: denoising diffusion
probabilistic models (DDPMs), stochastic differential equa-
tions (SDEs), and score-based generative models (SGMs)
[134].

E. DENOISING DIFFUSION PROBABILISTIC MODELS
(DDPMS)
DDPMs [135], [136]employ the aforementioned processes
of DM, whereby the forward process introduces noises
ε ∼ N (0, 1) into data distribution sample X0 ∼ p(X0),
to generate the noisy data distribution or prior distribution,
p (Xt |Xt−1) using Markov chain as depicted by equation 10
given that index 0 denotes original data and p (X0) represent
the probability density of the data.

p(Xt |Xt−1) = N (Xt ;
√
1 − βtXt−1, βt I ) (10)

where I mean identity matrix and βt entail variance schedule
across various diffusion step t. we can now define αt =

1 − βt from variance schedule and as long as we know the
original data X0 we use a single step to create a noisy data Xt
and generate the sample distribution shown in equation 11.

P (xt | x0) = N (X t ;
√

ᾱtX0,
√
1 − ᾱt I ) (11)

Based on equation 11, we can derive the definition of Xt as
shown on equation 12;

Xt =

√
ᾱtX0, +

√
1 − ᾱt I . (12)
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TABLE 3. GAI tools.
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TABLE 3. (Continued.) GAI tools.
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On the other hand, reverse process operates oppositely by
progressively denoising the noisy data starting from the
random sample Xt ∼ N (0, I ) toward generating the original
distribution (Posterior Distribution) defined on equation 13.

Pθ (Xt−1 |Xt) = N
(
Xt−1; µθ (Xt , t) ,

∑
θ
(Xt , t)

)
(13)

Markov chain (see equation 14) is applied to maintain
consistency during denoising process.

Pθ (X0 : T ) = P (Xt)
T∏
t=1

Pθ (Xt−1 |Xt) (14)

The log likelihood is employed to optimize the learning
process towards the original data distribution, which in
turn leads to an increase in the variational lower bound.
To minimize the negative variational lower bound, the
Kullback-Leibler (KL) divergence is utilized as depicted on
equation 15

Lvlb = − logPθ
(X0 |X1) + KL (P (XT |X0) ||π (XT ))

+

∑
t>1

KL(p (Xt |Xt−1) ,X0)||Pθ (Xt−1 |Xt)) (15)

whereby Lvlb infers log likelihood variation lower bound.
The study by Ho et al. [135] simplified Lvlb by

removing weighting coefficient resulting Lsimple defined by
equation 16.

LSimple = Et,X0,ϵ[||ϵ − ϵθ (Xt , t)||2]. (16)

1) SCORE-BASED GENERATIVE MODELS (SGMS)
The formulation of SGMs relies on the concept of a
score (Stein) function, defined as the gradient of the
logarithm of the probability density ∇x logP(x) [137] This
approach involves perturbing data with Gaussian noise
progressively and employing a noise-conditional score model
(NCSN), which is a neural network model to estimate
the score function [138] burden. Mathematically is derived
as ∇Xt logPσt (Xt |X) = −

Xt−X
σt

with noise distribution of
whereby noise distribution Pσt (Xt |X) = N (Xt ,X , σ 2

t I ) and
σt is a sequence of noise level.

2) STOCHASTIC DIFFERENTIAL EQUATIONS (SDE)
SDEs formulation is continuous diffusion process that can
generalize the prior mentioned formation DDPMs and SGMs
perturbation and denoising process [139].

dx = f (x, t) dt + g (t) dw (17)

Given that Equation 17 defines forward SDE which estimate
the score function whereby f is the function of x, and t for
drift coefficient g(t) is the diffusion coefficient, dt denotes
infinitesimal negative time step and w infer standard wiener
process. To denoise the date the reverse process is required
on the forward SDE (Equation 19). It is given as:

dx =

[
f (x, t) − g2 (t) ∇x log pt (x)

]
dt + g (t) dw (18)

where w represent Brownian motion. Reverse SDE [140]
can be solved numerically using a trained neural network
Sθ (x, t) ≈ ∇x log pt (x) which compute the actual score
function using the objective depicted in equation 19:

L = Et [(λ (t)Ep(x0)EPt (xt | x0) ||Sθ (x, t)

− ∇x log pt (xt | x0) ||
2
2] (19)

where λ is the weighted function and sampling can be
accomplished by using numerical method such as Euler-
Maruyama, Prediction-Correction, prediction flow ODE.

