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ABSTRACT To carry out cell counting, it is common to use neural network models with an encoder-
decoder structure to generate regression density maps. In the encoder-decoder structure, skip connections
are usually used to retain detailed features. However, skip connections introduce to the encoder multiple
reverse propagation paths; the backward propagation gradients along these paths exhibit significant semantic
differences, which affect the encoder’s training process and may lead to adverse effects. To remedy this
problem, we propose a path-gradient controlling network for cell counting. First, a novel reverse gradient
control module is proposed to balance the impact on the encoder of the backward propagation signal from the
skip connections. Second, to eliminate noise in the feature maps of the encoder output, the convolutional and
channel attention modules are used on the shallowest layer’s skip connection. Finally, we utilise depthwise
convolution to reduce information loss during the downsampling process, and we use depthwise separable
transposed convolution as the upsampling method to mitigate overfitting. Experiments demonstrate that the
proposed method outperforms state-of-the-art techniques such as MSCA-UNet, Two-Path Net, SAU-Net,
and Cell-Net in terms of the mean absolute error (MAE) metric on four publicly available cell-counting
benchmark datasets. Our model performs better on the synthetic bacterial (VGG) dataset (1.9 ±0.1) than
does the MSCA-UNet (2.0±0.2). On the Modified Bone Marrow (MBM) dataset, our model (3.7±0.2)
outperforms SAU-Net (5.7±1.2). On the human subcutaneous adipose tissue (ADI) dataset, our model, with
(8.9±0.3), surpasses MSCA-UNet with (9.8±0.7). On the Dublin Cell Counting (DCC) dataset, our model
achieves (2.4±0.2) and outperforms SAU-Net with (3.0±0.3). The source code of our method is available
at https://github.com/mona-aliye/PGC-Net.

INDEX TERMS Cell counting, density map, gradient control.

I. INTRODUCTION
Object counting is an essential task in computer vision,
and it includes many sub-tasks, such as crowd count-
ing [1], [2], [3], cell counting [4], [5], [6], and vehi-
cle counting [7], [8], [9]. One of these sub-tasks, cell
counting, has attracted the attention of many researchers,
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as it can aid doctors in diagnosing diseases such as
immune granulocytes [10] and COVID-19 [11]. Gener-
ally, cell counting methods for microscopic images are
divided into detection-based and density map regression-
based methods. Traditional approaches in cell counting [12],
[13], [14] often employ detection-based methods, wherein
considerable features are manually identified to extract
individual cells from the microscope images. Due to the
limitations of their feature detectors, traditional approaches
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still encounter difficulty in processing images with high
cell density. To contend with this problem, density map
regression-based methods based on deep learning have been
proposed.

Several regression-based methods have been proposed
with non-encoder-decoder structures, and other methods with
encoder-decoder structures have been proposed. For the
methods with non-encoder-decoder structure, Xie et al. [15]
proposed a microscopy cell counting and detection method
based on a fully convolutional regression network, which
marked the first application of fully convolutional networks
(FCN) [16] in cell counting and achieved good results. Jiang
and Yu [17] built upon the FCN architecture to introduce a
foreground mask network for filtering low-level feature maps
and conveying valuable information to the decoder. However,
in non-encoder-decoder structures, there is a significant
loss of spatial detail in high-dimensional semantic feature
maps due to the increase in the number of convolutional
and downsampling layers. Recent cell counting methods
have generally adopted encoder-decoder structures with skip
connections to solve this problem. These structures fuse
the feature maps outputted from each layer of the encoder
with the input feature map of the decoder, which enables
the decoder to simultaneously leverage high-dimensional
semantic features and spatial details to reconstruct the density
map. Jiang and Yu [18] introduced a cell counting network
named the Two-Path Network, which featured two encoding
pathways: one dedicated to global information extraction
and the other focused on local information extraction.
Rad et al. [19] proposed a method based on an ensemble of
residual dilated U-Nets [20]. Their approach involved adding
a residual dilated module at the bottom level of the U-Net,
which means stacking convolutional layers having different
dilation rates to obtain a larger receptive field, thereby
capturing the global features in cell images. Subsequently,
they further improved upon this approach by proposing Cell-
Net [5], where the residual dilated module is refined into a
residual incremental atrous pyramid structure. Additionally,
they introduced a progressive upsampling convolutional
decoder based on subpixel convolution. Guo et al. [21] added
a spatial self-attention module to the bottom encoding and
decoding paths of the U-Net, which enabled the learning of
spatial features within a global context. Additionally, they
introduced online batch normalization (BN) to alleviate the
generalisation gap caused by data augmentation in small cell-
counting datasets. Jiang and Yu [22] introduced a weighted
channel module called the inter-channel attention (ICA)
block to capture the inter-channel correlations in feature
maps. This channel attention module is designed with non-
parametric features, which makes it suitable for cell datasets.
Although the proposed methods have achieved excellent
results, they did not fully address the following problems:
First, because skip connections construct paths at various
depths of the network, there is a noticeable semantic gap in
the backward propagation signals received by the encoder
modules along different paths. Second, shallow encoder