III. GAI TASK AND TOOLS
Task: GAI encompasses a wide array of tasks; these
tasks involve the generation on new data from the given
input. including Speech Generation (Text-to-Speech), Image
Generation (Text-to-Image), Text Generation (Text-to-Text),
Code Generation (Text-to-Code), Music Generation (Text-
to-Music), Video Generation (Text-to-Video), and Scientific
Content Generation (Text-to-Science). These tasks are sup-
ported by various cutting-edge tools. Below, we explore these
tasks, providing accompanying examples of tool outputs in
various use cases.
Tools: As depicted in Table 3, numerous tools have been

developed by various companies to address a variety of real-
world problems, as mentioned earlier. Since the emergence
of ChatGPT, there has been an exponential increase in the
release of GIA tools. The usage and demand for these tools
have surged significantly. They are no longer limited to
research purposes but are now being utilized on a daily basis
and in commercial applications. Individuals from various
roles and expertise levels are eager to adopt these tools,
as highlighted by the report from Deloitte [141].

Referring to Table 3, we present a comprehensive dis-
cussion of the most well-known and widely used tools to
the best of our knowledge. We include details such as their
functionality, developer, year of release, and categorization.
Most of these tools were unveiled in 2023, though a few were
introduced earlier.In certain instances, release dates may be
labeled as N/A due to unavailability of information. Notably,
Google emerges as the primary developer of a multitude of
generative tools, closely followed by Meta AI and OpenAI.
Input: In many GAI tasks, the primary input is text,

commonly referred to as a prompt. This prompt is crucial in
determining the generated output, making prompt engineer-
ing a vital skill [142]. Prompt engineering involves designing
inputs for AI tools to produce optimal outputs. A well-
crafted prompt may include instructions, context, output
indicators, and input data [143]. Clear instructions within
the prompt may entail providing detailed query information,
utilizing delimiters to separate different parts of the input,
breaking down tasks into subtasks, offering examples or
references, and specifying the desired length and format of
the output [144]. These components ensure that the AI model
understands the task at hand and effectively generates outputs
meeting the desired criteria.
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A. TEXT GENERATION
This task involves taking text as input and generating
corresponding text-based responses. It is often associated
with question-and-answer conversational systems, com-
monly called chatbots. Many renowned GAI tools fall
within this category, with ChatGPT being a groundbreaking
example in the field of GAI. Other notable tools in this
category include Google’s Bard, OpenAI’s ChatGPT Plus,
Wordtune Spice, and Cohere’s Generate. We conducted a
comprehensive performance assessment of two prominent
and renowned text-to-text tools, Bard and ChatGPT. Both
were presented with identical queries: ‘Provide a brief
description of what Bard is in one paragraph’, ‘Provide a
brief description of what ChatGPT is in one paragraph’,
and a Swahili question, ‘Habari za saa hizi’. The results as
illustrated by Figure 9, unmistakably indicate that ChatGPT
outperformed Bard in delivering more precise answers to the
questions.

B. IMAGE GENERATION
It’s a task which encompasses the process of utilizing
textual prompts or visual to generate corresponding images,
spanning various visual domains, including graphics, pho-
tographs, and artwork. As an illustration of text-to-image
concept, we conducted experiments using ‘Firefly’ from
Adobe and ‘Stable Diffusion’ by Stability as our subjects.
By prompting these models with ‘College Student Program-
ming’, we obtained their respective outputs, as showcased
in Figure 10, the results clearly indicate that while ‘Firefly’
excelled in delivering more precise outputs in alignment
with the input, Stable Diffusion exhibited superior image
resolution compared to its counterpart. Another scenario
image generation revolves around the transformation of an
image from one form to another, guided by textual descrip-
tions provided as input. Within this domain, numerous tools
have demonstrated promising capabilities in effecting such
transformations. Notably, we have explored the performance
of RoomGPT and Runaway, as exemplified in Figure 11 and
Figure 12, respectively.

C. VIDEO GENERATION
This task involves generating new videos based on textual or
visual inputs, whereby visual encompasses a diverse range of
content that includes both images and videos. In this domain,
there are notable tools designed to accommodate exclusively
text-based descriptions as inputs. A prime example is ‘Parti’
by Google, and DALL E-2 [145] by openAI are proficient
tools focused on creating videos solely from textual prompts.
Nonetheless, the field of video generation is in a state of
continuous evolution. Tools such as ‘Gen-2’ by RunwayML,
‘Imagen Video’ by Google [146], and ‘Make-A-Video’ by
Meta [147] have emerged as pioneers. These advanced
platforms possess the remarkable capability unlimited to
textual descriptions but also seamlessly integrate images and
videos as input, transcending conventional boundaries. Their

excellence lies in their adeptness at transforming these inputs
into entirely novel video compositions, thus unveiling the
exciting potential of GAI in the creative realm of video
production.

D. CODE GENERATION
Code generation tools are specialized software utilities capa-
ble of automatically producing code blocks for various pro-
gramming languages based on textual descriptions provided
as input [148]. These tools leverage sophisticated models
trained on extensive publicly available code repositories,
boasting billions of parameters. Their primary objective is
to assist human developers by comprehending plain English
and translating it into functional code. Notable examples of
such tools include StarCoder [149], Codex [150], CoPilot,
Codey, and Code Interpreter. Additionally, it’s worth noting
that several text-to-text tools, including ChatGPT and Bard as
depicted by Figure 13, also possess the capacity to generate
code.

E. MUSIC GENERATION
It’s a fascinating generative task involving entirely new
music’s composition. This innovative process takes input in
various forms, including textual descriptions, sequences of
musical notes, and even audio samples [151]. The objective is
to harness these inputs and transform them into fresh musical
compositions that encapsulate rhythm, melody, harmonious
chords, and diverse musical instruments. Prominent tools
like MuseNet [152] and Jukebox [153] stand out as prime
examples in themusic generation. These innovative platforms
harness the power of GAI to craft musical compositions
spanning various genres and styles. They excel in infusing
creativity into the art of music, opening new avenues for
artists and enthusiasts to explore and enjoy.

F. SPEECH GENERATION
The generation of human-like speech or voice relies on tex-
tual or audio input [155]. Textual input can encompass written
text, such as sentences, paragraphs, or entire documents,
and it can span multiple languages, including punctuation,
special symbols, and formatting instructions [156], [157].
Speech generation models undertake a sequence of steps that
involve speech synthesis, enhancement, and conversion. The
enhancement process includes noise handling, tone modula-
tion, emotion conveyance, and other nuanced features [158],
[159]. Numerous tools have been developed in this domain to
facilitate speech generation, some of which include Whisper,
Speechelo, Synthesys, Voice Over, andWaveNet. These tools
are proficient in generating voices or speech that closely
mimic natural language, effectively blurring the line between
human and artificial speech synthesis.

G. SCIENTIFIC CONTENT GENERATION
Scientific content generation is a multifaceted process
encompassing the creation of informative and scholarly
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content across various domains of science, including mathe-
matics, physics, chemistry, and biology. This endeavor seeks
to harness the power of GAI to produce content that is
accurate and insightful, aiding in disseminating scientific
knowledge. One notable study in this field, conducted by
Rodriguez et al. [160], delved into the innovative way
of generating scientific figures based on textual input.
This groundbreaking research leveraged diffusion models to
seamlessly translate textual descriptions into visually infor-
mative scientific figures, thereby streamlining the process
of scientific communication and visualization. Furthermore,
Google’s ongoing research project, Minerva [161], repre-
sents a significant stride in solving quantitative reasoning
problems. This initiative harnesses the capabilities of Large
Language Models (LLMs) to tackle complex quantitative
challenges, thereby enhancing our understanding of math-
ematics and its practical applications within the scientific
landscape. In parallel, Galactica [162], a cutting-edge tool
developed by Meta AI, plays a pivotal role in scientific
writing. This platform equips scientists and researchers
with powerful tools to streamline articulating their scientific
discoveries, theories, and insights.