feature maps in the cascaded encoder contain noise, and
the forwarding of maps directly to the decoder via skip
connections can impact the decoder’s output. Lastly, the
cell counting task relies heavily on detailed information,
and the traditional downsampling methods that lead to the
loss of detailed features may bring about errors. A limited
number of samples in a cell counting task makes traditional
upsamplingmethods withmany trainable parameters prone to
under-fitting.

To contend with the above problems in cell counting
tasks, we propose a novel method: a path-gradient controlling
network (PGC-Net) based on an encoder-decoder structure.
To address poor feature map quality in the encoder, we intro-
duce the reverse gradient control (RGC) module to regulate
the backward propagation gradients from paths of different
depths to guide the encoder to focus more on the gradient
signals from specific paths and to alleviate the semantic gap
that occurs when backward gradient signals are propagated
along different paths. Second, to address the problem of noise
in the feature maps of the shallow encoder outputs, we design
a lightweight denoisingmodule called the Lite Detail Refiner,
which effectively removes foreground and background noise.
Finally, we use depthwise convolution to reduce information
loss during the downsampling process, and we use depthwise
separable transposed convolution as the upsampling method
to mitigate overfitting.

In summary, our main contributions can be summarised as
follows:

1) To contend with the semantic gap caused by the prop-
agation of backward gradient signals along different
paths, we propose a novel network architecture, PGC-
Net, that introduces backward gradient control modules
into the encoder-decoder structure of neural networks.

2) To address the effect of noise on the decoder’s
learning of spatial details, we propose a lightweight
denoising module named Lite Detail Refiner. It utilises
a convolutional block and a channel attention module
on the skip connection branch to remove noise from the
feature maps of the shallowest encoder output.

3) To remedy the sampling methods for cell counting
tasks, we propose using depthwise convolution and
transposed depthwise separable convolution [23] for
downsampling and upsampling.

The remaining sections of the paper are organised
as follows: Section II introduces the proposed method.
Section III provides a brief description of the public
benchmark datasets and experimental configurations used
in this study, comparisons with state-of-the-art methods on
each benchmark dataset, and an analysis of the results from
ablation experiments. Finally, Section IV concludes the paper
with a discussion and a future outlook.

II. METHOD
In this section, we introduce the proposed network. We first
present the overall architecture, and we then explain the
submodules in sequence.
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FIGURE 1. Overall structure of PGC-Net. PGC-Net is essentially SAU-Net with additional gradient control modules, noise
reduction modules, and modifications to the upsampling and downsampling methods. In the gradient control module,
we can give a weight to control the gradient flow along this backpropagation path.

A. ARCHITECTURE
The proposed cell counting network, referred to as PGC-Net,
is illustrated in Figure 1.

As shown in Figure 1, there are four layers in the network.
Except for the fourth layer of the decoder, which utilises
the spatial self-attention module from SAU-Net [21], each
layer of the decoder and encoder contains a convolutional
block. Each convolutional block comprises two identical
modules, each of which is composed of a 3×3 convolutional
layer, a BN layer, and a ReLU layer. The feature maps
produced by each encoder layer are downsampled and then
fed into the next encoder layer. The downsampling layer
employs depthwise convolution with a stride of 2, and the
upsampling layer utilises depthwise separable transposed
convolution. Specifically, it involves a transposed depthwise
convolution with a stride of 2, followed by a point-wise
convolution, i.e., a 1×1 convolutional layer, for the reduction
of channel dimensions. The RGC modules are placed at
the output ends of the encoder skip connection to control
the backward propagation gradient flow along each skip
connection. Furthermore, our Lite Detail Refiner (LDR) is
added to the first layer’s skip connection branch. The LDR
comprises a 3×3 convolutional layer, a BN layer (BN),
a ReLU layer, and a channel-wise attention module without
parameters, i.e., an ICA module [22]. The convolutional
layers use a stride of 1 if not specified otherwise. Specifically,

we use regular BN [24] layers instead of the online BN layer
proposed in the SAU-Net paper.