IV. INDUSTRIAL APPLICATION OF GIA
GAI technology’s relevance in the present and future is
indispensable. Currently, GAI is exerting an exponential
impact across a broad spectrum of industries, and this section
will delve into a detailed exploration of the sectors that are
most impacted.

A. MEDIA AND ENTERTAINMENT
In the entertainment industry, GAI models are begin-
ning to have a significant impact despite being in their
early stages. Their influence spans various entertainment
domains, encompassing scriptwriting and storyboarding for
novels, plays, and films, audio production [229] involving
composition, arrangement, and mixing, game design and
character creation, the creation of captivating virtual worlds,
marketing campaigns, and the generation of both moving
and static images. Notably, a wide range of accessible tools,
as demonstrated in Table 3, make it easier to generate content
such as reels, jokes, and images [230]. Many of these tools
are cost-effective or even free, providing an alternative to
traditional content creation methods. As an illustration of
their potential, in 2022, RunwayAI played a role in creating
the Academy Award-winning film ‘‘Everything Everywhere
All at Once’’ which received recognition with seven Oscars
awards [231], [232].

B. EDUCATION AND RESEARCH
GAI is rapidly reshaping the educational landscape, offering
innovative solutions that elevate the learning experience
for both students and educators. One significant impact of
GAI in education is the emergence of personalized content
generation tools. Exemplified by technologies like GPT-3,
GPT-4 and Bard, these tools empower educators to craft

tailored learning materials, including interactive lessons,
quizzes, and study guides, precisely catering to the unique
needs of individual students and instructors [233]. Further-
more, AI-driven chatbots and virtual tutors provide students
with real-time support, offering explanations, addressing
queries, and delivering personalized feedback [35]. This
transformative technology holds the potential to reinvent
how students access and engage with educational content,
promoting accessibility and adaptability according to each
learner’s specific preferences [234], [235].

GAI has also opened new avenues of research and
academic exploration. The rapid development of GAI tools
has piqued the interest of researchers and academics across
the globe, leading to an array of research opportunities [236].
Tech giants and research institutions are investing significant
resources to explore and invent new tools and technologies
in this field. This is evident in the surge of publications
related toGAI, both in peer-reviewed databases like IEEE and
non-reviewed platforms like arXiv, where GAI topics have
gained prominence. The fusion of education and GAI has not
only transformed the learning experience but has also sparked
a thriving academic domain that promises continued growth
and innovation [237].

C. HEALTHCARE
GAI is making substantial inroads in healthcare, particularly
in medical imaging [238]. It plays a crucial role in
overcoming challenges related to limited datasets by enabling
the synthesis of new data [239], [240], ultimately enhancing
the quality and diversity ofmedical images. This innovation is
set to revolutionize disease detection and diagnosis, providing
healthcare professionals with more accurate and detailed
information. In addition, GAI is transforming the adminis-
trative aspects of patient care. Streamlining administrative
processes and offering virtual health assistants simplifies
healthcare management and provides personalized health
advice, medication reminders, and emotional support [241].
Moreover, GAI is revolutionizing treatment planning. Lever-
aging patient-specific data, it can generate customized
treatment plans tailored to an individual’s genetic makeup,
lifestyle, and medical history. This approach represents a
significant leap toward precision medicine, ensuring patients
receive the most effective and personalized treatment.

Furthermore, GAI is playing a pivotal role in the realm
of drug development and discovery [242], [243], [244].
Through the generation of molecular structures [245] and
predictive modeling, it expedites the identification of novel
therapeutic compounds. These advancements can address
previously untreatable diseases, instilling hope in countless
patients across the globe. Notably, the collaboration between
NVIDIA and Evozyne in implementing GAI, specifically
ProT-VAE, signifies the remarkable synergy between AI and
the healthcare sector. By employing the Protein Transformer
Variational AutoEncoder, they have laid the groundwork for
creating synthetic proteins [246], opening up new avenues
for therapeutic solutions in the fight against challenging
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incurable diseases. Yet another noteworthy example is
the collaborative research venture between Google and
Cognizant [247]. Their joint effort aims to construct a Large
Language Model (LLM) tailored for healthcare applications,
specifically focusing on enhancing Healthcare administrative
tasks. This endeavor harnesses the capabilities of Google
Cloud and its framework to create cutting-edge GAI solutions
for the healthcare sector.