B. RGC MODULE
The skip connections in the encoder-decoder structure
provide forward pathways for the decoder to access spatial
details, which effectively enhances the decoder’s ability to
recognise edges. In regressing to generate density maps,
spatial information primarily guides the decoder in utilis-
ing semantic information. However, the skip connections
simultaneously provide a backward gradient propagation
path for the encoder and influence the encoder during
training. Specifically, the gradient of the first layer encoder
is a summation of gradients from four paths. The gradient
from the main path tends to give the shallowest layer of
the encoder a more fine-grained spatial feature extraction
capability. Conversely, the backward propagation gradient
from the shallowest layer tends to enable it to learn coarser
features, i.e. more abstract semantic features, as shown
in Equation (1). We omit the noise removal module and
the upsampling/downsampling layers from the formulas for
simplicity. We label the convolutional blocks in the encoder,
from shallow to deep, as E1 to E4, and in the decoder, from
deep to shallow, as D3 to D1. D4 represents the spatial self-
attention module that connects E4 and D3, and the finally
connected output 1×1 convolutional layer is considered to
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FIGURE 2. Structure of LDR. Within the denoising module, initially,
a convolutional layer is utilised to establish local element correlations.
Following the nonlinear ReLU and BN layers, an ICA module is added to
construct global channel correlations.

be part of D1. Let X be the input and let the model output
be Y=f(X). The loss function is L=Y-Y, where Y is the true
label. G(j) represents the effect of the j-th layer’s path on the
gradient at E1. When the subscript of the product symbol is
greater than the superscript, we define it as an empty product,
and its value is 1. The gradient at E1 is given by Equation (1):

∂L
∂E1

=

l∑
j=1

G(j)

G(j) =
∂L
∂D1

·
∂Dj
∂Ej

j−1∏
k=1

(
∂Dk

∂Dk+1
·
∂Ek+1

∂Ek

) (1)

where l represents the number of layers in the symmetric
encoder-decoder structure model, and in this case, l = 4.
We can observe that the backpropagation gradient from the
shallow skip connection and the backpropagation gradient
from the main pathway are superimposed on E1. We add an
RGC module for each layer’s skip connection. The weights
for the RGC modules from the first to the third layer are
denoted as ωj, where 1 ≤ j ≤ 3. In particular, as the main
path located at the fourth layer is the deepest path, we assume
its backward-propagating gradient to impact E1 positively.
Therefore, we do not add an RGC module to the main path.
For simplicity, we setω4 = 1. The gradient at E1 is then given
by the following Equation (2):

∂L
∂E1

=

l∑
j=1

ωjG(j)

G(j) =
∂L
∂D1

·
∂Dj
∂Ej

j−1∏
k=1

(
∂Dk

∂Dk+1
·
∂Ek+1

∂Ek

) (2)

The problems present at E1 also exist at E2 and E3, as their
gradients result from the summation of backward propagation
gradients from multiple paths. Therefore, the analyses and
formulas presented for E1 are equally applicable to E2 and
E3, and the details will not be reiterated here.

C. LDR
The skip connection provides a forward propagation path by
which the decoder can obtain detailed spatial features from
the shallowest encoder layer. However, for the convolutional
block to capture fine-grained spatial details, it often outputs
feature maps that contain harmful noise. This noise is not
conducive to guiding the decoder to use high-level semantic
information for density map estimation. To address this
issue, we add a denoising module, namely LDR, to the

FIGURE 3. (a) Original input image, (b) feature map input to the decoder
without denoising, and (c) feature map input to the decoder after
denoising.

shallowest branch of the skip connection, as shown in
Figure 2. The denoising module first employs a convolutional
layer to establish local element correlations. Following the
BN and nonlinear layers (ReLU), an ICA module is added to
build global channel correlations. In Figure 3, we present a
comparative illustration of the effect of the LDR. After the
denoising, foreground and background noise are effectively
removed, and the feature map is left with primarily valid
spatial information.

D. SAMPLING METHOD
Downsampling and upsampling are widely used in encoder-
decoder structures. Downsampling reduces the size of the
feature maps while removing high-frequency spatial details.
Upsampling aims to restore high-dimensional semantic
information to the original image space. The commonly
used downsampling methods are max pooling and average
pooling. The advantage of these methods lies in their sim-
plicity. However, both pooling methods are algorithmically
designed to take in prior knowledge, and they apply the same
computational pattern to feature maps that contain different
features, which leads to the loss of valuable information.
For this reason, we propose using depthwise convolution
for downsampling operations. With almost no increase in
the number of parameters or computational complexity,
this approach adaptively generates a computational pattern
for each channel of each feature map. It helps reduce
information loss during the downsampling process. During
the upsampling process, transpose convolution is commonly
used, which involves elevating a pixel to map to nearby pixels
in both the spatial and channel dimensions. However, due to
the small size of cell datasets, such complex relationships can
easily lead to overfitting. Therefore, we adopt a transposed
depthwise separable convolution strategy to decouple spatial
and channel relationships. In the upsampling module, depth-
wise transposed convolution only needs to learn the spatial
relationships between pixels mapped to the same channel’s
neighbouring pixels. A 1×1 convolution is then used to learn
channel relationships and perform dimensionality reduction,
which reduces the risk of overfitting.

E. LOSS FUNCTION
We use pixel-wise L2 loss, which is also known as mean
squared error (MSE) loss, to train our model, as shown in
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Equation (3).

MSE =
1
mn

∑
i,j

(P̂i,j − Pi,j)2 (3)

where the subscripts i, j represent the pixel positions, and
1 ≤ i ≤ m and 1 ≤ j ≤ n,m and n denote the maximum pixel
values for the height and width of the image, respectively.
P̂i,j represents the value predicted by the neural network at
position i, j, and Pi,j represents the ground truth value at
position i, j.
It is worth noting that, in contrast to the MESA loss

[25], our model aims to learn the probability density
distribution at a single pixel by regressing from neighbouring
pixels, rather than by directly obtaining global metrics.
Therefore, we have chosen the per-pixel loss calculation
approach.

III. EXPERIMENTS
In this section, we first introduce the dataset, the details of
the experimental setup, and the evaluation metrics. We then
compare the proposed cell counting network with other
state-of-the-art methods. Finally, we represent the ablation
experimental results, and we compare them with the baseline
model to validate the effectiveness of the proposed approach.
Additionally, we discuss cell detection results in the context
of our proposed approach.

We used Python 3.9 as the programming language,
PyTorch 1.12 as the deep learning framework, and NVIDIA
V100 GPU with CUDA 11.3 for training and validation. The
experiments were conducted on Ubuntu 20.04.

A. DATASETS
We conduct experiments on four datasets: the synthetic
bacterial (VGG) dataset [25], Modified BoneMarrow(MBM)
dataset [26], human subcutaneous adipose tissue(ADI)
dataset [27] and Dublin Cell Counting(DCC) dataset [4].
Additionally, to validate the practicality of the proposed
backward gradient control module in models with skip con-
nections, we test the effectiveness of the backward gradient
control module on the classic ResNet20 [28] model using the
CIFAR-10 [29] dataset.VGG: Lempitsky and Zisserman [25]
created the VGG dataset. This dataset simulated bacterial
cells observed under a fluorescence optical microscope at
different focal lengths. MBM: Cohen et al. [26], based on
the dataset initially released by Kainz et al. [30], created
the MBM dataset. This dataset contains real images of
various cell types in the human bone marrow stained in
blue. ADI: The ADI dataset [27] was constructed by the
Genotype-Tissue Expression Consortium. DCC: The DCC
dataset was created by Marsden et al. [4] to represent
various cells, including embryonic mouse stem cells, human
lung adenocarcinoma cells, human mononuclear cells, and
others. The image sizes range from 306×322 to 798×788
to enhance the variability of the dataset. CIFAR-10:
CIFAR-10 [29] is a classic dataset that is widely used

for computer vision tasks. It consists of coloured images
from ten different classes. Each class contains 6000 RGB
images with a resolution of 32×32 pixels for a total of
60,000 images.