D. BUSINESS
GAI has firmly established its presence in the business land-
scape. Many of the applications listed in Table 3 operate on a
subscription-basedmodel, reflecting the growing commercial
nature of these tools. Bloomberg Intelligence predicts that
GAI will generate 137 billion US dollars in 2023 and is
expected to surge to 1.3 trillion US dollars by 2030 [248].
This profound impact extends across various industries, from
manufacturing and wholesale to retail businesses, banking,
agriculture, and many more. GAI’s reach spans from creating
new products and automating financial data analysis to gener-
ating personalized advertising campaigns [249], [250], [251],
offering tailored product recommendations to customers,
and producing product descriptions and news articles [252].
It is increasingly evident that GAI is reshaping the business
landscape and holds immense economic potential in the
future.

For example, Amazon is actively harnessing GAI capabili-
ties to empower sellers in crafting engaging, compelling, and
effective product listings through brief descriptions of their
products. Amazon leverages GAI to generate high-quality
content, which sellers can further refine or directly submit
to enrich the Amazon catalog [253].

Improved Business Network Security performance, GAI
significantly can impact network security by facilitating
traffic anomaly prediction. For instance, Synthetic traffic
packets generated byGAI algorithms like GANs [254], [255],
[256], [257] can simulate real-world scenarios, enabling the
testing of network responses to detect anomalies effectively.
This technique aids in pinpointing vulnerable loopholes, thus
enabling the establishment of robust network mechanisms to
deter intrusion attempts [258], [259]. Also, GAI is crucial
in analyzing network traffic patterns and devising strategies
for optimizing bandwidth allocation, congestion control, and
routing. By leveraging GAI’s capabilities, networks can
achieve enhanced performance and efficiency and affect
business performance.

V. CHALLENGES OF GAI
Despite the abundant benefits brought by GAI into our daily
life, it has also raised new uncertainties in various areas life,
as discussed below:

Job deterioration; optimizing and automating business
processes are anticipated to replace many existing careers
with creative and GAI functions. GAI’s impact on the labor
market is poised to transform the employment landscape,
gradually replacing many traditional roles with advanced
technology. According to the World Economic Forum’s

report [260], tasks with the highest potential for automation
by Large Language Models (LLMs) are routine and repeti-
tive. These tasks include those performed by Credit Authoriz-
ers, Checkers, Clerks, Management Analysts, Telemarketers,
Statistical Assistants, and Tellers [261], [262]. Therefore,
individuals must prioritize reskilling and adaptability to
prepare for AI-driven jobs in the future effectively.

Privacy and Security concern; The cybersecurity infras-
tructure domain is presently undergoing a profound and
rapid transformation, primarily driven by the integration
of GAI. This substantial shift is giving rise to a host
of pressing concerns and challenges for the future like:
Sophisticated cyberwarfare, currently, we are witnessing
a notable surge in malicious activities, and this trend is
expected to continue its upward trajectory while also becom-
ing more intricate and sophisticated [263]. For instance, the
emergence of cutting-edge cyber threat tools like WormGPT
and FraudGPT [264], [265], which have rapidly established
themselves as pioneering elements in cyber threats often
referred to as ‘‘exclusive bots’’ [266] by their perpetrators, are
engineered to be highly sophisticated and evasive. Moreover,
the emergence of increasingly automated and sophisticated
malware and ransomware, powered by GAI [267], presents
a menacing potential for subverting existing encryption
methods [268]. This is primarily due to the immense compu-
tational prowess inherent in GAI. As these malicious entities
persist and advance, they represent a formidable challenge to
the cybersecurity landscape, testing the limits of the resilience
and robustness of contemporary cybersecurity systems and
protocols [269]. The consequences of these developments are
far-reaching, with the prospect of malicious AI proving to be
devastating to a nation’s critical infrastructure, particularly
in scenarios involving state-sponsored or malevolent cyber
terrorism [270].