B. DETAILS OF EXPERIMENTAL CONFIGURATION
In this section, we primarily focus on the experimental
configuration and the implementation details of the training
process. For training on the VGG dataset, a batch size of
16 is employed with a total of 200 samples. The training
set consists of 64 samples, and the remaining samples are
allocated to a validation set. On the MBM dataset, a batch
size of 5 is used, and the dataset comprises 44 samples.
Of these, 15 samples are used for training and the rest
are allocated to a validation set. On the ADI dataset,
a batch size of 16 is utilized, and the dataset contains a
total of 150 samples: 50 samples are used for training,
and the remainder are reserved for validation. As for the
DCC dataset, the batch size is set to 16, and the dataset
comprises 176 samples. In this case, 100 samples are utilized
for training and the rest are allocated to a validation set.
Additionally, on the VGG [25], MBM [26], ADI [27],
and DCC [4] datasets, the label scaling factors are set to
100,1000,100, and 300, respectively. These scaling factors
divide the predicted density maps for the computation of the
mean absolute error (MAE) metric. This adjustment ensures
that the initial loss values are within a reasonable range.
We use the Adam optimiser with decoupled weight decay
[31], and the weight decay is set to 0.001. The network
weights are initialised using He initialisation [32]. For the
learning rate, we employ cosine annealing with warm restarts
[33], which gradually decreases the learning rate according
to a cosine decay function. The initial value of the schedule
is set to 0.01 with a restart step of 50 and a multiplier of 2.
We run each experiment for 350 iterations. Preprocessing:
Previous related works [18], [21], and [34] have stated
that it is necessary to preprocess images to adjust their
dimensions to multiples of 8 to accommodate downsampling
in the encoder. We adopt the same preprocessing method
for better comparison with the baseline SAU-Net [21]
model. Specifically, we pad the edges of the ADI dataset
images to resize them from 150 × 150 to 152 × 152,
and we downsample both the images and labels in the
DCC dataset to 256 × 256. Data Augmentation: During
training, images from the VGG [25], MBM [26], ADI [27]
and DCC [4] datasets are randomly cropped to sizes of
224×224,512×512,128×128, and 224×224, respectively.
Random horizontal flips, vertical flips, and 90-degree
rotations are implemented.

Note that we attempted to align our choice of the sample
size, preprocessing methods and hyperparameters as closely
as possible with the approach outlined in the SAU-Net
[21] work. Therefore, differences in the samples used for
training, preprocessing methods and hyperparameters with
some techniques may introduce bias.
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FIGURE 4. Sample predicted density map on the test set from the VGG dataset. Ground truth cell count: 96; predicted: 97.6.

FIGURE 5. Sample predicted density map on the test set from the MBM dataset. Ground truth cell count: 138; predicted: 141.7.

TABLE 1. Comparison results on the VGG dataset.

C. COMPARISONS WITH STATE-OF-THE-ART MODELS
We use the MAE as the evaluation metric, which calculates
the absolute difference between the ground truth and the
predicted counts for each image. In each experiment, the
training and validation splits for each dataset are randomly
selected. The experiments are repeated ten times, and the
mean and standard deviation of the MAE are computed.
We compare our method with state-of-the-art approaches.

On the VGG [25] dataset, our proposed method achieves
the best experimental results. The experimental outcomes and
sample predictions are presented in Table 1 and Figure 4.
On the MBM dataset [26], our method demonstrates good
performance on real cell images, as depicted in Table 2 and
Figure 5. On the ADI dataset [27], our proposed approach
exhibits the best experimental outcomes, and the results
and sample predictions are shown in Table 3 and Figure 6.
On the DCC dataset [4], which consists of various real cell

TABLE 2. Comparison results on the MBM dataset.

TABLE 3. Comparison results on the ADI dataset.

TABLE 4. Comparison results on the DCC dataset.

images, our method obtains the best experimental results,
as presented in Table 4 and Figure 7. In summary, our
proposed approach demonstrates superior performance in
achieving a low MAE and small standard deviation across
all datasets relative to the other cell counting methods. This
result reflects the generalisation and robustness of ourmethod
on cell counting benchmark datasets. To validate the utility
of the proposed RGC module on other models with skip
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FIGURE 6. Sample predicted density map on the test set from the ADI dataset. Ground truth cell count: 145; predicted: 140.8.

FIGURE 7. Sample predicted density map on the test set from the DCC dataset. Ground truth cell count: 42; predicted: 43.4.

TABLE 5. Ablation study on the impact of the proposed method.

connections, we select the classical ResNet20 [28] model for
testing. We add the RGC module to each residual block’s
residual connection and set the reverse gradient weight to 0.
On the CIFAR-10 [29] dataset, the performance improvement
is 0.57% relative to the original study [28] (from 91.25%
to 91.82%). This result demonstrates the generality of the
proposed method.