Networks can be easily attached by hackers whereby
adversaries could exploit GAI-generated traffic to penetrate
networks, as such traffic may appear genuine and evade
detection mechanisms. Therefore, while GAI offers avenues
for bolstering network security and performance, vigilance
against potential misuse is essential.

Increased impersonation and misinformation, escala-
tion of AI advancements across various domains, visual,
speech, audio, and text-based applications, has significantly
elevated concerns surrounding personal privacy breaches and
impersonation. A pertinent example is the music industry,
where AI-driven ghostwriters have released a fake audio track
emulating the voices of renowned artists like Drake and The
Weekend, both of whom are global music sensations [271].
Tracks like ‘‘Heart on My Sleeve’’ and ‘‘Cuff It,’’ featuring
AI-rendered versions of Rihanna and Beyoncé’s voices [272],
have garnered attention for their remarkably convincing
mimicry. Consequently, the creative industry faces sub-
stantial threats, particularly sectors reliant on advanced
artificial intelligence. As reported, these technologies can
potentially jeopardize careers within the entertainment
industry.
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Incorrect and hallucinations answers; it is crucial for
everyone utilizing GIA tools to acknowledge the possibility
of generated answers being incorrect, outdated, or even hal-
lucinated. For instance, in a case study involving Figure 8(d)
bard (now Gemini), the prompt ‘‘Habari za saa hizi,’’ a
Swahili phrase meaning ‘‘How are you,’’ had a response
of breaking news accompanied with hyperlinks, which was
inaccurate and potentially hallucinated. Erroneous responses
have been observed in advanced prompts or questions,
such as coding-related ones. Therefore, it is imperative
to understand that complete reliance on GIA-generated
responses is unwarranted. Thorough assessment and review
of responses are necessary before applying them to real-
world problems. This ensures the validity and reliability of
the information generated by GIA and mitigates the risks
associated with potential inaccuracies or hallucinations.

VI. THE FUTURE OF GAI
GAI undoubtedly holds a significant and promising future,
offering a plethora of tangible and transformative possibilities
across various domains. However, it is equally accompanied
by considerable uncertainty and a range of concerns that
deserve in-depth exploration. This section explores the
multifaceted aspects of GAI, addressing its potential and the
challenges and uncertainties ahead.

A. PIONEER OF FIFTH INDUSTRIAL REVOLUTION (5IR)
GAI represents the promising frontier of the fifth industrial
revolution (5IR), a force poised to revolutionize the fourth
industrial revolution and create transformative changes across
various sectors. This transformation is made possible by the
profound interconnection of internet infrastructure, extensive
datasets, and distributed computing resources that tran-
scend geographical boundaries. Several industries, including
Healthcare, Security, Cyber Infrastructure, Entertainment,
and Education, are on the verge of significant disruption due
to GAI’s capabilities. However, it’s crucial to recognize that
this disruptive potential may also bring about infrastructure
reforms across multiple sectors, potentially leading to high
levels of automation and optimization in various career fields.

On Healthcare Industry, as we have witnessed, GAI
is already playing a pivotal role in drug discovery, with
a particular emphasis on exploring protein molecules. The
potential for this technology in the field of drug devel-
opment is vast, and substantial investments from major
technology companies underscore the anticipated advance-
ments in the near future. However, the impact of GAI
extends far beyond drug development, as it is expected
to transform the patient experience within the healthcare
sector fundamentally. By harnessing patients’ medical history
data, it can autonomously diagnose medical conditions by
analyzing metadata like age, sex, and underlying medical
conditions. Moreover, it can sift through extensive patient
data to identify patterns, make predictions, and suggest
appropriate medications. This transformation is set to
prioritize patient-centered clinical experiences and drive cost-

effectiveness, ultimately leading to significant enhancements
in healthcare protocols [273].
Enhanced Entertainment, In the foreseeable future,

we stand at the threshold of a transformative era where
GAI will likely dominate the realm of content creation in
entertainment and media. From crafting intricate scripts and
narratives to meticulously arranging scenes and bringing
characters to life, the influence ofGAI is set to permeate every
facet of content generation in these industries. Furthermore,
the potential impact is so profound that it might even
challenge the boundaries of life and art. Deceased artists
could potentially continue to release new albums and
creative works, effectively transcending the limitations of
mortality. Not only will this innovation usher in a new
age of artistic exploration, but it also promises significant
cost savings, revolutionizing the economics of movie and
music production. Automating scene creation and content
generation will reduce expenses and make the creation
process more efficient.

New learning era, the advent of AI chatbots like ChatGPT
and Google Bard, along with other innovative tools, serves
as compelling evidence of the democratization of GAI in the
education and learning endeavors. This remarkable progress
has rendered the current educational system and resources
outdated, particularly in developed countries. It anticipates a
comprehensive overhaul of the education system, including
teaching resources, to adapt to the exponential growth in the
GAI era, aiming to provide highly personalized and adaptive
learning experiences.

Advanced Manufacturing Industries, before the emer-
gence of GAI, robotics had already showcased impressive
capabilities. However, with the integration of GAI, we can
look forward to truly remarkable advancements. Just envision
the consequences of infusing GAI into military technology,
where we might see the development of generative nuclear
weaponry, the formulation of chemical recipes for bever-
ages, detergents, and various industrial products, and the
widespread adoption of self-driving vehicles. The range of
possibilities is extensive, and it undoubtedly signifies the
onset of a new era—an industrial revolution that promises a
thoroughly transformed landscape and innovative approaches
across numerous sectors of industries.

B. JOB MARKET SHIFTING
The influence of GAI on the labor market is two-fold:

Firstly, it ushers in new employment opportunities
in emerging domains such as AI Explainability and GAI
engineering. McKinsey’s analysis [274] suggests a gradual
rise in job openings within professions exposed to GAI,
On and this trend is expected to persist until roughly 2030.
A noteworthy revelation is that a substantial 84% of the U.S.
workforce occupies positions with the potential to leverage
GAI for automating a significant portion of repetitive tasks,
leading to a considerable surge in overall productivity.
Significantly, 47% of U.S. executives express confidence that
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integrating GAI will lead to heightened productivity across
diverse industries [275], [276].

VII. CONCLUSION
Throughout this paper, we have delved into state-of-the-art
models, explored their mathematical foundations, scrutinized
their architectural intricacies, and anticipated their evolution
in the future. We have also examined prominent tasks, bench-
marked state-of-the-art tools against GAI, and assessed their
real-world applications. The realms of impact, challenges,
and future prospects of GAI have been thoroughly addressed.
Indeed, GAI opens the door to a new world filled with both
unprecedented numerous opportunities and inherent risks.
GIA is a new paradigm that is increasingly influencing
various facets of life, including education and business. There
is a pressing need to educate the public about the current and
future impact of GIA across different domains.

Given the unstoppable emergence and exponential growth
of GIA, which is anticipated to play a pivotal role in the
advent of the 5IR and the transformation of job markets,
as well as revolutionizing cybersecurity practices, it has
become apparent that embracing GIA is essential for any
business or organization to thrive in this era, therefore it
is imperative for managerial teams across various sectors,
such as educational institutions, to strategically adopt this
technology shift. Establishing compliance policies and risk
management plans for managing the impact of GIA is
strongly advised. Moreover, prioritizing talent and skill
development, along with continuous learning initiatives on
GIA, is essential for all workers and the entire organiza-
tion [277]. This approach ensures keeping track of new
developments and effectively leveraging the advantages of
GIA, while also being prepared to handle any potential threats
it may pose.

Many unanswered questions remain, prompting future
research in GIA. Researchers must actively engage in study-
ing and innovating solutions to the challenges posed by GIA
such as misinformation, inaccurate responses, cyber threats
and job deterioration. For instance, there is a need for research
into detecting content generated by GIA tools, ensuring
authenticity and originality. Another vital area for research
involves the study of explainability and privacy preservation
regarding the output of GIA, prioritizing transparency and
safeguarding user data Additionally, researchers are expected
to devise solutions to combat cyber warfare originating from
GIA tools, addressing issues such as impersonation and
misinformation. Moreover, research is needed to enhance the
confidence, reliability, and timeliness of generated responses.
Generally, these avenues offer promising opportunities for
continued exploration and advancement within GAI.
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