D. ABLATION STUDY
In this section, we conduct ablation experiments on the
VGG dataset [25] to validate the effectiveness of the RGC
module, the denoising module, and the improved sampling
method. The results are reported in Table 5 and indicate that
incorporating each of the RGC modules, denoising module
and improved samplingmethod one at a time leads to a further
improvement in model performance compared with when
these components are not used.

It is worth noting that the choice of weights for the RGC
module at each layer is a consideration worth exploring.
To choose the appropriate weights, we design a search
experiment to find the optimal weights with predefined values

in the range of [0,0.4,0.8,1]. These values represent a low-
weight reverse gradient flow, a high-weight reverse gradient
flow, a full reverse gradient flow, and no reverse gradient flow.
The detailed results of the search experiment can be found in
Appendix A.
We select three sets of weights that achieved excellent

results, and we conduct ten repeated experiments for
validation. Ultimately, the best weights are determined to be
[0.4,0.8,0.4].

E. CELL DETECTION
We follow the metrics and methods described in the MSCA-
UNet [34] study and use the Xie’s approach [15] to obtain cell
detection results by locating the local maxima. The predicted
maps of cell detection include three types of instances: TP
(True Positive), FP (False Positive) and FN (False Negative),
represented by green, yellow, and red points, respectively
(Figures 4, Figure 5, Figure 6, Figure 7). The precision,
recall and F1 score are used to evaluate the cell detection
performance, as shown below:

Precision =
TP

TP+ FP
(4)
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TABLE 6. Results of cell detection on datasets.

Recall =
TP

TP+ FN
(5)

F1-Score =
2 × Precision× Recall
Precision+ Recall

(6)

Precision represents the proportion of true positive instances
among all instances predicted as positive. Recall represents
the proportion of true positive instances predicted among all
instances labelled as positive. The F1 score comprehensively
measures both. The cell detection results on the four datasets
are shown in Table 6. TP represents true positive predicted
instances, where a predicted instance is considered to be
a match to a labelled positive instance if it falls within
a threshold radius and is the closest predicted instance
to the labelled positive instance. FN represents labelled
positive instances that are not predicted, meaning there
are no predicted instances within the threshold radius of
those labelled positive instances. FP represents false positive
instances, i.e., predicted positive instances other than TP. The
threshold radius we use is 10 pixels, which is the same as in
the MSCA-UNet study.

Compared with MSCA-UNet, our model has higher
recall but lower precision. These results mean that our
model has fewer FN instances but more FP instances. This
difference is mainly due to the treatment of local detailed
features. Whereas MSCA-UNet uses large convolutional
kernels to capture features of largescale structures for
density map regression, our model learns predominantly
from local detailed features. Regression from more local
detailed features to the cell density map introduces more
false predictions and predictions that match real cells, which
results in higher recall and lower precision.

IV. CONCLUSION
In this study, our main contribution is to re-examine the pros
and cons of skip connections in encoder-decoder structures
from a novel perspective. We introduce a plug-and-play RGC
module to address the semantic gap introduced by backward
gradient signals from different paths. In addition, we improve
our model to better suit the characteristics of cell counting
tasks, including the denoising of shallow feature maps and
the selection of sampling methods.

However, compared with the model employing the RGC
modules, the original ResNet20 model demonstrated a faster
loss reduction rate when it was trained on the CIFAR dataset.
Interestingly, the model that implemented the RGC modules
with a weight set to 0 performed better during the final
convergence. Intuitively, this can be explained by the residual
connection path providing a stronger adjustment signal to the

TABLE 7. Experimental results with different configurations.

shallow layers of the model. As a result, the loss decreases
rapidly during the early stages of training. Fine-tuning the
shallow layers with deep signals in the later stages of training
yields better results. Therefore, the choice of control path and
the specific weight settings, including the temporal (within
training epochs) and numerical settings, are all factors worth
considering, depending on the different goals and application
scenarios.
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FIGURE 8. Ten training and validation loss curves for the datasets.

In future work, we will consider treating the number of
training steps as an independent variable and designing a
weight adjustment function to introduce it into the RGC
module. Our aim is to achieve both faster convergence and
improved performance simultaneously.

APPENDIX A
PARAMETER SEARCH EXPERIMENTS OF GRADIENT
CONTROL WEIGHT
See Table 7.

APPENDIX B
TRAIN AND VALIDATE LOSS
See Figure 8.
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